液压传动第二章液压传动的流体力学基础

合集下载

第2章 液压流体力学基础

第2章  液压流体力学基础

1bar=1×105Pa=0.1MPa
1at(工程大气压)=1kgf/cm2=9.8×104Pa 1mH2O(米水柱)=9.8×103Pa 1mmHg(毫米汞柱)=1.33×102Pa 1个标准大气压力=1.013×105Pa=10.336米水柱=760mmHg 1psi(磅力/英寸2)=6.895×103Pa
第2章 液压流体力学基础
2.2 液压静力学 (3)液体静压力对固体壁面的作用力 固体壁面是平面:如右上图,作用力为
固体壁面是曲面:如右中、下图,作用力为
d为承压部分曲面投影圆的直径
第2章 液压流体力学基础
2.2 液压静力学 二、液体静压力基本方程 1、任意质点受力分析: 取研究对象:任取如右图微圆柱体。 受力分析: 2、静力学基本方程: 能量守恒表达式:建立坐标系
第2章 液压流体力学基础
2.1 液压系统的工作介质 5、机械稳定性: 液体在长时间的高压作用下,保持原有物理性质的能力。液压油 应具有良好的机械稳定性。 6、氧化稳定性: 主要指抗氧化的能力。油液中含有一定的氧气,使用中油液必然 会逐渐氧化。随着温度的升高,氧化作用加剧,油液会变质沉淀、 产生腐蚀性物质,使系统出现故障。 7、其它性质: 相容性、水解稳定性、剪切稳定性、抗泡沫性、抗乳化性、防锈 性、润滑性。 以上性质对液压油的选用有重要影响。抗燃性、稳定性等都可以 通过加入适当的添加剂来获得。
是不呈现粘性的。 (3)粘度的表示方法: 动力粘度: 运动粘度:


/
相对粘度:恩氏粘度、赛氏粘度、雷氏粘度
第2章 液压流体力学基础
2.1 液压系统的工作介质
du F A dy
du dy
根据实验结论可知: F与液层面积、速度 梯度成正比 液体粘性示意图

第二章.液压流体力学基础

第二章.液压流体力学基础

等值传递。
压力传递的应用
图示是应用帕斯卡原理的实例,假设作用在小活塞上
施加压力F1时,则在小活塞下液体受的压力为p= F1/A1 根据帕斯卡原理,压力p等值的 传 递到液体内部各点,即大活塞下面 受到的压力也为p,这时,大活 塞 受力为F2= pA2。为防止大活塞下 降,则在小活塞上应施加的力为:
6.3 液体流经缝隙的流量
环形缝隙流量
活塞与缸体的内孔之间、阀芯与阀孔之间都存在环形缝隙。
πdh qV p 12 l
同心环形缝隙
3
6.3 液体流经缝隙的流量
环形缝隙流量
流过偏心圆环缝隙的流量, 当e = 0时,它就是同心圆环缝 隙的流量公式;当e =1时,即 在最大偏心情况下,其压差流 量为同心圆环缝隙压差流量的
压力有两部分:液面压力p0及自重形成的压力ρgh;
静压力基本方程式 p=p0+ρgh
3.3 重力作用下静止液体压力分布特征
液体内的压力与液体深度成正比;
离液面深度相同处各点的压力相等,压力相等的 所有点组成等压面,重力作用下静止液体的等压 面为水平面; 压力由两部分组成:液面压力p0,自重形成的压
6.1 液体流经薄壁小孔的流量
当小孔的长径比 l /d < 0.5时,称为薄壁孔 。
qV Cq K
2

p
6.3 液体流经缝隙的流量
平面缝隙流量
在液压装置的各零件之间,特别是有相对运动的各 零件之间,一般都存在缝隙(或称间隙)。油液流过缝 隙就会产生泄漏,这就是缝隙流量。由于缝隙通道狭窄, 液流受壁面的影响较大,故缝隙液流的流态均为层流。 压差流动:由缝隙两端的压力差造成的流动。 剪切流动:形成缝隙的两壁面作相对运动所造成的流动。

第二章 液压传动流体力学基础

第二章  液压传动流体力学基础

第12张/共91张
11:55
2.2 液体动力学
实验
第13张/共91张
11:55
2.2 液体动力学
一维流动
当液体整个作线形流动时,称为一维流动;当作平面或 空间流动时,称为二维或三维流动。一维流动最简单,但是 严格意义上的一维流动要求液流截面上各点处的速度矢量完 全相同,这种情况在现实中极为少见。通常把封闭容器内液 体的流动按一维流动处理,再用实验数据来修正其结果,液 压传动中对工作介质流动的分析讨论就是这样进行的。
静止液体中的压力分布
例:如图所示,有一直径为d, 解:对活塞进行受力分析, 活塞受到向下的力: 重量为G的活塞侵在液体中, 并在力F的作用下处于静止状 F下 =F+G 态,若液体的密度为ρ,活 活塞受到向上的力: 塞侵入深度为h,试确定液体 d 2 在测量管内的上升高度x。 F上=g h x 4 F 由于活塞在F作用下受力平衡, d 则:F下=F上,所以:
第16张/共91张 11:55
2.2 液体动力学
通流截面、流量和平均流速
流束中与所有流线正交的截面称为通流截面,如图c中的A面 和B面,通流截面上每点处的流动速度都垂直于这个面。 单位时间内流过某通流截面的液体体积称 为流量,常用q表示 ,即:
q V t
式中
q —流量,在液压传动中流量
常用单位L/min; V —液体的体积; t —流过液体体积V 所需的时间。
1mmHg(毫米汞柱)=1.33×102N/m2
1at(工程大气压,即Kgf/cm2)=1.01972×105帕 1atm(标准大气压)=0.986923×105帕。
第9张/共91张 11:55
2.1 液体静力学
帕斯卡原理

液压流体力学基础

液压流体力学基础
第二章 液压流体力学基础
学习要点: 1、液压油(流体)的基本性质。 2、流体静力学基本规律。 3、流体动力学基本概念。 4、流体流量连续方程、流体能量平衡方程 (伯努利方程)方程、动量方程。 5、小孔及缝隙流量计算。 6、压力损失、液压冲击与空穴现象。
第一节 液压系统的工作介质
液压工作介质
第一节 液压系统的工作介质
第一节 液压系统的工作介质
二、液压工作介质的主要性能(续)
4、液体的热容量、比热
热容量: 液体与外界发生热量交换而使流体的温度变化,
热量交换对温度的变化率称为流体的热容量。 比 热: 单位质量液体的热容量成为比热。
第一节 液压系统的工作介质
5、液体的含气量、空气分离压和汽化压
◎ 含气量: 液体中所含空气的体积百分比数量叫含气量。两种形式:
温度高时选用粘度较高的液压油,减少容积损失。
第一节 液压系统的工作介质
5、液压油的污染与保养
液压油使用一段时间后会受到污染,常使阀内的阀芯 卡死,并使油封加速磨耗及液压缸内壁磨损。造成液压油 污染的原因有三方面:
1)污染: a 外部侵入的污物;b 外部生成的不纯物。
2)恶化: 液压油的恶化速度与含水量、气泡、压力、油温、金属
※ 液体的粘度会随温度、压力变化而变化。 液体的粘度对温度变化十分敏感,对液压系统的性能
有明显影响。温度升高,粘度将显著下降,造成泄漏、磨 损增加、效率降低等问题;温度下降,粘度增加,造成流 动困难及泵转动不易等问题,液压系统工作时发热较严重。 所以,一般控制系统中均要设计冷却装置,尽量保持油液 工作温度的稳定。 ※ 液体承受的压力增大,液体内聚力增大,粘度也随之增 大,但变化幅度不大,低压时一般不考虑。
二、液压工作介质的主要性能(续)

第二章 流体力学基础

第二章 流体力学基础
第二章 液压流体力学基础
本章是学习液压传动理论基础的章节,集中了学 习本课程的基本概念、基本原理和基本定律(方程)。
重点:
1. 静压力基本方程、连续性方程和伯努利方程; 2. 层流状态下的沿程压力损失、局部压力损失; 3. 流经薄壁小孔的流量公式。
难点:
1. 实际液体的伯努利方程及压力损失计算; 2. 真空度的概念。
第四节 液体流经小孔及缝隙的特性
• 概述:液压传动中常利用液体流经阀的 小孔或间隙来控制流量和压力,达到调速 和调压的目的,它也涉及液压元件的密 性,因此,小孔虽小,间隙虽窄,但其 作用却不可等闲视之。
一、孔口流量 特性 薄壁小孔 l/d ≤ 0.5
孔口分类: 细长小孔 l/d > 4 短孔 0.5 < l/d ≤4
量守恒定律,在单位时间内流过两个截面的液体流量相等,即:
v1 /A1 = v2/A2
不考虑液体的压缩性, 则得 :
q = v A = 常量
• 流量连续性方程说明了恒定 流动中流过各截面的不可压 缩流体的流量是不变的。因而流速与通流截面的面积成反 比。
三 伯努利方程 (Bernoulli Equation)
附加摩擦 — 只有紊流时才有,是由于 分子作横向运动时产生的 摩擦,即速度分布规律改 变,造成液体 的附加摩擦。
1. 局部压力损失公式 △pζ = ζ·ρv2/2 2. 标准阀类元件局部压力损失
△pF = △pn(Q/Qn)2
四 管路系统的总压力损失
∑△p = ∑△pλ + △pζ +∑△pF
=∑λ·l/d·ρv 2/2+∑ζρv2/2 + ∑△pn(Q/Qn)2
能量守恒定律在流体力学中的应用
能量守恒定律:理想液体在管道中稳定流 动时,根据能量守恒定律, 同一管道内任 一截面上的总能量应该相等。 或:外力对物体所做的功应该等

液压第二章液压流体力学基础

液压第二章液压流体力学基础
液压传动
主讲教师:张凡
第二章液压流体力学基础
液体是液压传动的工作介质。因此,了 解液体的基本性质,研究液体的静力 学、运动学和动力学规律;对于正确 理解液压传动原理,合理设计并使用 液压传动系统都是非常必要的。
教学目的
了解液压油的性质及作用 领会液体静力学的有关知识 综合应用三个方程解决液体动力学相关
——动量方程
应用动量方程解题的步骤:
a. 建立坐标系,一般坐标轴的方向与所 求的力的方向一致
b. 列方程、投影 c. 求解
例:P20求滑阀阀心所受的轴向稳态液动力。
课堂练习: P30 2-5 2-6 作业: P33 2-15 2-19
第四节液体流动时的压力损失
由于粘性摩擦而产生的能量
Pw
损失——沿程压力损失
由于管道形状、尺寸突变而产 生的能量损失——局部压力损 失
1.沿程压力损失(与液体的流动状态有关) 层流时沿程压力损失
p

l d
2
2
— 沿程阻力系数
金属圆管: 75
Re
橡胶圆管: 80
Re
紊流时沿程压力损失
p

l d
2
2
0.3164Re0.25
2.局部压力损失(与管道形状有关)
q CAT p
c—是由孔的形状、尺寸和液体性质决定
的系数
细长孔
c d2
32l
薄壁孔 短孔
c cq 2 /
—由孔的长度决定的指数
细长孔 1
薄壁孔
短孔 0.5
3. 结论: 1) 流过小孔的流量与孔径、和压力有关 2) 油液流经小孔时会产生压降(即两端
v22 )

9.17第2章 液压传动的流体力学基础

9.17第2章  液压传动的流体力学基础
m
kg
V
一、液压油的性质
(二)可压缩性
《液压与气动》电子课件 第二章 液压传动基础
定义:液体受压力作用而发生体积减小的性质。 压缩系数: 1 V
K
1 体积弹性模量: T k
p V
m
2
N
一般液压系统认为油液不可压缩。研究液压系 统动态特性、高压情况,尤其液压油中混入空 气,考虑油液的可压缩性。
《液压与气动》电子课件 第二章 液压传动基础
图中是运用帕斯卡原理寻找推力和负载间关 系的实例。图中垂直、水平液压缸截面积为A1、 A2;活塞上负载为F1、F2。两缸互相连通,构成 一个密闭容器,则按帕斯卡原理,缸内压力到处 相等,p1=p2,于是F2=F1 . A2/A1,如果垂直液缸 活塞上没负载,则在略 去活塞重量及其它阻力 时,不论怎样推动水平 液压缸活塞,不能在液 体中形成压力。
第一节 液压传动工作介质 一、液压油的性质 密度、压缩性、粘性
二、对液压油的要求与选用 要求、种类和选用
一、液压油的性质
(一)密度
《液压与气动》电子课件 第二章 液压传动基础
定义:单位体积液体的质量。以 表示。 定义式: m 单位: 3 m 密度随温度升高而下降,随压力升高而增大。 常用温度、压力范围,变化很小,视为常数。 15℃液压油密度900 kg 3
F=p.A=p.D2/4
式中 p-油液的压力; D-活塞的直径。
《液压与气动》电子课件 第二章 液压传动基础
2、当固体壁面为曲面时
当承受压力作用的表面是曲面时,作用在曲面上的 所有压力的方向均垂直于曲面(如图所示),图中将曲面 分成若干微小面积dA,将作用力dF分解为x、y两个方向上 的分力,即 Fx=p.dAsin=p.Ax FY= p.dAcos=p.Ay 式中,Ax、Ay分别是 曲面在x 和y方向上的投影面积。

液压传动3-流体力学基础

液压传动3-流体力学基础


解:此流量计处于重力场的作用下,故 应用能量方程,按题意应有h=0,忽略 损失,h=0。
以过轴心0-0的水平面为基准面,取断面Ⅰ 和Ⅱ,此二断面均为缓变过流断面,对此 二断面与轴心线的交点1和2列出能量方 程,可得
p1
v p2 v 2g 2g
2 1
2 2

而根据连续性方程式应有:
以过4点之水平面0-0为基准 面,管轴上的3点和4点列出 能量方程
p3 v pa v 0 (h1 h2 ) g 2 g g 2 g
2 3 2 4

由连续性方程可得:
v3 v 4
p3 pa (h1 h2 ) g g

pa 对水, =10米水柱高,于是 g
2、静压力方程式的物理意义
p=p0+γh=p0+γ(z0-z) 整理后得 p/γ+z=p0/γ+z0=常数 z称位置水头或称位能,表示A点单 位重量液体的位能

升的高度,称压力水头,或称压能。

p r 是该点在压力作用下沿测压管所能上
p z r
两水头相加( )称测压管水头,它 表示测压管液面相对于基准面的高度, 或称势能。
2 2
2、伯努利方程 式中每一项的量纲都是长度单位,分别称为 水头、位置水头和速度水头。 物理意义:稳定流动的理想液体具有压力 能、位能和动能三种形式的能量。在任意截 面上这三种能量都可以相互转换,但其总和 保持不变。
3、实际液体的泊努利方程 实际液体具有粘性,在管中流动时,需 要消耗一部分能量,所以实际液体的伯努利 方程为:
1 2 Q A1v1 d1 4
2 9.81 0.8(13.6 1) 1 2 3.14 0.25 39 4 1 1 3 0.112米 /秒 112升/秒

液压与气压传动知识要点第2章

液压与气压传动知识要点第2章

液压与气压传动
第2章 流体力学基础
2.2
一、基本概念
液体动力学
1.理想液体、 1.理想液体、恒定流动 理想液体
液压与气压传动
第2章 流体力学基础
2.一维流动 2.一维流动 流场中流体的运动参数一般都随空间位置的 改变而不同。因此,严格地说,是三维的。 改变而不同。因此,严格地说,是三维的。但 在数学上相当复杂,有时甚至得不到方程的解。 在数学上相当复杂,有时甚至得不到方程的解。 在工程上,我们在满足工作性能要求的情况下, 在工程上,我们在满足工作性能要求的情况下, 抓住主要因素, 抓住主要因素,把三维问题化成二维甚至一维 问题来解决。 问题来解决。 图
液压与气压传动
第2章 流体力学基础
1.理想液体的伯努利方程 1.理想液体的伯努利方程 在流动过程中,外力对此段液体做了功,并引 在流动过程中,外力对此段液体做了功, 起其动能发生相应改变。根据功能原理, 起其动能发生相应改变。根据功能原理,外力所 做的功应该等于其动能的改变量。 做的功应该等于其动能的改变量。 (1)作用在液体段上的外力所做的功 外力有:重力和压力 外力有:重力和 ①液体段上重力所做的功 液体段上重力所做的功等于液体段位置势能的 变化量。 变化量。
液压与气压传动
第2章 流体力学基础
重力作用下静止液体的压力分布: 重力作用下静止液体的压力分布: (1)静止液体内任一点处的压力都由两部分组成: (1)静止液体内任一点处的压力都由两部分组成: 静止液体内任一点处的压力都由两部分组成 液面上的压力; 液面上的压力;该点以上液体自重所形成的压 的乘积。 力,即,ρg与该点离液面深度h的乘积。 (2)静止液体内的压力随液体深度呈直线规律分布 静止液体内的压力随液体深度呈直线规律分布。 (2)静止液体内的压力随液体深度呈直线规律分布。 (3)距液面深度相同的各点组成等压面 距液面深度相同的各点组成等压面, (3)距液面深度相同的各点组成等压面,等压面为 水平面。 水平面。

液压流体力学基础_

液压流体力学基础_
第二章 液压传动的流体力学基础
液体静力学基础 液体动力学基础 管路压力损失计算 液流流经孔口及隙缝的特性 液压冲击
§
2-2
液体动力学基础
液体动力学研究液体在外力作用下运动规律, 液体动力学研究液体在外力作用下运动规律, 液体在外力作用下运动规律 即研究作用在液体上的力与液体运动之间的关系。 即研究作用在液体上的力与液体运动之间的关系。 由于液体具有粘性,流动时要产生摩擦力, 由于液体具有粘性,流动时要产生摩擦力,因此 研究液体流动问题时必须考虑粘性的影响。 研究液体流动问题时必须考虑粘性的影响。
垂直于液体流动方向的截面称为通流截面 垂直于液体流动方向的截面称为通流截面 , 也叫过流断面。 也叫过流断面。 过流断面 单位时间t内流过某通流截面的液体体积V 单位时间t内流过某通流截面的液体体积V称 流量Q 为流量Q,即: Q=V/t=v·A (A-通流截面面积, 平均流速) Q=V/t=v A (A-通流截面面积,v-平均流速) 可看出,流速为流量与通流面积之比 为流量与通流面积之比。 可看出,流速为流量与通流面积之比。实际上 由于液体具有粘性,液体在管道内流动时,通流 由于液体具有粘性,液体在管道内流动时, 截面上各点的流速是不相等的。 截面上各点的流速是不相等的。管道中心处流速 最大;越靠近管壁流速越小;管壁处的流速为零。 最大;越靠近管壁流速越小;管壁处的流速为零。 为方便起见,以后所指流速均为平均流速。 为方便起见,以后所指流速均为平均流速。
3.伯努利方程应用举例 伯努利方程应用举例
(1) 计算泵吸油腔的真空度或泵允许的最大吸油 高度
如图所示,设泵的吸油口比油箱液高h, 如图所示,设泵的吸油口比油箱液高h 取油箱液面I 和泵进口处截面II II列 II取油箱液面I-I水平面。 伯努利方程,并取截面I-I为基准水平面。 泵吸油口真空度为: 泵吸油口真空度为: /ρg+v /2g=P /ρg+ P1/ρg+v12/2g=P2/ρg+h+v22/2g+hw 为油箱液面压力, P1为油箱液面压力,P2为泵吸油口的绝对 压力

第二章:液压传动的液体流体力学(含习题答案)

第二章:液压传动的液体流体力学(含习题答案)
液体流过圆环缝隙的流量3圆环平面缝隙的流量书液体流过圆环缝隙的流量3圆环平面缝隙的流量简液体流过圆环缝隙的流量例题26图示为一滑阀阀体与阀套同心因为加工误差使阀体带有一定锥度造成阀体与阀套的两端缝隙不同h010103015103m
第二章 液压传动的流体力学基础
流体力学:研究流体在外力作用下平衡和运动规律的学科。 第一节 流体静力学基础 第二节 流体动力学基础 第三节 液体流动时的压力损失 第四节 液体流经小孔和缝隙的流量 第五节 液压冲击和空穴现象 重点: 压力取决于负载; 连续性方程;伯努利方程;动 量方程。
57-13
一、基本概念
3. 通流截面、流量和平均流速
通流截面:流束中与所有流线正交的截面称为通流截面(或通流断面)。 流量:单位时间内流过某通流截面的液体体积称为体积流量(简称流量)。 V qV t 管道通流截面上的流速分布:由于液体具有粘性,通流截面上,管壁处的流速为 零,管道中心处流速最大。 管道中流经通流截面的流量:
57-1
第一节 流体静力学基础
流体静力学:主要讨论液体在静止时的平衡规律以及这些规律在工 程上的应用。 静止:指液体内部质点之间没有相对运动。 一、液体的压力 二、重力作用下静止液体中的压力分布 三、压力的表示方法和计量单位 四、静止液体内压力的传递 五、液体静压力作用在固体壁面上的力
57-2
一、液体的压力
因此,为顶起重物,应在小活塞上施加的力为:
d2 d2 202 F 2 G 2 mg 6000 9.8 1633 N 2 D D 120
57-8
五、 液体静压力作用在固体壁面上的力
液体和固体壁面相接触时,固体壁面将受到总液压力的作用。
结论1:曲固体壁面为平面时,压力p的静止液体作用该平面上总作用力F等于液 体压力p与该平面面积A的乘积。

第二章液压传动的流体力学基础

第二章液压传动的流体力学基础

2. 压力的表示方法及单位:
(1)绝对压力:
是以绝对真空作为基准所表示的压力
表压力
(2)相对压力:
是以大气压力作为基准所表示的压力。
(3)真空度
绝对压力 = 相对压力 + 大气压力 真空度 = 大气压力 - 绝对压力

绝对压力 p
真空度
绝对压力 p=0 绝对压力
法定单位
:牛顿/米2(N/m2)即帕(Pa) 1 MPa=106Pa
同样可得体积VI中液体在t时刻的动量为:
当dt→0时,体积VIII≈V,得:
若用平均流速v代替实际流速u,且不考虑液体的可压缩性,即A1v1=A2v2=q,而 则上式整理得:

对于作恒定流动的液体,右边第一项等于零,则:
雷诺数
Re=vd/υ, v为管内的平均流速 d为管道内径 υ为液体的运动粘度 雷诺数为无量纲数。
液压与气压传动
第二章 液压传动某质点处的法向力ΔF对其微小面积ΔA的极限称为压 力p,即:
若法向力均匀地作用在面积A上,则压力表示为:
2.液体静压力的特性
静压力具有下述两个重要特征: (1)液体静压力垂直于作用面,其方向与该面的内法线方向一致。 (2)静止液体中,任何一点所受到的各方向的静压力都相等。
应基本了解的公式、概念和结论: 连续性方程及结论、伯努利方程及物理意义、雷诺数表达式、薄壁小孔流 量公式及特点、平行平板流量公式之结论、偏心环状缝隙流量公式之结论
液压冲击的压力峰值会比正常工作压力高出数倍,瞬间的压力冲击 会引起振动和噪声,而且会损坏密封装置、管道及液压元件,还可能 使液压元件误动作,造成设备事故。 可以采取以下措施可减小液压冲击: ⑴使直接冲击变为间接冲击,这可用减慢阀的 关闭速度和减小冲击波传递距离来达到。 ⑵限制管道中油液的流速和运动部件的速度。 ⑶用橡胶软管或在冲击源处设置蓄能器,以吸 收液压冲击的能量。 ⑷在容易出现液压冲击的地方,安装限制压力 升高的安全阀。

第二章 液压流体力学基础

第二章 液压流体力学基础
必须指出,当液流通过控制阀口时,要确定 其收缩断面的位置,测定收缩断面的压力pc是十 分困难的,也无此必要。一般总是用阀的进、出 油口两端的压力差Δp=p1-p2来代替,故公式可写 为: Q=Cq.A(2/ρ.Δp)1/2 一般在计算时取Cq=0.6~0.8,Cq称为流量系 数,A为孔口截面积。
项目三 液体流经小孔的流量计算
模块二
液压传动基础知识
本模块的任务: 一、液压油的选用原则。
二、液压油的分类、性质和牌号意义。 三、流体静力学基本方程和连续性方程。 四、伯努利方程。
五、流体动量方程。
2
项目一 液压油的选用
视频:工作介质——液压油
2.1.1.1 密度的定义: 单位体积V的液体的质量m称为液体的密度ρ。
ρ = m/V
项目三 平行平板的间隙流动
液压油在压力差Δp作用下自左向右流动。此平 面隙缝可以看作是同心圆环形间隙的展开,故可用 平面隙缝的宽度b代替同心圆环形间隙流量公式中 的d,即得平行平面隙缝的流量公式: q=(bh3/12μl)·Δp
项目三 液体流经环形缝隙的流量 液压缸缸筒与活塞 环形缝隙 <
阀芯与阀孔
24
项目三 液体动力学基础
3)流通截面 视频:压力和流量 4)流量 5)平均流速 视频:流动状态 6)层流:液体的流动是分层的,层与层之间互不 干扰。 7)紊流:液体流动不分层,做混杂紊乱流动。

25
项目三 液体动力学基础
8)雷诺数
层流时,液体流速较低,紊流时,液 体流速较高,两种流动状态的物理现象可以通过雷 诺实验来观察。 液流紊流转变为层流时的雷诺数称为临界雷诺 数,记为Rec。 雷诺数的物理意义:影响液体流动的力主要惯 性力和黏性力,雷诺数就是惯性力对粘性力的无因 次比值。

第2章 液压传动基础知识

第2章  液压传动基础知识
△p时,体积减小△V,则液体在单位压力变化下体积
的相对变化量。
1 V p V0
常用液压油的压缩系数仅为(5~7)×10-10,一般可忽 略不计。
17
四、液体的其它性质 1.粘度和压力的关系 ∵ P↑,F↑,μ↑
∴μ随p↑而↑,压力较小时忽略,32Mpa以上才考虑。 2.粘度和温度的关系 ∵ 温度↑,内聚力↓,μ↓ ∴粘度随温度变化的关系叫粘温特性,粘度随温度的 变化较小,即粘温特性较好。
成流束。
3.通流截面:流束中所有与流线正交的截面(垂直
于液体流动方向的截面)。
46
三、流量和平均流速 1.流量:单位时间内流过某通流截面的液体体积q, 单位m3/s。工程上也用L/min。对于微小流束通过该 通流截面的流量为:
dq udA
dA:微小流束的通流截面面积。
u:液体流过该通流截面的速度。对于微小流束可
动粘度为20 cst。
新牌号——L—HL32号液压油,指这种油在40℃时的 平均运动粘度为32cst。
13
3.相对粘度°E 恩氏度0E —— 中国、德国、前苏联等用 赛氏秒SSU —— 美国用 雷氏秒R —— 巴氏度0B —— 英国用 法国用
14
被测定的液体在某一温度下从恩氏粘度计小孔 (φ2.8mm)流出200ml所需的时间t1(s)与蒸馏水在20℃ 流出相同体积所需时间t2(s)的比值,称为恩氏粘度。
26
液体静压力的定义 液体在单位面积上所受的内法线方向的法向力称为压 力。(物理学中称压强)单位为牛顿/平方米(N/m2), 也称帕(Pa)。
F p=lim A0 A
在液压技术中,还采用工程大气压、千克力每平方米 (kgf/m2 )等为单位。
1at 工程大气压 1kg / cm2 9.8 104 N/m2 105 Pa 0.1MPa

第二章液压流体力学基础

第二章液压流体力学基础

一、液体静压力及其特性
1、压力:液体单位面上所受的法向力称为压力。 这一定义在物理学中称为压强,用p表示,单位为 Pa(N/m2)或MPa 1MPa=106Pa(其他单位见表)
Pa 1X105 bat 1 at 1bf/in2 atm
0.986923
mmH2O
1.01972X 104
mmHG
7.50062X102 3
a
h1 h2 p1
15
p1 gh1
1 12
2
p2 gh2
2 2 2
2
pw
α1 α2动能修正系数,层流时α=2,紊流时α=1
•3、动量方程
在液压传动中,要计算液流作用在固体壁面上的力时, 应用动量方程求解比较方便。 刚体力学动量定律:作用在物体上的力的大小等于物体 在力作用方向上的动量的变化率,即
p r
v
2
2
---局部阻力系数。 各种局部装臵的结构的ξ值可查相关手册
返回
(四)、管路系统的总压力损失
l v 2 v 2 p p p d 2 2
上式仅在两相邻的局部损失之间的距离大于
管道内径10∽20倍时才是正确的,否则液体
受前一个局部阻力的干扰还没有稳定下来, 就又经历后一个局部压力。它所受干扰就更 为严重因而利用上式算得的压力值比实际数 值小。
1、尽量缩短管道长度,减少管道弯曲和截面突变;
2、提高管道内壁的加工质量,力求光滑;
3、选用的液压油粘度要适当;
4、减小流速 其中流速的影响最大,故管道内液体的流速不能太快 ,但太小又使管道直径太大,成本增高,因此需统筹考 虑.推荐按下表中数值选取。
36
表 油液流经不同元件时的推荐流速

2、液压流体力学知识

2、液压流体力学知识

⒋黏度指数提高剂 用来提高油液的黏度,使其使用的温度范围 扩大。 其他添加剂在此不多介绍。 四、液压传动用油的要求、选择 在液压传动中,油液是传递动力或力矩的工 作介质,所选用油液的性质将直接影响到液 压传动系统工作的好坏。必须正确选择液压 油。
(一)对液压传动用油的基本要求 ①合适的黏度和良好的粘温特性; ②润滑性能好; ③对密封材料的相容性; ④对氧化、乳化和剪切都有良好的稳定性,长 期工作不易变质; ⑤抗泡沫性好、腐蚀性小; ⑥清洁度高,质地纯洁,杂质少; ⑦燃点高、凝固点低; ⑧对人无害,成本低。
(二)油液的选择 在具体选择液压油的粘度时,一般应考虑下 列具体因素: 1.液压系统中工作压力的高低。 2.液压系统中运动速度的快慢。 3.液压系统周围环境温度。 有时也从以下几个因素考虑: ①液压系统所处的环境; ②液压系统的工作条件; ③液压油的性质; ④经济性;
P6表1-1是液压泵使用油液的粘度范围。
第二章 液压流体力学基础知识 主要掌握的知识点是:
液压流体力 学基础知识
工作液体 -介质 (液压油)
静止液体 的性质
流动液体 的性质
液体流动时 液体流动时 的压力损失 的泄漏
液压冲击 气穴现象
§2-1 液压油的性质
(Working medium of hydraulics— hydraulic oil)
动力粘度的物理意义: 液体在单位速度梯度 (|dv/dy|=1)下流动时,相邻液层单位面积 上的内摩擦力。 动力粘度µ的单位: 帕· 秒(Pa· s)帕=N/㎡ (帕· 秒 —N · S/㎡, 1Pa· s=1N· S/㎡) 通过动力粘度的公式得知:在静止液体中,由 于速度梯度等于零内摩擦力为零,故液体在 静止液体状态下不显粘性。

第二章 流体力学基础(1-6)知识讲解

第二章 流体力学基础(1-6)知识讲解
密闭容器中的静止液体,当外加压力发生变化时,液体内任一点的压力将 发生同样大小的变化。即施加于静止液体上的压力可以等值传递到液体内 各点。这就是帕斯卡原理。 在图中,F是外加负载,A是活塞面积。根据 帕斯卡原理,缸筒内的压力将随外加负载的变 化而变化,并且各点的压力变化值相等。如果 不考虑活塞和液体重力引起的压力,则液体中 的压力为
34
2.2 液体静力学
2.2.3 压力表示方法和单位
压力有两种表示方法:绝对压力和相对压力。
以绝对真空为基准度量的压力叫做绝对 压力; 以大气压为基准度量的压力叫做相对压 力或表压。
这是因为大多数测量仪表都受大气 压作用,这些仪表指示的压力是相对压 力。
在液压与气压传动系统中,如不特别 说明,提到的压力均指相对压力。
液压油的粘度等级就是以其40ºC时运动粘度的某一平均 值来表示,
如L-HM32液压油(32号液压油)的粘度等级为32,则 40ºC时其运动粘度的平均值为32mm2/s 。
12
2.1 液压油
相对粘度 雷氏粘度〞R——英国、欧洲 赛氏粘度SSU——美国 恩氏粘度oE——俄国、德国、中国
oE=
t1
t2
单位:无量纲
(2)润滑性能好 (3)质地纯净,杂质少。 (4)具有良好的相容性。
(5)具有良好的稳定性。(氧化) (6)抗乳化性、抗泡沫性、防锈性、腐蚀性小。
(7)膨胀系数低、比热容高。 (8)流动点和凝固点低,闪点和燃点高。 (9)对人体无害,成本低。
18
2.1 液压油
2.1.4 液压油的选择
正确合理地选择液压油液,对保证液压传动系统正常工作、延 长液压传动系统和液压元件的使用寿命以及提高液压传动系统的工 作可靠性等都有重要影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.3 液压油的污染和防污措施
(1)污染的危害 (a)固体颗粒和胶状生成物堵塞过滤器,使液压泵吸油 不畅,运转困难,产生噪声。 (b)微小固体颗粒会加速有相对滑动零件表面的磨损, 使液压元件不能正常工作。 (c)水分和空气的混入会降低液压油液的润滑性,并加 速其氧化变质。
(2)污染原因 (a)残留物的污染 (b)侵入物的污染(空气中的尘埃) (c)生成物的污染
液体在外力作用流动(或有流动趋势)时,分子间的内聚力要阻止分 子间的相对运动而产生一种内摩擦力,这种现象叫做液体的粘性。 液体只 有在流动(或有流动趋势)时才会呈现出粘性,静止液体是不呈现粘性的。 如图所示为液体的粘度示意图。
图2-1
实验结果表明:
Ff
A du
dy

Ff du
A dy
μ为比例常数,有时称为粘性系数或动力粘度。
(1)密度
单位体积液体所具有的质量叫做该液体的密度。
m V
密度随压力和温度的变化而变化,但其变化很小,可以忽略。一般工
程上取 900kg/m3。
(2)可压缩性
液体压力增高而发生体积缩小的性质称为可压缩性。 k 1 V p V
k 称为体积压缩系数。当压力增大时,体积减小,故在式前加一负号,以使 k 为正值。
2.1.2 液压油的选用
❖ 对液压油的使用要求
(1)合适的粘度和良好的粘度-温度特性,一般液压系统 所选用的液 压油,其 运动粘度大多为(13~68 cSt)(40℃下)或2~8°E50。
(2)良好的化学稳定性。
(3)良好的润滑性能,以减小元件中相对运动表面的磨损。 (4)质地纯净,不含或含有极少量的杂质、水分和水溶性酸碱等。 (5)对金属和密封件有良好的相容性。 (6)抗泡沫性好,抗乳化性好,腐蚀性小,抗锈性好。 (7)体积膨胀系数低,比热容高。 (8)流动点和凝固点低,闪点和燃点高。 (9)对人体无害、成本低。
(a)动力粘度
牛顿内摩擦定律中μ为由液体种类和温度决定的比例系数, 它是表征液体粘性的内摩擦系数。如果用它来表示液体粘度的 大小,就称为动力粘度,或称绝对粘度。
动力粘度μ的物理意义是:液体在单位速度梯度下流动时 液层间单位面积上产生的内摩擦力。
动力粘度的单位为Pa·s(帕·秒,N•s/m2 )。
以前沿用的单位为P(泊,dyne•s/cm2)。单位换算关系为
体积压缩系数的倒数称为体积弹性模量,用K表示。
K
1 k
pVV
体积弹性模量越大表明该液体抵抗压缩的能力越强。工程上取液压油
的体积弹性模量
K(1.4~2)103MPFra bibliotek 。由于液压油中混有空气,实际计算中常取 K(0.7~1.4)10 3MP 。 a
一般情况下认为液压油是不可压缩的。
(3)粘性 ❖ 粘性的物理本质
❖ 液压油的选用
液压油在选用时最主要的依据就是粘度。 选择液压油时,首先考虑其粘度是否满足要求, 同时兼顾其它方面。选择时应考虑如下因素: (1) 液压泵的类型 (2) 液压系统的工作压力 (3) 运动速度 (4) 环境温度 (5) 防污染的要求 (6) 综合经济性
总之,选择液压油时一是考虑液压油的品种,二是考虑 液压油的粘度。
τ表示切应力,即单位面积上的内摩擦力
这就是牛顿的液体内摩擦定律。
公式分析:
在静止液体中,速度梯度du/dy=0,所以内摩擦力为零, 即静止液体不产生粘性,也就是说液体的静摩擦力是不存在的。
(3)粘性 ❖ 粘度的表示方法及影响因素
液体的粘性大小可用粘度来表示。粘度的表示方法有动力 粘度μ、运动粘度ν、相对粘度。
请继续学习第二章
第二章 液压传动的流体力学基础
液压系统中的工作液体既是传递功率的介质,又是液压元件的冷却、
防锈和润滑剂。在工作中产生的磨粒和来自外界的污染物,也要靠工作 液体带走。工作液体的粘性,对减少间隙的泄漏、保证液压元件的密封 性能都起着重要作用。
2.1 液压油的主要性质与选用
2.1.1 液压油的主要性质
1Pa·s = 10P(泊)= 1000 cP(厘泊)
(b) 运动粘度ν
液体的动力粘度μ与其密度ρ的比值,为液体的运动粘
度ν, 即:
运动粘度的单位为 m2/s 。 以前沿用的单位为St(斯)。单
位换算关系为
1 m2/s =104 St(斯)=106 cSt(厘斯)
就物理意义来说,ν不是一个粘度的量,但习惯上常用它来 标志液体粘度,液压油液的粘度等级是以40℃时运动粘度值 (mm2/s)为其粘度等级标号,即油的牌号
2.2.1 静压力及其特性
静压力是指液体处于静止状态时,其单位面积上所受的法向 作用力。静压力在液压传动中简称为压力,而在物理学中则称为 压强。
若静止液体某点处微元面积ΔA上作用有法向力ΔF,则该
点压力定义为:
F
lim p
A0 A
可表示为: p=F/A
我国法定的压力单位为牛顿/米2(N/m2),称为帕斯卡,简称帕 (Pa)。在液压技术中,目前还采用的压力单位有巴(bar)和工程大 气压、千克力每平方米(kgf/cm2 )等。
(3)防污措施 (a)减少外来的污染 (b)滤除系统产生的杂质 (c)控制液压油液的工作温度 (d)定期检查更换液压油液
2.2 液体静力学 液体静力学研究静止液体的力学规律和这些规律的实际应
用。这里所说的静力液体是指液体处于内部质点间无相对运动的 状态,因此液体不显示粘性,液体内部无剪切应力,只有法向应 力即压力。
液体静压力有两个重要特性:
(1)液体
静压力的方向总是沿着作用面的法线方向。
例如,牌号为L—HL22的普通液压油在40℃时运动粘度的中心值 为22 mm2/s(L表示润滑剂类,H表示液压油,L表示防锈抗氧 型)。
(c) 相对粘度
相对粘度又称条件粘度,它是按一定的测量条件制定的。 根据测量的方法不同,可分为恩氏粘度°E、赛氏粘度SSU、 雷氏粘度Re等。我国和德国等国家采用恩氏粘度。
(d) 温度对粘度的影响
液压油的粘度对温度变化十分敏感。温度升高时,粘度 下降。在液压技术中,希望工作液体的粘度随温度变化越小 越好。 粘度随温度变化特性,可以用粘度-温度曲线表示。
(e) 压力对粘度的影响
对液压油来说,压力增大时,粘度增大,但影响很小, 通常将中低压系统中的压力变化对油液粘度的影响忽略不计。
相关文档
最新文档