历届高考中的三角函数与解三角形及数列精选题

合集下载

高中数学高考三角函数重点题型解析及常见试题、答案+数列常见题型总结

高中数学高考三角函数重点题型解析及常见试题、答案+数列常见题型总结

高中数学高考三角函数重点题型解析及常见试题、答案+数列常见题型总结高考三角函数重点题型解析及常见试题(附参考答案)三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例 1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-+ D .12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令sin cos ),4t x x x π=+=+而74412x πππ<+≤,得1t <≤.又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =,选D 。

例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()12622f a b π=+= ,所以4b =,a =(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型 2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A . 例4 (2008高考江西文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是分析:分段去绝对值后,结合选择支分析判断. 解析:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时.结合选择支ABCD-和一些特殊点,选择答案D . 点评:本题综合考察三角函数的图象和性质,当不注意正切函数的定义域或是函数分段不准确时,就会解错这个题目.题型3 用三角恒等变换求值:其主要方法是通过和与差的,二倍角的三角变换公式解决.例5 (2008高考山东卷理5)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭则7πsin 6α⎛⎫+ ⎪⎝⎭的值是A. BC .45-D .45分析:所求的7πsin sin()66παα⎛⎫+=+ ⎪⎝⎭,将已知条件分拆整合后解决. 解析: C.34cos sin sin cos sin 6522565ππααααα⎛⎫⎛⎫-+=⇔+=⇔+= ⎪ ⎪⎝⎭⎝⎭,所以74sin sin 665ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭. 点评:本题考查两角和与差的正余弦、诱导公式等三角函数的知识,考查分拆与整合的数学思想和运算能力.解题的关键是对πcos sin 6αα⎛⎫-+= ⎪⎝⎭ 例6(2008高考浙江理8)若cos 2sin αα+=则tan α= A .21B .2C .21-D .2- 分析:可以结合已知和求解多方位地寻找解题的思路.()αϕ+=sin ϕϕ==,即1tan 2ϕ=,再由()sin 1αϕ+=-知道()22k k παϕπ+=-∈Z ,所以22k παπϕ=--,所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.方法二:将已知式两端平方得()2222222cos 4cos sin 4sin 55sin cos sin 4sin cos 4cos 0tan 4tan 40tan 2ααααααααααααα++==+⇒-+=⇒-+=⇒=方法三:令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =, 即sin 2cos 0αα-=,故tan 2α=.方法四:我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得5x y ⎧=⎪⎪⎨⎪=-⎪⎩,从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的.方法五:α只能是第三象限角,排除C .D .,这时直接从选择支入手验证,由于12计算麻烦,我们假定tan 2α=,不难由同角三角函数关系求出sin ,cos 55αα=-=-,检验符合已知条件,故选B . 点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力.题型4 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型. 例7.(2008高考湖南理19)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A相距B ,经过40分钟又测得该船已行驶到点A 北偏东45θ+ (其中sin 26θ=,090θ<<)且与点A相距海里的位置C .(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.分析:根据方位角画出图形,如图.第一问实际上就是求BC 的长,在ABC ∆中用余弦定理即可解决;第二问本质上求是求点E 到直线BC 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决. 解析:(1)如图,402AB =2, 1013AC =26,sin 26BAC θθ∠==由于090θ<<,所以226526cos 1()2626θ=-= 由余弦定理得222cos 10 5.BC AB AC AB AC θ+-=1051553=/小时). (2)方法一 : 如上面的图所示,以A 为原点建立平面直角坐标系, 设点,B C 的坐标分别是()()1122,,,B x y C x y ,BC 与x 轴的交点为D . 由题设有, 112402x y AB ===, 2cos 1013cos(45)30x AC CAD θ=∠=-=, 2sin 1013sin(45)20.y AC CAD θ=∠=-=所以过点,B C 的直线l 的斜率20210k ==,直线l 的方程为240y x =-. 又点()0,55E -到直线l 的距离35714d ==<+,所以船会进入警戒水域.解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .在ABC ∆中,由余弦定理得,222cos 2AB BC AC ABC AB BC +-∠=⋅=2222402105⨯⨯=31010.从而2910sin 1cos 110ABC ABC ∠=-∠=-= 在ABQ ∆中,由正弦定理得,102sin 1040sin(45)2210AB ABC AQ ABC ∠===-∠⨯. 由于5540AE AQ =>=,所以点Q 位于点A 和点E 之间,且15EQ AE AQ =-=. 过点E 作EP BC ⊥于点P ,则EP 为点E 到直线BC 的距离. 在QPE ∆Rt 中,5sin sin sin(45)15357.5PE QE PQE QE AQC QE ABC =∠=⋅∠=⋅-∠=⨯=<所以船会进入警戒水域.点评:本题以教材上所常用的航海问题为背景,考查利用正余弦定理解决实际问题的能力,解决问题的关键是根据坐标方位画出正确的解题图. 本题容易出现两个方面的错误,一是对方位角的认识模糊,画图错误;二是由于运算相对繁琐,在运算上出错. 题型5 三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点.例8(2009年杭州市第一次高考科目教学质量检测理科第18题)已知向量)1,(sin ),2cos ,cos 2(x b x x a ωωω==,(0>ω),令b a x f ⋅=)(,且)(x f 的周期为π.(1) 求4f π⎛⎫⎪⎝⎭的值;(2)写出()f x 在]2,2[ππ-上的单调递增区间. 分析:根据平面向量数量积的计算公式将函数()f x 的解析式求出来,再根据)(x f 的周期为π就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可. 解析:(1)x x x b a x f ωωω2cos sin cos 2)(+=⋅=x x ωω2cos 2sin +=)42sin(2πω+=x ,∵)(x f 的周期为π. ∴1=ω, )42sin(2)(π+=x x f ,12cos 2sin )4(=π+π=π∴f .(2) 由于)42sin(2)(π+=x x f ,当πππππk x k 224222+≤+≤+-(Z k ∈)时,()f x 单增,即ππππk x k +≤≤+-883(Z k ∈),∵∈x ]2,2[ππ- ∴()f x 在]2,2[ππ-上的单调递增区间为]8,83[ππ-.点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点. 例9 (2009江苏泰州期末15题)已知向量()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,3,22παπ⎛⎫∈⎪⎝⎭,且a b ⊥.(1)求tan α的值; (2)求cos 23απ⎛⎫+⎪⎝⎭的值. 分析:根据两个平面向量垂直的条件将问题转化为一个三角函数的等式,通过这个等式探究第一问的答案,第一问解决后,借助于这个结果解决第二问. 解析:(1)∵a b ⊥,∴0a b ⋅=.而()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,故226sin 5sin cos 4cos 0a b αααα⋅=+-=,由于cos 0α≠,∴26tan 5tan 40αα+-=, 解得4tan 3α=-,或1tan 2α=.∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,tan 0α<, 故1tan 2α=(舍去).∴4tan 3α=-. (2)∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,∴3ππ24α∈(,). 由4tan 3α=-,求得1tan 22α=-,tan 22α=(舍去).∴sincos 22αα=cos 23απ⎛⎫+= ⎪⎝⎭ππcos cos sin sin 2323αα-=12= . 点评:本题以向量的垂直为依托,实质上考查的是三角恒等变换.在解题要注意角的范围对解题结果的影响.题型6 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是π,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型.例10.(安徽省皖南八校2009届高三第二次联考理科数学17题)三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量(,),(,)m c a b a n a b c =--=+,若//m n ,(1)求角B 的大小;(2)求sin sin A C +的取值范围. 分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角,A C 就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题. 解析:(1)//,()()()m n c c a b a a b ∴---+,222222,1a c b c ac b a ac +-∴-=-∴=. 由余弦定理,得1cos ,23B B π==.(2)2,3A B C A C ππ++=∴+=,222sin sin sin sin()sin sin cos cos sin 333A C A A A A A πππ∴+=+-=+-3sin )26A A A π=+=+ 250,3666A A ππππ<<∴<+<1sin()1,sin sin 26A A C π∴<+≤<+≤点评:本题从平面向量的平行关系入手,实质考查的是余弦定理和三角形中的三角恒等变换,解决三角形中的三角恒等变换要注意三角形内角和定理和角的范围对结果的影响.题型7 用平面向量解决平面图形中的问题:由于平面向量既有数的特征(能进行类似数的运算)又具有形的特征,因此利用平面向量去解决平面图形中的问题就是必然的了,这在近年的高考中经常出现.考试大纲明确指出用会用平面向量解决平面几何问题.例11. 如图,已知点G 是ABO ∆的重心,点P 在OA 上,点Q 在OB 上,且PQ 过ABO ∆ 的重心G ,OP mOA =,OQ nOB =,试证明11m n+为常数,并求出这个常数.分析:根据两向量共线的充要条件和平面向量基本定理,把题目中需要的向量用基向量表达出来,本题的本质是点,,P G Q 共线,利用这个关系寻找,m n 所满足的方程. 解析:令OA a =,OB b =,则OP ma =,OQ nb =,设AB 的中点为M , 显然1().2OM a b =+,因为G 是ABC ∆的重心,所以21()33OG OM a b ==⋅+.由P 、G 、Q 三点共线,有PG 、GQ 共线,所以,有且只有一个实数λ,使 PG GQ λ=,而111()()333PG OG OP a b ma m a b =-=+-=-+, 111()()333GQ OQ OG nb a b a n b =-=-+=-+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、b 不共线,由平面向量基本定理得⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131n m λλ,消去λ,整理得3mn m n =+,故311=+nm .结论得证.这个常数是3. 【点评】平面向量是高中数学的重要工具,它有着广泛的应用,用它解决平面几何问题是一个重要方面,其基本思路是根据采用基向量或坐标把所要解决的有关的问题表达出来,再根据平面向量的有关知识加以处理.课标区已把几何证明选讲列入选考范围,应引起同学们的注意.题型8 用导数研究三角函数问题:导数是我们在中学里引进的一个研究函数的重要工具,利用导数探讨三角函数问题有它极大的优越性,特别是单调性和最值. 例12. 已知函数22()cos 2sin cos sin f x x t x x x =+-,若函数()f x 在区间(,]126ππ上是增函数,求实数t 的取值范围. 分析:函数的()f x 导数在(,]126ππ大于等于零恒成立.解析:函数()f x 在区间(,]126ππ上是增函数,则等价于不等式()0f x '≥在区间(,]126ππ上恒成立,即()2sin 22cos 20f x x t x '=-+≥在区间(,]126ππ上恒成立, 从而tan 2t x ≥在区间(,]126ππ上恒成立, 而函数tan 2y x =在区间(,]126ππ上为增函数,所以函数tan 2y x =在区间(,]126ππ上的最大值为max tan(2)6y π=⨯=,所以t ≥为所求.点评:用导数研究函数问题是导数的重要应用之一,是解决高中数学问题的一种重要的思想意识.本题如将()f x 化为()sin 2cos 2)f x t x x x ϕ=+=+的形式,则ϕ与t 有关,讨论起来极不方便,而借助于导数问题就很容易解决.题型9 三角函数性质的综合应用:将三角函数和其它的知识点相结合而产生一些综合性的试题,解决这类问题往往要综合运用我们的数学知识和数学思想,全方位的多方向进行思考.例13. 设二次函数2()(,)f x x bx c b c R =++∈,已知不论α,β为何实数,恒有(sin )0f α≥和(2cos )0f β+≤.(1)求证:1b c +=- ; (2)求证:3c ≥;(3)若函数(sin )f α的最大值为8,求b ,c 的值.分析:由三角函数的有界性可以得出()10f =,再结合有界性探求.解析:(1)因为1sin 1α-≤≤且(sin )0f α≥恒成立,所以(1)0f ≥,又因为12cos 3β≤+≤且(2cos )0f β+≤恒成立,所以(1)0f ≤, 从而知(1)0f =,10b c ++=,即1b c +=-.(2)由12cos 3β≤+≤且(2cos )0f β+≤恒成立得(3)0f ≤, 即 930b c ++≤,将1b c =--代如得9330c c --+≤,即3c ≥. (3)22211(sin )sin(1)sin (sin )()22c c f c c c αααα++=+--+=-+-, 因为122c+≥,所以当sin 1α=-时max [(sin )]8f α=, 由1810b c b c -+=⎧⎨++=⎩ , 解得 4b =-,3c =.点评:本题的关键是1b c +=-,由(sin )0(2cos )0f f αβ≥⎧⎨+≤⎩ 利用正余弦函数的有界性得出()()1010f f ≥⎧⎪⎨≤⎪⎩,从而(1)0f =,使问题解决,这里正余弦函数的有界性在起了重要作用. 【专题训练与高考预测】 一、选择题1.若[0,2)απ∈,sin cos αα=-,则α的取值范围是( )A .[0,]2πB .[,]2ππ C .3[,]2ππ D .3[,2)2ππ 2.设α是锐角,且lg(1cos )m α-=,1lg 1cos n α=+,则lgsin α=( ) A .m n - B .11()2m n - C .2m n - D .11()2n m-3.若00||2sin15,||4cos15a b ==,a 与b 的夹角为30。

2016-2019年高考真题三角函数解答题全集(含详细解析)

2016-2019年高考真题三角函数解答题全集(含详细解析)

2016-2019年高考真题三角函数解答题全集(含详细解析)1.(2019•全国)已知函数22()2sin 4cos 1f x x x =-+. (1)求()f x 的最小正周期;(2)设g ()()2x x f =,求()g x 在区间[0,]3π的最大值与最小值.2.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sin sin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.3.(2019•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值.4.(2019•浙江)设函数()sin f x x =,x R ∈.(Ⅰ)已知[0θ∈,2)π,函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++的值域.5.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C -的值.6.(2019•江苏)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =,2cos 3B =,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值. 7.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C +的值.8.(2019•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .设22(sin sin )sin sin sin B C A B -=-C . (1)求A ;(22b c +=,求sin C .9.(2018•全国)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,已知222(sin sin )()sin A C a b B -=-. (1)证明222a b c ab +-=; (2)求角C 和边c .10.(2018•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(Ⅰ)求角B 的大小;(Ⅱ)设2a =,3c =,求b 和sin(2)A B -的值.11.(2018•北京)在ABC ∆中,7a =,8b =,1cos 7B =-.(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高.12.(2018•江苏)已知α,β为锐角,4tan 3α=,cos()αβ+=(1)求cos2α的值; (2)求tan()αβ-的值.13.(2018•新课标Ⅰ)在平面四边形ABCD 中,90ADC ∠=︒,45A ∠=︒,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =,求BC .14.(2018•浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点3(5P -,4)5-.(Ⅰ)求sin()απ+的值; (Ⅱ)若角β满足5sin()13αβ+=,求cos β的值.15.(2018•北京)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32,求m 的最小值. 16.(2018•上海)设常数a R ∈,函数2()sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-[π-,]π上的解.17.(2018•上海)已知cos y x =(1)若1()3f α=,且[0α∈,]π,求()3f πα-的值(2)求函数(2)2()y f x f x =-的最小值18.(2017•上海)已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =,若f (A )0=,求ABC ∆的面积.19.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 4sin a A b B =,222)ac a b c =--(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值20.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求sin(2)4A π+的值.21.(2017•山东)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.22.(2017•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC ∆的周长.23.(2017•新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .24.(2017•北京)已知函数())2sin cos 3f x x x x π=--.()I 求()f x 的最小正周期; ()II 求证:当[4x π∈-,]4π时,1()2f x -….25.(2017•新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.26.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 27.(2017•北京)在ABC ∆中,60A ∠=︒,37c a =.(1)求sin C 的值;(2)若7a =,求ABC ∆的面积.28.(2017•浙江)已知函数22()sin cos f x x x x =--cos ()x x R ∈. (Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.29.(2016•北京)已知函数()2sin cos cos2(0)f x x x x ωωωω=+>的最小正周期为π. (1)求ω的值;(2)求()f x 的单调递增区间.30.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (1)证明:2A B =; (2)若2cos 3B =,求cos C 的值. 31.(2016•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2sin a B A =.(1)求B ; (2)已知1cos 3A =,求sin C 的值.32.(2016•山东)设2())sin (sin cos )f x x x x x π=---. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求()6g π的值. 33.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (Ⅰ)证明:2A B =;(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.34.(2016•江苏)在ABC ∆中,6AC =,4cos 5B =,4C π=.(1)求AB 的长; (2)求cos()6A π-的值.35.(2016•北京)在ABC ∆中,222a c b +=+. (Ⅰ)求B ∠的大小;cos A C +的最大值.36.(2016•四川)在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且c o s c o ss i n A B Cab c+=.(Ⅰ)证明:sin sin sin A B C =; (Ⅱ)若22265b c a bc +-=,求tan B .37.(2016•天津)已知函数()4tan sin()cos()23f x x x x ππ=--(1)求()f x 的定义域与最小正周期; (2)讨论()f x 在区间[4π-,]4π上的单调性. 38.(2016•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(Ⅰ)求C ;(Ⅱ)若c =ABC ∆,求ABC ∆的周长. 39.(2016•山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知t a n t a n2(t a n t a n )c o s c o sA B A B B A +=+. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.40.(2016•江苏)如图,在ABC ∆中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 为BC 的中点,求证:EDC ABD ∠=∠.41.(2016•上海)已知函数()sin f x x x =+,求()f x 的最小正周期及最大值,并指出()f x 取得最大值时x 的值.2016-2019年高考真题三角函数解答题全集(含详细解析)参考答案与试题解析1.(2019•全国)已知函数22()2sin 4cos 1f x x x =-+. (1)求()f x 的最小正周期;(2)设g ()()2x x f =,求()g x 在区间[0,]3π的最大值与最小值.【解答】解:22()2sin 4cos 11cos22(1cos2)13cos2f x x x x x x =-+=--++=-. (1)()f x 的最小正周期22T ππ==; (2)g ()()3cos(2)3cos 22x xx f x ==-=-,[0x ∈,]3π,3cos [3x ∴-∈-,3]2-.即()g x 在区间[0,]3π的最大值为32-,最小值为3-.2.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sin sin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >,cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a =,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<, 可得ABC ∆面积13sin 23S a π==∈. 3.(2019•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值. 【解答】解(Ⅰ)在三角形ABC 中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得43a b =,23a c =,由余弦定理可得222222416199cos 22423a a a ac b B ac aa +-+-===-.(Ⅱ)由(Ⅰ)得sin B ,从而sin 22sin cos B B B ==, 227cos2cos sin 8BB B =-=-,故71sin(2)sin 2cos cos2sin 66682B B B πππ+=+=-⨯=. 4.(2019•浙江)设函数()sin f x x =,x R ∈.(Ⅰ)已知[0θ∈,2)π,函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++的值域.【解答】解:(1)由()sin f x x =,得 ()sin()f x x θθ+=+, ()f x θ+为偶函数,∴()2k k Z πθπ=+∈, [0θ∈,2)π,∴2πθ=或32πθ=, (2)22[()][()]124y f x f x ππ=+++ 22sin ()sin ()124x x ππ=+++1cos(2)1cos(2)6222x x ππ-+-+=+11(cos2cos sin 2sin sin 2)266x x x ππ=---3sin 214x x =+)16x π=-+, x R ∈,∴sin(2)[1,1]6x π-∈-,∴)1[16y x π=-+∈, ∴函数22[()][()]124y f x f x ππ=+++的值域为:[1. 5.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C -的值.【解答】解:(Ⅰ)3a =,2b c -=,1cos 2B =-.∴由余弦定理,得2222cos b a c ac B =+-219(2)23(2)()2b b =+--⨯⨯-⨯-,7b ∴=,25c b ∴=-=;(Ⅱ)在ABC ∆中,1cos 2B =-,sin B ∴=,由正弦定理有:sin sin c bC B=,∴5sin 2sin 7c BC b=== b c >,B C ∴>,C ∴为锐角,11cos 14C ∴=, sin()sin cos cos sin B C B C B C ∴-=-111()142=--=. 6.(2019•江苏)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =,2cos 3B =,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值. 【解答】解:(1)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c . 3a c =,b =,2cos 3B =, ∴由余弦定理得:222221022cos 263a cbc B ac c +--===,解得c =. (2)sin cos 2A Ba b=, ∴由正弦定理得:sin sin cos 2A B Ba b b==, 2sin cos B B ∴=,22sin cos 1B B +=,sin B ∴,cos B =sin()cos 2B B π∴+==. 7.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C +的值.【解答】解:(1)3a =,2b c -=,1cos 2B =-.∴由余弦定理,得2222cos b a c ac B =+-219(2)23(2)()2b b =+--⨯⨯-⨯-,7b ∴=,25c b ∴=-=;(2)在ABC ∆中,1cos 2B =-,sin B ∴=,由正弦定理有:sin sin a bA B =,3sin 2sin 7a BA b∴===,sin()sin()sin B C A A π∴+=-==8.(2019•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .设22(sin sin )sin sin sin B C A B -=-C . (1)求A ;(22b c +=,求sin C .【解答】解:(1)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c . 设22(sin sin )sin sin sin B C A B -=-C .则222sin sin 2sin sin sin sin sin B C B C A B C +-=-,∴由正弦定理得:222b c a bc +-=,2221cos 222b c a bc A bc bc +-∴===,0A π<<,3A π∴=.(2)2b c +=,3A π=,∴sin 2sin A B C +=,∴2sin()2sin 3C C π+-=解得sin()6C π-=64C ππ∴-=,46C ππ=+,1sin sin()sin cos cos sin 464646222C ππππππ∴=+=+=⨯=. 9.(2018•全国)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,已知222(sin sin )()sin A C a b B -=-. (1)证明222a b c ab +-=; (2)求角C 和边c .【解答】证明:(1)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,∴由正弦定理得:22sin sin sin a b cR A B C====, sin 2aA ∴=,sin 2b B =,sin 2c C =,222(sin sin )()sin A C a b B -=-,222()()442a cb a b ∴-=-,化简,得:222a b c ab +-=, 故222a b c ab +-=. 解:(2)222a b c ab +-=,2221cos 222a b c ab C ab ab +-∴===,解得3C π=,32sin 23c C ∴===. 10.(2018•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(Ⅰ)求角B 的大小;(Ⅱ)设2a =,3c =,求b 和sin(2)A B -的值. 【解答】解:(Ⅰ)在ABC ∆中,由正弦定理得sin sin a bA B=,得sin sin b A a B =, 又sin cos()6b A a B π=-.sin cos()6a B a B π∴=-,即1sin cos()cos cos sin sin sin 6662B B B B B B πππ=-=+=+,tan B ∴又(0,)B π∈,3B π∴=.(Ⅱ)在ABC ∆中,2a =,3c =,3B π=,由余弦定理得b ==sin cos()6b A a B π=-,得sin A =,a c <,cosA ∴=,sin 22sin cos A A A ∴==, 21cos22cos 17A A =-=,11sin(2)sin 2cos cos2sin 27A B A B A B ∴-=-=-=11.(2018•北京)在ABC ∆中,7a =,8b =,1cos 7B =-.(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高.【解答】解:(Ⅰ)a b <,A B ∴<,即A 是锐角, 1cos 7B =-,sin B ∴== 由正弦定理得sin sin a b A B =得7sin 7sin 8a BA b===, 则3A π=.(Ⅱ)由余弦定理得2222cos b a c ac B =+-, 即216449277c c =++⨯⨯⨯,即22150c c +-=, 得(3)(5)0c c -+=, 得3c =或5c =-(舍), 则AC边上的高sin 3h c A ===12.(2018•江苏)已知α,β为锐角,4tan 3α=,cos()αβ+=(1)求cos2α的值; (2)求tan()αβ-的值.【解答】解:(1)由22431sin cos sin cos ααααα⎧=⎪⎪+=⎨⎪⎪⎩为锐角,解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,227cos225cos sin ααα∴=-=-; (2)由(1)得,24sin 22sin cos 25ααα==,则sin 224tan 2cos27ααα==-. α,(0,)2πβ∈,(0,)αβπ∴+∈,sin()αβ∴+= 则sin()tan()2cos()αβαβαβ++==-+.tan 2tan()2tan()tan[2()]1tan 2tan()11ααβαβααβααβ-+∴-=-+==-++.13.(2018•新课标Ⅰ)在平面四边形ABCD 中,90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【解答】解:(1)90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.∴由正弦定理得:sin sin AB BD ADB A =∠∠,即25sin sin 45ADB =∠︒,2sin 45sin 5ADB ︒∴∠==, AB BD <,ADB A ∴∠<∠,cos ADB ∴∠==(2)90ADC ∠=︒,cos sin BDC ADB ∴∠=∠=, 2DC =BC ∴=5==.14.(2018•浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点3(5P -,4)5-.(Ⅰ)求sin()απ+的值; (Ⅱ)若角β满足5sin()13αβ+=,求cos β的值. 【解答】解:(Ⅰ)角α的顶点与原点O 重合,始边与x 轴非负半轴重合,终边过点3(5P -,4)5-.35x ∴=-,45y =-,||1r OP =,4sin()sin 5y r απα∴+=-=-=; (Ⅱ)由35x =-,45y =-,||1r OP ==,得4sin 5α=-,3cos 5α=-,又由5sin()13αβ+=,得12cos()13αβ+=±,则1235456cos cos[()]cos()cos sin()sin ()()13513565βαβααβααβα=+-=+++=⨯-+⨯-=-, 或1235416cos cos[()]cos()cos sin()sin ()()13513565βαβααβααβα=+-=+++=-⨯-+⨯-=. cos β∴的值为5665-或1665.15.(2018•北京)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32,求m 的最小值.【解答】解:()I 函数21cos2()sin cos 22x f x x x x x -=+=+ 1sin(2)62x π=-+,()f x 的最小正周期为22T ππ==; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32, 可得52[66x ππ-∈-,2]6m π-,即有262m ππ-…,解得3m π…, 则m 的最小值为3π. 16.(2018•上海)设常数a R ∈,函数2()sin 22cos f x a x x =+. (1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-[π-,]π上的解.【解答】解:(1)2()sin 22cos f x a x x =+,2()sin 22cos f x a x x ∴-=-+,()f x 为偶函数, ()()f x f x ∴-=,22sin 22cos sin 22cos a x x a x x ∴-+=+, 2sin20a x ∴=, 0a ∴=;(2)()14f π=,2sin2cos ()1124a a ππ∴+=+=,a ∴=,2()22cos 2cos212sin(2)16f x x x x x x π∴+++=++,()1f x =2sin(2)116x π∴++=sin(2)6x π∴+= 2264x k πππ∴+=-+,或52264x k πππ+=+,k Z ∈, 524x k πππ∴=-+,或1324x k ππ=+,k Z ∈, [x π∈-,]π, 1324x π∴=或1924x π=或524x π=-或1124x π=-17.(2018•上海)已知cos y x =(1)若1()3f α=,且[0α∈,]π,求()3f πα-的值(2)求函数(2)2()y f x f x =-的最小值 【解答】解:(1)若1()3f α=,且[0α∈,]π,则1cos 3α=,则sin 3α==,则111()cos()cos cos sin sin 3333326f ππππαααα-=-=+=⨯+=. (2)函数2213(2)2()cos22cos 2cos 2cos 12(cos )22y f x f x x x x x x =-=-=--=--,1cos 1x -剟,∴当1cos 2x =时,函数取得最小值,最小值为32-. 18.(2017•上海)已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =,若f (A )0=,求ABC ∆的面积.【解答】解:(1)函数221()cos sin 2f x x x =-+ 1cos22x =+,(0,)x π∈, 由222k x k πππ-剟,解得12k x k πππ-剟,k Z ∈,1k =时,12x ππ剟,可得()f x 的增区间为[2π,)π;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =, 若f (A )0=,即有1cos202A +=, 解得223A π=,即13A π=,由余弦定理可得2222cos a b c bc A =+-, 化为2560c c -+=, 解得2c =或3, 若2c =,则cos 0B =<,即有B 为钝角,2c =不成立, 则3c =,ABC ∆的面积为11sin 5322S bc A ==⨯⨯=. 19.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 4sin a A b B =,222)ac a b c =--(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值【解答】(Ⅰ)解:由sin sin a bA B=,得sin sin a B b A =, 又sin 4sin a A b B =,得4sin sin b B a A =, 两式作比得:4a bb a=,2a b ∴=.由222)ac a b c =--,得222b c a +-=,由余弦定理,得2225cos 2b c aA bcac +-===; (Ⅱ)解:由(Ⅰ),可得sin A =,代入sin 4sin a A b B =,得sin sin 4a A B b ==. 由(Ⅰ)知,A 为钝角,则B 为锐角,∴cos B = 于是4sin 22sin cos 5B B B ==,23cos212sin 5B B =-=,故43sin(2)sin 2cos cos2sin (55B A B A B A -=-=⨯-= 20.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求sin(2)4A π+的值.【解答】解:(Ⅰ)在ABC ∆中,a b >, 故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有22242cos 2536256135b ac ac B =+-=+-⨯⨯⨯=,b ∴=由正弦定理sin sin a bA B=,得sin sin a B A b =b ∴=sin A (Ⅱ)由(Ⅰ)及a c <,得cos A =,12sin 22sin cos 13A A A ∴==, 25cos212sin 13A A =-=-.故125sin(2)sin 2cos cos2sin 44413213226A A A πππ+=+=⨯-=.21.(2017•山东)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.【解答】解:(Ⅰ)函数()sin()sin()62f x x x ππωω=-+-sin cos cos sin sin()662x x x πππωωω=---3cos 2x x ωω=-)3x πω=-,又()3sin()0663f πππω=-=,∴63k ππωπ-=,k Z ∈,解得62k ω=+, 又03ω<<, 2ω∴=;(Ⅱ)由(Ⅰ)知,())3f x x π-,将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数)3y x π-的图象;再将得到的图象向左平移4π个单位,得到)43y x ππ+-的图象,∴函数())12y g x x π=-;当[4x π∈-,3]4π时,[123x ππ-∈-,2]3π,sin()[12x π∴-∈1],∴当4x π=-时,()g x 取得最小值是32-. 22.(2017•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC ∆的周长. 【解答】解:(1)由三角形的面积公式可得21sin 23sin ABC a S ac B A∆==, 3sin sin 2c B A a ∴=,由正弦定理可得3sin sin sin 2sin C B A A =, sin 0A ≠,2sin sin 3B C ∴=; (2)6cos cos 1B C =, 1cos cos 6B C ∴=, 121cos cos sin sin 632B C B C ∴-=-=-, 1cos()2B C ∴+=-,1cos 2A ∴=, 0A π<<,3A π∴=,2sin sin sin a b c R A B C ===== 2sin sin 22123(23)b c bc B C R R ∴====,8bc ∴=,2222cos a b c bc A =+-, 229b c bc ∴+-=,2()9392433b c cb ∴+=+=+=,b c ∴+=∴周长3a b c ++=23.(2017•新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2s i n ()8s i n 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .【解答】解:(1)2sin()8sin 2BA C +=, sin 4(1cos )B B ∴=-, 22sin cos 1B B +=,2216(1cos )cos 1B B ∴-+=, 2216(1cos )cos 10B B ∴-+-=,216(cos 1)(cos 1)(cos 1)0B B B ∴-+-+=, (17cos 15)(cos 1)0B B ∴--=, 15cos 17B ∴=; (2)由(1)可知8sin 17B =, 1sin 22ABC S ac B ∆==,172ac ∴=, 2222217152cos 2217b ac ac B a c ∴=+-=+-⨯⨯ 22215()2153617154a c a c ac =+-=+--=--=, 2b ∴=.24.(2017•北京)已知函数())2sin cos 3f x x x x π=--.()I 求()f x 的最小正周期; ()II 求证:当[4x π∈-,]4π时,1()2f x -….【解答】解:(Ⅰ)())2sin cos 3f x x x x π=--,13(22)sin 22co x x x =+-,1sin 22x x =+, sin(2)3x π=+,22T ππ∴==, ()f x ∴的最小正周期为π,(Ⅱ)[4x π∈-,]4π, 2[36x ππ∴+∈-,5]6π, 1sin(2)123x π∴-+剟,1()2f x ∴-… 25.(2017•新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积. 【解答】解:(1)sin 0A A +=, tan A ∴=0A π<<,23A π∴=, 由余弦定理可得2222cos a b c bc A =+-, 即2128422()2c c =+-⨯⨯-,即22240c c +-=,解得6c =-(舍去)或4c =, 故4c =.(2)2222cos c b a ab C =+-, 1628422cos C ∴=+-⨯⨯,cos C ∴=22cos AC CD C∴===12CD BC ∴=11sin 4222ABC S AB AC BAC ∆=∠=⨯⨯=,12ABD ABC S S ∆∆∴=26.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 【解答】解:(1)(cos ,sin )a x x =,(3,3)b =-,//a b ,3sin x x =,当cos 0x =时,sin 1x =,不合题意,当cos 0x ≠时,tan x =, [0x ∈,]π, 56x π∴=,(2)1()3cos sin ))26f x a b x x x x x π===-=+, [0x ∈,]π, [66x ππ∴+∈,7]6π,1cos()6x π∴-+剟 当0x =时,()f x 有最大值,最大值3,当56x π=时,()f x 有最小值,最小值- 27.(2017•北京)在ABC ∆中,60A ∠=︒,37c a =.(1)求sin C 的值;(2)若7a =,求ABC ∆的面积. 【解答】解:(1)60A ∠=︒,37c a =,由正弦定理可得33sin sin 77C A ==, (2)7a =,则3c =,C A ∴<,22sin cos 1C C +=,又由(1)可得13cos 14C =,131sin sin()sin cos cos sin 142B A C A C A C ∴=+=+=+=11sin 7322ABC S ac B ∆∴==⨯⨯=28.(2017•浙江)已知函数22()sin cos f x x x x =--cos ()x x R ∈. (Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.【解答】解:函数22()sin cos f x x x x =--7cos 2cos22sin(2)6x x x x π=-=+ (Ⅰ)2275()2sin(2)2sin 23362f ππππ=⨯+==, (Ⅱ)2ω=,故T π=, 即()f x 的最小正周期为π, 由72[262x k πππ+∈-+,2]2k ππ+,k Z ∈得: 5[6x k ππ∈-+,]3k ππ-+,k Z ∈,故()f x 的单调递增区间为5[6k ππ-+,]3k ππ-+或写成[6k ππ+,2]3k ππ+,k Z ∈. 29.(2016•北京)已知函数()2sin cos cos2(0)f x x x x ωωωω=+>的最小正周期为π. (1)求ω的值;(2)求()f x 的单调递增区间.【解答】解:()2sin cos cos2f x x x x ωωω=+, sin2cos2x x ωω=+,)4x πω=+,由于函数的最小正周期为π, 则:22T ππω==, 解得:1ω=.(2)由(1)得:函数())4f x x π=+,令222()242k x k k Z πππππ-+++∈剟,解得:3()88k x k k Z ππππ-++∈剟, 所以函数的单调递增区间为:3[,]()88k k k Z ππππ-++∈. 30.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (1)证明:2A B =; (2)若2cos 3B =,求cos C 的值. 【解答】(1)证明:2cos b c a B +=, sin sin 2sin cos B C A B ∴+=,sin sin()sin cos cos sin C A B A B A B =+=+,sin sin cos cos sin sin()B A B A B A B ∴=-=-,由A ,(0,)B π∈,0A B π∴<-<,B A B ∴=-,或()B A B π=--,化为2A B =,或A π=(舍去). 2A B ∴=.()II 解:2cos 3B =,sin B ∴=.21cos cos22cos 19A B B ==-=-,sin A =.2122cos cos()cos cos sin sin ()3927C A B A B A B ∴=-+=-+=-⨯-+=. 31.(2016•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2sin a B A=. (1)求B ; (2)已知1cos 3A =,求sin C 的值.【解答】解:(1)sin 2sin a B A =,2sin sin cos sin A B B B A ∴=,cos B ∴=6B π∴=.(2)1cos 3A =,sin A ∴,11sin sin()sin cos cos sin 23C A B A B A B ∴=+=++⨯=.32.(2016•山东)设2())sin (sin cos )f x x x x x π=---. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求()6g π的值. 【解答】解:(Ⅰ)221cos2()23sin()sin (sin cos )23sin 1sin 2231sin 22xf x x x x x x x x π-=---=-+=-+sin 212sin(2)13x x x π==-,令222232k x k πππππ--+剟,求得51212k x k ππππ-+剟, 可得函数的增区间为[12k ππ-,5]12k ππ+,k Z ∈. (Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得2sin()13y x π=-+的图象;再把得到的图象向左平移3π个单位,得到函数()2sin 1y g x x ==+的图象,()2sin 166g ππ∴==33.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (Ⅰ)证明:2A B =;(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.【解答】(Ⅰ)证明:2cos b c a B +=, sin sin 2sin cos B C A B ∴+=,sin sin()2sin cos B A B A B ∴++=sin sin cos cos sin 2sin cos B A B A B A B ∴++=sin sin cos cos sin sin()B A B A B A B ∴=-=-A ,B 是三角形中的角, B A B ∴=-, 2A B ∴=;(Ⅱ)解:ABC ∆的面积24a S =,∴21sin 24a bc A =, 22sin bc A a ∴=,2sin sin sin sin2B C A B ∴==, sin cos C B ∴=,90B C ∴+=︒,或90C B =+︒, 90A ∴=︒或45A =︒.34.(2016•江苏)在ABC ∆中,6AC =,4cos 5B =,4C π=.(1)求AB 的长; (2)求cos()6A π-的值.【解答】解:(1)ABC ∆中,4cos 5B =,(0,)B π∈, 3sin 5B ∴=, sin sin AB ACC B=,6235AB ∴==;(2)cos cos()cos()sin sin cos cos A A C B B C B C π==--=-+=-= A 为三角形的内角,sin A ∴=,1cos()sin 62A A A π∴-=+=35.(2016•北京)在ABC ∆中,222a c b +=+. (Ⅰ)求B ∠的大小;cos A C +的最大值.【解答】解:(Ⅰ)在ABC ∆中,222a c b +=.222a c b ∴+-=.222cos 2a c b B ac +-∴==, 4B π∴=(Ⅱ)由()I 得:34C A π=-,∴3cos cos()4A C A A π++-A A A =A A =+ sin()4A π=+.3(0,)4A π∈, (44A ππ∴+∈,)π,故当42A ππ+=时,sin()4A π+取最大值1,cos A C +的最大值为1.36.(2016•四川)在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且c o s c o ss i n A B Cab c+=.(Ⅰ)证明:sin sin sin A B C =; (Ⅱ)若22265b c a bc +-=,求tan B .【解答】(Ⅰ)证明:在ABC ∆中,cos cos sin A B Ca b c+=, ∴由正弦定理得:cos cos sin sin sin sin A B C A B C+=, ∴cos sin cos sin sin()1sin sin sin sin A B B A A B A B A B++==,sin()sin A B C +=.∴整理可得:sin sin sin A B C =,(Ⅱ)解:22265b c a bc +-=,由余弦定理可得3cos 5A =.4sin 5A =,cos 3sin 4A A = cos cos sin 1sin sin sin AB CA B C +==,cos 1sin 4B B =, tan 4B =.37.(2016•天津)已知函数()4tan sin()cos()23f x x x x ππ=--(1)求()f x 的定义域与最小正周期; (2)讨论()f x 在区间[4π-,]4π上的单调性.【解答】解:(1)()4tan sin()cos()23f x x x x ππ=--.2x k ππ∴≠+,即函数的定义域为{|2x x k ππ≠+,}k Z ∈,则1()4tan cos (cos )2f x x x x x =14sin (cos )2x x x =22sin cos x x x =+sin 2cos 2)x x =+--sin 2x x =2sin(2)3x π=-, 则函数的周期22T ππ==; (2)由222232k x k πππππ-<-<+,k Z ∈,得51212k x k ππππ-<<+,k Z ∈,即函数的增区间为(12k ππ-,5)12k ππ+,k Z ∈, 当0k =时,增区间为(12π-,5)12π,k Z ∈, [4x π∈-,]4π,∴此时(12x π∈-,]4π, 由3222232k x k πππππ+<-<+,k Z ∈, 得5111212k x k ππππ+<<+,k Z ∈,即函数的减区间为5(12k ππ+,11)12k ππ+,k Z ∈,当1k =-时,减区间为7(12π-,)12π-,k Z ∈, [4x π∈-,]4π,∴此时[4x π∈-,)12π-,即在区间[4π-,]4π上,函数的减区间为[4π∈-,)12π-,增区间为(12π-,]4π.38.(2016•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(Ⅰ)求C ;(Ⅱ)若c =ABC ∆,求ABC ∆的周长. 【解答】解:(Ⅰ)在ABC ∆中,0C π<<,sin 0C ∴≠已知等式利用正弦定理化简得:2cos (sin cos sin cos )sin C A B B A C +=, 整理得:2cos sin()sin C A B C +=, 即2cos sin(())sin C A B C π-+= 2cos sin sin C C C =1cos 2C ∴=, 3C π∴=;(Ⅱ)由余弦定理得221722a b ab=+-, 2()37a b ab ∴+-=,1sin 2S ab C ===6ab ∴=,2()187a b ∴+-=, 5a b ∴+=,ABC ∴∆的周长为5+.39.(2016•山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知t a n t a n2(t a n t a n )c o s c o sA B A B B A +=+. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.【解答】解:(Ⅰ)证明:由tan tan 2(tan tan )cos cos A BA B B A+=+得: sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+; ∴两边同乘以cos cos A B 得,2(sin cos cos sin )sin sin A B A B A B +=+;2sin()sin sin A B A B ∴+=+;即sin sin 2sin A B C +=(1);根据正弦定理,2sin sin sin a b c R A B C ===; ∴sin ,sin ,sin 222a b c A B C R R R ===,带入(1)得:2222a b c R R R +=; 2a b c ∴+=;(Ⅱ)2a b c +=;2222()24a b a b ab c ∴+=++=;22242a b c ab ∴+=-,且244c ab …,当且仅当a b =时取等号; 又a ,0b >; ∴21c ab…; ∴由余弦定理,222223231cos 12222a b c c ab c C ab ab ab +--===-…; cos C ∴的最小值为12. 40.(2016•江苏)如图,在ABC ∆中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 为BC 的中点,求证:EDC ABD ∠=∠.【解答】解:在ABC ∆中,由BD AC ⊥可得90BDC ∠=︒, 因为E 为BC 的中点,所以12DE CE BC ==, 则:EDC C ∠=∠,由90BDC ∠=︒,可得90C DBC ∠+∠=︒,由90ABC ∠=︒,可得90ABD DBC ∠+∠=︒,因此ABD C ∠=∠,而EDC C ∠=∠,所以,EDC ABD ∠=∠.41.(2016•上海)已知函数()sin f x x x =+,求()f x 的最小正周期及最大值,并指出()f x 取得最大值时x 的值.【解答】解:()sin 2sin()3f x x x x π==+,∴函数的周期为2T π=,函数的最大值为2,且函数取得最大值时,232x k πππ+=+,即26x k ππ=+,k Z ∈.。

专题20 三角函数及解三角形解答题丨十年高考数学真题分项汇编(解析版)(共62页)

专题20  三角函数及解三角形解答题丨十年高考数学真题分项汇编(解析版)(共62页)

十年(2014-2023)年高考真题分项汇编—三角函数解答题目录题型一:三角恒等变换...........................................................................1题型二:三角函数与向量综合...............................................................4题型三:三角函数的图像与性质...........................................................8题型四:正余弦定理的应用.................................................................20题型五:与三角形周长、面积有关问题..............................................38题型六:三角函数的建模应用.............................................................50题型七:结构不良型试题 (56)(1)求sin B 的值;(2)求c 的值;(3)求()sin B C -.【答案】(1)1313(2)5(3)26-解析:(1)由正弦定理可得,sin sin a b A B =,即2sin120sin B = ,解得:sin 13B =;(2)由余弦定理可得,2222cos a b c bc A =+-,即21394222c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得:5c =或7c =-(舍去).(3)由正弦定理可得,sin sin a c A C =,即5sin120sin C = ,解得:sin 26C =,而120A =o ,所以,B C 都为锐角,因此cos 26C ==,cos 13B ==,故()sin sin cos cos sin 1326132626B C B C B C -=-=⨯-⨯=-.2.(2023年新课标全国Ⅰ卷·第17题)已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010(2)6解析:(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,sin 10A ∴=.(2)由(1)知,10cos 10A ==,由sin sin()B A C =+23101025sin cos cos sin (210105A C A C =+=+=,由正弦定理,sin sin c bC B=,可得255522b ⨯==,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 610h b A ∴=⋅==.3.(2018年高考数学江苏卷·第16题)(本小题满分14分)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos 2α的值;(2)求tan()αβ-的值.【答案】解析:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,29cos 25α=,因此27cos 22cos 125αα=-=-.(2)因为,αβ为锐角,所以(0,)αβπ+∈.又因为5cos()5αβ+=,所以25sin()5αβ+=,因此,tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--,因此,tan 2tan()2tan()tan[2()]1tan 2tan()11ααβαβααβααβ-+-=-+==-++.4.(2018年高考数学浙江卷·第18题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --.(1)求sin(π)α+的值;(2)若角β满足5sin()13αβ+=,求cos β值.【答案】(1)45;(2)5665-或1665.【解析】(1)由角α终边过点34(,55P --得4sin =5α-,所以4sin =sin =5απα+-().(2)由角α终边过点34(,55P --得3cos =5α-,由5sin()13αβ+=得12cos +=13αβ±().由()βαβα=+-得cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++当12cos()13αβ+=时,1235456cos 13513565β⎛⎫⎛⎫=⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭;当12cos()13αβ+=-时,1235416cos 13513565β⎛⎫⎛⎫⎛⎫=-⨯-+⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以56cos =65β-或1665.5.(2014高考数学广东理科·第16题)已知函数R x x A x f ∈+=),4sin()(π,且53122f π⎛⎫= ⎪⎝⎭,(1)求A 的值;(2)若23)()(=-+θθf f ,2,0(πθ∈,求)43(θπ-f .【答案】解:(1)依题意有55233sin sin 12124322f A A ππππ⎛⎫⎛⎫=+=== ⎪ ⎪⎝⎭⎝⎭,所以A =(2)由(1)得()),4f x x x Rπ=+∈,()()3sin sin 442f f ππθθθθθ⎤⎛⎫⎛⎫∴+-=++-+==⎪ ⎪⎥⎝⎭⎝⎭⎦cos 4θ∴=,(0,)sin 24πθθ∈∴=== 33304444f πππθθθ⎛⎫⎛⎫∴-=-+==⎪ ⎝⎭⎝⎭6.(2014高考数学江苏·第15题)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.【答案】(1)1010-;(2)43310+-解析:(1)因为α∈π,π2⎛⎫⎪⎝⎭,sin α=55,所以cos α=255=-.故sin π4α⎛⎫+ ⎪⎝⎭=sin π4cos α+cos π4sin α=252510⎛⎫⨯-+⨯= ⎪ ⎪⎝⎭.(2)由(1)知sin2α=2sin αcos α=42555⎛⨯⨯-=- ⎝⎭,cos2α=1-2sin 2α=1-2325⨯=⎝⎭,所以cos 5π5π5π2cos cos 2sin sin 2666ααα⎛⎫-=+ ⎪⎝⎭=314525⎛⎛⎫⨯+⨯-= ⎪ ⎝⎭⎝⎭题型二:三角函数与向量综合1.(2014高考数学山东理科·第16题)已知向量(,cos 2)a m x = ,(sin 2,)b x n = ,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-.(Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.【答案】(Ⅰ)⎩⎨⎧==13n m (Ⅱ)z k k k ∈+-],,2[πππ解析:(Ⅰ)已知x n x m b a x f 2cos 2sin )(+=⋅=,)(x f 过点)2,32(),3,12(-ππ36cos 6sin 12(=+=∴πππn m f 234cos 34sin )32(-=+=πππn mf 1221222m n m n ⎧+=⎪⎪∴⎨⎪--=-⎪⎩解得⎩⎨⎧==13n m .(Ⅱ))62sin(22cos 2sin 3)(π+=+=x x x x f )(x f 左移ϕ后得到622sin(2)(πϕ++=x x g 设)(x g 的对称轴为0x x =,1120=+=x d 解得00=x 2)0(=∴g ,解得6πϕ=x x x x g 2cos 222sin(2)632sin(2)(=+=++=∴πππ222,k x k k Zπππ∴-+≤≤∈,2k x k k Z πππ∴-+≤≤∈)(x f ∴的单调增区间为[,],2k k k Zπππ-+∈2.(2017年高考数学江苏文理科·第16题)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =(2)0x =时,()f x 取得最大值,为3;5π6x =时,()f x取得最小值,为-.解析:解:(1)因为 cos ,s n )i (x x = a,(3,= b ,a b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是3tan 3x =.又[0,]x π∈,所以5π6x =.(2)π(cos ,sin )(3,3cos s ()o (6f x x x x x x =⋅=⋅==+ a b .因为[0,]x π∈,所以ππ7π[,666x +∈,从而π1cos()62x -≤+≤.于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x取到最小值-.3.(2014高考数学辽宁理科·第17题)(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.【答案】(1)a =3,c =2;(2)2327解析:(1)2BA BC ∙= ,1cos 3B =,cos 2BA BC B ∴∙= ,即6a c ⋅=①,由余弦定理可得2221cos 23a c b B ac +-==,化简整理得2213a c +=②,①②联立,解得,a =3,c =2;(2)12cos ,sin 33B B =∴== ,因为a =3,3b =,c =2,由余弦定理可得2227cos29a cb Cab -+==,42sin 9C ∴==,7123cos()cos cos sin sin 939327B C B C B C ∴-=+=⋅+⋅=.解析2:(2)在△ABC 中,1cos ,sin 33B B =∴==,根据正弦定理sin sin b cB C=可得sin 42sin 9c B C b ==,a b c => ,C ∴为锐角,7cos 9C ∴==,7142223cos()cos cos sin sin 939327B C B C B C ∴-=+=⋅+⋅=.4.(2015高考数学陕西理科·第17题)(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量()m a =与()cos ,sin n =A B平行.(Ⅰ)求A ;(Ⅱ)若a =2b =求C ∆AB 的面积.【答案】(Ⅰ)3π;(Ⅱ)2.分析:(Ⅰ)先利用//m n可得sin sin 0a B -A =,再利用正弦定理可得tan A 的值,进而可得A 的值;(Ⅱ)由余弦定理可得c 的值,进而利用三角形的面积公式可得C ∆AB 的面积.解析:(Ⅰ)因为//m n,所以sin cos 0a B A =,由正弦定理,得sinA sinB A 0-=又sin 0B ≠,从而tan A =,由于0A π<<,所以3A π=(Ⅱ)解法一:由余弦定理,得2222cos a b c bc A=+-而2,a ==3πA =得2742c c =+-,即2230c c --=因为0c >,所以3c =.故C ∆AB的面积为1bcsinA 22=.解法二:由正弦定理,得72sin sin 3π=B,从而21sin 7B =,又由a b >,知A B >,所以cos 7B =.故()321sinC sin A B sin sin cos cos sin 33314B B πππ⎛⎫=+=B +=+=⎪⎝⎭所以C ∆AB的面积为133bcsinA22=.5.(2015高考数学广东理科·第16题)(本小题满分12分)在平面直角坐标系xOy 中,已知向量,22m ⎛⎫=- ⎪ ⎪⎝⎭ ,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x的值;(2)若m与n 的夹角为3π,求x 的值.【答案】解析:(1) ,22m ⎛⎫=- ⎪ ⎪⎝⎭ ,(sin,cos )n x x =,且m n ⊥ ,sin sin cos 0,sin cos ,tan 122cos x m nx x x x xx∴⋅=-=∴===(2)11sin cos ||||cos ,sin()223242m n x x m n x ππ⋅=-=⋅=∴-=5(0,,,,24444612x x x x πππππππ⎛⎫∈∴-∈-∴-== ⎪⎝⎭题型三:三角函数的图像与性质1.(2014高考数学江西理科·第17题)已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,22a R ππθ∈∈-(1)当4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.【答案】(1最小值为-1.(2)1.6a πθ=-⎧⎪⎨=-⎪⎩分析:(1)求三角函数最值,首先将其化为基本三角函数形式:当4a πθ==时,22()sin(sin cos sin()42224f x x x x x x x πππ=+++=+=-,再结合基本三角函数性质求最值:因为[0,]x π∈,从而3[,]444x πππ-∈-,故()f x 在[0,]π上的最大值为2,2最小值为-1.(2)两个独立条件求两个未知数,联立方程组求解即可.由(02()1f f ππ⎧=⎪⎨⎪=⎩得2cos (12sin )02sin sin 1a a a θθθθ-=⎧⎨--=⎩,又(,22ππθ∈-知cos 0,θ≠解得1.6a πθ=-⎧⎪⎨=-⎪⎩解析:解(1)当4a πθ==时,22()sin())sin cos sin()42224f x x x x x x x πππ=+++=+-=-因为[0,]x π∈,从而3[,444x πππ-∈-故()f x 在[0,]π上的最大值为2,2最小值为-1.(2)由()02()1f f ππ⎧=⎪⎨⎪=⎩得2cos (12sin )02sin sin 1a a a θθθθ-=⎧⎨--=⎩,又(,)22ππθ∈-知cos 0,θ≠解得1.6a πθ=-⎧⎪⎨=-⎪⎩2.(2019·浙江·第18题)设函数()sin f x x =,x ∈R .(Ⅰ)已知[0,2)θπ∈,函数()f x θ+是偶函数,求θ的值;(Ⅱ)求函数22[([(124y f x f x ππ=+++的值域.【答案】【意图】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力。

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。

高考真题——三角函数与解三角形真题(加答案)

高考真题——三角函数与解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换( 3 题)1.(2015 年1 卷2)o o o osin20cos10cos160sin10=()(A)32(B)32(C)12(D)12【解析】原式= o o o osin20cos10cos20sin10=osin30=12,故选 D.考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016 年3 卷)(5)若tan 34,则2cos2sin2()(A) 6425(B)4825(C) 1 (D)1625【解析】由tan 34,得34sin,cos55或34sin,cos55,所以2161264cos2sin24252525,故选A.考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016 年2 卷9)若cos π345,则sin2=(A)725(B)15(C)15(D)725【解析】∵cos345,ππ72sin2cos22cos12425,故选D.二、三角函数性质( 5 题)4.(2017年3卷6)设函数πf(x)cos(x),则下列结论错误的是()3A.f(x)的一个周期为2πB.y f(x)的图像关于直线8πx对称3C.f(x)的一个零点为πx D.f(x)在6π(,π)2单调递减【解析】函数πf x cos x的图象可由y cos x向左平移3π个单位得到,3如图可知,f x在π,π2上先递减后递增,D选项错误,故选 D.yO x-65(. 2017 年2 卷14)函数23f x sin x3cos x(x0,)的最大值是.42【解析】2321f x1cos x3cos x cos x3cos x44 23cos1x,x0,,则cos x0,1,当22cos3x时,取得最大值 1.26.(2015 年1 卷8)函数f(x)= cos(x)的部分图像如图所示,则f(x)的单调递减区间为()(A)(1,3),k k k Z44(B)13(2k,2k),k Z44(C)13(k,k),k Z 44(D)13(2k,2k),k Z44【解析】由五点作图知,1+4253+42,解得=,=4,所以f(x)cos(x),4令22,k x k k Z,解得412k<x<432k k Z4(12k,432k),k Z,故选D. 考点:三角函数图像与性质45.(2015 年2 卷10)如图,长方形ABCD 的边AB=2 ,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记∠BOP=x.将动点P 到A、B 两点距离之和表示为x 的函数f(x),则f(x)的图像大致为的运动过程可以看出,轨迹关于直线B.x对称,且f()f(),且轨迹非线型,故选2426.(2016 年1 卷12)已知函数f(x)sin(x+)(0,),x为f(x)的零24点, x为y f(x)图像的对称轴,且f(x)在45,单调,则的最大值为1836(A)11 (B)9 (C)7 (D)5 考点:三角函数的性质三、三角函数图像变换( 3 题)7.(2016 年2 卷7)若将函数y=2sin 2x 的图像向左平移π个单位长度,则平移后图象的对12称轴为(A)kππx k Z (B)26kππx k Z26(C)kππx k Z (D)212kππx k212Z【解析】平移后图像表达式为πy2sin2x,令12ππ2x kπ+,得对称轴方程:122kππx k Z ,故选B.268.(2016 年 3 卷14)函数y sin x3cos x错误!未找到引用源。

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

高考中三角函数和解三角形的真题(常见的题型)汇总

高考中三角函数和解三角形的真题(常见的题型)汇总

三角函数类型一:角度的概念、弧长和三角函数的概念1已知角q 的顶点为坐标原点,始边为x 轴的正半轴,若),4(y P 是角q 终边上的一点,且552sin -=q ,则y的值的值2已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是,则这个圆心角所对的弧长是 3若0cos sin <q q ,则角q 在第在第___________________________象限角。

象限角。

象限角。

4 4 已知已知q 为第二象限角;则2q可能为第可能为第_____________________象限角。

象限角。

象限角。

5已知q 为第二象限角;则24a p +所在的象限是所在的象限是_____________________。

6已知角a 的终边过点)60cos 6,8(--m P ,且54cos -=a ,则m 的值为的值为7在平面直角坐标系中,若角a 的顶点在坐标原点,始边在x 轴的非负半轴上,终点经过点)4,3(a a P -)0(<a ,则a a cos sin +的值为的值为8 8 已知角已知角a 的终边经过点)3,4(-,则a cos 等于等于答案:1 -8-8;;21sin 2;3 二或四;4 一或三;5 一或三;6 21;7 51;8 54-。

类型二:同角三角函数的求值与化解(a a a a a cos tan sin ,1cos sin 22×==+)1求300sin =_______=_______。

2已知3cos sin cos sin =-+xx x x ,则x tan 的值是的值是________________________。

3若点)9,(a 在函数xy 3=的图像上,则6tanpa 的值为的值为 4已知a 是第二象限角,135sin =a ,则a cos 的值的值5已知51)25sin(=+a p ,那么a cos 的值的值6已知21tan -=a ,则1cos 22sin 2--a a 等于等于7)1410tan(-的值的值8 8 记记cos(80)k -°=,那么tan100°= 9已知11-tan tan -=a a,则2cos sin sin 2++a a a = 10 已知角)2,0(p Îx ,21cos 22££-x 的解集是_____。

专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。

高考数学——三角函数和解三角形经典试题练习及解析

高考数学——三角函数和解三角形经典试题练习及解析

1 / 14高考数学 三角函数和解三角形试题及解析1、在①ac =sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由、问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin AB ,6C π=,________?【解析】由sin 3sin A B可得:ab=不妨设(),0a b m m ==>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==sin 3c A m ==,则:c m ==选择条件③的解析: 可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.2、在ABC 中,角,,A B C 所对的边分别为,,a b c、已知5,a b c ===2 / 14(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+⎪⎝⎭的值。

【解析】(Ⅰ)在ABC中,由5,a b c ===222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4Cπ;(Ⅰ)在ABC 中,由4Cπ,a c ==可得sin sin a CA c===13; (Ⅰ)由a c <知角A为锐角,由sin A =cos A ==进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin4441313A A A πππ+=+=+=. 【答案】(Ⅰ)4Cπ;(Ⅰ)sin 13A =;(Ⅰ)sin 2426A π⎛⎫+=⎪⎝⎭.3、在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积、3 / 14条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==、 注:如果选择条件①和条件②分别解答,按第一个解答计分、【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S = 选择条件②(Ⅰ)6(Ⅱ)sin 4C =, 4S =. 【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 2a c C A C C ==∴=11sin (118)822S ba C ==-⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====4 / 14由正弦定理得:6sin sin a b a A B ===(Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=4、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且222b a c ac =+-, (Ⅰ)求角B 的大小;(Ⅱ)若a =c =2,求△ABC 的面积; (Ⅲ)求sinA +sinC 的取值范围.【答案】(1)60°; (2; (3)⎝. 【解析】(Ⅰ)由.2222a c b cosB ac+-=,得12cosB =,所以3B π=;(Ⅱ)由(Ⅰ)得1602ABCSacsin =︒=(Ⅲ)由题意得23sinA sinC sinA sin A π⎛⎫+=+-⎪⎝⎭32sinA =+6A π⎛⎫=+ ⎪⎝⎭.因为0<A <23π,所以26A π⎛⎫<+≤ ⎪⎝⎭.5 / 14故所求的取值范围是⎝.模拟试题1、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=、 (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形、 【答案】(1)3A π=;(2)证明见解析【解析】(1)因为25cos cos 24A A π⎛⎫++=⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -=②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,6 / 14所以a =, 故222b a c =+, 即ABC 是直角三角形、2、在ABC 中,角,,A B C 的对边分别为,,a b c ,且满足πsin sin 3c A a C ⎛⎫=+⎪⎝⎭. (Ⅰ)求角C 的大小; (Ⅱ)若ABC的面积为1a b -=,求c 和()cos 2A C -的值.【答案】(Ⅰ)3π;(Ⅱ)c =,()6os 22c 1A C -=. 【解析】(Ⅰ)由正弦定理可知:sin sin a c A C =,已知πsin sin 3c A a C ⎛⎫=+ ⎪⎝⎭,所以sin sin sin (sin coscos sin )33C A A C C ππ⋅=⋅⋅+⋅,(0,)sin 0A A π∈∴≠,所以有sin tan 3C C C C π=⇒==.(Ⅱ)41sin 12,132a S ab C ab a b b =⎧=⋅=⇒=-=⇒⎨=⎩,由余弦定理可知:2222cos 13c a b ab C c =+-⋅=⇒=222cos sin 2b c a A A bc +-==⇒==,211sin 22sin cos 22cos 11313A A A A A =⋅==-=-, ()cos 2cos 2cos sin 2s 1111132i 6n 2A C A C A C -⨯=+⋅=-⋅=.7 / 143、ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=、 (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围、【答案】(1) 3B π=;(2)(82. 【解析】(1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=、 0<B π<,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=. (2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅=22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ-=⋅=-=+.又因,tan 62C C ππ<<>318tan C <+<8 / 14ABCS <<. 故ABCS的取值范围是,)824、在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,且sin a b C +=、 (1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,1sin 1a A =,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S 、【答案】(1)6π;(2)1n n + 【解析】Ⅰ1)由得,所以又(2)设的公差为,由(1)得,且,Ⅰ、又ⅠⅠⅠⅠ、ⅠⅠ5、在△ABC中,a=c=,________.(补充条件)(1)求△ABC的面积;(2)求sin(A+B).从①b=4,②cosB=,③sinA=这三个条件中任选一个,补充在上面问题中并作答.【答案】详见解析【解析】选择①(1)在△ABC中,因为a=c=,b=4,由余弦定理得22222a b ccosCab+-===,因为C∈(0,π),所以2sinC==,所以1142222S absinC==⨯=.(2)在△ABC中,A+B=π﹣C.所以()2sin A B sinC+==.选择②(1)因为cosB=,B∈(0,π),所以sinB==,因为a=c=11222S acsinB===.9/ 1410 / 14(2)因为a =c =,cosB =, 由b 2=a 2+c 2﹣2accosB,得222216b ⎛=+-= ⎝⎭,解得b =4,由sin sin bc BC ,解得2sinC =, 在△ABC 中,A +B =π﹣C ,()sin A B sinC +==. 选择③依题意,A为锐角,由sinA =cosA ==,在△ABC中,因为a=c =cosA =, 由余弦定理a 2=b 2+c 2﹣2bccosA,得222210b =+-, 解得b =2或b =4,(1)当b =2时,112122S bcsinA ==⨯=. 当b =4时,114222S bcsinA ==⨯=. (2)由a=c=,10sinA =,a c sinA sinC=,得2sinC =,11 / 14在△ABC 中,A +B =π﹣C ,()sin A B sinC +==. 7、在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,并且222b c a bc +-=.(1)已知_______________,计算ABC 的面积;请①a =2b =,③sin 2sin C B =这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求cos cos B C +的最大值.【答案】(1)见解析(2)1【解析】(1)若选②2b =,③sin 2sin C B =、sin 2sin C B =,24c b ∴==,222b c a bc +=+,2221cos 22b c a A bc +-∴==, 又(0,)A π∈,3A π∴=、ABC ∆∴的面积11sin 24222S bc A ==⨯⨯⨯= 若选①a =②2b =、由222b c a bc +=+可得3c =,222b c a bc +=+,2221cos 22b c a A bc +-∴==, 又(0,)A π∈,12 / 14 3A π∴=、ABC ∆∴的面积11sin 2322S bc A ==⨯⨯=、 若选①a =③sin 2sin C B =sin 2sin C B =,2c b ∴=,又222b c a bc +=+,222472b b b ∴+=+,可得b =,c =ABC ∆∴的面积11sin 22MBC S bc A ===、 (2)3A π=1cos cos cos cos[()]cos cos()cos cos 332B C B B B B B B B πππ∴+=+-+=-+=-1cos sin()26B B B π==+ 203B π<<, 5366B πππ∴<+< ∴当3B π=时,sin()cos cos 6B B C π+=+有最大值1、 8、已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,5a b +=,3c =,________.是否存在以a ,b ,c 为边的三角形?如果存在,求出ABC 的面积;若不存在,说明理由.从①1cos 3C =;②1cos 3=-C;③sin 3C =这三个条件中任选一个,补充在上面问题中并作答.13 / 14【答案】详见解析【解析】若选取条件①1cos 3C =,此时sin 3C ==, 因为5a b +=,所以()2222252a b a b ab ab +=+-=-, 由余弦定理,22225291cos 223a b c ab C ab ab +---===,解得6ab =, 则22252613a b +=-⨯=,所以()222213121a b a b ab -=+-=-=, 所以1a b -=±,又5a b +=,解得32a b =⎧⎨=⎩或者23a b =⎧⎨=⎩, 所以存在以a ,b ,c为边的三角形,其面积为12323ABCS =⨯⨯⨯=若选取条件②1cos 3=-C , 因为5a b +=,所以()2222252a b a b ab ab +=+-=-, 由余弦定理,22225291cos 223a b c ab C ab ab +---===-,解得12ab =, 则22252121a b +=-⨯=,所以()22221240a b a b ab -=+-=-<,显然不成立,所以不存在以a ,b ,c 为边的三角形.若选取条件③sin C =,得1cos 3C =±, 由选取条件①可知,当1cos 3C =时,存在以a ,b ,c为边的三角形,其面积为ABC S =14 / 14由选取条件②可知,当1cos 3=-C 时,不存在以a ,b ,c 为边的三角形. 9、在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇、若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值、【解析】如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC Ⅰ14x ⅠBC Ⅰ10x ⅠⅠABC Ⅰ120°.根据余弦定理得(14x )2Ⅰ122Ⅰ(10x )2Ⅰ240x cos 120°Ⅰ解得x Ⅰ2.故AC Ⅰ28ⅠBC Ⅰ20.根据正弦定理得ⅠⅠ解得sin αⅠⅠ.所以红方侦察艇所需要的时间为2小时,角α的正弦值为.。

江苏十年高考试题汇编三角函数与解三角形

江苏十年高考试题汇编三角函数与解三角形

第二部分三角函数与解三角形一.填空题(共20小题)1.(2013•江苏)函数y=3sin(2x+)的最小正周期为.2.(2013•新课标Ⅰ)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.3.(2011•江苏)函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.4.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.5.(2010•江苏)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为.6.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.7.(2008•北京)若角α的终边经过点P(1,﹣2),则tan2α的值为.8.(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.9.(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.10.(2017•江苏)若tan(α﹣)=.则tanα=.11.(2013•上海)若cosxcosy+sinxsiny=,sin2x+sin2y=,则sin(x+y)=.12.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.13.(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.14.(2014•新课标Ⅰ)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.15.(2014•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为.16.(2011•新课标)在△ABC中,B=60°,AC=,则AB+2BC的最大值为.17.(2010•江苏)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是.18.(2009•湖南)在锐角△ABC中,BC=1,B=2A,则的值等于,AC的取值范围为.19.(2008•江苏)满足条件AB=2,AC=BC的三角形ABC的面积的最大值是.20.(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.二.解答题(共10小题)21.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.22.(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.23.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(1)证明:B﹣A=;(2)求sinA+sinC的取值范围.24.(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.25.(2016•江苏)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.26.(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.27.(2016•四川)在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(1)证明:sinAsinB=sinC;(2)若b2+c2﹣a2=bc,求tanB.28.(2016•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.29.(2015•山东)设f(x)=sinxcosx﹣cos2(x+).(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.第二讲三角函数与解三角形参考答案与试题解析一.填空题(共20小题)1.(2013•江苏)函数y=3sin(2x+)的最小正周期为π.【解答】解:∵函数表达式为y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π故答案为:π2.(2013•新课标Ⅰ)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣3.(2011•江苏)函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.【解答】解:由的图象可得函数的周期T满足=解得T=π=又∵ω>0,故ω=2又∵函数图象的最低点为(,﹣)故A=且sin(2×+φ)=﹣即+φ=故φ=∴f(x)=sin(2x+)∴f(0)=sin=故答案为:4.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【解答】解:法1:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.法2:依题意,sin2x=cosx,即cosx(2sinx﹣1)=0,故cosx=0或sinx=,因为x∈[0,3π],故x=,,,,,,,共7个,故答案为:7.5.(2010•江苏)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为.【解答】解:线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,即6cosx=,化为6sin2x+5sinx﹣6=0,解得sinx=.线段P1P2的长为故答案为.6.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.7.(2008•北京)若角α的终边经过点P(1,﹣2),则tan2α的值为.【解答】解:∵角α的终边经过点P(1,﹣2),∴故答案为:.8.(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.【解答】解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.9.(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.【解答】解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.10.(2017•江苏)若tan(α﹣)=.则tanα=.【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.11.(2013•上海)若cosxcosy+sinxsiny=,sin2x+sin2y=,则sin(x+y)=.【解答】解:∵cosxcosy+sinxsiny=,∴cos(x﹣y)=.∵sin2x+sin2y=,∴sin[(x+y)+(x﹣y)]+sin[(x+y)﹣(x﹣y)]=,∴2sin(x+y)cos(x﹣y)=,∴,∴sin(x+y)=.故答案为.12.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.13.(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.14.(2014•新课标Ⅰ)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.15.(2014•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为﹣.【解答】解:在△ABC中,∵b﹣c= a ①,2sinB=3sinC,∴2b=3c ②,∴由①②可得a=2c,b=.再由余弦定理可得cosA===﹣,故答案为:﹣.16.(2011•新课标)在△ABC中,B=60°,AC=,则AB+2BC的最大值为2.【解答】解:设AB=c AC=b BC=a由余弦定理cosB=所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a=,c=符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有====2,所以AB=2sinC,BC=2sinA.所以AB+2BC=2sinC+4sinA=2sin(120°﹣A)+4sinA=2(sin120°cosA﹣cos120°sinA)+4sinA=cosA+5sinA=2sin(A+φ),(其中sinφ=,cosφ=)所以AB+2BC的最大值为2.故答案为:217.(2010•江苏)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是4.【解答】解:∵+=6cosC,由余弦定理可得,∴则+=======故答案为:418.(2009•湖南)在锐角△ABC中,BC=1,B=2A,则的值等于2,AC的取值范围为().【解答】解:(1)根据正弦定理得:=,因为B=2A,化简得=即=2;(2)因为△ABC是锐角三角形,C为锐角,所以,由B=2A得到A+2A>且2A=,从而解得:,于是,由(1)的结论得2cosA=AC,故.故答案为:2,(,)19.(2008•江苏)满足条件AB=2,AC=BC的三角形ABC的面积的最大值是2.【解答】解:设BC=x,则AC=x,=AB•BCsinB根据面积公式得S△ABC=×2x,根据余弦定理得cosB===,代入上式得S△ABC=x=,由三角形三边关系有,解得2﹣2<x<2+2.故当x=2时,S取得最大值2.△ABC20.(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.【解答】解:∵2bcosB=acosC+ccosA,由正弦定理可得,2cosBsinB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵sinB≠0,∴cosB=,∵0<B<π,∴B=,故答案为:二.解答题(共10小题)21.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.22.(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.【解答】解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.23.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]24.(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.25.(2016•江苏)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.26.(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.27.(2016•四川)在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.28.(2016•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.29.(2015•山东)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bcsinA≤,所以△ABC面积的最大值为.30.(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A 沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【解答】解:(1)在△ABC中,因为cosA=,cosC=,所以sinA=,sinC=,从而sinB=sin[π﹣(A+C)]=sin(A+C)=sinAcosC+cosAsinC==由正弦定理,得AB===1040m.所以索道AB的长为1040m.(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,所以由余弦定理得d2=(100+50t)2+(130t)2﹣2×130t×(100+50t)×=200(37t2﹣70t+50)=200[37(t﹣)2+],因0≤t≤,即0≤t≤8,故当t=min时,甲、乙两游客距离最短.(3)由正弦定理,得BC===500m,乙从B出发时,甲已经走了50×(2+8+1)=550m,还需走710m才能到达C.设乙步行的速度为v m/min,由题意得﹣3≤≤3,解得,所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在[]范围内.。

(完整版)高考大题-三角函数题型汇总精华(含答案解释)

(完整版)高考大题-三角函数题型汇总精华(含答案解释)

【模拟演练】1、[2014·江西卷16] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值; (2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.2、[2014·北京卷16] 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图像如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.3、[2014·福建卷18] 已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间.4、( 06湖南)如图,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明 sin cos 20αβ+=; (2)若求β的值.BDCαβ A图5、(07福建)在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △最大边的边长为17,求最小边的边长.6、(07浙江)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.7、(07山东)如图,甲船以每小时302海里的速度向正北 方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时, 乙船位于甲船的北偏西105︒的方向1B 处,此时两船相距20 海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的 北偏西120︒方向的2B 处,此时两船相距102海里, 问乙船每小时航行多少海里?8、(2013年全国新课标2)在ABC ∆中,c b a ,,C B A 所对的边分别为,,角,已知B cC b a sin cos +=(1)求B ;(2)若b=2, 求ABC S ∆的最大值。

高考数学真题三年专题三角函数解三角形

高考数学真题三年专题三角函数解三角形

三年专题 三角函数1.【2022年全国甲卷】将函数f(x)=sin (ωx +π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16B .14 C .13D .122.【2022年全国甲卷】设函数f(x)=sin (ωx +π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( ) A .[53,136)B .[53,196)C .(136,83] D .(136,196]3.【2022年全国乙卷】函数f (x )=cosx +(x +1)sinx +1在区间[0,2π]的最小值、最大值分别为( ) A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数f(x)=sin(ωx +π4)+b(ω>0)的最小正周期为T .若2π3<T <π,且y =f(x)的图象关于点(3π2,2)中心对称,则f(π2)=( ) A .1B .32C .52D .35.【2022年新高考2卷】若sin(α+β)+cos(α+β)=2√2cos (α+π4)sinβ,则( ) A .tan(α−β)=1 B .tan(α+β)=1 C .tan(α−β)=−1 D .tan(α+β)=−16.【2021年甲卷文科】若c o s 0,,t a n 222s i n παααα⎛⎫∈=⎪-⎝⎭,则t a n α=( )A 15B 5C 3D 37.【2021年乙卷文科】函数()s i n c o s33x x f x =+的最小正周期和最大值分别是( )A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πc o s c o s1212-=( )A .12B 3C .2D 29.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数s i n 4yx π⎛⎫=- ⎪⎝⎭的图像,则()f x =( )A .7s i n212xπ⎛⎫- ⎪⎝⎭B .s i n 212x π⎛⎫+⎪⎝⎭C .7s i n 212xπ⎛⎫-⎪⎝⎭D .s i n 212xπ⎛⎫+⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7s i n 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若t a n 2θ=-,则()s i n 1s i n 2s i n c o s θθθθ+=+( )A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000k m (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400k m 的球,其上点A 的纬度是指O A 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1c o s )S r πα=-(单位:2k m ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()c o s π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3c o s 28c o s 5αα-=,则s i n α=( )A 3B .23C .13D 915.【2020年新课标2卷理科】若α为第四象限角,则( ) A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πs i n s i n =31θθ⎛⎫++ ⎪⎝⎭,则πs i n =6θ⎛⎫+ ⎪⎝⎭( )A .12B 3C .23D 218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A B .C .D .19.【2022年新高考2卷】已知函数f(x)=sin(2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则( ) A .f(x)在区间(0,5π12)单调递减B .f(x)在区间(−π12,11π12)有两个极值点C .直线x =7π6是曲线y =f(x)的对称轴D .直线y =√32−x 是曲线y =f(x)的切线20.【2020年新高考1卷(山东卷)】下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πs i n (3x+)B .πs i n (2)3x - C .πc o s (26x+)D .5πc o s (2)6x -21.【2022年全国乙卷】记函数f(x)=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f(T)=√32,x =π9为f(x)的零点,则ω的最小值为____________.22.【2021年甲卷文科】已知函数()()2c o s f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.23.【2021年甲卷理科】已知函数()2c o s ()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.24.【2020年新课标2卷文科】若2s i n3x =-,则c o s 2x=__________.25.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//B H D G,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.三年专题 解三角形1.【2022年全国甲卷】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,A B 是以O 为圆心,OA 为半径的圆弧,C 是的AB 中点,D 在A B上,CD ⊥AB .“会圆术”给出A B 的弧长的近似值s 的计算公式:s =AB +CD 2OA.当OA =2,∠AOB =60°时,s =( )A .11−3√32B .11−4√32C .9−3√32D .9−4√322.【2021年甲卷文科】在A B C 中,已知120B =︒,A C=2A B=,则B C=( )A .1B C D .33.【2021年乙卷理科】魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线A C 上,D E 和F G 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,E G 称为“表距”,G C 和E H 都称为“表目距”,G C 与E H的差称为“表目距的差”则海岛的高A B=( )A .⨯+表高表距表目距的差表高 B .⨯-表高表距表目距的差表高 C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距4.【2020年新课标3卷理科】在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .235.【2022年全国甲卷】已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当AC AB取得最小值时,BD =________.6.【2021年乙卷文科】记A B C的内角A ,B ,C 的对边分别为a ,b ,c ,60B=︒,223a c a c+=,则b=________.7.【2020年新课标1卷理科】如图,在三棱锥P–ABC的平面展开图中,AC=1,A B A D==AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.8.【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)= sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c29.【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(A−B)= sinBsin(C−A).(1)证明:2a2=b2+c2;(2)若a=5,cosA=2531,求△ABC的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc,从而可求得b+c,即可得解.(1)证明:因为sinCsin(A−B)=sinBsin(C−A),所以sinCsinAcosB−sinCsinBcosA=sinBsinCcosA−sinBsinAcosC,所以ac⋅a2+c2−b22ac −2bc⋅b2+c2−a22bc=−ab⋅a2+b2−c22ab,即a2+c2−b22−(b2+c2−a2)=−a2+b2−c22,所以2a2=b2+c2;(2)解:因为a =5,cosA =2531, 由(1)得b 2+c 2=50,由余弦定理可得a 2=b 2+c 2−2bccosA , 则50−5031bc =25, 所以bc =312,故(b +c )2=b 2+c 2+2bc =50+31=81, 所以b +c =9,所以△ABC 的周长为a +b +c =14.10.【2022年新高考1卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cosA1+sinA =sin2B1+cos2B . (1)若C =2π3,求B ;(2)求a 2+b 2c 2的最小值.11.【2022年新高考2卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .12.【2021年新高考1卷】记A B C是内角A ,B ,C 的对边分别为a ,b ,c .已知2ba c=,点D 在边A C 上,s i n s i n B D A B C a C∠=.(1)证明:B D b=;(2)若2A DD C=,求c o s A B C ∠.13.【2021年新高考2卷】在A B C中,角A 、B 、C 所对的边长分别为a 、b 、c ,1ba =+,2c a =+..(1)若2s i n 3s i n C A=,求A B C的面积;(2)是否存在正整数a ,使得A B C为钝角三角形?若存在,求出a 的值;若不存在,说明理由.14.【2020年新课标1卷文科】A B C的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b A B C的面积;(2)若sin AC =2,求C .15.【2020年新课标2卷理科】A B C中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ; (2)若BC =3,求A B C周长的最大值.16.【2020年新课标2卷文科】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25c o s ()c o s 24A A π++=.(1)求A ;(2)若3bc -=,证明:△ABC 是直角三角形.17.【2020年新高考1卷(山东卷)】在①a c =s i n3c A =,③=c这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在A B C,它的内角,,A B C 的对边分别为,,a b c ,且sinA B=,6Cπ=,________?注:如果选择多个条件分别解答,按第一个解答计分.。

通用版五年高考2024_2025高考数学真题专题归纳专题06三角函数及解三角形含解析理

通用版五年高考2024_2025高考数学真题专题归纳专题06三角函数及解三角形含解析理

1 1
tan tan
2 2
1 1
22 22
3, 5
tan( ) tan 1 2 1 1 , 4 1 tan 1 2 3
11.(2024·江苏卷)已知 sin2 ( ) = 2 ,则 sin 2 的值是____.
4
3
【答案】 1 3
【解析】 sin2 ( ) ( 2 cos 2 sin )2 1 (1 sin 2 )
图1
9
图2
图3
4.【2024·全国Ⅱ卷】已知 α∈(0, ),2sin2α=cos2α+1,则 sinα= 2
A. 1 5
B. 5 5
C. 3 3
【答案】B
D. 2 5 5
【解析】
2sin 2α cos 2α 1,4sin α cos α 2 cos2 α .
α
0,
2
,
cos
α
0

sin α 0, 2sin α cos α ,又 sin2 cos2 1,5sin2 α 1,sin2 α 1 ,又 5
f
x
可得:
cos
4 9
6
0
.又
4 9
,
0
是函数
f
x 图象与
x
轴负半轴的第一个交点,
所以 4 ,解得: 3
9
62
2
所以函数
f
x 的最小正周期为T
2
2 3
4 3
2
2.(2024·新课标Ⅰ)已知 (0, π) ,且 3cos2 8cos 5 ,则 sin (
A5 3
B. 2 3
7.(2024·山东卷)下图是函数 y= sin(ωx+φ)的部分图像,则 sin(ωx+φ)= ( )

高考数学专项知识点:三角函数及解三角形(含真题)精选全文完整版

高考数学专项知识点:三角函数及解三角形(含真题)精选全文完整版

专题六三角函数及解三角形知识必备一、任意角、弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式角α的弧度数公式|α|=lr (弧长用l 表示)角度与弧度的换算1°=180 rad ;1rad =180°弧长公式弧长l =|α|r 扇形面积公式S =12lr =12|α|r 23.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.若α∈2,0(,则tan α>α>sin α.3.角度制与弧度制可利用180°=πrad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.4.象限角的集合二、同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin cos=tan__α.2.三角函数的诱导公式公式一二三四五六角2k π+α(k ∈Z)π+α-απ-α2-α2+α正弦sin α-sin__α-sin__αsin__αcos__αcos__α余弦cos α-cos__αcos__α-cos__αsin__α-sin__α正切tan αtan__α-tan__α-tan__α口诀函数名不变,符号看象限函数名改变,符号看象限3.常用结论(1)同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.(2)诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指2的奇数倍和偶数倍,变与不变指函数名称的变化.(3)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.三、三角函数的图象及性质1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),)1,2( ,(π,0),)1,23(,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),)0,2( ,(π,-1),)0,23(,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z)函数y =sin xy =cos xy =tan x图象定义域R R {x |x R x ≠k π+2}值域[-1,1][-1,1]R 周期性2π2ππ奇偶性奇函数偶函数奇函数四、正弦定理余弦定理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a=2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4.在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解5.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等.(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的正切值.[难点正本疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.真题再现1.【2020年高考全国Ⅲ卷文数】已知πsin sin =3 ()1,则πsin =6()A .12B C .23D 【答案】B【解析】由题意可得:13sin sin cos 122,则:3sin cos 122 ,1sin cos 223,从而有:sin coscos sin 663,即sin 63.故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.2.【2020年高考全国Ⅰ卷文数】设函数π()cos()6f x x 在[−π,π]的图像大致如下图,则f (x )的最小正周期为A .10π9B .7π6C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09,将它代入函数 f x 可得:4cos 096,又4,09是函数 f x 图象与x 轴负半轴的第一个交点,所以4962,解得32 .所以函数 f x 的最小正周期为224332T故选C.【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.3.【2020年高考全国Ⅲ卷文数】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =AB .C .D .【答案】C【解析】设,,AB c BC a CA b22222cos 916234933c a b ab C c2221cos sin tan 4299a cb B B B ac 故选:C【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.4.【2020年高考全国Ⅲ卷文数】已知函数f (x )=sin x +1sin x,则A .f (x )的最小值为2B .f (x )的图像关于y 轴对称C .f (x )的图像关于直线x 对称D .f (x )的图像关于直线2x对称【答案】D【解析】sin x ∵可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xQ Q ()f x 关于原点对称;11(2)sin (),()sin (),sin sin f x x f x f x x f x x x Q 故B 错;()f x 关于直线2x对称,故C 错,D 对故选:D【点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.5.【2020年高考天津】已知函数π()sin(3f x x .给出下列结论:①()f x 的最小正周期为2π;②π(2f 是()f x 的最大值;③把函数sin y x 的图象上所有点向左平移π3个单位长度,可得到函数()y f x 的图象.其中所有正确结论的序号是A .①B .①③C .②③D .①②③【答案】B【解析】因为()sin()3f x x,所以周期22T,故①正确;51()sin(sin 122362f ,故②不正确;将函数sin y x 的图象上所有点向左平移3个单位长度,得到sin(3y x 的图象,故③正确.故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日( Day ).历史上,求圆周率 的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2 的近似值.按照阿尔·卡西的方法, 的近似值的表达式是A.30303sin tan n n nB.30306sin tan n n nC.60603sin tan n n nD.60606sin tan n n n【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n,每条边长为302sin n,所以,单位圆的内接正6n 边形的周长为3012sin n n,单位圆的外切正6n 边形的每条边长为302tann ,其周长为3012tan n n,303012sin12tan 303026sin tan 2n n n n n n n,则30303sin tan n n n.故选:A.【点睛】本题考查圆周率 的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.7.【2020年新高考全国Ⅰ卷】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=A .πsin(3x )B .πsin(2)3x C .πcos(26x D .5πcos(2)6x 【答案】BC【解析】由函数图像可知:22362T ,则222T,所以不选A,当2536212x时,1y 5322122k k Z ,解得: 223k k Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x.而5cos 2cos(2)66x x故选:BC.【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2T即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.8.【2020年高考全国Ⅱ卷文数】若2sin 3x ,则cos 2x __________.【答案】19【解析】22281cos 212sin 12()1399x x.故答案为19.【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.9.【2020年高考江苏】已知2sin ()4 =23,则sin 2 的值是▲.【答案】13【解析】221sin ()cos )sin 2)4222Q 121(1sin 2)sin 2233故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.10.【2020年高考北京】若函数()sin()cos f x x x 的最大值为2,则常数 的一个取值为________.【答案】2(2,2k k Z均可)【解析】因为 cos sin sin 1cos f x x x x,2 ,解得sin 1 ,故可取2.故答案为:2(2,2k k Z均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.11.【2020年高考浙江】已知tan 2 ,则cos 2 _______,πtan(4_______.【答案】35-;13【解析】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125,tan 1211tan(41tan 123,故答案为:31,53【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.12.【2020年高考江苏】将函数πsin(32)4y x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是▲.【答案】524x【解析】3sin[2(]3sin(2)6412y x x72()()122242k x k k Z x k Z 当1k 时524x.故答案为:524x【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.13.【2020年新高考全国Ⅰ卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.【答案】542【解析】设 OB OA r ,由题意7AM AN ,12EF ,所以5NF ,因为5AP ,所以45AGP ,因为//BH DG ,所以45AHO ,因为AG 与圆弧AB 相切于A 点,所以OA AG ,即OAH △为等腰直角三角形;在直角OQD △中,52OQ r,72DQ r ,因为3tan 5OQ ODC DQ ,所以212522r r ,解得r等腰直角OAH △的面积为1142S;扇形AOB 的面积 2213324S,所以阴影部分的面积为1215422S S.故答案为:542.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.14.【2020年高考全国Ⅰ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC △的面积;(2)若sin A C =2,求C .【解析】(1)由题设及余弦定理得2222832cos150c c ,解得2c (舍去),2c ,从而a .ABC △的面积为12sin1502.(2)在ABC △中,18030A B C C ,所以sin sin(30)sin(30)A C C C C ,故sin(30)2C.而030C ,所以3045C ,故15C .【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.15.【2020年高考全国Ⅱ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A .(1)求A ;(2)若3b c a ,证明:△ABC 是直角三角形.【解析】(1)由已知得25sin cos 4A A ,即21cos cos 04A A .所以21(cos 02A ,1cos 2A .由于0A ,故3A .(2)由正弦定理及已知条件可得sin sin B C A.由(1)知23B C ,所以2sin sin()33B B .即11sin 222B B ,1sin()32B .由于03B ,故2B .从而ABC △是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.16.【2020年高考江苏】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B .(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ,求tan DAC ∠的值.【解析】(1)在ABC △中,因为3,45a c B ,由余弦定理2222cos b a c ac B ,得29223455b ,所以b 在ABC △中,由正弦定理sin sin b c B C ,得=sin 45sin C,所以sin C(2)在ADC △中,因为4cos 5ADC ,所以ADC 为钝角,而180ADC C CAD ,所以C 为锐角.故cos C 则sin 1tan cos 2C C C .因为4cos 5ADC,所以3sin 5ADC ,sin 3tan cos 4ADC ADC ADC .从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C .【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.17.【2020年高考天津】在ABC △中,角,,A B C 所对的边分别为,,a b c.已知5,a b c .(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求πsin(24A 的值.【解析】(Ⅰ)在ABC △中,由余弦定理及5,a b c222cos 22a b c C ab .又因为(0,π)C ,所以π4C .(Ⅱ)在ABC △中,由正弦定理及π,4C a c sin 213sin 13a C A c .(Ⅲ)由a c 及213sin 13A,可得313cos 13A ,进而2125sin 22sin cos ,cos 22cos 11313A A A A A.所以,πππ125sin(2)sin 2cos cos 2sin 44413213226A A A .【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.18.【2020年高考北京】在ABC 中,11a b ,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A;条件②:19cos ,cos 816A B .注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】选择条件①(Ⅰ)17,cos 7c A ∵,11a b 22222212cos (11)72(11)7()7a b c bc A a a a ∵8a(Ⅱ)1cos(0,)sin77A A A∵,由正弦定理得:7sinsin sin sin2437a c CA C C11sin(118)8222S ba C选择条件②(Ⅰ)19cos,cos,(0,)816A B A B∵sin816A B由正弦定理得:6sin sin816a b aA B(Ⅱ)91sin sin()sin cos sin cos8161684C A B A B B A11sin(116)62244S ba C【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.19.【2020年高考浙江】在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知2sin0b A .(Ⅰ)求角B的大小;(Ⅱ)求cos A+cos B+cos C的取值范围.【解析】(Ⅰ)由正弦定理得2sin sinB A A,故sin2B ,由题意得π3B .(Ⅱ)由πA B C得2π3C A,由ABC△是锐角三角形得ππ(,62A .由2π1cos cos()sin322C A A A得11π113cos cos cos sin()(,]2226222A B C A A A.故cos cos cosA B C的取值范围是13(,]22.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.20.【2020年新高考全国Ⅰ卷】在①ac ,②sin 3c A ,③c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B ,6C,________?注:如果选择多个条件分别解答,按第一个解答计分.【解析】方案一:选条件①.由6C 和余弦定理得22222a b c ab .由sin A B 及正弦定理得a .222b c .由①ac ,解得1a b c .因此,选条件①时问题中的三角形存在,此时1c .方案二:选条件②.由6C 和余弦定理得2222a b c ab .由sin A B 及正弦定理得a .22232 ,由此可得b c ,6B C ,23A .由②sin 3c A ,所以6c b a .因此,选条件②时问题中的三角形存在,此时c 方案三:选条件③.由6C 和余弦定理得22222a b c ab .由sin A B 及正弦定理得a .2222 ,由此可得b c .由③c ,与b c 矛盾.因此,选条件③时问题中的三角形不存在.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。

三角函数与解三角形高考试题精选

三角函数与解三角形高考试题精选

名师精编 欢迎下载(1)求tanC 的值;(2)若a=二,求△ ABC 的面积.二角函数与解二角形咼考试题精选C 的对边分别为a , b , c ,已知2 (tanA+tanB )二「…+‘cosB cosAB ,C 所对的边分别为 a , b , c.已知 asinA=4bsinB ac= - (a 2 - b 2- c 2).3.A ABC 的内角A , B , C 的对边分别为a , b , c,已知2cosC (acos 由bcosA ) =c.(I)求 C ;(H)若c= ■,△ ABC 的面积为一二,求△ ABC 的周长.24. 在△ ABC 中,内角 A , B , C 的对边分别为 a , b , c.已知 cosA= , sinB=f©「:「Q C .5. 在△ ABC 中,角A , B , C 所对的边分别是a , b , c ,且-1-"+--'二- =,:|a b c•解答题(共31小题) (I)求cosA 的值;(H) 求 sin (2B- A )的值.1 .在△ ABC 中,角 A , B , (I)证明:a+b=2c ;(U)求cosC 的最小值.2.在△ ABC 中,内角A ,(I)证明:sin Asi nB=s inC (U)若b2+c2- a2—bc,求tanB.56. 在△ ABC中,已知AB=2, AC=3 A=60°.(1)求BC的长;(2)求sin2C的值.7. 在△ ABC中,内角A, B, C所对的边分别为a, b, c,已知△ ABC的面积为3 —, b-c=2, cosA=-.(I)求a和sinC的值;(U)求cos (2A+ )的值.68. A ABC的内角A, B, C所对的边分别为a, b, c.向量=(a, _;b)与「= (cosA, sinB)平行.(I)求A; (U)若a=二b=2,求厶ABC的面积.9. 设△ ABC 的内角A , B , C 所对边的长分别为a , b , c,且b=3, c=1,A ABC 的面积为「,求cosA 与a 的值.(I)求 sin / CED 的值; (U)求 BE 的长.12.在△ ABC 中,内角A , B , C 所对的边分别为 a , b , c ,已知 A= , b 2 - a 2= c . (1)求tanC 的值; (2)若厶ABC 的面积为3,求b 的值.10.如图,在平面四边形 ABCD 中,DA 丄AB, DE=1,Eh , EA=2 * 4 / ADA :,/ BE".11.在△ ABC 中,内角A , B , C 所对a , b , c ,已知 b+c=2acosB13. 在△ ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(I)若a=2, b=,求cosC的值;2(U)若sinAco$匕+sinBcoS^=2sinC 且厶ABC的面积S= sinC,求a和b 的值.2 2 214. A ABC的内角A, B, C所对应的边分别为a, b, c.(I) 若a, b, c成等差数列,证明:sinA+sinC=2sin (A+C);(U)若a, b, c成等比数列,求cosB的最小值.15. A ABC的内角A、B、C所对的边分别为a, b, c.(I) 若a, b, c成等差数列,证明:sinA+sinC=2sin (A+C);(U)若a, b, c成等比数列,且c=2a,求cosB的值.16. 四边形ABCD的内角A与C互补,AB=1, BC=3 CD=DA=2(1)求 C 和BD;(2)求四边形ABCD的面积.17.A ABC的内角A, B, C的对边分别为a, b, c,已知sin (A+C)=8sin21'.2(1) 求 cosB;(2) 若a+c=6,A ABC 的面积为2,求b .18. 在△ ABC 中,内角A , B , C 所对的边分别为a , b , c ,已知b+c=2acosB (1)证明:A=2B;( 2)若 cosB=:,求 cosC 的值.319. 设△ ABC 的内角A 、B 、C 的对边分别为a 、b 、c, a=btanA ,且B 为钝角.(I)证明:B-A= ; (U)求sinA+sinC 的取值范围.2sinA 和c 的值.21. 设△ ABC 的内角A , B , C 的对边分别为a , b , c, a=btanA .(I)证明:sin B=cosA(H) 若 sinC — sinAcosB= , 且 B 为钝角,求 A , B , C.20.A ABC 中,角A , B , C 所对的边分别为a , b , c,已知cosB=,sin (A+B )—,ac=2「;,求22. A ABC 中,D 是BC 上的点,AD 平分/ BAC ; △ ABD 面积是△ ADC 面积的2倍. (D 求―(2)若 A D =1,DC =_,求 BD 和 AC 的长.23. 已知 a ,b ,c 分别是△ ABC 内角 A ,B, C 的对边,sin 2B=2sinAsinC(I)若 a=b ,求 cosB (U)设 B=90°,且 a=&,求△ ABC 的面积.24. A ABC 中,D 是 BC 上的点,AD 平分/ BAC ,BD=2DC(I) 求二 ------ :.(H) 若/ BAC=60,求/ B .sin2_C25. 在△ ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -A /RJT26. A ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c •已知 a=3, cosA= ,B=A+ .(I)求cosA 的值;(H)求cos (2A -丄)的值.6,sinB= -sinC,27. 在△ ABC 中,角A , B , C 的对边分别是a , b , c .28. 在△ ABC 中,角 A , B , C 的对边是 a , b , c ,已知 3acosA=ccosBbcosC (1) 求cosA 的值 (2)若 a=1, cosB^cosC= ,求边 c 的值.329. 在△ ABC 中,内角 A , B , C 的对边分别为a , b , c ,且bsinA= =a?cosB (1) 求角B 的大小;(2) 若 b=3, sinC=2sinA 分别求 a 和 c 的值.30. 在△ ABC 中,a=3, b=2「,/ B=2Z A.(I)求cosA 的值; (U)求c 的值.(I)求b 的值;“)求厶ABC 的面积.(1)若 sin (A+ ) =2cosA 求 A 的值. (2)若 co 件,b=3c,求 sinC 的值.三角函数与解三角形高考试题精选参考答案与试题解析•解答题(共31小题)1. 在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,已知 2 (tanA+tanB ) =「•+◎=cosB cosA(I)证明:a+b=2c ; (U )求cosC 的最小值.【解答】解:(I )证明:由得:CDSD COSA 疋inA 丄sinBsinA cosA cosB•两边同乘以 cosAcosB 得,2 (sinAcosB^cosAsinB ••• 2sin (A+B ) =sinA+sinB; 即 sinA+sinB=2sinC (1); 根据正弦定理,「::;sinA sinb sinC• a+b=2c ;(H) a+b=2c ;• ( a+b ) 2=a ? +b 2+2ab=4c ?;• a 2+b 2=4c ? - 2ab ,且4c 2>4ab ,当且仅当a=b 时取等号; 又 a , b >0;2 •由余弦定理,「「:= - - -1:2ab2ab 2 ab• cosC 的最小值为1 .2. 在△ ABC 中,内角 A , B , C 所对的边分别为 a , b , c.已知 asinA=4bsinB ac= - (a 2 - b 2- c 2).(I)求cosA 的值; (H) 求 sin (2B- A )的值.【解答】(I)解:由「 l ,,得asinB=bsinAsinA smD' ; cosAcosB COS A C 口mB=si nAsi nB ;•二]:二_ 匚.m 可 ],,带入(1)得:2R 阪一 2R'又asinA=4bsinB 得4bsinB=asinA两式作比得:-亠一一,••• a=2b.4b a(U )解:由(I ),可得•:■,代入 asinA=4bsinB 得-.54b 5于是二二m 二 小二-;,一斗「「:、「:, 故E 二:I. - - - ■ :. II-' -. : ■ -3. A ABC 的内角A , B , C 的对边分别为a , b , c,已知2cosC (acos 由bcosA ) =c.(I)求 C ;(U)若c=匸,△ ABC 的面积为■;;,求厶ABC 的周长.2【解答】解:(I):在厶ABC 中,O v C v n • sinC M 0已知等式利用正弦定理化简得: 2cosC (sinAcosB»_sinBcosA =sinC 整理得:2cosCsin (A+B ) =sinC, 即 2cosCsin ( n-( A+B )) =sinC 2cosCsi nC=s inC • cosC=,2 • C =;(U)由余弦定理得 7=a 2+b 2 - 2ab?〔,■w• ( a+b ) 2 - 3ab=7, S= absinC= ab=「— 2 4 2 • ab=6,• ( a+b ) 2 - 18=7, • a+b=5,• △ ABC 的周长为5+ 一.由 _ ,得■: ■ + ■ - ■- ■ I ,由(I )知,A 为钝角,则B 为锐角,4. 在厶ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=3沁"C.(1)求tanC的值;(2)若a=匚,求△ ABC的面积.【解答】解:(1)v A为三角形的内角,cosA=:,3sin A=—=,又cosC=sinB=sin( A+C) =sinAcosC+cosAsinC= - cosC+4-sinC,3 3整理得:cosC=sinC,3 3则tanC= ■.;(2) 由tanC= ■得:cosC=——:——=——!_-—•••sin C= — =「,sec^C Vl+tan「C••• si nB= icosC=-,6匚「、宀, 厂小-厂••• a= ■:, •由正弦定理■'= 得:c=;'「’ = =■:,sinA sinC sinA “5V贝U S^ABC F ' acsinB= x :=•.5.在△ ABC中,角A, B, C所对的边分别是a, b c且85A +u□配_sinC'' a b c(I)证明:sinAsinB=sinC(U)若b2+c - a2=' bc,求tanB.5【解答】(I)证明:在厶ABC中,二--+…亠=:,a b c•由正弦定理得:"」':1'',sinA sine sinC.cosAsinB+cosBsinA_sin(A+B)sinAsinB sinAsinB '■/ sin (A+B) =sinC.•整理可得:si nAsi nB=si nC(U)解:b2+c2- a2= be,由余弦定理可得cosA=.5 5..4 cosA 3sin A=, .=..5 sinA 4一」二一一+ _|」三=二…「=1 -u-i J d -Si -. ,- -1_,tanB=4.6. 在△ ABC中,已知AB=2, AC=3 A=60°.(1)求BC的长;(2)求sin2C的值.【解答】解:(1)由余弦定理可得:BC2=A B2+AC2- 2AB?ACcosA=+9 - 2X 2 X 3^ =7,2所以BC=匸(2)由正弦定理可得:" ■■,则sinC=,・-、=---:-;」= ,sinC sinA BC SinA听7•••AB V BC, BC=/7, AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,石〉2,•••角C v角A,角 C 为锐角.si nC> 0, cosO 0 则cosC=因此sin2C=2sinCcosC=X^^ ” i-LL= -—7 7 77. 在△ ABC中,内角A, B, C所对的边分别为a, b, c,已知△ ABC的面积为3 =, b-c=2, cosA= —丄-.(I)求a和sinC的值;(U)求cos (2A+—)的值.6【解答】解:(I)在三角形ABC中,由cosA=-「,可得sinA=「,△ ABC的面积为3 —,可得:44I' ::I ■ T. : _ -.,可得bc=24,又 b - c=2,解得b=6, c=4,由a2=b2+c2- 2bccosA,可得a=8,' ',解得sinC= I ;sinA sinC 8(U)cos (2A+ ) =cos2Acos - sin2Asin =「!「_ ,,丨'II-. .-:.= ,. .6 6 6 2 2 168. A ABC的内角A, B, C所对的边分别为a, b, c.向量'=(a, ;b)与「= (cosA, sinB)平行. (I)求A;(U)若a=v" f, b=2,求△ ABC 的面积.【解答】解:(I)因为向量=(a, :b)与-匸(cosA, sinB)平行,所以asinB-眉bcosA=0,由正弦定理可知:sinAsinB-质sinBcosA=0 因为sinB^0, 所以tanA=V3,可得A=;(U) a= _, b=2,由余弦定理可得:a2=b2+c^ - 2bccosA,可得7=4+$-2c,解得c=3,△ ABC 的面积为:9. 设△ ABC 的内角A , B , C 所对边的长分别为a , b , c,且b=3, c=1,A ABC 的面积为 匚,求cosA 与a 的值.【解答】解::b=3, c=1,A ABC 的面积为 匚, 二• ■・丨11.'= I, 二 sinAh,3又■/ sin 2A+cos 2A=1 a = •——-・-・・| - =2 「或2 ■:.10. 如图,在平面四边形 ABCD 中,DA 丄AB, DE=1, EC=二,EA=2 / ADC=),/ BEC=.3 3(I)求 sin / CED 的值;【解答】解: (I)设a = CED在厶CDE 中,由余弦定理得 E^=CD 2+E D 2- 2CD?DE CO /CDE 即 7=C^+1+CD ,则 C D^+CD- 6=0 ,解得CD=2或CD=- 3,(舍去),在厶CDE 中,由正弦定理得 ,:,,sinZEDC sinClCD-sin^ 2%爭 721则 sin a=^ ,即 sin / CED 二二-.7而/ AEB 「,2JT 971 ••• cos/ AEB=cos( ) =cos -w J 1在 Rt A EAB 中,cos / AEB=^ ,BE BE•••论=± , 由余弦定理可得C D(U )由题设知0VaV 二,由(I )知cos a +sin —sin a=-14,(H) 求 BE 的长.COS a= ■ :2Vr7 ,故苗1411. 在△ ABC 中,内角A , B , C 所对的边分别为a , b , c ,已知b+c=2acosB(I)证明:A=2B;2“)若厶ABC 的面积S=「,求角A 的大小.4 【解答】(I)证明:••• b+c=2acosB 二 sinB+sinC=2sinAcosB ••• sinB+sin (A+B ) =2sinAcosB••• sinB+sin AcosE+cosAs in B=2s in AcosB • sinB=sinAcosB" cosAsinB=sin(A - B )T A , B 是三角形中的角,• B=A- B , • A=2B;2(U)解:•••△ ABC 的面积 S=「,4• 1 bcsi nA=「, 2 4 • 2bcsi nA 二扌,• 2si nBsi nC=si nA=si n2B • sin C=cosB• B+C=90 ,或 C=B F 90°,• A=90°或 A=45 . (1)求tanC 的值;(2)若厶ABC 的面积为3,求b 的值.【解答】解:(1)T A 匚,•由余弦定理可得:「--… :——二,• b 2- a 2= =bc -c 2,又 b 2- a 2=77C 2..°. ■:bc - c 2」c 2..°. “J :『b= c.可得:「丄」u 乙 厶 P •孑=b 2-— =「,即 a= .5 2,9 2 212.在△ ABC 中,内角A , B , C 所对的边分别为 a,b ,c ,已知 A= 一,厂 a2=〕c2.•cos~2ab~=帧处=5 .2X —cX —cT C €( 0, n),••• sin C =丨一-二=十- tanC= =2.cosC 或由 A= , b 2— a 2= c 2.4 2 可得:sin 2B — sin 2A= sin 2C,2 • si^B- J sin 2C ,2 2 •••-丄cos2B= sin 2C ,2 2 •••- sin ;^.,,2_-l =sin2C , •- sin H 「:三一【=sin 2C ,2• si n2C=sir i C, 二 tanC=2(2)… -..才 1 x:=3 (2),S △肺cpabsinC- 3,解得c=2:.-=3 .彳=313. 在△ ABC 中,内角 A 、B 、C 所对的边分别是 a 、b 、c ,且a+b+c=8.(I)若 a=2, b=',求 cosC 的值;2(n) 若 sinAco$ +sin• c=8-( a+b ) =「,整理得:si nA+si nAcosPs in B+s in BcosA=4s inC •' sinAcosE+cosAsinB=sin (A+B ) =sinC,2 2 2 •••由余弦定理得:cosC-'' 2ab(n) 由 sin.2嗨)第)2_=—丄=■■;52X2Xy得: sinA ^^+sinB?^^=2sinCB CO Q’ =2sinC 且厶ABC 的面积S= sinC,求a 和b 的值.【解答】解:(I): a=2, b=,且 a+b+c=8,2• sin A+si nB=3si nC利用正弦定理化简得:a+b=3c,I a+b+c=8,二a+b=6①,■/ S= absinC=£sinC,2 2••• ab=9②,联立①②解得:a=b=3.14. A ABC的内角A, B, C所对应的边分别为a, b, c.(I)若a, b, c 成等差数列,证明:si nA+si nC=2s in (A+C); (U)若a, b, c成等比数列,求cosB的最小值.【解答】解:(I):a, b, c成等差数列,2b=a+c,利用正弦定理化简得:2si nB=s inA+sinC,sinB=sir[ n-( A+C) ] =sin (A+C),••• sinA+sinC=2sinB=2sin( A+C);(n)v a, b, c成等比数列,•b2=ac,2 2 T2 2 2•cosB= =)+'-_ -=2ac 2ac 2ac 2 '当且仅当a=c时等号成立,•cosB的最小值为丄15. A ABC的内角A、B、C所对的边分别为a, b, c.(I) 若a, b, c成等差数列,证明:sinA+sinC=2sin (A+C); (U)若a, b, c成等比数列,且c=2a,求cosB的值.【解答】解:(I):a, b, c成等差数列,•a+c=2b,由正弦定理得:si nA+si nC=2si nB:sinB=sir[ n-( A+C) ] =sin (A+C),则sinA+sinC=2sin (A+C);(U):a, b, c成等比数列,2…b =ac,将c=2a代入得:b2=2a2,即卩b= ■:a,2.^2 .22.. 2 Q2 o•••由余弦定理得:cosB=「’「"J -='2恥4a2°16. 四边形ABCD的内角A与C互补,AB=1, BC=3 CD=DA=2(1)求 C 和BD;(2)求四边形ABCD的面积.【解答】解:(1)在厶BCD中,BC=3 CD=2,由余弦定理得:BD^Bg+C庁-2BC?CDcosC=13 12cosC①,在厶ABD 中,AB=1, DA=2, A+C=n,由余弦定理得:BD2=A B2+AD2 3 2AB?ADcosA=3 4cosA=5McosC②, 由①②得:COSC=T 2J则C=60, BD=匸;(2)v cosC=L, cosA=-,2 2• sinC=sinA=-,2贝U S= AB?DAsinA+「BC?CDsinC= x 1X 2X 汇+ x 3X 2x M =2 二=8sin^.2 2 2 217. A ABC的内角A , B , C的对边分别为a , b , c ,已知sin (A+C)(1)求cosB;(2)若a+c=6 , △ ABC的面积为2,求b.【解答】解: (1) sin (A+C) =8sin2寻,•sinB=4 (1 3 cosB),••• sin f2B+cos2B=1 ,2 2•16 (1 3 cosB) +cos B=1 ,o o•16 (1 3 cosB) +cos B 3 仁0,•16 (cosB- 1) 2+ (cosB- 1) (cosBM ) =0 ,•( 17cosB- 15) (cosB- 1) =0 ,•cosB=p;(2)由(1)可知 sinB",17T S ABC F 1 ac?sinB=2••• ac= | , 2• b 2=a 2+c 2 - 2accosB=a+c 2 - 2X 丄-x 丄 2 17=a 2+c 2 - 15= (a+c ) 2-2ac - 15=36- 17- 15=4,• b=2.18. 在△ ABC 中,内角A , B , C 所对的边分别为a , b , c ,已知b+c=2acosB(1) 证明:A=2B;(2) 若 cosB=:,求 cosC 的值.3【解答】(1)证明:••• b+c=2acosB• sin B+s in C=2si nAcosB■/ sinC=sin( A+B ) =sinAcosBcosAsinB• sinB=sinAcos - cosAsinB=sin( A - B ),由 A , B €( 0, n),• O V A- B V n, • B=A- B ,或 B=n-( A - B ),化为 A=2B,或 A=n (舍去).• A=2B.(II )解:cosB = , • sin B==. sin A= 、=「• cosC=- cos (A+B ) =- cosAcosBsinAsinB= .丨 + - x :'='3 9 3 9 2719. 设△ ABC 的内角A 、B 、C 的对边分别为a 、b 、c, a=btanA ,且B 为钝角. (I )证明:B- A=p ; 2(口)求sinA+sinC 的取值范围.【解答】解:(I )由a=btanA 和正弦定理可得二…-/=二--|-,cosA b sinBjl• sinB=cosA 即 sinB=sin (+A )cosA=cos2B=2cofe -仁9'又B为钝角,• +A€(, n),.C JI A • C A 兀•B= +A,・・ B —A=;2 2(U)由(I)知C=n-( A+B) = n-( A+ +A) = —2A> 0,••• A€( 0, JL),二sinA+sinC=sinA+sin (2L —2A) 4 22=sinA+cos2A=sinA+1 —2sin A=—2 (si nA- 1 ) I,48•••A€( 0, 丄),• 0v sinA v —4 2•••由二次函数可知-v- 2 (si nA-—) 2+二< '2 4 8 8• si nA+s inC的取值范围为( 「]2 8-ac=2 _;,求20. A ABC中,角A, B, C所对的边分别为a, b, c,已知cosB= , sin (A+B)=3sinA和c的值.【解答】解:①因为△ ABC中,角A, B, C所对的边分别为a, b, c已知cos』,sin (A+B) = , ac=2i」1,所以sinB= , sinAcosB^cosAsinB=—1,9 3 9所以sinA+ :cosA=-①,结合平方关系sin2A+cos2A=1②,3由①②解得27sin2A—6 "sinA- 16=0,解得sinA= •二或者sinA=-(舍去);39②由正弦定理,“'由①可知sin (A+B) =sinC=), sinA=_ —sinA siflC 9 3所以a=2 c,又ac=2rl,所以c=1.21. 设△ ABC的内角A, B, C的对边分别为a, b, c, a=btanA.(I)证明:sin B=cosA(H) 若sinC— sinAcosB=,且B 为钝角,求A, B, C.4【解答】解:(I)证明:••• a=btanA.•_ =ta nA, b•••由正弦定理:一二一,又tanA=二:八,b sinB cosA,sinB cosA '■/ sinA M0,•sinB=cosA 得证.(H)v sinC=sin n_( A+B) ] =sin (A+B) =sinAcosbcosAsinB二 sinC —sinAcosB=cosAsinB=,由(1) sinB=cosA4 ••• sin 2B=',4 ■/ O v B v n,• sinB=-, 2••• B 为钝角,又••• cosA =sinB =,• A =• • 一6• C =n —A —B =,综上,A© , B=-22. A ABC 中,D 是BC 上的点,AD 平分/ BAC , △ ABD 面积是△ADC 面积的2倍.(1)求二一亠sinCo 7-BDX AE••二’上:二 =2S A AI )C yDCXAE• BD=2DCv AD 平分/ BAC• / BAD=Z DAC(2)由(1)知,BD=2DC=2^ - = /.过D 作DM 丄AB 于M ,作DN 丄AC 于N ,v AD 平分/ BAC ,• DM=DN,(2)若 AD=1, DC=「, 2 【解答】解:(1)如图, 求BD 和AC 的长.过A 作AE 丄BC 于E ,BD AD • ■ /D _ADX sin/BAD• • sin B = ™BD 升人 八 r+r g Av . • / 厂 AD X sinZl DAC心ADC 中, 厂,…E C =;• sinZ B _DC _1 ...6分在^ ABD 中,-—-丄—一 DC AD D Cq7-ABXDlll -= =2 S AAPC yACXDN ••• AB=2AC令AC=x 则AB=2xvZ BAD=Z DAC,••• cos/ BAD=co Z DAC(II)由(I)可得:b2=2ac,v B=90°,且a= ?,• a+c2=b2=2ac,解得a=c= \2 2•由余弦定理可得:2X2X X12X Z X1 '•x=1,23. 已知a, b, c分别是△ ABC内角A, B, C 的对边,sin2B=2sinAsinC(I)若a=b,求cosB(U)设B=90°,且a=匚,求△ ABC的面积.【解答】解:(I)v sin2B=2sinAsinC由正弦定理可得:> 0,sinA sinB sinC k '代入可得(bk) 2=2ak?ck,• b2=2ac,-a=b,. • a=2c,由余弦定理可?丄 2 i 2 cosB==2•AC=1,•BD的长为 ~, AC的长为1.2aX-^-a °24. A ABC 中,D 是 BC 上的点,AD 平分/ BAC , BD=2DC (I)求'■/ .sinZC (H)若/ BAC=60,求/ B .【解答】解:(I)如图,由正弦定理得: AP 二丄D AD 二 DCminZB sinZBAD ° sin-ZC sinZCAD 'v AD 平分/ BAC , BD=2DC.…二_丄_二•I 」.’厂一「广门(H)vZ C=180—(/ BAG / B ), / BAC=60,.二1二』「二-:|〔:「1 —丨‘ =M- : I 1 -:i .由(I)知 2sin / B=sinZ C ,25. 在△ ABC 中,内角A , B , C 所对的边分别为a , b , c ,已知a - (I)求cosA 的值;IT(U)求 cos (2A -二)的值.6 【解答】解:(I)将sinB= :sinC,禾U 用正弦定理化简得:(n)v cosA \, A 为三角形内角,.sinA=— ; 亠,.cos2A=2cosA —仁-一,sin2A=2sinAcosA= ,4 5 4, a — c=c,即卩a=2c,b= c , .tan / B= ,即/ B=30°.3 sinB= -si nC,则cos (2A—) =cos2Acos +sin2Asin = — ^ +〔x = .6 6 6 4 2 4 2 826. A ABC中,角A, B, C所对的边分别为a, b, c.已知a=3, cosA= , B=*二.3 2(I)求b的值;“)求厶ABC的面积.2【解答】解:(I):cosA=,••• B=*sinB=sin (A+ ) =cosA= ,23由正弦定理知1 =—sinA sinB•b= J ?sinB= - =3 ■.sinA 返33(n)v sinB= , B=A+二>二3 2 2•cosB=— : =「,sinC=sin ( n- A- B) =sin (A+B) =sinAcosB^cosAsinB= - x( ——) + - x =3 3 3 3 3• S= a?b?sinC= x3x3 =;-.2 23 227. 在△ ABC中,角A, B, C的对边分别是a, b, c.(1)若sin (A+ ) =2cosA 求 A 的值.628. 在△ ABC 中,角 A , B , C 的对边是 a , b , c ,已知 3acosA=ccosBbcosC(1) 求cosA 的值(2) 若 a=1, cosB^cosC= ,求边 c 的值.3 【解答】 解:(1)由余弦定理可知 2accosB=a+c 2 - b 2; 2abcosc=d r +b 2 - c 2; 代入 3acosA=ccosBbcosC;得 cosA=; 3(2)v cosA=3••• si n Ah 3 cosB=— cos (A+C ) = - cosAcosGsinAsinC=- cosC+ - sinC 3 3又已知cosB»_cosC=… 代入③ 3cosC+# ?sinC=;,与 cos C+sin 2C=1 联立sin C= 3已知a=1Vs asinC = 3 =V^ 'I I :=29. 在△ ABC 中,内角 A ,B ,C 的对边分别为a ,b ,c ,且bsinA= =a?cosB(1) 求角B 的大小;(2) 若 b=3, sinC=2sinA 分别求 a 和 c 的值.【解答】 解:(1)v bsinA=』3a?cosB 由正弦定理可得:sinBsinA= ;sinAcosB ■/ sinA M 0,.°. sinB= :cosB,B €( 0, n, 可知:cosB^0,否则矛盾.• tan B=*. ;,• B=. 3(2)v sinC=2sinA •- c=2a,由余弦定理可得:b 2=a 2+c 2 - 2accosB• 9=a 2+c 2 - ac,把c=2a 代入上式化为:a 2=3 ,解得a=「;,解得 正弦定理:30. 在△ABC中,a=3, b=2 7,Z B=2/ A.(I)求cosA的值;(U)求c的值.【解答】解:(I)由条件在厶ABC中,a=3, 1 .. T,Z B=2Z A,利用正弦定理可得sinA sinB 解得cosA=.3(U)由余弦定理可得a2=b2+c2即「;- . - 3 sinA sin2A 2sinAcosA即c2- 8c+15=0.解方程求得c=5,或c=3.当c=3 时,此时a=c=3,根据/ B=2Z A,可得B=90°, A=C=45,△ ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.2 2 2 2 2 2 L当c=5 时,求得cosB=,J , cosA=;'_ =「- ,2ac 3 2bc 3••• cos2A=2c°sA-仁=cosB,「. B=2A 满足条件.3综上,c=5.(2) 若cosA= , b=3c,求sinC 的值.3【解答】解:(〔)因为二—■,所以sinA= ■,所以tanA=* .:,所以A=60°(2)由■,-丄、:.;:2 2 2及 a =b +c - 2bccosA得a2=b2- c2故厶ABC是直角三角形且B=所以sinC=cosA=32bc?cosA 即9=…| :'+c2- 2X 2、;托x c X J。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历届高考中的“解三角形”试题精选(自我测试)一、选择题:(每小题5分,计40分) 1.(2009重庆理)在ABC ∆中,,75,45,300===C A AB 则BC =( )A.33-B.2C.2D.33+2.(2009山东文、理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =3π,a =3,b =1,则c =( ) (A )1 (B )2 (C )3—1 (D )3 3.(2010全国Ⅰ卷文、理)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =( )A .14 B .34CD4.(2009北京春招文、理)在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形5.(2011春招上海)在△ABC 中,若CcB b A a cos cos cos ==,则△ABC 是( ) (A )直角三角形. (B )等边三角形. (C )钝角三角形. (D )等腰直角三角形.6.(2005江苏)ABC ∆中,3π=A ,BC=3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB7.(2007春招北京、安徽文、理)设α,β是一个钝角三角形的两个锐角,下列四个不等式中不正确...的是( ) A B C D .αβ<.αβ<.αβ>.αβ<αβtg tg tg tg121122sin sin cos cos ()++++8.(2009全国Ⅳ卷文、理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( )A .231+ B .31+C .232+D .32+二.填空题: (每小题5分,计30分)9.(2010北京文)在△ABC 中,AC=3,∠A=45°,∠C=75°,则BC 的长为 .10.(2011上海春招) 在△ABC 中,已知5,8==AC BC ,三角形面积为12,则=C 2cos . 11.(2011北京理)在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___________. 12.(2010北京文、理) 在ABC △中,若1tan 3A =,150C =,1BC =,则AB =________. 13.(2009全国Ⅱ卷理)已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为 .14、在ABC △中,若1tan 3A =,150C =,1BC =,则AB = . 15.(2005上海理)在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S=_______三.解答题: (15、16小题每题12分,其余各题每题14分,计80分) 16.(2009福建文、理)在△ABC 中,tan A =41,tan B =53. (I)求角C 的大小; (II)若AB 边的长为17,求BC 边的长17. (2011广东理)已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、. (1)若5=c ,求sin ∠A 的值; (2)若∠A 是钝角,求c 的取值范围.18.(2011全国Ⅰ理)设锐角三角形ABC 的内角A,B,C 的对边分别为a,b,c,a =2b sin A(Ⅰ)求B 的大小; (Ⅱ)求C A sin cos +的取值范围.19.(2012湖北理)在△ABC 中,已知AC B AB ,66cos ,364==边上的中线BD=5,求sinA 的值.20.(2012四川文、理)已知A 、B 、C 是ABC ∆三内角,向量)3(-1,m = ,sinA)(cosA,n =,且1n m =•(Ⅰ)求角A (Ⅱ)若221sin 23,cos sin B B B+=--求tanC 。

21.(本小题满分12分)(07西一文)已知α为第二象限的角,βα,53sin =为第三象限的角,34tan =β. (I )求)tan(βα+的值. (II )求)2cos(βα-的值.22.(本小题满分13分)(06西一文)已知.53sin ),,2(=∈αππ且a (I )求)4cos(πα-的值;(II )求)4tan(2sin 2παα++的值.23.(本小题共12分)已知函数f (x )=xx cos 2sin 1-(Ⅰ)求f (x )的定义域;(Ⅱ)设α是第四象限的角,且tan α=34-,求f (α)的值. 24.已知向量a xx b x x f x a→=→==→(s i n c o s )(c o sc o s )()232,,,,定义函数·b →-1。

求:(I )函数f(x)的最小正周期;(II )函数f(x)的单调减区间。

25.已知函数f (x )=22cos sin cos x a x x +,()06f π=,(I ) 求实数a ;(II )求函数f (x )的最小正周期及单调增区间;(III )若函数f (x )的图象按向量(,1)6m π=-平移后,得到函数g (x )的图象,求g (x )的解析式。

26、已知函数x x x x x f 44sin cos sin 2cos )(--=。

(1)求)(x f 的最小正周期;(2)若]2,0[π∈x ,求)(x f 的值域。

27、已知函数x x x x x f 44sin cos sin 2cos )(--=。

(1)求)(x f 的最小正周期;(2)若]2,0[π∈x ,求)(x f 的值域。

28.已知函数()sin sin(),2f x x x x R π=++∈. (I)求()f x 的最小正周期;(II)求()f x 的的最大值和最小值; (III)若3()4f α=,求sin2α的值.29.已知函数()sin()(0,0)f x x R ωϕωϕπ=+>≤≤是上的偶函数,其图象关于点3(,0)4M π对称,且在区间0,2π⎡⎤⎢⎥⎣⎦上是单调函数求ωϕ和的值20.(2011全国文、理,广东)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南(cos 10θθ=方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?历届高考中的“解三角形”试题精选(自我测试)二.9. 2 10.257 11. 60O12. 210 13. 3 14.4315三.解答题:15. 本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及 推理和运算能力,满分12分. 解:(Ⅰ)π()C A B =-+,1345tan tan()113145C A B+∴=-+=-=--⨯. 又0πC <<,3π4C ∴=.(Ⅱ)34C =π,AB ∴边最大,即AB =又tan tan 0A B A B π⎛⎫<∈ ⎪2⎝⎭,,,,∴角A 最小,BC 边为最小边.由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得sin 17A =sin AB BC C A =得:sin 2sin ABC ABC== 所以,最小边BC =16.解:(1) (3,4)AB =--, (3,4)AC c =--东当c=5时,(2,4)AC =- cos cos ,A AC AB ∠=<=进而sin A ∠==(2)若A 为钝角,则AB ﹒AC= -3(c -3)+( -4)2<0解得c>325显然此时有AB 和AC 不共线,故当A 为钝角时,c 的取值范围为[325,+∞)17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin AC A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知, 22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭.3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,.18.本小题主要考查正弦定理、余弦定理等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设E 为BC 的中点,连接DE ,则DE//AB ,且DE=,,36221x BE AB ==设 在△BDE 中利用余弦定理可得: BD 2=BE 2+ED 2-2BE ·EDcosBED ,,6636223852x x ⨯⨯++=,328cos 2,2),(37,1222=⋅-+==-==B BC AB BC AB AC BC x x 从而故舍去解得.1470sin ,6303212sin 2,630sin ,3212====A AB AC 故又即 解法2:以B 为坐标原点,x BC 为轴正向建立直角坐标系,且不妨设点A 位于第一象限.).(314,2.5)352()634(||).352,634(),0,(),354,34()sin 364,cos 364(,630sin 22舍去从而由条件得则设则由-===++=+=====x x x BD x BD x BC B B BA B ),354,32(-=CA 故.1470cos 1sin ,141439809498091698098||||cos 2=-=∴=+++-==A A CA BA A 于是解法3:过A 作AH ⊥BC 交BC 于H ,延长BD 到P 使BD=DP ,连接AP 、PC , 过P 作PN ⊥BC 交BC 的延长线于N ,则HB=ABcosB=,354,34=AH .1470sin ,6303212sin 2.3212,32,2,34,310)354()52(22222222=∴==+===-=∴===-=-=-=A A HC AH AC HC CN BN BC HB CN AH BP PN BP BN 故由正弦定理得而19. 解:(Ⅰ)∵1m n ⋅=∴(()cos ,sin 1A A -⋅=cos 1A A -=12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭ ∵50,666A A ππππ<<-<-<∴66A ππ-= ∴3A π=(Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --= ∴cos 0B ≠ ∴2tan tan 20B B --= ∴tan 2B =或tan 1B =-而tan 1B =-使22cos sin 0B B -=,舍去 ∴tan 2B =∴()tan tan C A B π=-+⎡⎤⎣⎦()tan A B =-+tan tan 1tan tan A B A B +=--==20. 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(222t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.。

相关文档
最新文档