2013年成都中考数学试题及答案(简析)
成都市2013年中考数学试题及答案
成都市二O 一三年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( ) (A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C )32-=6 (D )0)2013(-=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A )×510 (B )13×410 (C )×510 (D )×6107.如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点'C 重合,若AB=2,则'C D 的长为( ) (A )1 (B )2 (C )3 (D )48.在平面直角坐标系中,下列函数的图像经过原点的是( ) (A )y=-x +3 (B )y=x5(C )y=x 2 (D )y=722-+-x x 9.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根 (D )没有实数根10.如图,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为( ) (A )40° (B )50° (C )80° (D )100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式312>-x 的解集为_______________. 12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD,则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+- (2)解方程组⎩⎨⎧=-=+②① 521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90° (1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:等级 成绩(用s 表示) 频数频率 A 90≤s ≤100 xB 80≤s <9035 yC s <8011 合 计501请根据上表提供的信息,解答下列问题: (1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分) 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =. (1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a=-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当33k =-时,2BP BO BA =⋅;○4PAB ∆面积的最小值为46. 其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系: 当4n =时,p =_______;当12n =时,p =_______. (参考数据:62sin15cos 754-==, 62cos15sin 754+==) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上) 26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ;(2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由: (2)若ta n ∠ADB=43,AH PA 3334-=,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.成都市二〇一三年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案及评分意见说明:(一)考生的解法与“参考答案”不同时,可参照“答案的评分标准”的精神进行评分(二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的分数.(四)评分的最小单位是1分,得分或扣分都不能出现小数.A 卷(共100分)第Ⅰ卷(共30分)一、 选择题(每小题3分,共30分) 1.B ; 2.C ; 3.A ; 4.D ; 5.B ;6.A ;7.B ;8.C ;9.A ;10.D .第Ⅱ卷(共70分)二、 填空题(每小题4分,共16分) 11.2x >;12.10;13.60;14.100.三、 解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分) (1)解:原式=343223+······4分=4.······6分(2)解:由①+②,得 36x =, ∴2x =.······3分把2x =代入①,得 21y +=,∴ 1y =-.······5分 ∴ 原方程组的解为 2,1.x y =⎧⎨=-⎩······6分16.(本小题满分6分)解:原式=2(1)(1)1a a a a --÷-······4分=(1)a a -21(1)a a -⋅-······5分 =a .······6分17.(本小题满分8分)解:(1)如图,△AB ′C ′为所求三角形.······4分(2)由图可知, 2AC =,∴线段AC 在旋转过程中所扫过的扇形的面积为:2902360S π⋅==π.······8分18.(本小题满分8分) 解:(1)4,0.7;(每空2分)······4分(2)由(1)知获得A 等级的学生共有4人,则另外两名学生为A 3和A 4.画如下树状图:所有可能出现的结果是:(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 2,A 1),(A 2,A 3),(A 2,A 4),(A 3,A 1),(A 3,A 2),(A 3,A 4),(A 4,A 1),(A 4,A 2),(A 4,A 3).······7分 或列表如下:A 1 A 2 A 3 A 4 A 1 (A 1,A 2)(A 1,A 3) (A 1,A 4) A 2 (A 2,A 1) (A 2,A 3)(A 2,A 4) A 3 (A 3,A 1) (A 3,A 2) (A 3,A 4)A 4(A 4,A 1)(A 4,A 2)(A 4,A 3)·····7分由此可见,共有12种可能出现的结果,且每种结果出现的可能性相同,其中恰好抽到A 1,A 2两名学生的结果有2种.∴P (恰好抽到A 1,A 2两名学生)21126==.·····8分19.(本小题满分10分)解:(1)∵ 一次函数11y x =+的图象经过点(A m ,2),∴ 21m =+. ······1分 解得 1m =.······2分 ∴ 点A 的坐标为(1A ,2).······3分∵ 反比例函数2ky x=的图象经过点(1A ,2), ∴ 21k =. 解得 2k =.∴ 反比例函数的表达式为22y x=. ······5分(2)由图象,得当01x <<时,12y y <;······7分当1x =时,12y y =; ······8分当1x >时,12y y >.······10分20.(本小题满分10分)解:(1)证明:∵BD ⊥BE ,A ,B ,C 三点共线,∴∠ABD +∠CBE =90°.······1分∵∠C =90°, ∴∠CBE +∠E =90°. ∴∠ABD =∠E .又∵∠A =∠C ,AD =BC , ∴△DAB ≌△BCE (AAS).······2分∴AB=CE .∴AC=AB+BC=AD+CE .······3分(2)ⅰ)连接DQ ,设BD 与PQ 交于点F .∵∠DPF =∠QBF =90°,∠DFP =∠QFB , ∴△DFP ∽△QFB .······4分∴DF PFQF BF=. 又∵∠DFQ =∠PFB ,∴△DFQ ∽△PFB .······5分∴∠DQP =∠DBA . ∴tan tan DQP DBA ∠=∠. 即在Rt △DPQ 和Rt △DAB 中,DP DAPQ AB=. ∵AD=3,AB=CE=5, ∴35DP PQ =. ·····7分ⅱ)线段DQ 的中点所经过的路径(线段)长为2334.······10分B 卷(共50分)一、填空题(每小题4分,共20分) 21.13-; 22.711; 23.0或1;24.③④;25.p c =+;p c =+(每空2分). 二、解答题(本大题共3个小题,共30分) 26.(本小题满分8分)解:(1)当37t <≤时,设v kt b =+,把(3,2),(7,10)代入得23,107.k b k b =+⎧⎨=+⎩······1分解得2,4.k b =⎧⎨=-⎩······2分∴2 4.v t =- ······3分(2)当03t ≤≤时,2.s t = ······4分当37t <≤时,[]1232(24)(3)2s t t =⨯++-- 249.t t =-+······6分∴总路程为:2747930-⨯+=,且73021 6.10⨯=> 令21s =,得24921t t -+=.解得16t =,22t =-(舍去).∴该物体从P 点运动到Q 点总路程的710时所用的时间是6秒. ······8分 27.(本小题满分10分)解:(1)PD 与⊙O 相切.理由如下:······1分过点D 作直径DE ,连接AE . 则∠DAE =90°.∴∠AED + ∠ADE =90°.∵∠ABD =∠AED ,∠PDA =∠ABD , ∴∠PDA =∠AED .······2分∴∠PDA +∠ADE =90°.∴PD 与⊙O 相切.······3分(2)连接BE ,设AH =3k ,∵3tan 4ADB ∠=,433PA AH -=,AC ⊥BD 于H .∴DH =4k ,AD =5k ,()433PA k =,43PH PA AH k =+=. ∴3tan 3DH P PH ==∴∠P =30°,8PD k =.······4分∵BD ⊥AC , ∴∠P +∠PDB =90°. ∵PD ⊥DE ,∴∠PDB +∠BDE =90°. ∴∠BDE =∠P =30°. ∵DE 为直径,∴∠DBE =90°,DE =2r =50.······5分 ∴cos 50cos30253BD DE BDE =⋅∠=︒=.······6分(3)连接CE .∵DE 为直径, ∴∠DCE =90°.∴4sin sin 50405CD DE CED DE CAD =⋅∠=⋅∠=⨯=. ······7分∵∠PDA =∠ABD =∠ACD ,∠P =∠P , ∴△PDA ∽△PCD . ∴PD DA PAPC CD PD==. ∴()43385408k k kPC k==.解得:PC =64,433k =. ······8分∴()()264433644337243AC PC PA k =-=-=-=+ ······9分 ∴S 四边形ABCD = S △ABD + S △CBD1122BD AH BD CH =⋅+⋅ 12BD AC =⋅28.(本小题满分12分)解:(1)由题意,得点B 的坐标为(4,–1). ······1分∵抛物线过点A (0,–1),B (4,–1)两点, ∴21,1144.2c b c -=⎧⎪⎨-=-⨯++⎪⎩解得2,1.b c =⎧⎨=-⎩ ∴抛物线的函数表达式为:21212y x x =-+-.······3分(2)ⅰ)∵A 的坐标为(0,–1),C 的坐标为(4,3).∴直线AC 的解析式为:y =x –1.设平移前的抛物线的顶点为P 0,则由(1)可得P 0的坐标为(2,1),且P 0在直线AC 上. ∵点P 在直线AC 上滑动,∴可设P 的坐标为(m ,m -1),则平移后的抛物线的函数表达式为21()(1)2y x m m =--+-.解方程组21,1()(1).2y x y x m m =-⎧⎪⎨=--+-⎪⎩得{11,1,x m y m ==-{222,3.x m y m =-=- 即P (m ,m -1),Q (m -2,m -3).过点P 作PE ∥x 轴,过点Q 作QE ∥y 轴,则 PE =m -(m -2)=2,QE =(m -1)-(m -3)=2. ∴PQ =AP 0.······5分若△MPQ 为等腰直角三角形,则可分以下两种情况:①当PQ 为直角边时:M 到PQ 的距离为为22(即为PQ 的长).由A (0,-1),B (4,-1),P 0(2,1)可知:△ABP 0为等腰直角三角形,且BP 0⊥AC ,BP 0=22.过点B 作直线l 1∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线l 1的解析式为:1y x b =+.又∵点B 的坐标为(4,–1),∴114b -=+.解得15b =-. ∴直线l 1的解析式为:5y x =-. 解方程组25,12 1.2y x y x x =-⎧⎪⎨=-+-⎪⎩得:114,1,x y =⎧⎨=-⎩222,7.x y =-⎧⎨=-⎩ ∴1(4,1)M -,2(2,7)M --.······7分②当PQ 为斜边时:MP =MQ =2,可求得M 到PQ 的距离为为2.取AB 的中点F ,则点F 的坐标为(2,-1).由A(0,-1),F(2,-1),P 0(2,1)可知:△AFP 0为等腰直角三角形,且F 到AC 的距离为2.∴过点F 作直线l 2∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线l 2的解析式为:2y x b =+. 又∵点F 的坐标为(2,–1), ∴212b -=+.解得23b =-. ∴直线l 2的解析式为:3y x =-. 解方程组23,12 1.2y x y x x =-⎧⎪⎨=-+-⎪⎩ 得: 1115,25,x y ⎧=+⎪⎨=-+⎪⎩2215,2 5.x y ⎧=-⎪⎨=--⎪⎩ ∴3(15,25)M +-+,4(15,25)M ---.······9分综上所述:所有符合条件的点M 的坐标为:1(4,1)M -,2(2,7)M --,3(15,25)M +-+,4(15,25)M ---.ⅱ)PQNP BQ +存在最大值,理由如下:由ⅰ)知PQ =22,当NP +BQ 取最小值时,PQNP BQ+有最大值.取点B 关于AC 的对称点B ′,易得B ′ 的坐标为(0,3),BQ = B ′Q . 连接QF ,FN ,QB ′,易得FN PQ . ∴四边形PQFN 为平行四边形. ∴NP=FQ .∴NP +BQ =F Q + B ′P ≥F B ′222425+当B ′,Q ,F 三点共线时,NP +BQ 最小,最小值为25 ∴PQ NP BQ +的最大值 222510.······12分。
2013成都中考数学试题及答案
成都市二O 一三年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( )(A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-14.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3(C )4 (D )55.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C )32-=6 (D )0)2013(-=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A )1.3×510 (B )13×410 (C )0.13×510 (D )0.13×6107.如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点'C 重合,若AB=2,则'C D 的长为( )(A )1 (B )2 (C )3(D )48.在平面直角坐标系中,下列函数的图像经过原点的是( )(A )y=-x +3 (B )y=x5(C )y=x 2 (D )y=722-+-x x9.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根(C )只有一个实数根 (D )没有实数根10.如图,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为( )(A )40° (B )50° (C )80°(D )100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式312>-x 的解集为_______________.12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD,则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米.三.解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+- (2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:等级 成绩(用s 表示) 频数频率 A 90≤s ≤100 x0.08B 80≤s <9035 y C s <8011 0.22 合 计501请根据上表提供的信息,解答下列问题:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式;(2)结合图像直接比较:当0>x 时,1y 和2y 的大小. 20.(本小题满分10分) 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值;ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________.24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当33k =-时,2BP BO BA =⋅;○4PAB ∆面积的最小值为46.其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:62sin15cos 754-==,62cos15sin 754+==)二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ;(2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3tan 4ADB ∠=,4333PA AH -=,求BD 的长;(3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q .i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q、、三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii )取BC 的中点N ,连接,NP BQ .试探究PQNP BQ+是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.成都市二O 一三年高中阶段教育学校统一招生考试数学答案A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、10015.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122=19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <;当x=1时,21y y =;当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ; (2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE ,∴QH AP PH AD =, ECQHBC BH =;设AP=x ,QH=y ,则有53yBH =∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x ,∴053=-x y 即xy 53=∴53==y x PQ DP(3)3342B 卷21.31-22.11723.3 24.③④25.c b ±2,c b 21322-+或c b --22626. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒27.(1)如图,连接DO 并延长交圆于点E ,连接AE ∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k34∴∠P=30°,∠PDH=60°∴∠BDE=30° 连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k)又∵PCPA PD ⨯=2∴)]4325(3434[)334()8(2k k k k -+⨯-=解得k=334-∴AC=7324)4325(343+=-+k k∴S=23175900)7324(3252121+=+⨯⨯=•AC BD28.(1)12212-+-=x x y(2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQNP BQ+的最大值是510。
【精校】2013年四川省成都市中考真题数学(2)
2013年四川省成都市中考真题数学(2)四、填空题(本大题共5个小题,每小题4分,共20分,)21.(4分)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为_____. 解析:将点(3,5)代入直线解析式,可得出b-5的值,继而代入可得出答案.答案:∵点(3,5)在直线y=ax+b上,∴5=3a+b,∴b-5=-3a,则==.故答案为:-.22.(4分)若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_____.解析:先确定出所有大于0且小于100的“本位数”,再根据概率公式计算即可得解. 答案:所有大于0且小于100的“本位数”有:1、2、10、11、12、20、21、22、30、31、32,共有11个,7个偶数,4个奇数,所以,P(抽到偶数)=.故答案为:.23.(4分)若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图象与反比例函数的图象的公共点的个数为.解析:不等式组的解为:a≤t≤,∵不等式组恰有3个整数解,∴-2<a≤-1.联立方程组,得:x2-ax-3a-2=0,△=a2+3a+2=(a+)2-=(a+1)(a+2)这是一个二次函数,开口向上,与x轴交点为(-2,0)和(-1,0),对称轴为直线a=-,其图象如下图所示:由图象可见:当a=-1时,△=0,此时一元二次方程有两个相等的根,即一次函数与反比例函数有一个交点;当-2<a<-1时,△<0,此时一元二次方程无实数根,即一次函数与反比例函数没有交点.∴交点的个数为:1或0.答案:1或0.24.(4分)在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2-2交于A,B 两点,且A点在y轴左侧,P点的坐标为(0,-4),连接PA,PB.有以下说法:①PO2=PA·PB;②当k>0时,(PA+AO)(PB-BO)的值随k的增大而增大;③当k=时,BP2=BO·BA;④△PAB面积的最小值为.其中正确的是.(写出所有正确说法的序号)解析:设A(m,km),B(n,kn),其中m<0,n>0.联立y=x2-2与y=kx得:x2-2=kx,即x2-3kx-6=0,∴m+n=3k,mn=-6.设直线PA的解析式为y=ax+b,将P(0,-4),A(m,km)代入得:,解得a=,b=-4,∴y=()x-4.令y=0,得x=,∴直线PA与x轴的交点坐标为(,0).同理可得,直线PB的解析式为y=()x-4,直线PB与x轴交点坐标为(,0). ∵+===0,∴直线PA、PB与x轴的交点关于y轴对称,即直线PA、PB关于y轴对称.(1)说法①错误.理由如下:如答图1所示,∵PA、PB关于y轴对称,∴点A关于y轴的对称点A′落在PB上.连接OA′,则OA=OA′,∠POA=∠POA′.假设结论:PO2=PA·PB成立,即PO2=PA′·PB,∴,又∵∠BPO=∠BPO,∴△POA′∽△PBO,∴∠POA′=∠PBO,∴∠AOP=∠PBO.而∠AOP是△PBO的外角,∴∠AOP>∠PBO,矛盾,∴说法①错误.(2)说法②错误.理由如下:易知:=-,∴OB=-OA.由对称可知,PO为△APB的角平分线,∴,∴PB=-PA.∴(PA+AO)(PB-BO)=(PA+AO)[-PA-(-OA)]=-(PA+AO)(PA-OA)=-(PA2-AO2). 如答图2所示,过点A作AD⊥y轴于点D,则OD=-km,PD=4+km.∴PA2-AO2=(PD2+AD2)-(OD2+AD2)=PD2-OD2=(4+km)2-(-km)2=8km+16,∵m+n=3k,∴k=(m+n),∴PA2-AO2=8·(m+n)·m+16=m2+mn+16=m2+×(-6)+16=m2.∴(PA+AO)(PB-BO)=-(PA2-AO2)=-·m2=-mn=-×(-6)=16.即:(PA+AO)(PB-BO)为定值,所以说法②错误.(3)说法③正确.理由如下:当k=时,联立方程组:,得A(,2),B(,-1),∴BP2=12,BO·BA=2×6=12,∴BP2=BO·BA,故说法③正确.(4)说法④正确.理由如下:S△PAB=S△PAO+S△PBO=OP·(-m)+OP·n=OP·(n-m)=2(n-m)=2=2,∴当k=0时,△PAB面积有最小值,最小值为=.故说法④正确.综上所述,正确的说法是:③④.答案:③④.25.(4分)如图,A,B,C为⊙O上相邻的三个n等分点,=,点E在上,EF为⊙O 的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p= ;当n=12时,p= .(参考数据:sin15°=cos75°=,cos15°=sin75°=)解析:如解答图所示,作辅助线,构造相似三角形.首先,在AE上取一点D,使ED=EC,连接CD,则△ABC与△CED为顶角相等的两个等腰三角形,所以△ABC∽△CED,得到;其次,证明△ACD∽△BCE,得到;由EA=ED+DA,整理得到p的通项公式为:p=c+2cos·b.将n=4,n=12代入,即可求得答案.答案:如解答图所示,连接AB、AC、BC.由题意,点A、B、C为圆上的n等分点,∴AB=BC,∠ACB=×=(度).在等腰△ABC中,过顶点B作BN⊥AC于点N,则AC=2CN=2BC·cos∠ACB=2cos·BC,∴=2cos.连接AE、BE,在AE上取一点D,使ED=EC,连接CD. ∵∠ABC=∠CED,∴△ABC与△CED为顶角相等的两个等腰三角形,∴△ABC∽△CED.∴,∠ACB=∠DCE.∵∠ACB=∠ACD+∠BCD,∠DCE=∠BCE+∠BCD,∴∠ACD=∠BCE.在△ACD与△BCE中,∵,∠ACD=∠BCE,∴△ACD∽△BCE.∴,∴DA=·EB=2cos·EB.∴EA=ED+DA=EC+2cos·EB.由折叠性质可知,p=EA′=EA,b=EB′=EB,c=EC.∴p=c+2cos·b.当n=4时,p=c+2cos45°·b=c+b;当n=12时,p=c+2cos15°·b=c+ b.故答案为:c+b,c+ b.五、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(8分)某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.根据以上信息,完成下列问题:(1)当3<t≤7时,用含t的式子表示v;(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.解析:(1)设直线BC的解析式为v=kt+b,运用待定系数法就可以求出t与v的关系式;(2)由路程=速度×时间,就可以表示出物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式,根据物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和求出总路程,然后将其代入解析式就可以求出t 值.答案:(1)设直线BC的解析式为v=kt+b,由题意,得,解得:用含t的式子表示v为v=2t-4;(2)由题意,得根据图示知,当0≤t≤3时,S=2t;当3<t≤7时,S=6+(2+2t-4)(t-3)=t2-4t+9.综上所述,S=,∴P点运动到Q点的路程为:72-4×7+9=49-28+9=30,∴30×=21,∴t2-4t+9=21,整理得,t2-4t-12=0,解得:t1=-2(舍去),t2=6.故该物体从P点运动到Q点总路程的时所用的时间为6秒.27.(10分)如图,⊙O的半径r=25,四边形ABCD内接圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.解析:(1)首先连接DO并延长交圆于点E,连接AE,由DE是直径,可得∠DAE的度数,又由∠PDA=∠ABD=∠E,可证得PD⊥DO,即可得PD与圆O相切于点D;(2)首先由tan∠ADB=,可设AH=3k,则DH=4k,又由PA=AH,易求得∠P=30°,∠PDH=60°,连接BE,则∠DBE=90°,DE=2r=50,可得BD=DE·cos30°=;(3)由(2)易得HC=(-4k),又由PD2=PA×PC,可得方程:(8k)2=(4-3)k×[4k+(25-4k)],解此方程即可求得AC的长,继而求得四边形ABCD的面积.答案:(1)PD与圆O相切.理由:如图,连接DO并延长交圆于点E,连接AE,∵DE是直径,∴∠DAE=90°,∴∠AED+∠ADE=90°,∵∠PDA=∠ABD=∠AED,∴∠PDA+∠ADE=90°,即PD⊥DO,∴PD与圆O相切于点D;(2)∵tan∠ADB=∴可设AH=3k,则DH=4k,∵PA=AH,∴PA=(4-3)k,∴PH=4k,∴在Rt△PDH中,tan∠P==,∴∠P=30°,∠PDH=60°,∵PD⊥DO,∴∠BDE=90°-∠PDH=30°,连接BE,则∠DBE=90°,DE=2r=50,∴BD=DE·cos30°=;(3)由(2)知,BH=-4k,∴HC=(-4k),又∵PD2=PA×PC,∴(8k)2=(4-3)k×[4k+(25-4k)],解得:k=4-3,∴AC=3k+(25-4k)=24+7,∴S四边形ABCD=BD·AC=×25×(24+7)=900+.28.(12分)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.解析:(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;(2)(i)首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础.若△MPQ为等腰直角三角形,则可分为以下两种情况:①当PQ为直角边时:点M到PQ的距离为.此时,将直线AC向右平移4个单位后所得直线(y=x-5)与抛物线的交点,即为所求之M点;②当PQ为斜边时:点M到PQ的距离为.此时,将直线AC向右平移2个单位后所得直线(y=x-3)与抛物线的交点,即为所求之M点.(ii)由(i)可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值.如答图2所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段B′F的长度.答案:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3)∴点B的坐标为(4,-1).∵抛物线过A(0,-1),B(4,-1)两点,∴,解得:b=2,c=-1,∴抛物线的函数表达式为:y=x2+2x-1.(2)(i)∵A(0,-1),C(4,3),∴直线AC的解析式为:y=x-1.设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.∵点P在直线AC上滑动,∴可设P的坐标为(m,m-1),则平移后抛物线的函数表达式为:y=(x-m)2+m-1.解方程组:,解得,∴P(m,m-1),Q(m-2,m-3).过点P作PE∥x轴,过点Q作QF∥y轴,则PE=m-(m-2)=2,QF=(m-1)-(m-3)=2.∴PQ==AP0.若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:①当PQ为直角边时:点M到PQ的距离为(即为PQ的长).由A(0,-1),B(4,-1),P0(2,1)可知,△ABP0为等腰直角三角形,且BP0⊥AC,BP0=.如答图1,过点B作直线l1∥AC,交抛物线y=x2+2x-1于点M,则M为符合条件的点. ∴可设直线l1的解析式为:y=x+b1,∵B(4,-1),∴-1=4+b1,解得b1=-5,∴直线l1的解析式为:y=x-5.解方程组,得:,∴M1(4,-1),M2(-2,-7).②当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为.如答图2,取AB的中点F,则点F的坐标为(2,-1).由A(0,-1),F(2,-1),P0(2,1)可知:△AFP0为等腰直角三角形,且点F到直线AC的距离为.过点F作直线l2∥AC,交抛物线y=x2+2x-1于点M,则M为符合条件的点. ∴可设直线l2的解析式为:y=x+b2,∵F(2,-1),∴-1=2+b2,解得b2=-3,∴直线l2的解析式为:y=x-3.解方程组,得:,∴M3(1+,-2+),M4(1-,-2-).综上所述,所有符合条件的点M的坐标为:M1(4,-1),M2(-2,-7),M3(1+,-2+),M4(1-,-2-).ii)存在最大值.理由如下:由(i)知PQ=为定值,则当NP+BQ取最小值时,有最大值.如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形.∴NP=FQ.∴NP+BQ=FQ+B′Q≥FB′==.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为.∴的最大值为=.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2013四川成都中考数学
成都市二〇一三年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(2013四川成都,1,3分)2的相反数是( )A .2B .2-C .12D .-12答案:B2.(2013四川成都,2,3分)如图所示的几何体的俯视图可能是( )A .B .C .D .答案:C3.(2013四川成都,3,3分)要使分式5x -1有意义,则x 的取值范围是( )A .x ≠1B .x >1C .x <1D .x ≠-1答案:A4.(2013四川成都,4,3分)如图,在△ABC 中,B C ∠=∠, AB =5,则AC 的长为( )A .2B .3C .4D .5 答案:D5.(2013四川成都,5,3分)下列运算,正确的是( )A .13×(-3)=1B .5-8=-3C .2-3=-6 D .(-2013)0=0答案:B6.(2013四川成都,6,3分)参加成都市今年初三毕业会考的学生约有13万人,将13万用科学记数法表示应为( ) A .1.3×105 B .13×104C .0.13×105D .0.13×106答案:A7.(2013四川成都,7,3分)如图,将矩形ABCD 沿对角线BD 折叠,使点C 与点C '重合.若2AB =,则C D '的长为( )A .1B .2C .3D .4 答案:B8.(2013四川成都,8,3分)在平面直角坐标系中,下列函数的图象经过原点的是( ) A .y =-x +3 B .y =5xC .y =2xD .y =-2x 2+x -7答案:C9.(2013四川成都,9,3分)一元二次方程x 2+x -2=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 答案:A10.(2013四川成都,10,3分)如图,点A ,B ,C 在⊙O 上,A ∠=50°,则BOC ∠的度数为( )A .40°B .50°C .80°D .100°答案:D二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.(2013四川成都,11,4分)不等式2x -1>3的解集为_______.答案:x >212.(2013四川成都,12,4分)今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是_______元.答案:10;13.(2013四川成都,13,4分)如图,∠B =30°,若AB ∥CD ,CB 平分∠ACD ,则∠ACD =_______度.答案:60;14.(2013四川成都,14,4分)如图,某山坡的坡面AB =200米,坡角∠BAC =30°,则该山坡的高BC 的长为_______米.答案:100.三、解答题(本大题共6个小题,共54分,答案写在答题卡上) 15. (本小题满分12分,每题6分)(2013四川成都,15①,6分) (1)计算:(-2)2+|-3|+2sin60°-12. (1)解:原式=4+3+2×32-23······4分=4.······6分(2013四川成都,15②,6分) (2)解方程组:⎩⎨⎧x +y =1, ①2x -y =5. ②(2)解:由①+②,得 3x =6,∴ x =2.······3分把x =2代入①,得 2+y =1,∴ y =-1.······5分 ∴ 原方程组的解为 ⎩⎨⎧x =2,y =-1.·····6分16.(2013四川成都,16,6分) (本小题满分6分)化简:(a 2-a )÷a 2-2a +1a -1.答案:解:原式=a (a -1)÷(a -1)2a -1······4分 =a (a -1)·a -1(a -1)2······5分 =a .······6分17.(2013四川成都,17,8分) (本小题满分8分)如图,在边长为1的小正方形组成的的方格纸上,将△ABC 绕着点A 顺时针旋转90°. (1)画出旋转后的△AB ′C ′;(2)求线段AC 在旋转过程中所扫过的扇形的面积.答案:解:(1)如图,△AB ′C ′为所求三角形.······4分(2)由图可知,AC=2,∴线段AC在旋转过程中所扫过的扇形的面积为:S=90π·22360=π.······8分18.(本小题满分8分)(2013四川成都,18,8分)“中国梦”关乎每个人的幸福生活.为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中x的值为_______,y的值为_______.(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品获得A 等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到A1和A2的概率.答案:(本小题满分8分)解:(1)4,0.7;(每空2分) ······4分(2)由(1)知获得A等级的学生共有4人,则另外两名学生为A3和A4.画如下树状图:所有可能出现的结果是:(A1,A2),(A1,A3),(A1,A4),(A2,A1),(A2,A3),(A2,A4),(A3,A1),(A3,A2),(A3,A4),(A4,A1),(A4,A2),(A4,A3).······7分或列表如下:··7分由此可见,共有12种可能出现的结果,且每种结果出现的可能性相同,其中恰好抽到A1,A2两名学生的结果有2种.∴P (恰好抽到A 1,A 2两名学生)=212=16.·····8分19.(本小题满分10分)(2013四川成都,19,10分)如图,一次函数y 1=x +1的图象与反比例函数y 2=kx (k 为常数,且k ≠0)的图象都经过点A (m ,2).(1)求A 点的坐标及反比例函数的表达式;(2)结合图象直接比较:当x >0时,y 1与y 2的大小.答案:(本小题满分10分)解:(1)∵ 一次函数y 1=x +1的图象经过点A (m ,2),∴ 2=m +1.······1分 解得 m =1.·····2分 ∴ 点A 的坐标为A (1,2).······3分∵ 反比例函数y 2=kx 的图象经过点A (1,2),∴ 2=k1.解得 k =2.∴ 反比例函数的表达式为y 2=2x .······5分(2)由图象,得当0<x <1时,y 1<y 2;······7分当x =1时,y 1=y 2; ······8分当x >1时,y 1>y 2.······10分20.(本小题满分10分)(2013四川成都,20,10分)如图,点B 在线段AC 上,点D ,E 在AC 的同侧,∠A =∠C =90°,BD ⊥BE ,AD =BC .(1)求证:AC =AD +CE ;(2)若AD =3,AB =5,点P 为线段AB 上的动点,连接DP ,作PQ ⊥DP ,交直线BE 于点Q . ⅰ)当点P 与A ,B 两点不重合时,求DPPQ的值;ⅱ)当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)答案:解:(1)证明:∵BD ⊥BE ,A ,B ,C 三点共线,∴∠ABD +∠CBE =90°. ······1分∵∠C =90°, ∴∠CBE +∠E =90°. ∴∠ABD =∠E .又∵∠A =∠C ,AD =BC , ∴△DAB ≌△BCE (AAS). ······2分 ∴AB=CE .∴AC=AB +BC=AD +CE .······3分(2)ⅰ)连接DQ ,设BD 与PQ 交于点F .∵∠DPF =∠QBF =90°,∠DFP =∠QFB , ∴△DFP ∽△QFB .······4分∴DF QF =PF BF. 又∵∠DFQ =∠PFB , ∴△DFQ ∽△PFB .······5分∴∠DQP =∠DBA . ∴tan ∠DQP =tan ∠DBA .即在Rt △DPQ 和Rt △DAB 中,DP PQ =DA AB .∵AD=3,AB=CE=5, ∴DP PQ =35.·····7分 ⅱ)线段DQ 的中点所经过的路径(线段)长为2334.······10分B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(2013四川成都,21,4分)已知点(3,5)在直线y =ax +b (a ,b 为常数,且a ≠0)上,则ab -5的值为_______.答案:-1322.(2013四川成都,22,4分)若正整数n 使得在计算n +(n +1)+(n +2)的过程中,各数位上均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______. 答案:71123.(2013四川成都,23,4分)若关于t 的不等式组⎩⎨⎧t -a ≥0,2t +1≤4恰有三个整数解,则关于x 的一次函数y =14x -a 的图象与反比例函数y =3a +2x的图象的公共点的个数为_______.答案:0或124.(2013四川成都,24,4分)在平面直角坐标系xOy 中,直线y =kx (k 为常数)与抛物线y =-13x 2+2交于A ,B 两点,且A 点在y 轴的左侧, P 点的坐标为(0,–4),连接P A ,PB .有以下说法:①PO 2=P A·PB ;②当k >0时,(P A +AO )(PB -BO )的值随k 的增大而增大;③当k =-33时,BP 2=BO·BA ;④△P AB 面积的最小值为46.其中正确的是_______.(写出所有正确说法的序号) 答案:③④25.(2013四川成都,25,4分)如图,点A ,B ,C 为⊙O 上相邻的三个n 等分点,⌒AB =⌒BC ,点E 在⌒BC 上,EF 为⊙O 的直径,将⊙O 沿着EF 折叠,使点A 与A ′重合,点B 与B ′重合,连接EB ′,EC ,EA ′.设EB ′=b ,EC =c ,EA ′=p .探究b ,c ,p 三者的数量关系:发现当n =3时,p =b +c .请继续探究b ,c ,p 三者的数量关系:当n =4时,p =_______;当n =12时,p =_______. (参考数据:sin15°=cos75°=6-24,cos15°=sin75°=6+24)答案:p =2b +c ;p =6+22b +c (每空2分).二、解答题(本大题共3个小题,共30分,答案写在答题卡上) 26.(本小题满分8分)(2013四川成都,26,8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米/秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (3<n ≤7)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题: (1)当3<t ≤7时,用含t 的代数式表示v ;(2)分别求该物体在0≤t ≤3和3<t ≤7时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 点总路程的710时所用的时间.答案:解:(1)当3<t ≤7时,设v =kt +b ,把(3,2),(7,10)代入得⎩⎨⎧2=3k +b ,10=7k +b .······1分解得⎩⎨⎧k =2,b =-4.······2分∴ v =2t -4. ······3分(2)当0≤t ≤3时,s =2t .······4分当3<t ≤7时,s =2×3+12[2+(2t -4)](t -3)=t 2-4t +9······6分∴总路程为:72-4×7+9=30,且30×710=21>6.令s =21,得t 2-4t +9=21.解得t 1=6,t 2=-2 (舍去). ∴该物体从P 点运动到Q 点总路程的710时所用的时间是6秒.······8分27.(本小题满分10分)(2013四川成都,27,10分)如图,⊙O 的半径r =25,四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于点H ,P 为CA 延长线上一点,且∠PDA =∠ABD .(1)试判断PD 与⊙O 的位置关系,并说明理由; (2)若tan ∠ADB =34,P A =43-33AH ,求BD 的长;(3)在(2)的条件下,求四边形ABCD 的面积.答案:解:(1)PD 与⊙O 相切.理由如下:······1分过点D 作直径DE ,连接AE . 则∠DAE =90°.∴∠AED +∠ADE =90°.∵∠ABD =∠AED ,∠PDA =∠ABD , ∴∠PDA =∠AED . ······2分 ∴∠PDA +∠ADE =90°.∴PD 与⊙O 相切.······3分(2)连接BE ,设AH =3k ,∵tan ∠ADB =34,P A =43-33AH ,AC ⊥BD 于H .∴DH =4k ,AD =5k ,P A =(43-3)k ,PH =P A +AH =43k . ∴tan P =DH PH =33.∴∠P =30°,PD =8k . ······4分∵BD ⊥AC ,∴∠P +∠PDB =90°. ∵PD ⊥DE ,∴∠PDB +∠BDE =90°. ∴∠BDE =∠P =30°. ∵DE 为直径,∴∠DBE =90°,DE =2r =50. ······5分∴BD =DE ·cos ∠BDE =50cos30°=253.······6分(3)连接CE .∵DE 为直径, ∴∠DCE =90°.∴CD =DE ·sin ∠CED =DE ·sin ∠CAD =50×45=40.······7分∵∠PDA =∠ABD =∠ACD ,∠P =∠P , ∴△PDA ∽△PCD . ∴PD PC =DA CD =P A PD. ∴8k PC =5k 40=(43-3)k 8k.解得:PC =64,k =43-3. ······8分∴AC =PC -P A =64-(43-3)k =64-(43-3)2=7+243. ······9分 ∴S 四边形ABCD =S △ABD + S △CBD =12BD ·AH +12BD ·CH=12BD ·AC =900+17532.······10分28.(本小题满分12分)(2013四川成都,28,12分)在平面直角坐标系中,已知抛物线y =-12x 2+bx +c (b ,c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,–1),C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过A ,B 两点,求抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与直线AC 交于另一点Q .ⅰ)若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M ,P ,Q 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ⅱ)取BC 的中点N ,连接NP ,BQ .试探究PQ NP +BQ 是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.答案:解:(1)由题意,得点B 的坐标为(4,–1).······1分∵抛物线过点A (0,–1),B (4,–1)两点,∴⎩⎪⎨⎪⎧-1=c ,-1=-12×42+4b +c . 解得⎩⎨⎧b =2,c =-1. ∴抛物线的函数表达式为:y =-12x 2+2x -1.······3分(2)ⅰ)∵A 的坐标为(0,–1),C 的坐标为(4,3).∴直线AC 的解析式为:y =x -1.设平移前的抛物线的顶点为P 0,则由(1)可得P 0的坐标为(2,1),且P 0在直线AC 上. ∵点P 在直线AC 上滑动,∴可设P 的坐标为(m ,m -1), 则平移后的抛物线的函数表达式为y =-12(x -m )2+(m -1).解方程组:⎩⎪⎨⎪⎧y =x -1,y =-12(x -m )2+(m -1) 得⎩⎨⎧x 1=m ,y 1=m -1; ⎩⎨⎧x 2=m -2,y 2=m -3. 即P (m ,m -1),Q (m -2,m -3).过点P 作PE ∥x 轴,过点Q 作QE ∥y 轴,则 PE =m -(m -2)=2,QE =(m -1)-(m -3)=2. ∴PQ =22=AP 0.······5分若△MPQ 为等腰直角三角形,则可分以下两种情况:①当PQ 为直角边时:M 到PQ 的距离为为22(即为PQ 的长). 由A (0,-1),B (4,-1),P 0(2,1)可知:△ABP 0为等腰直角三角形,且BP 0⊥AC ,BP 0=22.过点B 作直线l 1∥AC 交抛物线y =-12x 2+2x -1于点M ,则M 为符合条件的点.∴可设直线l 1的解析式为:y =x +b 1.又∵点B 的坐标为(4,–1),∴-1=4+b 1.解得b 1=-5. ∴直线l 1的解析式为:y =x -5.解方程组⎩⎪⎨⎪⎧y =x -5,y =-12x 2+2x -1. 得:⎩⎨⎧x 1=4,y 1=-1; ⎩⎨⎧x 2=-2,y 2=-7.∴M 1(4,-1),M 2(-2,-7).······7分②当PQ 为斜边时:MP =MQ =2,可求得M 到PQ 的距离为为2.第 11 页,共 11页取AB 的中点F ,则点F 的坐标为(2,-1).由A(0,-1),F(2,-1),P 0(2,1)可知:△AFP 0为等腰直角三角形,且F 到AC 的距离为2.∴过点F 作直线l 2∥AC 交抛物线y =-12x 2+2x -1于点M ,则M 为符合条件的点. ∴可设直线l 2的解析式为:y =x +b 2.又∵点F 的坐标为(2,–1),∴-1=2+b 2.解得b 2=-3.∴直线l 2的解析式为:y =x -3.解方程组⎩⎪⎨⎪⎧y =x -3,y =-12x 2+2x -1. 得:⎩⎪⎨⎪⎧x 1=1+5,y 1=-2+5; ⎩⎪⎨⎪⎧x 2=1-5,y 2=-2- 5. ∴M 3(1+5,-2+5),M 4(1-5,-2-5).······9分 综上所述:所有符合条件的点M 的坐标为:M 1(4,-1),M 2(-2,-7),M 3(1+5,-2+5),M 4(1-5,-2-5).ⅱ)PQ NP +BQ 存在最大值,理由如下: 由ⅰ)知PQ =22,当NP +BQ 取最小值时,PQ NP +BQ有最大值. 取点B 关于AC 的对称点B ′,易得B ′ 的坐标为(0,3),BQ = B ′Q . 连接QF ,FN ,QB ′,易得FN ∥PQ ,FN =PQ .∴四边形PQFN 为平行四边形.∴NP=FQ .∴NP +BQ =F Q + B ′P ≥F B ′=22+42=25.当B ′,Q ,F 三点共线时,NP +BQ 最小,最小值为25. ∴PQ NP +BQ 的最大值为2225=105. ······12分。
2013年四川省成都市中考数学试卷
15.(本小题满分 12 分,每题 6 分)
(1)计算: (2)2 | 3|+2sin60 12 .
(2)解方程组:
x
y
1,
2x y 5.
① ②
16.(本小题满分 6 分) 化简: (a2 a) a2 2a 1 . a 1
17.(本小题满分 8 分)
A. 40
()
B. 50
C. 80
D.100
第Ⅱ卷(非选择题 共 70 分)
二、填空题(本大题共 4 个小题,每小题 4 分,共 16 分.答案写在答题卡上)
11.不等式 2x 1>3 的解集为
.
12.今年 4 月 20 日在雅安市芦山县发生了 7.0 级
的大地震,全川人民众志成城,抗震救灾.某
班组织“捐零花钱,献爱心”活动,全班 50 名
B. y 5 x
C. y 2x
9.一元二次方程 x2 x 2 0 的根的情况是
)
D. y 2x2 x 7
()
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根
10.如图,点 A , B , C 在 O 上, A 50 ,则 BOC 的度数为
次参赛作品中获得 A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图
或列表法求恰好抽到学生 A1 和 A2 的概率.
19.(本小题满分 10 分)
如图,一次函数
y1
x
1的图像与反比例函数
y2
k x
( k 为常数,且 k 0 )的图像都经过点 A(m,2) .
(1)求点 A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当 x>0 时, y1 和 y2 的大小.
2013成都中考数学试题word版(含参考答案解析及评分标准)
成都市二O 一三年中考阶段教育学校统一招生考试(含成都市初三毕业会考)(解析版)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1. 2的相反数是A. 2B. 2-C. 12D. 12-2. 如图所示的几何体的俯视图可能是3. 要使分式51x -有意义,则x 的取值范围是A. 1x ≠B. 1x >C. 1x <D. 1x ≠-4. 如图,在ABC ∆中,B C ∠=∠,5AB =,则AC 的长为A. 2B. 3C. 4 D . 55. 下列运算正确的是A. 1(3)13⨯-= B . 583-=- C. 326-= D. 0(2013)0-=6. 参加成都今年初三毕业会考的学生约有13万人,将13万用科学记数法表示应为A . 51.310⨯ B. 41310⨯ C. 50.1310⨯D. 60.1310⨯7. 如图,将矩形ABCD 沿对角线BD 折叠,使点C 与'C 重合.若2AB =,则'C D 的长度为A. 1 B . 2 C. 3 D. 48. 在平面直角坐标系中,下列函数的图像经过原点的是A.3y x =-+B. 5y x = C . 2y x = D. 227y x x =-+-9. 一元二次方程220x x +-=的根的情况是A . 有两个不相等的实数根 B. 有两个相等的实数根 C. 只有一个实数根 D. 没有实数根10. 如图,点,,A B C 在⊙O 上,50A ∠= ,则BOC ∠的度数为A. 40B. 50C. 80 D . 100第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 不等式213x ->的解集为 2x > .12. 今年4月20日雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是 10 元.13. 如图,30B ∠= ,若//AB CD ,CB 平分ACD ∠,则ACD ∠= 60 度. 14. 如图,某山坡的坡面200AB =米,坡角30BAC ∠= ,则该山坡的高BC 的长为 100 米.三、解答题(本大题共6个小题,共54分。
2013成都中考
2013 年四川省成都市中考题数学试卷一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.每小题均有四个选项.其中只有一 项符合题目要求,答案涂在答题卡上)1.2 的相反数是( )C. A. 2 B. -21 2VIP 显示解析2.如图所示的几何体的俯视图可能是()A.显示解析 3.要使分式B.C.5 x−1有意义,则 x 的取值范围是( )A. x≠ 1显示解析B. x> 1C. x< 14.如图,在△ABC 中,∠B=∠C,AB=5,则 AC 的长为()A. 2显示解析 5.下列运算正确的是( )B. 3C. 4A.1 3×( -3) =1显示解析B. 5-8=-3C. 2 - 3 =66.参加成都市今年初三毕业会考的学生约有 13 万人,将 13 万用科学记数法表示应为()A. 1.3×10 5显示解析B. 13×10 4C. 0.13×10 57.如图,将矩形 ABCD 沿对角线 BD 折叠,使点 C 和点 C′重合,若 AB=2,则 C′D 的长为( )A. 1显示解析B. 2C. 38.在平面直角坐标系中,下列函数的图象经过原点的是()B. y= A. y=-x+35C. y=2xx显示解析 9.一元二次方程 x2+x-2=0 的根的情况是( )A. 有 两 个 不 相 等 的 实 数 根 C. 只 有 一 个 实 数 根显示解析B. 有 两 个 相 等 的 实 数 根 D. 没 有 实 数 根10.如图,点 A,B,C 在⊙O 上,∠A=50° ,则∠BOC 的度数为()A. 40°显示解析B. 50°C. 80°二.填空题(本大题共 4 个小题,每小题 4 分,共 16 分,答案写在答题卡上)11.不等式 2x-1>3 的解集是. 显示解析12. 今年 4 月 20 日在雅安市芦山县发生了 7.0 级的大 地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班 50 名学生的捐款情况如图 所示,则本次捐款金额的众数是元. 显示解析13.如图,∠B=30° ,若 AB∥CD,CB 平分∠ACD,则∠ACD=度. 显示解析14.如图,某山坡的坡面 AB=200 米,坡角∠BAC=30° ,则该山坡 的高 BC 的长为米. 显示解析三、解答题(本大题共 6 个小题,共 54 分)15.(1)计算:(−2)2+|−3 |+2sin60°− 12(2)解方程组:x+y=12x−y=5.显示解析 16.化简(a2−a)÷a −2a+12a−1. 显示解析17.如图,在边长为 1 的小正方形组成的方格纸上,将△ABC 绕着点 A 顺时针旋 转 90° (1)画出旋转之后的△AB′C′; (2)求线段 AC 旋转过程中扫过的扇形的面积. 显示解析 18.“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校 开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的 50 件作品 的成绩(单位:分)进行统计如下: 等级 A B C 合 计 请根据上表提供的信息,解答下列问题: (1)表中的 x 的值为 成绩(用 s 表示) 90≤s≤100 80≤s<90 s<80 频数 x 35 11 50 频率 0.08 y 0.22 1,y 的值为(2)将本次参赛作品获得 A 等级的学生依次用 A1,A2,A3,…表示,现该校决定从本次参赛作品中获得 A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生 A1 和 A2 的 概率. 显示解析19.如图,一次函数 y1=x+1 的图象与反比例函数 y 2 =k x(k 为常数,且 k≠0)的图象都经过点 A(m,2) (1)求点 A 的坐标及反比例函数的表达式; (2)结合图象直接比较:当 x>0 时,y1 和 y2 的大小. 显示解析20.如图,点 B 在线段 AC 上,点 D,E 在 AC 同侧,∠A= ∠C=90° ,BD⊥BE,AD=BC. (1)求证:AC=AD+CE; (2)若 AD=3,CE=5,点 P 为线段 AB 上的动点,连接 DP,作 PQ⊥DP,交直线 BE 于点 Q; (i)当点 P 与 A,B 两点不重合时,求DP PQ的值; (ii)当点 P 从 A 点运动到 AC 的中点时,求线段 DQ 的中点所经过的路径(线段)长.(直接写出结果, 不必写出解答过程) 显示解析四、填空题(本大题共 5 个小题,每小题 4 分,共 20 分,)21.已知点(3,5)在直线 y=ax+b(a,b 为常数,且 a≠0)上,则a b−5的值为. 显示解析22. 若正整数 n 使得在计算 n+ (n+1) (n+2) + 的过程中, 各数位均不产生进位现象, 则称 n 为“本位数”. 例 如 2 和 30 是“本位数”,而 5 和 91 不是“本位数”.现从所有大于 0 且小于 100 的“本位数”中,随机抽取一个 数,抽到偶数的概率为. 显示解析 23.若关于 t 的不等式组t−a≥02t+1≤4,恰有三个整数解,则关于 x 的一次函数 y=1 4 x−a 的图象与反比例函数 y= 3a+2x的图象的公共点的个数为. 显示解析 24.在平面直角坐标系 xOy 中,直线 y=kx(k 为常数)与抛物线 y=1 3x2-2 交于 A,B 两点,且 A 点在 y 轴左侧,P 点的坐标为(0,-4),连接 PA,PB.有以下说法: ①PO2=PA•PB; ②当 k>0 时,(PA+AO)(PB-BO)的值随 k 的增大而增大; ③当 k=−3 3时,BP2=BO•BA; ④△PAB 面积的最小值为 46. 其中正确的是.(写出所有正确说法的序号) 显示解析25.如图,A,B,C 为⊙O 上相邻的三个 n 等分点,AB=BC,点 E 在BC上,EF 为⊙O 的直径,将⊙O 沿 EF 折叠,使点 A 与 A′重合,点 B 与 B′重合,连接 EB′,EC,EA′.设 EB′=b,EC=c,EA′=p.现探究 b,c,p 三者的数量关系:发现当 n=3 时,p=b+c.请继续探究 b,c,p 三者的数量关系:当 n=4 时,p=;当 n=12 时,p= . (参考数据:sin15° cos75° = =6−2 4 ,cos15° sin75° = = 6+2 4) 显示解析四、解答题(本小题共三个小题,共 30 分.答案写在答题卡上)26.某物体从 P 点运动到 Q 点所用时间为 7 秒,其运动速度 v(米每秒) 关于时间 t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进 3 秒运动的路程在数值上等 于矩形 AODB 的面积. 由物理学知识还可知: 该物体前 n (3<n≤7) 秒运动的路程在数值上等于矩形 AODB 的面积与梯形 BDNM 的面积之和. 根据以上信息,完成下列问题: (1)当 3<n≤7 时,用含 t 的式子表示 v; (2)分别求该物体在 0≤t≤3 和 3<n≤7 时,运动的路程 s(米)关于时间 t(秒)的函数关系式;并求该物 体从 P 点运动到 Q 总路程的7 10时所用的时间. 显示解析27.如图,⊙O 的半径 r=25,四边形 ABCD 内接圆⊙O,AC⊥ BD 于点 H,P 为 CA 延长线上的一点,且∠PDA=∠ABD. (1)试判断 PD 与⊙O 的位置关系,并说明理由; (2)若 tan∠ADB=3 4,PA=43−33AH,求 BD 的长; (3)在(2)的条件下,求四边形 ABCD 的面积. 显示解析 28.在平面直角坐标系中,已知抛物线 y=−12x2+bx+c(b,c 为常数)的顶点为 P,等腰直角三角形 ABC 的顶点 A 的坐标为(0,-1),C 的坐标为(4, 3),直角顶点 B 在第四象限. (1)如图,若该抛物线过 A,B 两点,求该抛物线的函数表达式; (2)平移(1)中的抛物线,使顶点 P 在直线 AC 上滑动,且与 AC 交于另一点 Q. (i)若点 M 在直线 AC 下方,且为平移前(1)中的抛物线上的点,当以 M、P、Q 三点为顶点的三角形 是等腰直角三角形时,求出所有符合条件的点 M 的坐标; (ii)取 BC 的中点 N,连接 NP,BQ.试探究PQ NP+BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.。
2013四川成都中考数学(含解析)
19.解: ( 1 )∵一次函数 y1 x 1 的图象经过点 A(m , 2) , ∴ 2 m 1 . 解得 m 1 . ∴点 A 的坐标为 A(1, 2) . ∵反比例函数 y2 ∴2
k . 1 2 . x
k 的图象经过点 A(1, 2) , x
解得 k 2 . ∴反比例函数的表达式为 y2
②当 k 0 时,( PA AO)( PB BO) 的值随 k 的增大而增大;③当 k
3 时, BP2 BO BA ; 3
④ △PAB 面积的最小值为 4 6 .其中正确的是__________. (写出所有正确说法的序号)
5 / 18
25.如图, A , B , C ,为⊙ O 上相邻的三个 n 等分点, AB BC ,点 E 在弧 BC 上, EF 为⊙ O 的直径,将⊙ O 沿 EF 折叠,使点 A 与 A 重合,连接 EB , EC , EA .设 EB b , EC c , EA p .先探究 b , c , p 三者的数量关系:发现当 n 3 时, p b c .请继续探究 b , c ,
12.今年 4 月 20 日在雅安市芦山县发生了 7.0 级的大地震,全川人民众志成城,抗震救灾,某班组 织“捐零花钱,献爱心”活动,全班 50 名学生的捐款情况如图所示,则本次捐款金额的众数是 __________元.
13.如图, B 30 ,若 AB∥CD , CB 平分 ACD ,则 ACD __________度.
PQ 是否存在最大值?若存在,求出该最大 NP BQ
7 / 18
2013 年四川成都中考数学试卷答案
A 卷(共 100 分) 第Ⅰ卷(共 30 分) 一、选择题(本题共 30 分,每小题 3 分) 题号 答案 1 B 2 C 3 A 4 D 5 B 6 A 7 B 8 C 9 A 10 D
【初中数学】四川省成都市2013年中考数学试卷(解析版1) 通用
四川省成都市2013年中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)D2.(3分)(2013•成都)如图所示的几何体的俯视图可能是()D2013•成都)要使分式有意义,则x的取值范围是()3.(3分)(4.(3分)(2013•成都)如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()×(﹣3)=1、,运算错误,故本选项错误;6.(3分)(2013•成都)参加成都市今年初三毕业会考的学生约有13万人,将13万用科学记7.(3分)(2013•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()210.(3分)(2013•成都)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2013•成都)不等式2x﹣1>3的解集是x>2.12.(4分)(2013•成都)今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是10元.13.(4分)(2013•成都)如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=60度.14.(4分)(2013•成都)如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为100米.AB=100三、解答题(本大题共6个小题,共54分)15.(12分)(2013•成都)(1)计算:(2)解方程组:.+2×)故方程组的解为16.(6分)(2013•成都)化简.×=a17.(8分)(2013•成都)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A 顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.18.(8分)(2013•成都)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参请根据上表提供的信息,解答下列问题:(1)表中的x的值为4,y的值为0.7(2)将本次参赛作品获得A等级的学生一次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.y=19.(10分)(2013•成都)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.的坐标代入:,;20.(10分)(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)相似可得=,然后求出BF相似可得=,最后利用相似三角形对应边成比例可得=,=,=,BF=,=,BF得,,=;QF=×=4= MN=BQ=的中点所经过的路径(线段)长为四、填空题(本大题共5个小题,每小题4分,共20分,)21.(4分)(2013•成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为﹣.==.故答案为:﹣22.(4分)(2013•成都)若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为.故答案为:.23.(4分)(2013•成都)若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图象与反比例函数的图象的公共点的个数为1或0.根据不等式组≤联立方程组得:a+﹣﹣24.(4分)(2013•成都)在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2﹣2交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=时,BP2=BO•BA;④△PAB面积的最小值为.其中正确的是③④.(写出所有正确说法的序号)=2,当值为x得:,解得a=)x=轴的交点坐标为(),+==,易知:=,OA,﹣PA﹣(﹣OA((k=•m mn+16=×+16=﹣﹣•﹣×k=时,联立方程组:(=OP OP=2=2,面积有最小值,最小值为25.(4分)(2013•成都)如图,A,B,C为⊙O上相邻的三个n等分点,=,点E在上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p=c+b;当n=12时,p=c+b.(参考数据:,)得到,得到p=c+2cosACB=×=ACB=2cos =2cos.,∠,∠,DA=•EA=ED+DA=EC+2cos•p=c+2cos•bb=c+c+c+•四、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(8分)(2013•成都)某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前n(3<n≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.根据以上信息,完成下列问题:(1)当3<n≤7时,用含t的式子表示v;(2)分别求该物体在0≤t≤3和3<n≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.然后将其,解得:S=××点总路程的27.(10分)(2013•成都)如图,⊙O的半径r=25,四边形ABCD内接圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.,可设PA==HC=(4 [4k+(25ADB=﹣PH=4P=,﹣HC=(4[4k+﹣AC=3k+(﹣=24BD AC=2524=900+28.(12分)(2013•成都)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.的距离为的距离为.此时,将直线PQ=有最大值.x(解方程组:,解得=AP的距离为.y=解方程组,得:,的距离为的距离为x解方程组,得:,)﹣1+2+,﹣﹣PQ=取最小值时,有最大值.=.最小,最小值为的最大值为=。
【精校】2013年四川省成都市中考真题数学(1)
2013年四川省成都市中考真题数学(1)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)2的相反数是( )A. 2B. -2C.D.解析:2的相反数为:-2.答案:B.2.(3分)如图所示的几何体的俯视图可能是( )A.B.C.D.解析:所给图形的俯视图是一个带有圆心的圆.答案:C.3.(3分)要使分式有意义,则x的取值范围是( )A. x≠1B. x>1C. x<1D. x≠-1解析:∵分式有意义,∴x-1≠0,解得:x≠1.答案:A.4.(3分)如图,在△ABC中,∠B=∠C,AB=5,则AC的长为( )A. 2B. 3C. 4D. 5解析:∵∠B=∠C,∴AB=AC=5.答案:D.5.(3分)下列运算正确的是( )A. ×(-3)=1B. 5-8=-3C. 2-3=6D. (-2013)0=0解析:A、×(-3)=-1,运算错误,故本选项错误;B、5-8=-3,运算正确,故本选项正确;C、2-3=,运算错误,故本选项错误;D、(-2013)0=1,运算错误,故本选项错误;答案:B.6.(3分)参加成都市今年初三毕业会考的学生约有13万人,将13万用科学记数法表示应为( )A. 1.3×105B. 13×104C. 0.13×105D. 0.13×106解析:将13万用科学记数法表示为1.3×105.答案:A.7.(3分)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D 的长为( )A. 1B. 2C. 3D. 4解析:在矩形ABCD中,CD=AB,∵矩形ABCD沿对角线BD折叠后点C和点C′重合,∴C′D=CD,∴C′D=AB,∵AB=2,∴C′D=2.答案:B.8.(3分)在平面直角坐标系中,下列函数的图象经过原点的是( )A. y=-x+3B. y=C. y=2xD. y=-2x2+x-7解析:A、当x=0时,y=3,不经过原点,故本选项错误;B、反比例函数,不经过原点,故本选项错误;C、当x=0时,y=0,经过原点,故本选项正确;D、当x=0时,y=-7,不经过原点,故本选项错误;答案:C.9.(3分)一元二次方程x2+x-2=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根解析:△=b2-4ac=12-4×1×(-2)=9,∵9>0,∴原方程有两个不相等的实数根.答案:A.10.(3分)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为( )A. 40°B. 50°C. 80°D. 100°解析:由题意得,∠BOC=2∠A=100°.答案:D.二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)不等式2x-1>3的解集是.解析:2x-1>3,移项得:2x>3+1,合并同类项得:2x>4,不等式的两边都除以2得:x>2,答案:x>2.12.(4分)今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是元.解析:捐款10元的人数最多,故本次捐款金额的众数是10元.答案:10.13.(4分)如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=度.解析:∵AB∥CD,∠B=30°,∴∠BCD=∠B=30°,∵CB平分∠ACD,∴∠ACD=2∠BCD=60°.答案:60.14.(4分)如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为米.解析:由题意得,∠BCA=90°,∠BAC=30°,AB=200米,故可得BC=AB=100米.答案:100.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(2)解方程组:.解析:(1)分别进行平方、绝对值、二次根式的化简,然后代入特殊角的三角函数值,继而合并可得出答案.(2)①+②可得出x的值,将x的值代入①可得y的值,继而得出方程组的解.答案:(1)原式=4++2×-2=4;(2),①+②可得:3x=6,解得:x=2,将x=2代入①可得:y=-1,故方程组的解为.16.(6分)化简.解析:除以一个分式等于乘以这个分式的倒数,由此计算即可.答案:原式=a(a-1)×=a.17.(8分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.解析:(1)根据网格结构找出点B、C旋转后的对应点B′、C′的位置,然后顺次连接即可;(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.答案:(1)△AB′C′如图所示;(2)由图可知,AC=2,∴线段AC旋转过程中扫过的扇形的面积==π.18.(8分)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:请根据上表提供的信息,解答下列问题:(1)表中的x的值为,y的值为(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.解析:(1)用50减去B等级与C等级的学生人数,即可求出A等级的学生人数x的值,用35除以50即可得出B等级的频率即y的值;(2)由(1)可知获得A等级的学生有4人,用A1,A2,A3,A4表示,画出树状图,通过图确定恰好抽到学生A1和A2的概率.答案:(1)∵x+35+11=50,∴x=4,或x=50×0.08=4;y==0.7,或y=1-0.08-0.22=0.7;(2)依题得获得A等级的学生有4人,用A1,A2,A3,A4表示,画树状图如下:由上图可知共有12种结果,且每一种结果可能性都相同,其中抽到学生A1和A2的有两种结果,所以从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,恰好抽到学生A1和A2的概率为:P=.19.(10分)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.解析:(1)将A点代入一次函数解析式求出m的值,然后将A点坐标代入反比例函数解析式,求出k的值即可得出反比例函数的表达式;(2)结合函数图象即可判断y1和y2的大小.答案:(1)将A的坐标代入y1=x+1,得:m+1=2,解得:m=1,故点A坐标为(1,2),将点A的坐标代入:,得:2=,解得:k=2,则反比例函数的表达式y2=;(2)结合函数图象可得:当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.20.(10分)如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)解析:(1)根据同角的余角相等求出∠1=∠E,再利用“角角边”证明△ABD和△CEB全等,根据全等三角形对应边相等可得AB=CE,然后根据AC=AB+BC整理即可得证;(2)(i)过点Q作QF⊥BC于F,根据△BFQ和△BCE相似可得=,然后求出QF=BF,再根据△ADP和△FPQ相似可得=,然后整理得到(AP-BF)(5-AP)=0,从而求出AP=BF,最后利用相似三角形对应边成比例可得=,从而得解;(ii)判断出DQ的中点的路径为△BDQ的中位线MN.求出QF、BF的长度,利用勾股定理求出BQ的长度,再根据中位线性质求出MN的长度,即所求之路径长.答案:(1)∵BD⊥BE,∴∠1+∠2=180°-90°=90°,∵∠C=90°,∴∠2+∠E=180°-90°=90°,∴∠1=∠E,∵在△ABD和△CEB中,,∴△ABD≌△CEB(AAS),∴AB=CE,∴AC=AB+BC=AD+CE;(2)(i)如图,过点Q作QF⊥BC于F,则△BFQ∽△BCE,∴=,即=,∴QF=BF,∵DP⊥PQ,∴∠APD+∠FPQ=180°-90°=90°,∵∠APD+∠ADP=180°-90°=90°,∴∠ADP=∠FPQ,又∵∠A=∠PFQ=90°,∴△ADP∽△FPQ,∴=,即=,∴5AP-AP2+AP·BF=3·BF,整理得,(AP-BF)(AP-5)=0,∵点P与A,B两点不重合,∴AP≠5,∴AP=BF,由△ADP∽△FPQ得,=,∴=;(ii)线段DQ的中点所经过的路径(线段)就是△BDQ的中位线MN. 由(2)(i)可知,QF=AP.当点P运动至AC中点时,AP=4,∴QF=.∴BF=QF×=4.在Rt△BFQ中,根据勾股定理得:BQ===.∴MN=BQ=.∴线段DQ的中点所经过的路径(线段)长为.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2013年四川省成都市中考数学试卷(含解析)
2013年四川省成都市中考数学试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.2的相反数是()A.2 B.﹣2 C.D.2.如图所示的几何体的俯视图可能是()A.B.C.D.3.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣14.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.55.下列运算正确的是()A.×(﹣3)=1 B.5﹣8=﹣3 C.2﹣3=6 D.(﹣2013)0=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学记数法表示应为()A.1.3×105B.13×104C.0.13×105D.0.13×1067.如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1 B.2 C.3 D.48.在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣x+3 B.y=C.y=2x D.y=﹣2x2+x﹣79.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式2x﹣1>3的解集是.12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是元.13.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为米.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(2)解方程组:.16.(6分)化简.17.(8分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.18.(8分)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:等级成绩(用s表示)频数频率A 90≤s≤100 x 0.08B 80≤s<90 35 yC s<80 11 0.22合计50 1请根据上表提供的信息,解答下列问题:(1)表中的x的值为,y的值为(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.19.(10分)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A (m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.20.(10分)如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,)21.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为.22.若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为.23.若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图象与反比例函数的图象的公共点的个数为.24.在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2﹣2交于A,B两点,且A点在y 轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=时,BP2=BO•BA;④△PAB面积的最小值为.其中正确的是.(写出所有正确说法的序号)25.如图,A,B,C为⊙O上相邻的三个n等分点,=,点E在上,EF为⊙O的直径,将⊙O沿EF 折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p =;当n=12时,p=.(参考数据:sin15°=cos75°=,cos15°=sin75°=)二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(8分)某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.根据以上信息,完成下列问题:(1)当3<t≤7时,用含t的式子表示v;(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.27.(10分)如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.28.(12分)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:2的相反数为:﹣2.故选:B.2.【解答】解:所给图形的俯视图是一个带有圆心的圆.故选:C.3.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选:A.4.【解答】解:∵∠B=∠C,∴AB=AC=5.故选:D.5.【解答】解:A、×(﹣3)=﹣1,运算错误,故本选项错误;B、5﹣8=﹣3,运算正确,故本选项正确;C、2﹣3=,运算错误,故本选项错误;D、(﹣2013)0=1,运算错误,故本选项错误;故选:B.6.【解答】解:将13万用科学记数法表示为1.3×105.故选:A.7.【解答】解:在矩形ABCD中,CD=AB,∵矩形ABCD沿对角线BD折叠后点C和点C′重合,∴C′D=CD,∴C′D=AB,∵AB=2,∴C′D=2.故选:B.8.【解答】解:A、当x=0时,y=3,不经过原点,故本选项错误;B、反比例函数,不经过原点,故本选项错误;C、当x=0时,y=0,经过原点,故本选项正确;D、当x=0时,y=﹣7,不经过原点,故本选项错误;故选:C.9.【解答】解:△=b2﹣4ac=12﹣4×1×(﹣2)=9,∵9>0,∴原方程有两个不相等的实数根.故选:A.10.【解答】解:由题意得∠BOC=2∠A=100°.故选:D.二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:2x﹣1>3,移项得:2x>3+1,合并同类项得:2x>4,不等式的两边都除以2得:x>2,故答案为:x>2.12.【解答】解:捐款10元的人数最多,故本次捐款金额的众数是10元.故答案为:10.13.【解答】解:∵AB∥CD,∠B=30°,∴∠BCD=∠B=30°,∵CB平分∠ACD,∴∠ACD=2∠BCD=60°.故答案为:60.14.【解答】解:由题意得,∠BCA=90°,∠BAC=30°,AB=200米,故可得BC=AB=100米.故答案为:100.三、解答题(本大题共6个小题,共54分)15.【解答】解:(1)原式=4++2×﹣2=4;(2),①+②可得:3x=6,解得:x=2,将x=2代入①可得:y=﹣1,故方程组的解为.16.【解答】解:原式=a(a﹣1)×=a.17.【解答】解:(1)△AB′C′如图所示;(2)由图可知,AC=2,∴线段AC旋转过程中扫过的扇形的面积==π.18.【解答】解:(1)∵x+35+11=50,∴x=4,或x=50×0.08=4;y==0.7,或y=1﹣0.08﹣0.22=0.7;(2)依题得获得A等级的学生有4人,用A1,A2,A3,A4表示,画树状图如下:由上图可知共有12种结果,且每一种结果可能性都相同,其中抽到学生A1和A2的有两种结果,所以从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,恰好抽到学生A1和A2的概率为:P=.19.【解答】解:(1)将A的坐标代入y1=x+1,得:m+1=2,解得:m=1,故点A坐标为(1,2),将点A的坐标代入:,得:2=,解得:k=2,则反比例函数的表达式y2=;(2)结合函数图象可得:当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.20.【解答】(1)证明:∵BD⊥BE,∴∠1+∠2=180°﹣90°=90°,∵∠C=90°,∴∠2+∠E=180°﹣90°=90°,∴∠1=∠E,∵在△ABD和△CEB中,,∴△ABD≌△CEB(AAS),∴AB=CE,∴AC=AB+BC=AD+CE;(2)(i)如图,过点Q作QF⊥BC于F,则△BFQ∽△BCE,∴=,即=,∴QF=BF,∵DP⊥PQ,∴∠APD+∠FPQ=180°﹣90°=90°,∵∠APD+∠ADP=180°﹣90°=90°,∴∠ADP=∠FPQ,又∵∠A=∠PFQ=90°,∴△ADP∽△FPQ,∴=,即=,∴5AP﹣AP2+AP•BF=3•BF,整理得,(AP﹣BF)(AP﹣5)=0,∵点P与A,B两点不重合,∴AP≠5,∴AP=BF,由△ADP∽△FPQ得,=,∴=;(ii)线段DQ的中点所经过的路径(线段)就是△BDQ的中位线MN.由(2)(i)可知,QF=AP.当点P运动至AC中点时,AP=4,∴QF=.∴BF=QF×=4.在Rt△BFQ中,根据勾股定理得:BQ===.∴MN=BQ=.∴线段DQ的中点所经过的路径(线段)长为.21.【解答】解:∵点(3,5)在直线y=ax+b上,∴5=3a+b,∴b﹣5=﹣3a,则==.故答案为:﹣.22.【解答】解:所有大于0且小于100的“本位数”有:1、2、10、11、12、20、21、22、30、31、32,共有11个,7个偶数,4个奇数,所以,P(抽到偶数)=.故答案为:.23.【解答】解:不等式组的解为:a≤t≤,∵不等式组恰有3个整数解,∴﹣2<a≤﹣1.联立方程组,得:x2﹣ax﹣3a﹣2=0,△=a2+3a+2=(a+)2﹣=(a+1)(a+2)这是一个二次函数,开口向上,与x轴交点为(﹣2,0)和(﹣1,0),对称轴为直线a=﹣,其图象如下图所示:由图象可见:当a=﹣1时,△=0,此时一元二次方程有两个相等的根,即一次函数与反比例函数有一个交点;当﹣2<a<﹣1时,△<0,此时一元二次方程无实数根,即一次函数与反比例函数没有交点.∴交点的个数为:1或0.故答案为:1或0.24.【解答】解:设A(m,km),B(n,kn),其中m<0,n>0.联立y=x2﹣2与y=kx得:x2﹣2=kx,即x2﹣3kx﹣6=0,∴m+n=3k,mn=﹣6.设直线PA的解析式为y=ax+b,将P(0,﹣4),A(m,km)代入得:,解得a=,b=﹣4,∴y=()x﹣4.令y=0,得x=,∴直线PA与x轴的交点坐标为(,0).同理可得,直线PB的解析式为y=()x﹣4,直线PB与x轴交点坐标为(,0).∵+===0,∴直线PA、PB与x轴的交点关于y轴对称,即直线PA、PB关于y轴对称.(1)说法①错误.理由如下:如答图1所示,∵PA、PB关于y轴对称,∴点A关于y轴的对称点A′落在PB上.连接OA′,则OA=OA′,∠POA=∠POA′.假设结论:PO2=PA•PB成立,即PO2=PA′•PB,∴,又∵∠BPO=∠BPO,∴△POA′∽△PBO,∴∠POA′=∠PBO,∴∠AOP=∠PBO.而∠AOP是△PBO的外角,∴∠AOP>∠PBO,矛盾,∴说法①错误.(2)说法②错误.理由如下:易知:=﹣,∴OB=﹣OA.由对称可知,PO为△APB的角平分线,∴,∴PB=﹣PA.∴(PA+AO)(PB﹣BO)=(PA+AO)[﹣PA﹣(﹣OA)]=﹣(PA+AO)(PA﹣OA)=﹣(PA2﹣AO2).如答图2所示,过点A作AD⊥y轴于点D,则OD=﹣km,PD=4+km.∴PA2﹣AO2=(PD2+AD2)﹣(OD2+AD2)=PD2﹣OD2=(4+km)2﹣(﹣km)2=8km+16,∵m+n=3k,∴k=(m+n),∴PA2﹣AO2=8•(m+n)•m+16=m2+mn+16=m2+×(﹣6)+16=m2.∴(PA+AO)(PB﹣BO)=﹣(PA2﹣AO2)=﹣•m2=﹣mn=﹣×(﹣6)=16.即:(PA+AO)(PB﹣BO)为定值,所以说法②错误.(3)说法③正确.理由如下:当k=时,联立方程组:,得A(,2),B(,﹣1),∴BP2=12,BO•BA=2×6=12,∴BP2=BO•BA,故说法③正确.(4)说法④正确.理由如下:S△PAB=S△PAO+S△PBO=OP•(﹣m)+OP•n=OP•(n﹣m)=2(n﹣m)=2=2,∴当k=0时,△PAB面积有最小值,最小值为=.故说法④正确.综上所述,正确的说法是:③④.故答案为:③④.25.【解答】解:如解答图所示,连接AB、AC、BC.由题意,点A、B、C为圆上的n等分点,∴AB=BC,∠ACB=×=(度).在等腰△ABC中,过顶点B作BN⊥AC于点N,则AC=2CN=2BC•cos∠ACB=2cos•BC,∴=2cos.连接AE、BE,在AE上取一点D,使ED=EC,连接CD.∵∠ABC=∠CED,∴△ABC与△CED为顶角相等的两个等腰三角形,∴△ABC∽△CED.∴,∠ACB=∠DCE.∵∠ACB=∠ACD+∠BCD,∠DCE=∠BCE+∠BCD,∴∠ACD=∠BCE.在△ACD与△BCE中,∵,∠ACD=∠BCE,∴△ACD∽△BCE.∴,∴DA=•EB=2cos•EB.∴EA=ED+DA=EC+2cos•EB.由折叠性质可知,p=EA′=EA,b=EB′=EB,c=EC.∴p=c+2cos•b.当n=4时,p=c+2cos45°•b=c+b;当n=12时,p=c+2cos15°•b=c+b.故答案为:c+b,c+b.26.【解答】解:(1)设直线BC的解析式为v=kt+b,由题意,得,解得:用含t的式子表示v为v=2t﹣4;(2)由题意,得根据图示知,当0≤t≤3时,S=2t;当3<t≤7时,S=6+(2+2t﹣4)(t﹣3)=t2﹣4t+9.综上所述,S=,∴P点运动到Q点的路程为:72﹣4×7+9=49﹣28+9=30,∴30×=21,∴t2﹣4t+9=21,整理得,t2﹣4t﹣12=0,解得:t1=﹣2(舍去),t2=6.故该物体从P点运动到Q点总路程的时所用的时间为6秒.27.【解答】解:(1)PD与圆O相切.理由:如图,连接DO并延长交圆于点E,连接AE,∵DE是直径,∴∠DAE=90°,∴∠AED+∠ADE=90°,∵∠PDA=∠ABD=∠AED,∴∠PDA+∠ADE=90°,即PD⊥DO,∴PD与圆O相切于点D;(2)∵tan∠ADB=∴可设AH=3k,则DH=4k,∵PA=AH,∴PA=(4﹣3)k,∴PH=4k,∴在Rt△PDH中,tan∠P==,∴∠P=30°,∠PDH=60°,∵PD⊥DO,∴∠BDE=90°﹣∠PDH=30°,连接BE,则∠DBE=90°,DE=2r=50,∴BD=DE•cos30°=;(3)由(2)知,BH=﹣4k,∴HC=(﹣4k),又∵PD2=PA×PC,∴(8k)2=(4﹣3)k×[4k+(25﹣4k)],解得:k=4﹣3,∴AC=3k+(25﹣4k)=24+7,∴S四边形ABCD=BD•AC=×25×(24+7)=900+.补充方法:28.【解答】解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=x2+2x﹣1.(2)方法一:i)∵A(0,﹣1),C(4,3),∴直线AC的解析式为:y=x﹣1.设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.∵点P在直线AC上滑动,∴可设P的坐标为(m,m﹣1),则平移后抛物线的函数表达式为:y=(x﹣m)2+m﹣1.解方程组:,解得,∴P(m,m﹣1),Q(m﹣2,m﹣3).过点P作PE∥x轴,过点Q作QF∥y轴,则PE=m﹣(m﹣2)=2,QF=(m﹣1)﹣(m﹣3)=2.∴PQ==AP0.若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:①当PQ为直角边时:点M到PQ的距离为(即为PQ的长).由A(0,﹣1),B(4,﹣1),P0(2,1)可知,△ABP0为等腰直角三角形,且BP0⊥AC,BP0=.如答图1,过点B作直线l1∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l1的解析式为:y=x+b1,∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5,∴直线l1的解析式为:y=x﹣5.解方程组,得:,∴M1(4,﹣1),M2(﹣2,﹣7).②当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为.如答图2,取AB的中点F,则点F的坐标为(2,﹣1).由A(0,﹣1),F(2,﹣1),P0(2,1)可知:△AFP0为等腰直角三角形,且点F到直线AC的距离为.过点F作直线l2∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l2的解析式为:y=x+b2,∵F(2,﹣1),∴﹣1=2+b2,解得b2=﹣3,∴直线l2的解析式为:y=x﹣3.解方程组,得:,∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).方法二:∵A(0,1),C(4,3),∴l AC:y=x﹣1,∵抛物线顶点P在直线AC上,设P(t,t﹣1),∴抛物线表达式:,∴l AC与抛物线的交点Q(t﹣2,t﹣3),∵以M、P、Q三点为顶点的三角形是等腰直角三角形,P(t,t﹣1),①当M为直角顶点时,M(t,t﹣3),,∴t=1±,∴M1(1+,﹣2),M2(1﹣,﹣2﹣),②当Q为直角顶点时,点M可视为点P绕点Q顺时针旋转90°而成,将点Q(t﹣2,t﹣3)平移至原点Q′(0,0),则点P平移后P′(2,2),将点P′绕原点顺时针旋转90°,则点M′(2,﹣2),将Q′(0,0)平移至点Q(t﹣2,t﹣3),则点M′平移后即为点M(t,t﹣5),∴,∴t1=4,t2=﹣2,∴M1(4,﹣1),M2(﹣2,﹣7),③当P为直角顶点时,同理可得M1(4,﹣1),M2(﹣2,﹣7),综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).ii)存在最大值.理由如下:由i)知PQ=为定值,则当NP+BQ取最小值时,有最大值.如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.连接QF,FN,QB′,易得FN∥P′Q,且FN=PQ,∴四边形P′QFN为平行四边形.∴NP′=FQ.∴NP′+BQ=FQ+B′Q≥FB′==.∴当B′、Q、F三点共线时,NP′+BQ最小,最小值为.∴的最大值为=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: (1)如图,连接 DO 并延长交圆 O 于点 E,连接 AE ∵∠PDA=∠ABD=∠E,∴PD OD,∴PD 是圆 O 的切线 (2)∵tan∠ADB=
3 4 3 3 ,∴可设 AH=3a,DH=4a,∵PA= AH∴PA= ( 4 3 3) a 4 3
∴PH= 4 3 a∴∠P=30°∴∠HDO=30° 连接 BE,∵半径为 25,∴DE=50,∴BD= 25 3
1 BQ . 2 20 , 3
当 P 在 AC 中点时, x 4 ,∴ y
BH
3 4 34 2 34 ,∴ MN ,即为 DQ 中点走过的路径长。 y 4 ,∴ BQ 5 3 3
A 卷整体点评:试卷充分体现了成都试卷的特征,A 卷是会考水平,只要细心,计算不丢分, 拿个 93 以上是没问题的,充分体现了 A 卷的 “A” , 但同时考虑到又不能让所有同学得满分, 所以设计了 2O 题,20 题的设计充分体现了命题者的用心,一道题将好中差的学生的层次基 本上能够体现出来,个人觉得此题出得较好。
13、60°
14、100 填空题也结束了,还是一点区分度都体现不出来。 。 。 。 。 。
15 (1) 4; (2)
x 2 , 这两个题的计算量也太简单了, 是为 B 卷的繁难计算做铺垫???? y 6
16、 a 这个题计算量也小,做到这里肯定好多人都笑了,呵呵。可是。 。 。 。 。 。
4 ( 25 3 -4a) 3 4 2 2 又∵PD =PA×PC,∴ (8a ) ( 4 3 3) a [ 4 3a ( 25 3 4a )] 3
(3)由(2) ,BH= 25 3 -4a,∴CH= 解得 a 4 3 3
∴AC=3a+
4 ( 25 3 -4a)= 24 3 7 3
2013 成都中考数学试题及答案、简评 (学大教育陈法旺)
1-3
BCA
4 D,此题也太简单了吧
5-6 BA
7、B,此题。 。 。 。 。 。
8-10 CAD 所有选择题,没有一个需要转弯的地方,都是可以直接秒杀的,没有一点区分度,这题出 得也。 。 。 。
11、 x >2 12、10 (成都新课改以来,第一次只考了众数,之前都是众数、中位数一起 考) ,在 6 月 7 日的考前终极模拟试题中给学生做了如下一题,几乎一致。
(2) (i) y AC x 1 ,设 P( m, m 1 ) ,平移后的抛物线设为 y
1 2 y ( x m) m 1 由 x 2 (2m 2) x m 2 2m 0 x1 m, x 2 m 2 2 y x 1
∴Q( m 2, m 3 )且 PQ= 2 2 ; ∵ΔPQM 为等腰直角三角形,由 P、Q 位置的特殊性,可能存在以下三种情况:
三种情况对应的点 M 的坐标分别是(m,m-3) 、 (m,m-5) 、 (m+2,m-3) ;又∵M 在抛物线
1 y x 2 2 x 1 上,分别代入可得 M 的坐标有:(1 5 , 5 2) 、(1 5 , 5 2) 、 2
(4,-1) 、 (2,-3) 、 (-2,-7) ; (3)∵PQ= 2 2 是定值,∴只需找到 P、Q 两点使得 NP+BQ 最小,如图,NP+BQ 的最小值即 为 N B = 2 5 ,∴
' '
2 2 10 PQ 的最大值= 。 5 NP BQ 2 5
考试之前,预测该题第(2)问是考等腰三角形的存在性问题,结果考的是等腰三角形 的存在性问题,很多学生在高兴地同时又皱起了眉头,该题和二次函数的平移相结合,很 多学生不能把图形脱离出来,显得有点乱,思路就不清晰了,如果能够脱离出图形,此题 也就简单了。 第(3)问的知识点,总结起来,题型是“已知两定点 N、B,定长的线段在定直线 AC 上移动,问移动到什么位置时,四边形 NPQB 的周长最小,即 NP+BQ 最小” ,将军饮马的 变形。在考前,我给我的学生反复强调过该问题,并告知他们,这个知识点考查的可能性 很大,而且还一个学生一个学生的检查,直到他们都掌握了为止,没想到还真的考到了, 但悲催的是,出题人把该知识点放到了 28 题的最后一问,唉。 。 。 。 。 。还好,还是有同学做 起了,欣慰。 整套试卷,充分体现了 A 卷特“A” ,B 卷特“B” ,有人感慨:做 A 卷时觉得侮辱了智商, 做到 B 卷才发现自己没有智商可侮辱。唉,整了一晚上,累了,睡了。
25、 2b c ;
2 3 1 6- 2 b c或 b-c 2 2 2
(计算量太大了吧,不知道要不要舍去
一个答案,还没细想) B 卷填空题做下来,很多同学都懵了吧!!!!尼玛,什么东东?慌了吧,有木有?呵呵, 做这些题,一定要冷静,不要慌,一慌就乱了。静下心来细想,也没想象中的困难。
26、 (1) v 2t 4 ; (2) S
21、 -
1 3
22、
7 11
该题是我在专题《中考数学阅读理解》类型二、信息型阅读中讲过的例题: (例题如下)
当时同步课堂练习题中的第2题也与之相似: (题如下)
上面两个例题分别是2010年湖北黄石和嘉兴的中考题目, 这个题如果学生第一次遇到, 很多 同学对题目的理解有难度。
23、3
24、③④
(①是错的,②还没确定)
以上答案非标准答案, 仅供参考, 欢迎纠错。
AD AP BH QH BH y , ;设 AP= x ,QH= y ,则有 , PH QH BC EC 3 5
3 3 y ,∴PH= y 5 x , 5 5
∴BH=
∴
3 3 y 5 x 5
x ( x 5)(3 y 5 x) 0 , y
∵P 不与 A、B 重合,∴ 3 y 5 x ,
2t (0 t 3)
2 2t 4t (3 t 7)
;由题知总路程 S=2×3+(10+2)×4
÷2=30 米,设用的时间为 n 秒,则
7 S 2 3 (2 2n 4)(n 3) 2 21 10
,∴所用的时间是 6 秒。 n1 AC = 25 3 (24 3 7) = 900 2 2 2
简评:第(1)问还是比较简单,第(2)问,特殊角的发现很重要,第(3)问计算量很大, 估计很多学生算到这里就要骂天了,呵呵(这个答案,还没检查对不对哈)
解: (1) y
1 2 x 2x 1 2 1 ( x m) 2 m 1 , 2
∴
DP x 3 PQ y 5
(3)
2 34 。 3
第(3)问解析:本题难度陡增,与前面 的题形成强烈对比,不过出题人还算有 点良心,告诉了我们中点走过的路径是 线段,让这个题的难度减少不少,我们 只需要找到两个极限点(P 在 A 点及 P 在 AC 中点时 DQ 的中点 M、N),即求 MN 的长, MN =
17、 (1)略(2)
18、 (1)4,0.7(2)树状图(或列表)略,P=
1 6
19、 (1)A(1,2), y 时, y1 = y 2 。
2 ; (2) 当x >1 时, y1 > y 2 ;当 0< x <1 时, y1 < y 2 ;当 x =1 x
20、 (1)ΔADB≌ΔCBE AC=AD+CE (2)如图,过 Q 作 QH BC 于点 H,可得ΔADP∽ΔHPQ,ΔBHQ∽ΔBCE, ∴