函数模型及其应用复习讲义

合集下载

高考文科数学函数模型及其应用考点讲解

高考文科数学函数模型及其应用考点讲解

1.几类不同增长的函数模型
线性函数
指数函数
对数函数
幂函数
y=kx+b
(k>0) 增长的 速度
y=ax
(a>1) 先慢后快,指数爆 炸
y=logax
(a>1) 先快后慢,增长平 缓
y=xn
(n>0) 介于指数函数与 对数函数之间,相 对平稳
增长速度不变
图象的 变化
随x值的增大,图象 随x值的增大,图象 随n值的不同而不 所有理想化模型均忽略对所研究 直线上升 问题无影响的因素 ,是研究问题的 与x轴接近平行 与y轴接近平行 同 一种理想方法.在高中学习的理想 模型还有:点电荷、理想气体、弹 簧振子、点光源等.
目 录 Contents
考情精解读
考点一 常见的函数模型
考点二 几类不同增长的函数模型
考点三 函数模型的应用
高考复习讲义
考情精解读 1
函数模型及其应用
考纲解读
1
命题规律
了解指数函数、对数函数以及幂函数的增长特征,知道直线
上升、指数增长、对数增长等不同函数类型增长的含义.
命题趋势
2
了解函数模型(如指数函数、对数函数、幂函数、分段函数 等在社会生活中普遍使用的函数模型)的广泛应用.
高考复习讲义
考点全通关 4
函数模型及其应用 考点三 函数模型的应用
函数模型的应用有两个方面:一方面是利用已知函数模型解决问题;另一方面是建 立恰当的函数模型,并利用所得函数模型解决实际问题. 建立函数模型解应用问题的步骤如下: (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型; (2)建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型; (3)求模:求解数学模型,得出数学结论; 所有理想化模型均忽略对所研究 (4)还原:将利用数学知识和方法得出的结论,还原到实际问题中. 问题无影响的因素,是研究问题的 一种理想方法.在高中学习的理想 返回目录 模型还有:点电荷、理想气体、弹 簧振子、点光源等.

函数模型及其应用复习课件

函数模型及其应用复习课件
品的全部费用称为生产成本,某企业一 1 个月生产某种商品 x 万件时的生产成本为 C(x)= x2+2x+ 2 20(万元 ).一万件售价是 20 万元,为获取更大利润,该企业 一个月应生产该商品数量为( A. 36 万件 C. 22 万件 B.18 万件 D. 9 万件 )
目录
x年后该城市人口总数为
y=100×(1+1.2%)x. 所以该城市人口总数 y( 万人 ) 与年数 x( 年 ) 的函数关系式是 y = 100×(1+1.2%)x. (2)10年后人口总数为
100×(1+1.2%)10≈112.7(万).
所以10年后该城市人口总数约为112.7万.
目录
【题后感悟】
100×(1+1.2%), 2 年 后 该 城 市 人 口 总 数 为 y = 100×(1 + 1.2%) + 100×(1 +
1.2%)×1.2%=100×(1+1.2%)2,
3 年 后 该 城 市 人 口 总 数 为 y = 100×(1 + 1.2%)2 + 100×(1 + 1.2%)2×1.2%=100×(1+1.2%)3,…

第n期到期时本利之和为a(1+p)n万元. 答案:a(1+p)n
目录
考点探究讲练互动
考点突破
考点 1 二次函数模型
例1 某企业为打入国际市场,决定从 A,B 两种产品中
只选择一种进行投资生产.已知投资生产这两种产品的有 关数据如表 (单位:万美元)
年固定 成本 20 40 每件产 品成本 m 8 每件产品销 售价 10 18 每年最多 可生产的
第9课时
函数模型及其应用
2014高考导航
考纲展示 1.了解指数函数、对数函数以 备考指南 1.现实生活中的生产经营、环境保护、

函数模型及其应用复习课件

函数模型及其应用复习课件
等比数列通项公式
an=a1*q^(n-1),其中a1为首项,q为公比,n为项数。该公式可用于求解等比数列中任意一 项的值。
等比数列求和公式
Sn=a1*(1-q^n)/(1-q),其中Sn为前n项和,q≠1。当q=1时,Sn=n*a1。这些公式可用于 计算等比数列前n项的和。
数列求和与通项公式求解方法
指数与对数互化
01
指数式与对数式的互化
指数式y=a^x可以转化为对数式x=log_a(y),对数式y=log_a(x)可以转
化为指数式a^y=x。
02
指数方程与对数方程的解法
解指数方程时,可以通过两边取对数的方法将方程转化为对数方程;解
对数方程时,可以通过换底公式将方程转化为指数方程。
03
指数函数与对数函数的复合
三角函数图像与变换
三角函数的基本图像 (正弦函数、余弦函 数、正切函数等)
复合三角函数的图像 与性质
图像的平移、伸缩、 对称等变换
三角函数在实际问题中应用
01
02
03
04
利用三角函数模型解决周期性 问题(如振动、波动等)
利用三角函数模型解决最值问 题(如角度最大、距离最短等

利用三角函数模型解决与角度 有关的问题(如方向角、仰角
一次函数
形如$y = kx + b$($k neq 0$)的函数。图像是一条直线。
指数函数
形如$y = a^x$($a > 0, a neq 1$)的函数。图像是一条 指数曲线。
三角函数
如正弦函数、余弦函数、正切 函数等。图像是周期性的波形 曲线。
函数运算与变换
四则运算
包括函数的加法、减法、乘法和 除法。通过这些运算可以构造更 复杂的函数模型。

函数模型及其应用复习讲义

函数模型及其应用复习讲义

要点梳理1.几类函数模型及其增长差异(1)几类函数模型(2) 三种增长型函数之间增长速度的比较①指数函数y=a x( a>1) 与幂函数y=x n( n>0)在区间(0 ,+∞) ,无论n 比a 大多少,尽管在x 的一定范围内a x会小于x n,但由于y=a x的增长速度快于y=x n的增长速度,因而总存在一个x0,当x>x0 时有②对数函数y=log a x ( a>1) 与幂函数y=x n( n>0)对数函数y=log a x ( a>1)的增长速度,不论 a 与n 值的大小如何总会慢于y=x n的增长速度,因而在定义域内总存在一个实数x0,使x>x0 时有__________ .由①②可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在(0 ,+∞)上,总会存在一个x0,使x>x0时有.2.解函数应用问题的步骤( 四步八字)2 审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;3 建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;4 求模:求解数学模型,得出数学结论;(4) 还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:注意:解决函数应用问题重点解决以下问题(1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大( 小) 值,计算函数的特殊值等,注意发挥函数图像的作用;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.基础自测1.某物体一天中的温度T(单位:℃ ) 是时间t ( 单位:h) 的函数:T( t ) =t3-3t+60,t =0 表示中午12∶ 00,其后t 取正值,则下午___ 3 时的温度为.2.某工厂生产某种产品固定成本为 2 000 万元,并且每生产一单位产品,成本增加1210 万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-20Q2,则总利润L(Q) 的最大值是______ 万元.3.( 课本改编题) 某种储蓄按复利计算利息,若本金为 a 元,每期利率为r,存期是x ,本利和( 本金加利息) 为y 元,则本利和y 随存期x 变化的函数关系式是4.某公司租地建仓库,已知仓库每月占用费y1 与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10 千米处建仓库,这两项费用y1,y2分别是2 万元和8 万元,那么要使这两项费用之和最小,仓库应建在离车站( )A.5 千米处B.4千米处 C .3 千米处D.2 千米处5.某企业第三年的产量比第一年的产量增长44%,若每年的平均增长率相同( 设为x) ,则以下结论正确的是( )A.x>22% B.x<22% C .x=22% D.x 的大小由第一年的产量确定题型分类题型一一次函数、二次函数模型1 某企业生产A,B 两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A、B 两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18 万元资金,并将全部投入A,B 两种产品的生产.①若平均投入生产两种产品,可获得多少利润②问:如果你是厂长,怎样分配这18 万元投资,才能使该企业获得最大利润其最大利润约为多少万元探究提高(1) 在实际问题中,有很多问题的两变量之间的关系是一次函数模型,其增长特点是直线上升( 自变量的系数大于0) 或直线下降( 自变量的系数小于0) ,构建一次函数模型,利用一次函数的图像与单调性求解.(2)有些问题的两变量之间是二次函数关系,如面积问题、利润问题、产量问题等.构建二次函数模型,利用二次函数图像与单调性解决.(3)在解决二次函数的应用问题时,一定要注意定义域.变式训练1 用一根长为12 m的铝合金条做成一个“目”字形窗户的框架( 不计损耗) ,要使这个窗户通过的阳光最充足,则框架的高与宽应各为多少题型二分段函数模型2 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为13x 3-80x2+5 040 x,x∈ [120 ,144 ,y=且每处理一吨二氧化碳得到可利12x2-200x+80 000 ,x∈ [144 ,500] ,用的化工产品价值为200 元,若该项目不获利,国家将给予补偿.(1)当x∈ [200,300] 时,判断该项目能否获利如求出最大利润;如果不获利,果获利,则国家每月至少需要补贴多少元才能使该项目不亏损(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低探究提高本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.变式训练2 某市居民自来水收费标准如下:每户每月用水不超过 4 吨时,每吨为元,当用水超过4 吨时,超过部分每吨元.某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x, 3x(吨) .(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费元,分别求出甲、乙两户该月的用水量和水费.题型三指数函数、幂函数模型3 某城市现有人口总数为100 万人,如果年自然增长率为%,试解答以下问题:(1)写出该城市人口总数y(万人)与年份x(年)的函数关系式;(2)计算10 年以后该城市人口总数(精确到万人);(3)计算大约多少年以后,该城市人口将达到120 万人(精确到1 年);(4)如果20 年后该城市人口总数不超过120 万人,年自然增长率应该控制在多少(参考数据:≈, ≈,lg ≈,lg 2≈ 0 ,lg ≈,lg ≈ 9)探究提高此类增长率问题,在实际问题中常可以用指数函数模型y=N(1 +p)x(其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y=a(1 +x)n(其中 a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.变式训练 3 已知某物体的温度θ (单位:摄氏度)随时间t (单位:分钟)的变化规律是:θ =m·2t+21-t(t ≥ 0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5 摄氏度;(2)若物体的温度总不低于2 摄氏度,求m的取值范围.函数建模及函数应用问题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义.第五步:反思回顾——对于数学模型得到的数学解,必须验证这个数学解对实际问题的合理性.方法与技巧解答数学应用题关键有两点:一是认真审题,读懂题意,理解问题的实际背景,将实际问题转化为数学问题;二是灵活运用数学知识和方法解答问题,得到数学问题中的解,再把结论转译成实际问题的答案.。

高三数学复习课件 2.9 函数模型及其应用

高三数学复习课件 2.9 函数模型及其应用

综上,当 t=12 时,S(t)取最大值2 5300;当 t=100 时,S(t)取最小值 8.
答案
专题突破
-13-
考点1
考点2
考点3
考点4
解题心得在现实生活中,很多问题涉及的两个变量之间是二次函 数关系,如面积问题、利润问题、产量问题等.构建二次函数模型, 利用二次函数的图象与单调性解决.
专题突破
品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得
最大利润?其最大利润约为多少万元?
专题突破
-15-
考点1
考点2
考点3
考点4
解: (1)设 A,B 两种产品都投资 x 万元(x≥0),所获利润分别 为 f(x)万元、g(x)万元,由题意可设 f(x)=k1x,g(x)=k2√������,
专题突破
-16-
考点1
考点2
考点3
考点4
令√������=t,t∈[0,3√2], 则 y=14(-t2+8t+18) =-14(t-4)2+127. 故当 t=4 时,ymax=127=8.5, 此时 x=16,18-x=2.
所以当 A,B 两种产品分别投入 2 万元、16 万元时,可使该企
业获得最大利润 8.5 万元.
根据图象可解得 f(x)=0.25x(x≥0),g(x)=2√������(x≥0).
(2)①由(1)得 f(9)=2.25,g(9)=2√9=6,
故总利润 y=8.25(万元).
②设 B 产品投入 x 万元,A 产品投入(18-x)万元,该企业可获
总利润为 y 万元, 则 y=14(18-x)+2√������,0≤x≤18.

新教材老高考适用2023高考数学一轮总复习第三章第九节函数模型及其应用pptx课件北师大版

新教材老高考适用2023高考数学一轮总复习第三章第九节函数模型及其应用pptx课件北师大版
1 2
x -300x+80 000,假设每处理一吨二氧化碳得到的化工产品的收入为200
2
元.
(1)该公司二氧化碳月处理量为多少吨时,每吨的平均月处理成本最低,最
低平均成本是多少?
(2)该公司利用这种技术处理二氧化碳的最大月收益是多少?(月收益=月收
入-月处理成本)
解 (1)设每吨的平均处理成本为t元,
由已知得
所以

t=
=
1 80 000
x+
-300,x∈[300,600].
2

1 80 000
1
80 000
t=2x+ -300≥2 2 · -300=2
1 80 000
x=
,即
2

40 000-300=100,当且仅当
x=400 时,等号成立.
故当二氧化碳月处理量为400吨时,每吨的平均月处理成本取得最低值100
益为282万元.
时,△AMN 的面积为
1
f(t)= ×2×[t-(2t-2)]=2-t;当
2
1
f(t)=2×2×[(2t-4)-(t-2)]=t-2;当
1
f(t)=2·
2t·
t=t2;当
1<t≤2
2<t≤3 时,△AMN 的面积为
3<t≤4 时,△AMN 的面积为
2 ,0 ≤ ≤ 1,
2-,1 < ≤ 2,
C.y=max+n(m>0,a>1)
D.y=mlogax+n(m>0,a>0,a≠1)
)
答案
B
解析 由函图象可知符合条件的只有指数函数模型,并且m>0,0<a<1,故

高考数学函数模型及其应用复习课件

高考数学函数模型及其应用复习课件
单调
单调
单调
增长速度
越来越快
越来越慢
相对平稳
递增
递增
递增
2. 常见的函数模型
课前基础巩固
函数模型
函数解析式
一次函数模型
f(x)=ax+b(a,b为常数,a≠0)
二次函数模型
f(x)=ax2+bx+c(a,b,c为常数,a≠0)
反比例函数模型
f(x)=+b(k,b为常数且k≠0)
[总结反思]在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,即函数的定义域,解决函数应用问题时,最后还要还原到实际问题中.
课堂考点探究
课堂考点探究
变式题 为节约能源,倡导绿色环保,某主题公园有60辆电动观光车供租赁使用,管理这些电动观光车的费用是每日120元,根据经验,每辆电动观光车的日租金不超过5元,则电动观光车可以全部租出;若超过5元,则每超出1元,租不出的电动观光车就增加2辆.为了方便结算,每辆电动观光车的日租金x(元)只取整数,且3≤x≤30,用y(元)表示出租电动观光车的日净收入(一日出租电动观光车的总收入-管理费用).日净收入y(元)与日租金x(元)满足函数关系y=f(x).(1)求函数y=f(x)的解析式.
课前基础巩固
课堂考点探究
第14讲 函数模型及其应用
教师备用习题
作业手册
1.理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律.
2.结合现实情境中的具体问题,利用计算工具,比较对数函数、一元一次函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.

第九节 函数模型及应用课件

第九节 函数模型及应用课件

解:设水塔进水量应选择第n级,在t时刻水塔中的水容量y等于水塔中的存水量 100吨加进水量10nt吨,减去生活用水10t吨,再减去生产用水W=100 t吨,
即y=100+10nt-10t-100 t(0<t≤16). 若水塔中的水量既能保证该厂用水,又不会使水溢出, 则一定有0<y≤300,即0<100+10nt-10t-100 t≤300, 所以-1t0+10t+1<n≤2t0+10t+1对一切t∈(0,16]恒成立. 因为-1t0+10t+1=-10 1t-122+72≤72,2t0+10t+1=20 1t+142-14≥149.所以72 <n≤149,即n=4. 答:进水量应选择第4级.
第二章 函 数
第九节 函数模型及应用
[复习要点] 1.了解指数函数、对数函数以及幂函数的增长特征,结合具体实例 体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中 普遍使用的函数模型)的广泛应用.
理清教材•巩固基础
知识点一 几类函数模型
单__调__递__增__
增长速度
越来越快
越来越慢
相对平稳
随x的增大逐渐表现 随x的增大逐渐表现 图象的变化 为与__y_轴_____平行 为与___x_轴____平行 随n值变化而各有不同
值的比较
存在一个x0,当x>x0时,有logax<xn<ax
链/接/教/材
1.[必修1·P107·A组T4]在某个物理实验中,测量得变量x和变量y的几组数据,
f(x)=blogax+c (a,b,c为常数,b≠0,a>0且a≠1)
f(x)=axn+b(a,b为常数,a≠0)

2023届高考数学一轮复习讲义:第15讲 函数模型及其应用

2023届高考数学一轮复习讲义:第15讲 函数模型及其应用

第15讲函数模型及其应用➢考点1 利用函数图象刻画实际问题[名师点睛]判断函数图像与实际问题变化过程是否吻合的方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择符合实际情况的答案.[典例]1.如图,一高为H且装满水的鱼缸,其底部有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()2.(2022·泰州模拟)中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85 ℃的水泡制,再等到茶水温度降至60 ℃时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需时间,某研究人员每隔1 min测量一次茶水的温度,根据所得数据做出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度y随时间x变化的规律()A.y=mx2+n(m>0)B.y=ma x+n(m>0,0<a<1)C.y=ma x+n(m>0,a>1)D.y=m log a x+n(m>0,a>0,a≠1)[举一反三]1.(2022·武汉模拟)在用计算机处理灰度图象(即俗称的黑白照片)时,将灰度分为256个等级,最暗的黑色用0表示,最亮的白色用255表示,中间的灰度根据其明暗渐变程度用0至255之间对应的数表示,这样可以给图象上的每个像素赋予一个“灰度值”.在处理有些较黑的图象时,为了增强较黑部分的对比度,可对图象上每个像素的灰度值进行转换,扩展低灰度级,压缩高灰度级,实现如下图所示的效果:则下列可以实现该功能的一种函数图象是()2.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水; ②3时到4时不进水只出水; ③4时到5时不进水也不出水. 则一定正确的论断是________(填序号).3.(2022·武汉调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y=t +a 中(其中a 为正的常数),生长年数与树高的关系拟合最好的是________(填写序号),估计该树生长8年后的树高为________米.➢考点2 已知函数模型解决实际问题[名师点睛]求解已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验. 1.(2022·江苏·高三阶段练习)新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第n 天,每个检测对象从接受检测到检测报告生成平均耗时()t n (单位:小时)大致服从的关系为00()n N t n n N <=≥(0t ,0N 为常数).已知第16天检测过程平均耗时为16小时,第64天和第67天检测过程平均耗时均为8小时,那么可得到第49天检测过程平均耗时大致为__________小时. 2.(2022·浙江·高三专题练习)某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()253,025050-,251x x W x x x ⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (1)求()f x 的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?[举一反三]1.(2022·广东茂名·二模)双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量C (单位:A·h ),放电时间t (单位:h )与放电电流I (单位:A )之间关系的经验公式n C I t =⋅,其中32log 2n =为Peukert 常数.在电池容量不变的条件下,当放电电流10A I =时,放电时间57h t =,则当放电电流15A I =,放电时间为( )A .28hB .28.5hC .29hD .29.5h2.(2022·全国·高三专题练习)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A .9:00B .8:40C .8:30D .8:003.(2022·福建福州·三模)某地在20年间经济高质量增长,GDP 的值P (单位,亿元)与时间t (单位:年)之间的关系为()()0110%tP t P =+,其中0P 为0=t 时的P 值.假定02P =,那么在10t =时,GDP 增长的速度大约是___________.(单位:亿元/年,精确到0.01亿元/年)注:101.1 2.59≈,当x 取很小的正数时,()ln 1x x +≈4.(2022·上海交大附中高三开学考试)2020年11月5日至10日,第三届中国国际进口博览会在上海举行,经过三年发展,进博会让展品变商品,让展商变投资商,交流创意和理念,联通中国和世界,国际采购、投资促进、人文交流,开放合作四大平台作用不断凸显,成为全球共享的国际公共产品.在消费品展区,某企业带来了一款新型节能环保产品参展,并决定大量投放市场.已知该产品年固定研发成本为150万元,每生产1万台需另投入380万元.设该企业一年内生产该产品x 万台且全部售完,每万台的销售收入为()R x 万元,且25002,020()21406250370,20x x R x x x x -<≤⎧⎪=⎨+->⎪⎩. (1)写出年利润S (万元)关于年产量x (万台)的函数解析式;(利润 = 销售收入—成本) (2)当年产量为多少万台时,该企业获得的年利润最大?并求出最大年利润.➢考点3 构建函数模型解决实际问题1.(2022·全国·高三专题练习)A,B两城相距100km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?2.(2022·全国·高三专题练习)杭州地铁项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,列车的发车时间间隔t (单位:分钟)满足220t ≤≤,经市场调研测算,列车载客量与发车时间间隔t 相关,当1020t ≤≤时列车为满载状态,载客量为500人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为372人,记列车载客量为()p t .(Ⅰ)求()p t 的表达式,并求当发车时间间隔为5分钟时,列车的载客量; (Ⅱ)若该线路每分钟的净收益为8()2656()60p t Q t t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大,并求出最大值.[举一反三]1.(2022·福建龙岩·模拟预测)进入4月份以来,为了支援上海抗击疫情,A 地组织物流企业的汽车运输队从高速公路向上海运送抗疫物资.已知A 地距离上海500km ,设车队从A 地匀速行驶到上海,高速公路限速为60km/h 110~km/h .已知车队每小时运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v km/h 的立方成正比,比例系数为b ,固定部分为a 元.若1200b =,410a =,为了使全程运输成本最低,车队速度v 应为( ) A .80km/hB .90km/hC .100km/hD .110km/h2.(2022·福建·三模)深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为00G GL L D =,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为22,且当训练迭代轮数为22时,学习率衰减为0.45,则学习率衰减到0.05以下(不含0.05)所需的训练迭代轮数至少为( )(参考数据:lg20.3010≈,lg30.4771≈) A .11B .22C .227D .4813.(2022·全国·高三专题练习)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .304.(2022·全国·高三专题练习)单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3vN v v d =++,其中0d 为安全距离,v 为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A.135 B.149C.165 D.1955.(2022·北京西城·一模)调查显示,垃圾分类投放可以带来约0.34元/千克的经济效益.为激励居民垃圾分类,某市准备给每个家庭发放一张积分卡,每分类投放1kg积分1分,若一个家庭一个月内垃圾分类投放总量不低于100kg,则额外奖励x分(x为正整数).月底积分会按照0.1元/分进行自动兑换.①当10x=时,若某家庭某月产生120kg生活垃圾,该家庭该月积分卡能兑换_____元;②为了保证每个家庭每月积分卡兑换的金额均不超过当月垃圾分类投放带来的收益的40%,则x的最大值为___________.6.(2022·重庆·模拟预测)我国的酒驾标准是指车辆驾驶员血液中的酒精含量大于或者等于20mg/100ml,已知一驾驶员某次饮酒后体内每100ml血液中的酒精含量y(单位:mg)与时间x(单位:h)的关系是:当113x<<时,227010801111y x x=-+;当113x≥时,110yx=,那么该驾驶员在饮酒后至少要经过__________h才可驾车.7.(2022·全国·高三专题练习)某景区套票原价300元/人,如果多名游客组团购买套票,则有如下两种优惠方案供选择:方案一:若人数不低于10,则票价打9折;若人数不低于50,则票价打8折;若人数不低于100,则票价打7折.不重复打折.方案二:按原价计算,总金额每满5000元减1000元.已知一个旅游团有47名游客,若可以两种方案搭配使用,则这个旅游团购票总费用的最小值为___________元第15讲函数模型及其应用➢考点1 利用函数图象刻画实际问题[名师点睛]判断函数图像与实际问题变化过程是否吻合的方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择符合实际情况的答案.[典例]1.如图,一高为H且装满水的鱼缸,其底部有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()答案 B解析水匀速流出,所以鱼缸水深h先降低快,中间降低缓慢,最后降低速度又越来越快.2.(2022·泰州模拟)中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85 ℃的水泡制,再等到茶水温度降至60 ℃时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需时间,某研究人员每隔1 min测量一次茶水的温度,根据所得数据做出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度y随时间x变化的规律()A.y=mx2+n(m>0)B.y=ma x+n(m>0,0<a<1)C.y=ma x+n(m>0,a>1)D.y=m log a x+n(m>0,a>0,a≠1)答案 B解析由函数图象可知符合条件的只有指数函数模型,并且m>0,0<a<1.[举一反三]1.(2022·武汉模拟)在用计算机处理灰度图象(即俗称的黑白照片)时,将灰度分为256个等级,最暗的黑色用0表示,最亮的白色用255表示,中间的灰度根据其明暗渐变程度用0至255之间对应的数表示,这样可以给图象上的每个像素赋予一个“灰度值”.在处理有些较黑的图象时,为了增强较黑部分的对比度,可对图象上每个像素的灰度值进行转换,扩展低灰度级,压缩高灰度级,实现如下图所示的效果:则下列可以实现该功能的一种函数图象是()答案 A解析根据图片处理过程中图象上每个像素的灰度值转换的规则可知,相对于原图的灰度值,处理后的图象上每个像素的灰度值增加,所以图象在y=x上方.结合选项只有A选项能够较好的达到目的.2.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水; ②3时到4时不进水只出水; ③4时到5时不进水也不出水. 则一定正确的论断是________(填序号). 答案 ①解析 由甲、乙、丙图可得进水速度为1,出水速度为2,结合丙图中直线的斜率可知,只进水不出水时,蓄水量增加的速度是2,故①正确; 不进只出水时,蓄水量减少的速度为2,故②不正确;两个进水,一个出水时,蓄水量减少的速度也是0,故③不正确.3.(2022·武汉调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y=t +a 中(其中a 为正的常数),生长年数与树高的关系拟合最好的是________(填写序号),估计该树生长8年后的树高为________米.答案 ②103解析 由散点图的走势,知模型①不合适.曲线过点⎝⎛⎭⎫4,73,则后三个模型的解析式分别为②y =13+log 2t ;③y =12t +13;④y =t +13,当t =1时,代入④中,得y =43,与图不符,易知拟合最好的是②.将t =8代入②式,得y =13+log 28=103(米).➢考点2 已知函数模型解决实际问题[名师点睛]求解已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数.1.(2022·江苏·高三阶段练习)新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第n 天,每个检测对象从接受检测到检测报告生成平均耗时()tn (单位:小时)大致服从的关系为00()n N t n n N <=≥(0t ,0N 为常数).已知第16天检测过程平均耗时为16小时,第64天和第67天检测过程平均耗时均为8小时,那么可得到第49天检测过程平均耗时大致为__________小时. 【答案】647【解析】由第64天和第67天检测过程平均耗时均为8小时知,016N >, 16=,解得064t =.8,解得064N =,所以64()8,64n t n n <=≥⎩,所以当49n =时,64(49)7t =. 故答案为:6472.(2022·浙江·高三专题练习)某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()253,025050-,251x x W x x x ⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (1)求()f x 的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少? 【解】(1)由已知()()()1520101530f x W x x x W x x =--=-()22155330,02,7530225,02,75050750-30,2 5.1550-)30,2511x x x x x x x x x x x x ⎧⨯+-≤≤⎧-+≤≤⎪⎪==⎨⎨-<≤⨯-<≤⎪⎪+⎩+⎩( (2)解:由(1)得()()22175222,02,7530225,02,5=750750-30,2 5.25780301,2 5.11x x x x x f x x x x x x x ⎧⎛⎫-+≤≤⎧-+≤≤⎪⎪⎪⎪⎝⎭=⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎩⎢⎥⎪+⎣⎦⎩当02x ≤≤时,()()max 2465f x f ==;当25x <≤时,()()25780301780304801f x x x ⎡⎤=-++≤-⨯=⎢⎥+⎣⎦ 当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()max 480f x =.∴当施用肥料为4千克时,种植该果树获得的最大利润是480元.[举一反三]1.(2022·广东茂名·二模)双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量C (单位:A·h ),放电时间t (单位:h )与放电电流I (单位:A )之间关系的经验公式n C I t =⋅,其中32log 2n =为Peukert 常数.在电池容量不变的条件下,当放电电流10A I =时,放电时间57h t =,则当放电电流15A I =,放电时间为( )A .28hB .28.5hC .29hD .29.5h【答案】B【解析】解:根据题意可得5710n C =⋅,则当15A I =时,571015n n t ⋅=⋅,所以32231log 2log 222257575728.5h 333nt ⎛⎫⎛⎫⎛⎫=⋅=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即当放电电流15A I =,放电时间为28.5h. 故选:B.2.(2022·全国·高三专题练习)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102t at t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A .9:00B .8:40C .8:30D .8:00【答案】A【解析】根据函数的图象,可得函数的图象过点(10,1), 代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102tt t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩, 令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫ ⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是9:00. 故选:A.3.(2022·福建福州·三模)某地在20年间经济高质量增长,GDP 的值P (单位,亿元)与时间t (单位:年)之间的关系为()()0110%tP t P =+,其中0P 为0=t 时的P 值.假定02P =,那么在10t =时,GDP 增长的速度大约是___________.(单位:亿元/年,精确到0.01亿元/年)注:101.1 2.59≈,当x 取很小的正数时,()ln 1x x +≈ 【答案】0.52【解析】由题可知()()2110%2 1.1tt P t =+=⨯,所以()2 1.1ln1.1tP t '=⨯,所以()10102 1.1ln1.12 2.590.10.5180.52P '=⨯≈⨯⨯=≈,即GDP 增长的速度大约是0.52. 故答案为:0.52.4.(2022·上海交大附中高三开学考试)2020年11月5日至10日,第三届中国国际进口博览会在上海举行,经过三年发展,进博会让展品变商品,让展商变投资商,交流创意和理念,联通中国和世界,国际采购、投资促进、人文交流,开放合作四大平台作用不断凸显,成为全球共享的国际公共产品.在消费品展区,某企业带来了一款新型节能环保产品参展,并决定大量投放市场.已知该产品年固定研发成本为150万元,每生产1万台需另投入380万元.设该企业一年内生产该产品x 万台且全部售完,每万台的销售收入为()R x 万元,且25002,020()21406250370,20x x R x x x x -<≤⎧⎪=⎨+->⎪⎩. (1)写出年利润S (万元)关于年产量x (万台)的函数解析式;(利润 = 销售收入—成本) (2)当年产量为多少万台时,该企业获得的年利润最大?并求出最大年利润. 【解】(1)当020x <≤时,()(380150)S xR x x =-+ 25002380150x x x =--- 22120150x x =-+-,当20x >时,()(380150)S xR x x =-+ 62503702140380150x x x=+--- 6250101990x x=--+, 所以年利润S (万元)关于年产量x (万台)的函数解析式为22120150,0206250101990,20x x x S x x x ⎧-+-<≤⎪=⎨--+>⎪⎩(2)当020x <≤时,2221201502(30)1650S x x x =-+-=--+, 所以函数S 在(0,20]上单调递增,所以当20x 时, S 取得最大值1450,当20x >时,62506250101990(10)1990S x x x x=--+=-++199050019901490≤-=-+=, 当且仅当625010x x=,即25x =时取等号,此时S 取得最大值1490,因为14901450>,所以当年产量为25万台时,该企业获得的年利润最大,最大为1490万元➢考点3 构建函数模型解决实际问题1.(2022·全国·高三专题练习)A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度. (1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 【解】(1)由题意知x 的取值范围为[10,90].(2)222250.25200.2510(100)5(100)2y x x x x =⨯⨯+⨯⨯-=+-,∴2255(100)2y x x =+-(1090x ≤≤);(3)2255(100)2y x x =+-215500250002x x =-+21510050000()233x =-+,∴1003x =时,min 500003y =. ∴核电站建在距A 城1003km 处,供电总费最少. 2.(2022·全国·高三专题练习)杭州地铁项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,列车的发车时间间隔t (单位:分钟)满足220t ≤≤,经市场调研测算,列车载客量与发车时间间隔t 相关,当1020t ≤≤时列车为满载状态,载客量为500人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为372人,记列车载客量为()p t .(Ⅰ)求()p t 的表达式,并求当发车时间间隔为5分钟时,列车的载客量; (Ⅱ)若该线路每分钟的净收益为8()2656()60p t Q t t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大,并求出最大值.【解】(Ⅰ)由题设,当210t ≤<时,令2()=500(10)p t k t --,而发车时间间隔为2分钟时的载客量为372人,∴2(2)=500(102)=372p k --,解得2k =.∴2300402,210()=500,1020t t t p t t ⎧+-≤<⎨≤≤⎩,故5t =时有2(5)=5002(105)=450p -⨯-.(Ⅱ)由(Ⅰ)知:25626016,210()134460,1020t t tQ t t t⎧--≤<⎪⎪=⎨⎪-≤≤⎪⎩,∵210t ≤<时,()260132Q t ≤-=当且仅当4t =等号成立, ∴210t ≤<上max ()(4)132Q t Q ==,而1020t ≤≤上,()Q t 单调递减,则max ()(10)74.4Q t Q ==, 综上,时间间隔为4分钟时,每分钟的净收益最大为132元. [举一反三]1.(2022·福建龙岩·模拟预测)进入4月份以来,为了支援上海抗击疫情,A 地组织物流企业的汽车运输队从高速公路向上海运送抗疫物资.已知A 地距离上海500km ,设车队从A 地匀速行驶到上海,高速公路限速为60km/h 110~km/h .已知车队每小时运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v km/h 的立方成正比,比例系数为b ,固定部分为a 元.若1200b =,410a =,为了使全程运输成本最低,车队速度v 应为( ) A .80km/h B .90km/h C .100km/h D .110km/h【答案】C 【解析】解:设运输成本为y 元,依题意可得432150055000000102002y v v v v ⎛⎫=+⋅=+ ⎪⎝⎭, 则()()()3622243222251051010105000000550000005v v v v v y v v v v v--++-=-===' 所以当210v =时0y '=,当60100v ≤<时0y '<,当100110v <≤时0y '>,即函数在()60,100上单调递减,在()100,110上单调递增,所以当100v =时取得极小值即最小值,所以100v =km/h 时全程运输成本最低; 故选:C2.(2022·福建·三模)深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为00G G L L D =,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为22,且当训练迭代轮数为22时,学习率衰减为0.45,则学习率衰减到0.05以下(不含0.05)所需的训练迭代轮数至少为( )(参考数据:lg20.3010≈,lg30.4771≈) A .11 B .22 C .227 D .481【答案】D【解析】由于00G GL L D =,所以220.5GL D =⨯,依题意222290.5100.45D D⇒==⨯,则229100.5GL ⎫ ⎪⎝⎭⨯⎛=, 由220.50.05190G L ⨯<⎛⎫=⎪⎝⎭得2291101G ⎛⎫⎪<⎝⎭,221lg ,1l 1099g lg 101022G G ⎛⎫ ⎭<⎝<-⎪, ()2lg9lg 021G ⋅-<-,()92222,lg10lg 9lg10lg G G ⋅>->-, 222222480.35120.4812lg 37710.045G ==≈->-⨯, 所以所需的训练迭代轮数至少为481轮.故选:D3.(2022·全国·高三专题练习)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .30【答案】C 【解析】设内接矩形另一边长为y ,则由相似三角形性质可得404040x y -=,0<x <40, 解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40), 当x =20时,S max =400.故选:C.4.(2022·全国·高三专题练习)单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v 为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .195【答案】B【解析】由题意得,2010001000149300.70.30.720.3300.70.3v N v v d v v ==≤≈+++⨯++,当且仅当300.3v v=,即10v =时取“=”, 所以该道路一小时“道路容量”的最大值约为149.故选:B5.(2022·北京西城·一模)调查显示,垃圾分类投放可以带来约0.34元/千克的经济效益.为激励居民垃圾分类,某市准备给每个家庭发放一张积分卡,每分类投放1kg 积分1分,若一个家庭一个月内垃圾分类投放总量不低于100kg ,则额外奖励x 分(x 为正整数).月底积分会按照0.1元/分进行自动兑换.①当10x =时,若某家庭某月产生120kg 生活垃圾,该家庭该月积分卡能兑换_____元; ②为了保证每个家庭每月积分卡兑换的金额均不超过当月垃圾分类投放带来的收益的40%,则x 的最大值为___________.【答案】 13 36【解析】①若某家庭某月产生120kg 生活垃圾,则该家庭月底的积分为12010130+=分, 故该家庭该月积分卡能兑换1300.113⨯=元;②设每个家庭每月产生的垃圾为kg t ,每个家庭月底月积分卡能兑换的金额为()f t 元. 若0100t ≤<时,()0.10.340.40.136f t t t t =<⨯=恒成立;若100t ≥时,()0.10.10.340.4f t t x t =+≤⨯,可得()min 0.3636x t ≤=.故x 的最大值为36.故答案为:①13;②36.6.(2022·重庆·模拟预测)我国的酒驾标准是指车辆驾驶员血液中的酒精含量大于或者等于20mg/100ml ,已知一驾驶员某次饮酒后体内每100ml 血液中的酒精含量y (单位:mg )与时间x (单位:h )的关系是:当1103x <<时,227010801111y x x =-+;当113x ≥时,110y x =,那么该驾驶员在饮酒后至少要经过__________h 才可驾车.【答案】5.5 【解析】当1103x <<时,2227010802701080(2)11111111y x x x =-+=--+, 当2x =时,函数有最大值10802011>,所以当1103x <<时,饮酒后体内每100ml 血液中的酒精含量小于20mg/100ml , 当当113x ≥时,函数110y x =单调递减,令11020 5.5y x x==⇒=,因此饮酒后5.5小时体内每100ml 血液中的酒精含量等于20mg/100ml ,故答案为:5.5。

高考数学复习第2章 函数模型及其应用

高考数学复习第2章 函数模型及其应用
第九节
函数模型及其应用
【知识重温】
一、必记2个知识点
1.三种函数模型的性质
函数
性质
y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞)上
的增减性
增函数
________
增函数
________
增函数
________
增长速度
________
越来越快
________
越来越慢
相对平稳
函数问题求解.

函数y=x+ 模型的应用

考点二
[例1] “水资源与永恒发展”是2015年联合国世界水资源日主题,
近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供
水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水
几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段
函数模型求解;
②构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏;
③分段函数的最值是各段的最大(或最小)者的最大者(最小者).
[提醒] (1)构建函数模型时不要忘记考虑函数的定义域.
(2)对构造的较复杂的函数模型,要适时地用换元法转化为熟悉的
B.y=ax+b(a>1)
C.y=ax2+b(a>0) D.y=logax+b(a>1)
解析:由所给数据可知,y随x的增大而增大,且增长速度越来越快,而A,D
中的函数增长速度越来越慢,B中的函数增长速度保持不变.故选C.
四、走进高考
6.[2020·全国卷Ⅲ]Logistic模型是常用数学模型之一,可应用于
)
A.y=6x
B.y=log6x

函数的模型及其应用讲义 高三数学一轮复习

函数的模型及其应用讲义 高三数学一轮复习

基础课15 函数的模型及其应用考点考向课标要求真题印证考频热度核心素养 函数的模型及其应用掌握 2023年新高考Ⅰ卷T10 2020年全国Ⅰ卷(理)T6 2020年全国Ⅲ卷(理)T4★★☆ 数学抽象 数学建模 数学运算命题分析预测从近几年高考的情况来看,函数模型及其应用常结合数学文化背景考查,试题难度中等.预计2025年高考会以数学文化为背景考查对数函数与指数函数的应用一、几类函数模型函数模型函数解析式一次函数模型 f (x )=ax +b(a ,b 为常数,a ≠0) 二次函数模型 f (x )=ax 2+bx +c(a ,b ,c 为常数,a ≠0) 反比例函数模型 f (x )=k x+b(k ,b 为常数且k ≠0)指数函数模型 f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=blog a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax α+b(a ,b ,α为常数,a ≠0,α≠0)“对勾”函数模型f (x )=x +ax(a >0)二、三种函数模型的性质函数性质y =a x (a >1)y =log a x (a >1)y=x α(α>0) 在(0,+∞)上的增减性 单调①递增 单调②递增单调③递增增长速度越来④越快越来⑤越慢相对平稳图象的变化随x的增大,逐渐表现为与⑥y轴平行随x的增大,逐渐表现为与⑦x轴平行随α的值变化而变化值的比较存在一个x0,当x>x0时,有⑧log a x<xα<a x【提醒】对于幂函数模型y=xα(α>0),当0<α≤1时,增长较慢;当α>1时,增长较快.题组1 走出误区1. 判一判.(对的打“√”,错的打“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( × )(2)函数y=2x的函数值比y=x2的函数值大.( × )(3)不存在x0,使a x0<x0n<log a x0.( × )(4)“指数爆炸”是指数型函数y=ab x+c(a≠0,b>0且b≠1)增长速度越来越快的形象比喻.( × )2. (易错题)某校为了规范教职工绩效考核制度,现准备拟定一个函数用于根据当月评价分数x(单位:分,正常情况下,0≤x≤100,若有突出贡献可以高于100分,且教职工平均每月评价分数在50分左右)计算当月绩效工资y (单位:元),要求绩效工资不低于500元,不设上限且让大部分教职工绩效工资在600元左右,另外在绩效工资越低或越高的同时,人数要越少,则下列函数最符合要求的是( C ).A. y=(x−50)2+500B. y=10x25+500C. y=11000(x−50)3+625 D. y=50[10+lg(2x+1)]【易错点】忽视函数的性质致误,在实际应用问题中,要结合问题的实际意义和函数的性质来确定拟合函数.[解析]由题意知,拟定函数应满足:①是增函数,且增长速度先快后慢再快;②在x=50左右增长速度较慢,且y的最小值为500.对于A,y=(x−50)2+500在[0,100]上先减后增,不符合要求;对于B,y=10x25+500是指数型函数,增长速度越来越快,不符合要求;对于C ,y =11000(x −50)3+625的图象是由y =x 3的图象平移和伸缩变换得到的,符合题目要求;对于D ,y =50[10+lg (2x +1)]是对数型函数,增长速度越来越慢,不符合要求.故选C .题组2 走进教材3. (人教A 版必修①P150·T2改编)在一段时间内,某地的野兔快速繁殖,若野兔总只数的倍增期为21个月,则1万只野兔增长到10万只野兔大约需要年6.(lg 2≈0.3,结果填整数)[解析]设经过x 年后的野兔有y 只,由题意知y =104⋅212x 21=104⋅24x 7,令y =105,即104⋅24x 7=105,则24x 7=10.两边取常用对数得4x7lg 2=1,解得x =74lg 2≈71.2≈5.83. 故大约需要6年.4. (人教A 版必修①P161·T9改编)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t (单位:h )之间的关系为P =P 0e −kt ,其中P 0,k 是正的常数,若在前5 h 消除了10%的污染物,则20 h 后约剩65.61%的污染物.[解析]当t =0时,P =P 0⋅e −k⋅0=P 0, 当t =5时,P 0⋅e −5kP 0=90%,即e −5k =0.9.所以k =−15ln 0.9, 当t =20时,P 0⋅e −20kP 0=e −20k =e 4ln 0.9=0.94=0.6561,即20 h 后,还剩65.61%的污染物.题组3 走向高考5. [2020·新高考Ⅰ卷改编]基本再生数R 0与世代间隔T 是某传染病的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在该疾病传染的初始阶段,可以用指数模型I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在该疾病传染的初始阶段,累计感染病例数增加1倍需要的时间约为( B ).(ln 2≈0.69) A. 1.2天 B. 1.8天 C. 2.5天 D. 3.5天[解析]因为R0=3.28,T=6,R0=1+rT,所以r=3.28−16=0.38,所以I(t)= e rt=e0.38t.设在该疾病传染的初始阶段,累计感染病例数增加1倍需要的时间为t1天,则e0.38(t+t1)=2e0.38t,所以e0.38t1=2,所以0.38t1=ln 2,所以t1=ln 20.38≈0.690.38≈1.8(天).故选B.考点一利用函数图象刻画实际问题[自主练透]1. 如图,一高为H且装满水的鱼缸,其底部装有一个排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若当水流出时间为t时,鱼缸水深为ℎ,则函数ℎ=f(t)的图象大致是( B ).A.B.C.D.[解析]函数ℎ=f(t)是关于t的减函数,故排除C,D,从一开始,ℎ随着时间变化而减小,但变化逐渐变慢,当超过一半时,ℎ减小的速度变快,故选B.2. [2024·泰州模拟]某研究人员每隔1 min测量一次茶水的温度,根据所得数据作出如图所示的散点图.观察散点图的分布情况,下列可以近似地刻画茶水温度y(单位:℃)随时间x(单位:min)变化规律的数学模型是( B ).A. y=mx2+n(m>0)B. y=ma x+n(m>0,0<a<1)C. y=ma x+n(m>0,a>1)D. y=mlog a x+n(m>0,a>0,且a≠1)[解析]由函数图象可知符合条件的只有指数函数模型,并且m>0,0<a<1.故选B.判断函数图象与实际问题变化过程相吻合的两种方法1.构建函数模型法:先建立函数模型,再结合模型选图象.2.验证法:根据实际问题中变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际情况的答案.考点二 已知函数模型解决实际问题[自主练透]1. [2024·北京模拟]科学家经过测量发现候鸟的飞行速度可以表示为函数v =12log 3x100−lg x 0(单位:km/min ),其中x 表示候鸟每分钟耗氧量的单位数,常数x 0表示测量过程中候鸟每分钟的耗氧偏差.若雄鸟的飞行速度为1.3 km/min ,雌鸟的飞行速度为0.8 km/min ,则此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的( B ). A. 2倍B. 3倍C. 4倍D. 5倍[解析]设雄鸟每分钟的耗氧量为x 1,雌鸟每分钟的耗氧量为x 2,由题意可得{1.3=12log 3x1100−lg x 0,0.8=12log 3x 2100−lg x 0,两式相减可得12=12log 3x 1x 2,所以log 3x 1x 2=1,即x 1x 2=3,故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍.故选B .2. [2024·云南模拟]牛顿冷却定律描述了一个物体在常温环境下的温度变化:若物体的初始温度为T 0,则经过一定时间t (单位:分钟)后的温度T (单位:℃)将满足T −T a =(12)tℎ⋅(T 0−T a ),其中T a 是环境温度,ℎ称为半衰期.现有一杯85 ℃的热茶,放置在25 ℃的房间中,若热茶降温到55 ℃,需要10分钟,则欲降温到45 ℃,大约需要( C )分钟.(参考数据:lg 2≈0.3010,lg 3≈0.4771) A. 12B. 14C. 16D. 18[解析]根据题意有55−25=(12)10ℎ(85−25),解得ℎ=10, 所以45−25=(12)t10(85−25),则t 10=log 1213,解得t =10×lg 3lg 2≈10×0.47710.3010≈16.故选C .已知函数模型解决实际问题的要点1.认清所给函数模型,弄清哪些量为待定系数.2.根据已知条件,利用待定系数法,确定模型中的待定系数.3.利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.考点三 构建函数模型解决实际问题[多维探究] 二次函数模型典例1 (双空题)劳动实践是大学生学习知识、锻炼才干的有效途径,更是大学生服务社会、回报社会的一种良好形式.某大学生去一服装厂参加劳动实践,了解到当该服装厂生产的一种衣服日产量为x 件时,售价为s 元/件,且满足s =820−2x ,每天的成本合计为(600+20x )元,则当日产量为200件时,获得的日利润最大,最大利润为7.94万元.[解析]由题意易得,日利润y =s ⋅x −(600+20x )=x (820−2x )−(600+20x )=−2(x −200)2+79400,故当日产量为200件时,获得的日利润最大,最大利润为7.94万元,指数、对数模型典例2 金针菇采摘后会很快失去新鲜度,甚至腐烂,所以超市销售金针菇时需要采取保鲜膜封闭保存.已知金针菇失去的新鲜度ℎ与其采摘后的时间t (单位:天)满足的函数解析式为ℎ=mln (t +a )(a >0).若采摘后1天,金针菇失去的新鲜度为40%,采摘后3天,金针菇失去的新鲜度为80%.若不及时处理,则采摘下来的金针菇在( C )后会失去全部新鲜度.(√2≈1.414,结果保留一位小数) A. 4.0天B. 4.3天C. 4.7天D. 5.1天[解析]由已知得{mln (1+a )=0.4,mln (3+a )=0.8,两式相除得ln (3+a )ln (1+a )=2,即ln (3+a )=2ln (1+a ),则(1+a )2=3+a ,因为a >0,所以a =1,设t 天后采摘下来的金针菇会失去全部新鲜度,则mln (t +1)=1,又mln (1+1)=0.4,所以ln (t+1)ln 2=10.4,即2ln (t +1)=5ln 2=ln 32,所以(t +1)2=32,解得t =4√2−1≈4.7(负值已舍去).故选C .分段函数模型典例3 如图,在矩形ABCD中,AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x,若将△PAB的面积表示为关于x的函数f(x),则( C ).A. 当x∈(0,π4]时,f(x)=2tan x B. 当x∈(π4,3π4]时,f(x)=−tan xC. 当x∈[3π4,π)时,f(x)=−tan x D. 当x∈[3π4,π)时,f(x)=tan x[解析]∵OB=BC=1,∴∠BOC=π4,如图1所示,易得OC=OD=√12+12=√2,∴OC2+OD2=CD2,∴∠COD=π2,则∠BOD=π4+π2=3π4.当x∈(0,π4]时,点P在线段BC上(不包括点B),如图2所示,则PB=OBtan x=tan x,此时f(x)=12ABtan x=tan x;当x∈(π4,3π4]时,点P在线段CD上(不包括点C),如图3所示,此时f(x)=12AB⋅BC=1;当x∈[3π4,π)时,点P在线段DA上(不包括点A),如图4所示,此时∠POA=π−x,则PA=OAtan(π−x)=−tan x,则f(x)=12AB⋅PA=−tan x.故选C.在应用函数解决实际问题时需注意的四个步骤审题 弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型 求解将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型求解 求解函数模型,得出数学结论 还原将数学结论还原为实际问题的答案1. 天文学用绝对星等衡量天体的发光强度,用目视星等衡量观测者看到的天体亮度,可用M =m −5lg dd 0近似表示绝对星等M 、目视星等m 和观测距离d (单位:光年)之间的关系.已知织女星的绝对星等为0.58,目视星等为0.04,大角星的绝对星等为−0.38,目视星等为−0.06,则观测者与织女星和大角星之间的距离的比值约为( D ). A. 10−2.2B. 100.172C. 10−0.044D. 10−0.172[解析]设观测者与织女星和大角星之间的距离分别为d 1,d 2,则{0.58=0.04−5lg d1d 0,−0.38=−0.06−5lg d 2d 0,两式相减得5lg d 1d 2=−0.86,所以lg d 1d 2=−0.172,所以d1d 2=10−0.172.故选D .2. 某公司在30天内A 商品的销售价格P (单位:元)与时间t (单位:天)的关系满足图象所示的函数,A 商品的销售量Q (单位:万件)与时间t 的关系是Q =40−t ,则下列说法正确的是( B ).①第15天日销售额最大; ②第20天日销售额最大; ③最大日销售额为120万元;④最大日销售额为125万元. A. ①③B. ①④C. ②③D. ②④[解析]由图象可得当0≤t ≤20时,可设P =at +b ,根据图象可知直线P =at +b 过点(0,2),(20,6),所以{b =2,6=20a +b,解得{b =2,a =15,所以P =15t +2,当20≤t ≤30时,可设P =mt +n ,根据图象可知直线P =mt +n 过点(20,6),(30,5), 所以{6=20m +n,5=30m +n,解得{m =−110,n =8,所以P =−110t +8,故P ={15t +2,0≤t <20,−110t +8,20≤t ≤30,又Q =−t +40(0<t ≤30),设第t 天的销售额为y 万元, 所以y =P ⋅Q ={(15t +2)(−t +40),0<t <20,(−110t +8)(−t +40),20≤t ≤30, 化简可得y ={−15t 2+6t +80,0<t <20,110t 2−12t +320,20≤t ≤30,当0<t <20时,y =−15(t −15)2+125,所以y ≤125,当且仅当t =15时,等号成立;当20≤t ≤30时,y =110(t −60)2−40,所以y ≤120,当且仅当t =20时,等号成立.综上可得,第15日的销售额最大,最大值为125万元,故①④正确. 故选B .3. 某科研小组对面积为8000平方米的某池塘里的一种生物的生长规律进行研究.一开始在此池塘投放了一定面积的该生物,观察实验得到该生物的覆盖面积y (单位:平方米)与所经过的月数x(x ∈N )的数据如表所示.x 0 2 3 4 y42562.5156.3为了描述该生物的覆盖面积y(单位:平方米)与经过的月数x(x∈N)的关系,现有以下四种模型可供选择:①y=ax+b(a>0);②y=k⋅a x(k>0,a>1);③y=p√x+q(p>0);④y=log a x+b成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可(a>1)(1)试判断哪种函数模型更适合,并求出该模型的函数解析式;(2)经过几个月,此生物能覆盖整个池塘?(参考数据:√2≈1.414,lg 2≈0.301)[解析](1)因为函数y=k⋅a x(k>0,a>1)刻画的是增长速度越来越快的变化规律,符合表中数据的变化规律,而y=ax+b(a>0)刻画的是增长速度不变的规律,y=p√x+q(p>0)和y=log a x+b(a>1)刻画的是增长速度越来越慢的变化规律,所以y=k⋅a x(k>0,a>1)更合适,则{k⋅a0=4,k⋅a2=25,解得{a=52,k=4,所以y=4⋅(52)x,x∈N.(2)设约经过x个月,此生物能覆盖整个池塘,则4⋅(52)x≥8000,解得x≥log522000=lg 2000lg 52=3+lg 21−2lg 2≈8.294.故约经过9个月,此生物能覆盖整个池塘.第11 页。

高考数学一轮复习讲义 第20课时 函数模型及其应用 理

高考数学一轮复习讲义 第20课时 函数模型及其应用 理

课题:函数模型及其应用考纲要求: ① 了解 . ② 能[考纲要求]:会利用导数解决某些实际问题. [教材复习]:导数在实际问题中的应用主要是解决有关函数最大值、最小值的实际问题,主要有: ⑴与几何有关的最值问题;⑵与物理学有关的最值问题;⑶与实际生活有关的最值问题; [基本知识方法]:1、建立函数模型,通过导数的方法研究函数,求出最值2、要注意实际问题对函数定义域的影响教材复习解应用题就是在阅读材料,理解题意的基础上,把实际问题抽象转化为数学问题,然后再用相应的数学知识去解决,基本程序如下:2.解题步骤如下:① 阅读、审题:要做到简缩问题,删掉次要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系;②建模:将问题简单化、符号化、尽量借鉴标准形式,建立数学关系式; ③合理求解纯数学问题; ④解释并回答实际问题.3.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. 基本知识方法.A .B .C .D数学抽象典例分析:问题1.()1 2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )如下图所示,向高为H 的水瓶,,,A B C D 同时以等速注水,注满为止;()1若水深h 与注水时间t 的函数图象是下图中的a ,则水瓶的形状是 ; ()2若水量v 与水深h 的函数图像是下图中的b ,则水瓶的形状是 ; ()3若水深h 与注水时间t 的函数图象是下图中的c ,则水瓶的形状是 ; ()4若注水时间t 与水深h 的函数图象是下图中的d ,则水瓶的形状是(2013北京市海淀区高三上学期期中)如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中4AE =米,6CD =米.为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上.(Ⅰ)设MP x =米,PN y =米,将y 表示成x 的函数,求该函数的解析式及定义域; (Ⅱ)求矩形BNPM 面积的最大值.A .B .C .D.()d()b()c()aNBMDF CA某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.()1当每辆车的月租金定为3600元时,能租出多少辆车?()2当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?()2(2013江西)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间l //1l ,l 与半圆相交于F 、G 两点, 与三角形ABC 两边相交于E ,D 两点,设弧FG 的长为x(0)x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是问题2.问题3.导数应用模型统计表明,某种型号的汽车在匀速行驶时,每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:y =1128 000x 3-380x +8(0<x≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?走向高考:1.(06重庆)如图所示,单位圆中AB 的长为x ,()f x 表示AB 与弦AB 所围成的弓形面积的2倍,则函数()y f x 的图象是(2013湖北文)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是.A .B.C .D2.课后练习作业:1.如右图所示,在直角坐标系的第一象限内,AOB △是边长 为2的等边三角形,设直线x t =(0≤t ≤2)截这个三角形可 得位于此直线左方的图形的面积为()f t ,则函数()y f t =的图象 (如下图所示)大致是2.3.4.。

一轮复习配套讲义:第2篇-第9讲-函数模型及其应用

一轮复习配套讲义:第2篇-第9讲-函数模型及其应用

第9讲函数模型及其应用[考纲]1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.知识梳理1.函数模型及其性质比较(1)几种常见的函数模型2.“f(x)=x+ax”型函数模型形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型,在现实生活中有着广泛的应用,常利用基本不等式、导数、函数单调性求解最值.辨析感悟1.关于函数模型增长特点的理解(1)函数y=2x的函数值比y=x2的函数值大.( )(2)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( )(3)幂函数增长比直线增长更快.( )2.常见函数模型的应用问题(4)(2013·长春模拟改编)一个体积为V的棱锥被平行于底面的平面所截,设截面上部的小棱锥的体积为y,截面下部的几何体的体积为x,则y与x的函数关系的图象可以表示为.( )(5)(2014·济宁模拟改编)某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1 x2,x∈(0,240),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是150台.( )[感悟·提升]一个区别三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在(0,+∞)上,总会存在一个x0,使x>x0时,有a x>x n>log a x(a>1,n>0).如(1)中当2<x<4时,2x<x2;如(2)中没强调b>1;如(3),举例y=与y=x,当x>1时,y=比y=x增长慢.考点一利用图象刻画实际问题【例1】(2013·湖北卷,文)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是().规律方法抓住两个变量间的变化规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.【训练1】如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h和时间t之间的关系,其中不正确的有().A.1个B.2个C.3个D.4个【例2】(2014·德州一模)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.(1)分别写出两类产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?规律方法二次函数模型的应用比较广泛,解题时,根据实际问题建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的利润最大、用料最省等问题.【训练2】某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=x25-48x+8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?【例3】 (2014·郴州模拟)某旅游景点预计2014年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x (x ∈N *,且1≤x ≤6),160x(x ∈N *,且7≤x ≤12).(1)写出2014年第x 个月的旅游人数f (x )(单位:人)与x 的函数关系式; (2)试问2014年第几个月旅游消费总额最大,最大月旅游消费总额为多少元?规律方法 (1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.1.认真分析题意,合理选择函数模型是解决应用问题的基础.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈,在解决函数模型后,必须验证这个数学结果对实际问题的合理性.函数实际应用的建模问题【典例】(12分)(2012·江苏卷)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-120(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程.(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.[反思感悟] (1)函数模型应用不当是常见的解题错误,所以,正确理解题意,选择适当的函数模型是正确解决这类问题的前提和基础;(2)本题中有的学生不能把炮弹击中目标转化为关于k的一元二次方程有正根问题,导致失分.答题模板解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.【自主体验】某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式y=f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.基础巩固题组一、选择题1.(2014·日照模拟)下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是().AC.指数函数模型D.对数函数模型2.(2014·湖州模拟)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是3.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y=ka x,若牛奶在0 ℃的冰箱中,保鲜时间约为100 h,在5 ℃的冰箱中,保鲜时间约为80 h,那么在10 ℃时保鲜时间约为().A.49 h B.56 hC.64 h D.72 h4.(2013·安徽名校联考)如图,在平面直角坐标系中,AC平行于x轴,四边形ABCD 是边长为1的正方形,记四边形位于直线x=t(t>0)左侧图形的面积为f(t),则f(t)的大致图象是().5.(2014·人大附中模拟)某汽车销售公司在A ,B 两地销售同一种品牌车,在A 地的销售利润(单位:万元)是y 1=13.5-9x ,在B 地的销售利润(单位:万元)是y 2=14x +6.2,其中x 为销售量(单位:辆).若该公司在这两地共销售11辆这种品牌车,则能获得的最大利润是( ).A .19.45万元B .22.45万元C .25.45万元D .28.45万元二、填空题6.(2014·临汾一模)某家具的标价为132元,若降价以九折出售(即优惠10%), 仍可获利10%(相对进货价),则该家具的进货价是________元.7.(2013·北京朝阳二模)一个工厂生产某种产品每年需要固定投资100万元,此 外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤ 20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大.(年利润=年销售总收入-年总投资)8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形(如图所示),则围成场地的最大面积为________(围墙厚度不计).三、解答题9.(2014·宁德一模)有一种新型的洗衣液,去污速度特别快.已知每投放k (1≤k ≤4,且k ∈R )个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为y =k ·f (x ),其中f (x )=⎩⎪⎨⎪⎧248-x -1(0≤x ≤4),7-12x (4<x ≤14).若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k 的值;(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?10.(2014·佛山一模)某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧3x +k x -8+5(0<x <6),14 (x ≥6),已知每日的利润L =S -C ,且当x=2时,L =3. (1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.能力提升题组一、选择题1.(2014·江门质检)我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x %),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为 ( ).A .2B .6C .8D .102.(2014·焦作模拟)某商人购货,进价已按原价a 扣去25%.他希望对货物定一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x 与按新价让利总额y 之间的函数关系式为 ( ).A .y =a4x (x ∈N *) B .y =a8x (x ∈N *) C .y =a12x (x ∈N *) D .y =a16x (x ∈N *)二、填空题3.将一个长宽分别是a ,b (0<b <a )的铁皮的四角切去相同的正方形,然后折成一个无盖的长方体的盒子,若这个长方体的外接球的体积存在最小值,则ab 的取值范围是________. 三、解答题4.(2014·孝感统考)某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为t 件时,销售所得的收入为⎝ ⎛⎭⎪⎫0.05t -120 000t 2万元.(1)该公司这种产品的年生产量为x 件,生产并销售这种产品所得到的利润关于当年产量x 的函数为f (x ),求f (x );(2)当该公司的年产量为多少件时,当年所获得的利润最大?方法强化练——函数与基本初等函数一、选择题1.(2014·珠海模拟)函数y =(x +1)02x +1的定义域为( ).A.⎝ ⎛⎭⎪⎫-12,+∞B.⎝ ⎛⎭⎪⎫-12,-1∪(-1,+∞) C.⎣⎢⎡⎭⎪⎫12,+∞ D.⎣⎢⎡⎭⎪⎫-12,-1∪(-1,+∞) 2.(2014·深圳调研)下列四个函数中,既是定义域上的奇函数又在区间(0,1)内单调递增的是( ).A .y =xB .y =e x -e -xC .y =x sin xD .y =lg 1-x 1+x3.(2014·湖北七市联考)函数f (x )=2x -sin x 的零点个数为 ( ).A .1B .2C .3D .4 4.(2014·南昌二模)已知a =,b =,c =log 2.11.5,则a ,b ,c 的大小 关系是( ).A .c <a <bB .c <b <aC .a <b <cD .b <a <c5.(2013·温州第二次测试)已知2a =3b =6c ,则有 ( ).A.a +bc ∈(2,3) B.a +bc ∈(3,4) C.a +bc ∈(4,5)D.a +bc ∈(5,6)6.(2013·四川卷)函数y =x 33x -1的图象大致是( ).7.(2013·北京卷)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( ).A .e x +1B .e x -1C .e -x +1D .e -x -18.(2014·衡水模拟)某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( ).A .45.606B .45.6C .45.56D .45.519.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0, 且a ≠1).若g (2)=a ,则f (2)=( ).A .2 B.154 C.174D .a 210.(2013·辽宁卷)已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+ 8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B = ( ).A .16B .-16C .a 2-2a -16D .a 2+2a -16二、填空题11.(2013·湖南卷)函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个 数为________.12.(2013·长沙期末考试)设f (x )=⎩⎨⎧x 2,x <0,2x ,x ≥0,则f [f (-1)]=________.13.(2014·郑州模拟)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是 增函数,则a 的取值范围是________.14.(2013·滨州一模)定义在R 上的偶函数f (x ),且对任意实数x 都有f (x +2)=f (x ),当x ∈[0,1)时,f (x )=x 2,若在区间[-1,3]内,函数g (x )=f (x )-kx -k 有4个零点,则实数k的取值范围是________.15.(2014·扬州质检)对于函数f(x)=x|x|+px+q,现给出四个命题:①q=0时,f(x)为奇函数;②y=f(x)的图象关于(0,q)对称;③p=0,q>0时,方程f(x)=0有且只有一个实数根;④方程f(x)=0至多有两个实数根.其中正确命题的序号为________.三、解答题16.(2013·贵阳诊断)函数f(x)=m+log a x(a>0且a≠1)的图象过点(8,2)和(1,-1).(1)求函数f(x)的解析式;(2)令g(x)=2f(x)-f(x-1),求g(x)的最小值及取得最小值时x的值.17.(2014·齐齐哈尔调研)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.18.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为了鼓励销售商订购,决定每一次订购量超过100个时,每多订购一个,多订购的全部零件的出厂单价就降0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?。

函数模型及其应用讲义

函数模型及其应用讲义

函数模型及其应用讲义一、知识梳理1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函数模型 f (x )=kx+b (k ,b 为常数且k ≠0)二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)指数函数模型 f (x )=ba x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型f (x )=ax n +b (a ,b 为常数,a ≠0)2.三种函数模型的性质函数性质y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞)上的增减性单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n <a x注意:1.解函数应用题的步骤2.“对勾”函数形如f (x )=x +ax(a >0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a .二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)函数y=2x的函数值比y=x2的函数值大.()(3)不存在x0,使0x a<0n x<log a x0.()(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.()(5)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.()题组二:教材改编2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是()A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=12x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件.4.]用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.题组三:易错自纠5.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为____________.6.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.三、典型例题题型一:用函数图象刻画变化过程1.高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是()2.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油思维升华:判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.题型二:已知函数模型的实际问题典例(1)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.(2)某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元思维升华:求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.跟踪训练 (1)拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元. (2)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元.题型三:构建函数模型的实际问题 命题点1:构造一次函数、二次函数模型典例 (1)某航空公司规定,乘飞机所携带行李的质量x (kg)与其运费y (元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为________kg.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为________元. 命题点2:构造指数函数、对数函数模型典例 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?引申探究:本例的条件不变,试计算:今后最多还能砍伐多少年? 命题点3:构造y =x +ax(a >0)型函数典例 (1)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.(2)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________.命题点4:构造分段函数模型典例某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分). (1)求函数y =f (x )的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?思维升华:构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.跟踪训练 (1)某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)(2)大学毕业生小赵想开一家服装专卖店,经过预算,该门面需要装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R 与门面经营天数x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则总利润最大时,该门面经营的天数是________.函数应用问题:典例 (12分)已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.四、反馈练习1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x 1.992 3 4 5.15 6.126 y1.5174.041 87.51218.01A.y =2x -2 B .y =12(x 2-1)C .y =log 2xD .y =12log x2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( ) A .560万元 B .420万元 C .350万元D .320万元4.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A .2017年 B .2018年 C .2019年D .2020年5.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3 B .14 m 3 C .18 m 3D .26 m 36.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元D .43.025万元7.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.8.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-)82(xx (x >0).则当年广告费投入________万元时,该公司的年利润最大.9.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为____m.10.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于2)20(v km ,那么这批物资全部到达灾区的最少时间是________ h(车身长度不计).11.声强级Y (单位:分贝)由公式Y =10lg )10(12I给出,其中I 为声强(单位:W/m 2). (1)平常人交谈时的声强约为10-6 W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7 W/m 2,问这两位同学是否会影响其他同学休息?12.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问: (1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?13.一艘轮船在匀速行驶过程中每小时的燃料费与速度v 的平方成正比,且比例系数为k ,除燃料费外其他费用为每小时96元.当速度为10海里/小时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为________海里/小时时,总费用最小.14.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________.15.某地西红柿从2月1日开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:时间t 60 100 180 种植成本Q11684116Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________;(2)最低种植成本是________(元/100 kg).16.某店销售进价为2元/件的产品A,该店产品A每日的销售量y(单位:千件)与销售价格x(单位:元/件)满足关系式y=10x-2+4(x-6)2,其中2<x<6.(1)若产品A销售价格为4元/件,求该店每日销售产品A所获得的利润;(2)试确定产品A的销售价格,使该店每日销售产品A所获得的利润最大.(保留1位小数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数模型及其应用
要点梳理
1.几类函数模型及其增长差异
(2)三种增长型函数之间增长速度的比较
①指数函数y=a x (a>1)与幂函数y=x n (n>0)
在区间(0,+∞),无论n比a大多少,尽管在x的一定范围内a x会小于x n,但由于y=a x的增长速度快于y=x n的增长速度,因而总存在一个x0,当x>x0时有____________.
②对数函数y=log a x (a>1)与幂函数y=x n (n>0)
对数函数y=log a x (a>1)的增长速度,不论a与n值的大小如何总会慢于y=x n的增长速度,因而在定义域内总存在一个实数x0,使x>x0时有____________.由①②可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在(0,+∞)上,总会存在一个x0,使x>x0时有______________.2.解函数应用问题的步骤(四步八字)
(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;
(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
(3)求模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.
以上过程用框图表示如下:
注意:
解决函数应用问题重点解决以下问题
(1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;
(2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;
(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图像的作用;
(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.
基础自测
1.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t+60,t=0表示中午12∶00,其后t取正值,则下午3时的温度为________.2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加
10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-1
20
Q2,则总利润L(Q)的最大值是________万元.
3.(课本改编题)某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是______________.
4.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处
建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站
( )
A.5千米处B.4千米处 C.3千米处D.2千米处
5.某企业第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则以下结论正确的是
( )
A.x>22% B.x<22% C.x=22% D.x的大小由第一年的产量确定题型分类
题型一一次函数、二次函数模型

1某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).
(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.
①若平均投入生产两种产品,可获得多少利润
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润其最大利润约为多少万元
探究提高(1)在实际问题中,有很多问题的两变量之间的关系是一次函数模型,其增长特点是直线上升(自变量的系数大于0)或直线下降(自变量的系数小于0),构建一次函数模型,利用一次函数的图像与单调性求解.
(2)有些问题的两变量之间是二次函数关系,如面积问题、利润问题、产量问题等.构建二次函数模型,利用二次函数图像与单调性解决.
(3)在解决二次函数的应用问题时,一定要注意定义域.
变式训练1用一根长为12 m的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的高与宽应各为多少
题型二分段函数模型

2 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为
y =⎩⎪⎨⎪⎧ 13x 3-80x 2+5 040x ,x ∈[120,144,
12x 2-200x +80 000,x ∈[144,500],且每处理一吨二氧化碳得到可利
用的化工产品价值为200元,若该项目不获利,国家将给予补偿.
(1)当x ∈[200,300]时,判断该项目能否获利如果获利,求出最大利润;如果不获利,
则国家每月至少需要补贴多少元才能使该项目不亏损
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低
探究提高本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.
变式训练2某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为元,当用水超过4吨时,超过部分每吨元.某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x(吨).
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费元,分别求出甲、乙两户该月的用水量和水费.
题型三指数函数、幂函数模型

3某城市现有人口总数为100万人,如果年自然增长率为%,试解答以下问题:
(1)写出该城市人口总数y(万人)与年份x(年)的函数关系式;
(2)计算10年以后该城市人口总数(精确到万人);
(3)计算大约多少年以后,该城市人口将达到120万人(精确到1年);
(4)如果20年后该城市人口总数不超过120万人,年自然增长率应该控制在多少
(参考数据:≈,≈,lg ≈,lg 2≈ 0,lg ≈,lg ≈ 9)
探究提高此类增长率问题,在实际问题中常可以用指数函数模型y=N(1+p)x(其中N是基础数,p为增长率,x为时间)和幂函数模型y=a(1+x)n(其中a为基础数,x为增长率,n为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.
变式训练3 已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是:θ=m·2t+21-t(t≥0,并且m>0).
(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;
(2)若物体的温度总不低于2摄氏度,求m的取值范围.
函数建模及函数应用问题的一般程序:
第一步:审题——弄清题意,分清条件和结论,理顺数量关系;
第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;
第三步:求模——求解数学模型,得到数学结论;
第四步:还原——将用数学方法得到的结论还原为实际问题的意义.
第五步:反思回顾——对于数学模型得到的数学解,必须验证这个数学解对实际问题的合理性.
方法与技巧
解答数学应用题关键有两点:一是认真审题,读懂题意,理解问题的实际背景,将实际问题转化为数学问题;二是灵活运用数学知识和方法解答问题,得到数学问题中的解,再把结论转译成实际问题的答案.。

相关文档
最新文档