计算神经科学讲义
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Intracellular Resistance
IL : longitudinal current RL : longitudinal resistance rL : intracellular resistivity (1-3 kΩ mm) gL 1/RL : longitudinal conductance (unit: Siemens)
Membrane Capacitance and Resistance
For electrotonically compact neurons
Cm
dV dQ = dt dt
A: neuron surface area (0.01-0.1 mm2 ) Cm : membrane capacitance (0.1-1 nF) cm : Cm /A, specific membrane capacitance (10nF/mm2 ) Rm : membrane resistance (10-100 MΩ) rm : Rm × A, specific membrane resistance (1MΩ mm2 ) Rm Cm = rm cm : time constant (10-100 ms)
Membrane Current
Membrane current per unit area (Positive-outward) im =
i
gi (V − Ei )
Ei Reversal potential for the ion labeled as i V : membrane potential, equal to about -65 mV at resting gi : conductance per unit area V − Ei : driving forces Question As both V and Ei are constants at resting potential, will the ion moves always in the same direction? PS: Leakage current gL (V − EL ), where gL and EL are free ¯ parameters
Lipid bilayer
Ion Channels and Pumps
Movement of Ions
Diffusion
Electricity
Equilibrium and Reversal Potentials
[KA]i =20[KA]o
Ca2+ ? Cl− ? Net charges are distributed on the membrane surfaces ⇒ Membrane = capacitor. Ei : Equilibrium potential Ei can be calculated by Nernst equation, given the concentration difference
Outline
1
5.1 Electrical Properties of Neurons
2
5.2 Single-Compartment Models
3
5.3 Integrate-and-Fire Models
The Model and Its Equivalent Circuit
cm
dV Ie = −im + dt A
Chapter 5 – Model Neurons I: Neuroelectronics
Lecturer Xiaolin Hu
Updated on Mar. 10, 2011
Outline
1
5.1 Electrical Properties of Neurons
2
5.2 Single-Compartment Models
Nernst Equation
Eion = RT [ion]o RT [ion]o ln mV = 2.303 log10 mV zF [ion]i zF [ion]i
where R: gas constant, 8.314472 JK−1 mol−1 T : absolute temperature z: charge of the ion F : Faraday’s constant, 9.64853399 × 104 C mol−1 [ion]o , [ion]i : ionic concentration outside and inside. At body temperature (37o C) EK = 61.54 log10 ECl =
dV = −V + EL + Rm Ie dt where Rm = rm /A is the total membrane resistance and τm is the time constant. τm
Firing Rate w.r.t Constant Input
The subthreshold potential V (t) is obtained by solving the basic model as V (t) = EL + Rm Ie + (V (0) − EL − Rm Ie ) exp(−t/τm ) Suppose V (0) = Vreset and the neuron will fire an action potential at time t = tisi again, then V (tisi ) = Vth = EL + Rm Ie + (Vreset − EL − Rm Ie ) exp(−tisi /τm ) 1 = ⇒risi = tisi
At body temperature, for a membrane permeable to Na+ and K+ : PK [K+ ]o + PNa [Na+ ]o Vm = 61.54 log10 mV PK [K+ ]i + PNa [Na+ ]i where PK and PNa are relative permeabilities of K+ and Na+ . Example If PK = 40PNa in resting potential, then Vm = 61.54 log10 40 × 1 + 1 × 150 mV = −65 mV. 40 × 100 + 1 × 15
where im = i gi (V − Ei ) + gL (V − EL ): membrane current ¯ (positive-outward) Ie : input current (positive-inward).
Outline
1
5.1 Electrical Properties of Neurons
In this case, equilibrium potentials for individual ions are called “reversal potentials”.
Definition Depolarization: make the membrane potential less negative. Hyperpolarization: make the membrane potential more negative. Na+ and Ca2+ tend to depolarize a neuron,
Membrane Current
Membrane current per unit area (Positive-outward) im =
i
gi (V − Ei )
Ei Reversal potential for the ion labeled as i V : membrane potential, equal to about -65 mV at resting gi : conductance per unit area V − Ei : driving forces
2
5.2 Single-Compartment Models
3
5.3 Integrate-and-Fire Models
Simplify Modeling
1
Βιβλιοθήκη Baidu
2
3
4
Model every detail of the membrane potential dynamics ⇓ Model only subthreshold membrane potential dynamics and ignoring modeling realistic action potentials. ⇓ All active membrane conductances are ignored ⇓ Leaky integrate-and-fire model cm or dV Ie = −¯L (V − EL ) + g dt A
−Vreset mI τm ln RRmeI+ELL −Vth e +E 0, otherwise. −1
Example Calculate the longitudinal resistance of a segment 100 µm long with a radius of 2 µm): RL = rL L 1kΩmm × 100µm = ≈ 8MΩ. 2 πa π × 4µm2
Example Calculate a single channel’s conductance (6 nm long with a cross-sectional area 0.15 nm2 ): g= πa2 0.15nm2 = ≈ 25 × 10−12 S = 25pS. rL L 1kΩmm × 6nm
Definition Depolarization: make the membrane potential less negative. Hyperpolarization: make the membrane potential more negative. Na+ and Ca2+ tend to depolarize a neuron, K+ tends to hyperpolarize a neuron.
3
5.3 Integrate-and-Fire Models
Ions and Molecules in a Neuron
A cubic micron of cytoplasm might contain, e.g., 1010 water molecules, 108 ions, 107 small molecules such as amino acids and nucleotides, and 105 proteins. Important ions: K+ , Na+ , Ca2+ , Cl−
Membrane Current
Membrane current per unit area (Positive-outward) im =
i
gi (V − Ei )
Ei Reversal potential for the ion labeled as i V : membrane potential, equal to about -65 mV at resting gi : conductance per unit area V − Ei : driving forces Question As both V and Ei are constants at resting potential, will the ion moves always in the same direction?
[K+ ]o mV [K+ ]i [Cl− ]o −61.54 log10 [Cl− ]i mV
ENa = 61.54 log10 ECa =
[Na+ ]o [Na+ ]i [Ca2+ ]o 30.77 log10 [Ca2+ ] i
mV mV
Goldman Equation and Reversal Potential