函数的单调性与最大(小)值PPT课件
1.4.2第2课时 正、余弦函数的单调性与最值 课件
第一章 三角函数
(4)确定含有正弦函数或余弦函数的较复杂函数的单调性时, 要注意使用复杂函数的判断方法来判断. 2.解析正弦函数、余弦函数的最值 (1)明确正弦、余弦函数的有界性,即|sin x|≤1,|cos x|≤1. (2)对有些函数,其最值不一定就是1或-1,要依赖函数的定 义域来决定. (3)形如y=Asin(ωx+φ)(A>0,ω>0)的函数求最值时,通常利 用“整体代换”,即令ωx+φ=z,将函数转化为y=Asin z的 形式求最值.
第一章 三角函数
栏目 导引
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π+2kπ,74π+ 2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
【名师点评】 正弦、余弦函数单调区间的求解技巧: (1)结合正弦、余弦函数的图象,熟记它们的单调区间. (2)确定函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法:采 用“换元”法整体代换,将ωx+φ看作一个整体,可令“z= ωx+φ”,即通过求y=Asin z的单调区间而求出函数的单调 区间.若ω<0,则可利用诱导公式将x的系数转变为正数.
栏目 导引
第一章 三角函数
跟踪训练
1.求函数 y=sin(π3-12x),x∈[-2π,2π]的单调递增区间. 解:y=sin(π3-12x)=-sin(12x-π3). 由 y=sin x 与 y=-sin x 的图象关于 x 轴对称可知,y=sin x 的递增 区间就是 y=-sin x 的递减区间.因此,要求 y=-sin(12x-π3)的递 增区间,只要求出 y=sin(12x-π3)的递减区间即可.
1 第1课时 函数的单调性(共44张PPT)
1.判断正误(正确的打“√”,错误的打“×”)
(1)所有的函数在其定义域上都具有单调性.
(×)
(2)若函数 y=f(x)在区间[1,3]上是减函数,则函数 y=f(x)的单调递减区间是
[1,3].
(×)
(3)若函数 f(x)为 R 上的减函数,则 f(-3)>f(3).
解:由题意,确定函数 y=f(x)和 y=g(x)的单调递增区间,即寻找图象呈上 升趋势的一段图象. 由题图(1)可知,在[1,4)和[4,6)内,y=f(x)是单调递增的. 由题图(2)可知,在(-4.5,0)和(4.5,7.5)内,y=g(x)是单调递增的.
()
3.设(a,b),(c,d)都是 f(x)的单调递增区间,且 x1∈(a,b),x2∈(c,d),x1<x2,
则 f(x1)与 f(x2)的大小关系为
()
A.f(x1)<f(x2)
B.f(x1)>f(x2) C.f(x1)=f(x2)
D.不能确定
解析:选 D.根据函数单调性的定义知,所取两个自变量必须是同一单调区 间内的值时,才能由该区间上函数的单调性来比较函数值的大小,而本题中 的 x1,x2 不在同一单调区间内,故 f(x1)与 f(x2)的大小不能确定.
4.若函数 f(x)在 R 上是单调递减的,且 f(x-2)<f(3),则 x 的取值范围是 ______________. 解析:函数的定义域为 R.由条件可知,x-2>3,解得 x>5. 答案:(5,+∞)
5.如图分别为函数 y=f(x)和 y=g(x)的图象,试写出函数 y=f(x)和 y=g(x)的 单调递增区间.
高中数学 1.3.1 单调性与最大(小)值 第2课时 函数的最值课件 新人教A版必修1
第三十四页,共48页。
(3)求解:选择合适的数学方法求解函数. (4)评价:对结果进行验证或评估,对错误加以改正,最后 将结果应用于现实,做出解释或预测. 也可认为分成“设元——列式——求解——作答”四个步
第三十三页,共48页。
3
某工厂生产一种机器的固定成本为 5 000 元,且每生产 1 部,需要增加投入 25 元,对销售市场进行调查后得知,市场对 此产品的需求量为每年 500 部,已知销售收入的函数为 N(x)= 500x-12x2,其中 x 是产品售出的数量(0≤x≤500).
(3)最大(小)值定义中的“存在”是说定义域中至少有一个 实数(shìshù)满足等式,也就是说y=f(x)的图象与直线y=M至 少有一个交点.
第十一页,共48页。
2.最值 定义 函数的__最__大__值__和__最__小_值___统称为函数的最值 几何 函数y=f(x)的最值是图象_最__高__点___或_最__低__点___的 意义 纵坐标 说明 函数的最值是在整个定义域内的性质
第二十三页,共48页。
②由①知,f(x)在(0,+∞)上是增函数,所以若函数 f(x)的 定义域与值域都是[12,2],则ff122==122,,
即1a1a--212==122,, 解得 a=25.
第二十四页,共48页。
规律总结:1.利用单调性求最值 的一般步骤
(1)判断函数的单调性.(2)利用单调性写出最值. 2.利用单调性求最值的三个常用结论 (1)如果函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间 [a,b]的左、右端点(duān diǎn)处分别取得最小(大)值和最大 (小)值. (2)如果函数f(x)在区间(a,b]上是增函数,在区间[b,c)上 是减函数,则函数f(x)在区间(a,c)上有最大值f(b). (3)如果函数f(x)在区间(a,b]上是减函数,在区间[b,c)上 是增函数,则函数f(x)在区间(a,c)上有最小值f(b).
函数的单调性与最大(小)值课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
f(x1)-f(x2)=(2x1+1)-(2x2+1)=2x1-2x2
=2(x1-x2)
∵x1<x2 ∴x1 -x2<0 ∴2(x1-x2)<0
∴f(x1)-f(x2)<0
即f(x1) < f(x2)
∴函数f(x)=2x+1在其定义域上是增函数.
取值
作差变形
定号
下结论
探究三
那么,我们称M为函数y = f ( x)的最大值
图1
1
2
3
x
f ( x) = x 2
y
通过观察图2,可以发现二次函数 f ( x) =
的图像上有一个最低点(0,0)即
x2
x R, 都有f ( x) f (0)
5
当一个函数f(x)的图像有最低点时,我们就
说函数f(x)有最小值。
4
3
2
1
-3
A.f(x)=x
2
C.f(x)=|x|
答案:B
(
1
B.f(x)=
x
D.f(x)=2x+1
)
2
5.函数 f(x)= ,x∈[2,4],则 f(x)的最大值为______;最小值为
x
________.
答案:1
1
2
题型一 利用图象确定函数的单调区间
例1 求下列函数的单调区间,并指出其在单调区间上是
增函数还是减函数:
∴x1x2>0,x1x2-1<0,x1-x2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
1
故函数f(x)=x+ 在区间(0,1)内为减函数.
函数的单调性-(新教材)人教A版高中数学必修第一册上课用PPT
上是减函数,则实数 a 的取值范围为 (-∞,-3] .
解析:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a -1)2+2, 所以此二次函数的对称轴为直线x=1-a . 所以f(x)的单调递减区间为(-∞,1-a]. 因为f(x)在(-∞,4]上是减函数, 所以直线x=1-a必须在直线x=4的右侧 或与其 重合, 所以1-a≥4,解得a≤-3,即实数a的取值范 围为(- ∞,-3].
(2) 已 知 y=f(x) 在 定 义 域 (-1,1) 上 是 减 函 数 , 且
f(1-a)<f(2a-1),则 a 的取值范围是
.
3函.2数.1的第单1课调时性-【函新数教的材单】调人性教-A【版新高教中材数】学人必教修A第版 一(册20优19 秀)课高件中 数学必 修第一 册课件( 共28张 PPT)
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件
[基础测试] 1.判断.(正确的画“√”,错误的画“×”) (1)已知 f(x)= ,因为 f(-1)<f(2),所以函数 f(x)是增函数.
() 解析:由函数单调性的定义可知,要证明一个函数是 增函数,需对定义域内的任意的自变量都满足自变量越大, 函数值也越大,而不是个别的自变量. 答案:×
解析:观察图象可知,y=f(x)的单调区间有[-5,-2], [2,1],[1,3],[3,5]. 其 中 y=f(x) 在 区 间 [-5,-2],[1,3] 上 是 增 函 数,在区间[-2,1],[3,5]上是减函数.
单调性与最大(小)值(第2课时)课件-高一上学期数学人教A版(2019)必修第一册
那么,称M是函数y=f(x)的最小值
思考2:若函数f(x)≤M,则M一定是函数的最大值吗?
提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才
是函数的最大值,否则不是.
函数的最值与值域有怎样的关系?
(1)函数的值域一定存在,函数的最值不一定存在.
x1 x2 x1 x2
由2 x1 x2 6,得x2 x1 0,x1 x2 0,于是
f ( x1 ) f ( x2 ) 0,即f ( x1 ) f ( x2 )
∴ 函数f(x) =
是区间[2,6]上的单调递减.
x
求函数的最大(小)值的方法总结:
1.利用二次函数的性质(配方法)求函数的最大(小)值;
1.求函数
f(x)=x+ x在[
1
2
1)
1
2
1
2
x 1x 2
1x 2 1,4] 上的最值.
x
x
x
1x 2
1
2
.
x
4x 2-x 1
x 1x 2-4
x
x
4
4
4x
-x
x
x
1
2
2
1
1 2-4
=(x
=
1-x 2)
4
4
-f(x
)=x
+
-x
-
=x
-x
+
=+
12-4
1
2x 1-x 2=(x
2)
2x 1x
x
-4
∵1≤x
1 1-x
2 2)1 2
1<x 2<2,∴x 1-x 2<0,
3.2.1+函数的单调性与最值课件+2024-2025学年高一上学期数学湘教版(2019)必修第一册
间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件含义.
新知探究
角度4 求函数的最值
2
例6 已知函数f(x)= (x∈[2,6]),求函数的最大值和最小值.
x−1
解析:∀x1,x2∈[2,6],且x1<x2,则
2
f(x1)-f(x2)=
4
新知探究
角度2
解不等式
例4 f(x)是定义在(-2,2)上的减函数,若f(m-1)>f(2m-1),则实数m的取
值范围是(
)
3
A.m>0
B.0<m<
C.-1<m<3
2
1
3
D.- <m<
2
2
答案:B
−2 < m − 1 < 2,
3
解析:由题意知 −2 < 2m − 1 < 2, 解得0<m< .故选B.
(增)函数的差是增(减)函数;
新知探究
归纳总结
(3)如果f(x)在区间D上是增(减)函数,那么f(x)在D的任一子区间上也是增(减)
函数;
(4)如果y = f u 和u = g x 单调性相同,那么y = f[g(x)]是增函数,
如果y = f u 和u = g x 单调性相反,那么y = f[g(x)]是减函数.
2
m − 1 < 2m − 1,
新知探究
角度3
利用函数的单调性求参数的取值范围
2m
例5 若f(x)=-x2+4mx与g(x)= 在区间[2,4]上都是减函数,则m的取值范
x+1
围是(
)
A.(-∞,0)∪ 0,1 B. −1,0 ∪ 0,1
高一数学复习知识讲解课件25 单调性与最大(小)值(第1课时) 函数单调性
3.2函数的基高一数学复习知3.2.1单调性与最大函数单调数的基本性质复习知识讲解课件最大(小)值(第1课时)数单调性在区间D上单调递增在区间D上单调递减要点2 函数的单调区间如果函数y =f (x )在区间D 上__________这一区间具有_________________,区间注意:(1)函数单调性关注的是整个区间单调递增或(严格的)单调性问题,所以单调区间的端点若属于定义域点不属于定义域则只能开.(2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大_______________,那么就说函数y =f (x )在区间D 叫做y =f (x )的单调区间.个区间上的性质,单独一点不存在单调性递增或单调递减义域,则该点处区间可开可闭,若区间端可能大.3.通过上面两道题,你对函数的单调 答:函数单调性定义中的,必须是x 1x 2时,要注意保持其任意性.的单调性定义有什么新的理解? 必须是任意的,应用单调性定义解决问题课时学案探究1 (1)证明函数的单调性的常用方是:①取值,在给定区间上任取两个自变量进行代数恒等变形,一般要出现乘积形式根据条件判断f (x 1)-f (x 2)变形后的正负;(2)讨论函数的单调性常见有两种:一种数在定义域的子区间上具有不同的单调性常用方法是利用函数单调性的定义,其步骤自变量x 1,x 2;②作差变形,将f (x 1)-f (x 2)形式,且含有x 1-x 2的因式;③判断符号,;④得出结论.一种是参数对单调性的影响,一种是函调性.思考题2 (1)如图所示为函数f (x )的图________________________,单调递减区间[-1,0],[1,2],[3,4] 的图象,其单调递增区间是_________减区间是________________________.[0,1],[2,3](2)【多选题】设f (x ),g (x )都是单调函数A .若f (x )单调递增,g (x )单调递增,B .若f (x )单调递增,g (x )单调递减,C .若f (x )单调递减,g (x )单调递增,D .若f (x )单调递减,g (x )单调递减,调函数,则下列命题中正确的是(),则f (x )-g (x )单调递增,则f (x )-g (x )单调递增BC ,则f (x )-g (x )单调递减,则f (x )-g (x )单调递减探究3求函数的单调区间常用方法方法:①图象法;②利用已知函数的单调性;③定义法.课 后 巩 固1.函数y=x2-6x+10在区间(2,A.减函数C.先减后增函数4)上是()B.增函数CD.先增后减函数2.设(a ,b ),(c ,d )都是函数f (x )的单调d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是(A .f (x 1)=f (x 2) C .f (x 1)>f (x 2) 的单调递增区间,且x 1∈(a ,b ),x 2∈(c ,)D B .f (x 1)<f (x 2) D .不能确定3.函数y =|x |-1的单调递减区间为A .(0,+∞) C .(-∞,-1)解析解析 y =|x |-1=x -1,x ≥0,-x -1,x <0,易知( )B .(-∞,0)B D .(-1,+∞)易知其单调递减区间为(-∞,0).故选B.4.【多选题】已知四个函数的图象如的函数是()BC图象如图所示,其中在定义域内具有单调性自助 餐一、证明单调性的探究1 单调性的证明证明某个函数在给定区间上的单调性明.它的步骤如下:第一步:取值.设x 1,x 2是给定区间上第二步:作差变形.写出差式f (x 1)方等手段,向有利于判断差的符号的方向变形式.第三步:判断符号.根据已知条件,第四步:下结论.根据定义,作出结论调性的方法与技巧调性,最常用的方法就是用定义去证区间上的任意两个自变量的值,且x 1<x 2. -f (x 2),并且通过提取公因式、通分、配方向变形,一般写成几个最简因式相乘的,确定f (x 1)-f (x 2)的符号. 出结论.(5)图象变换对单调性的影响.①上下平移不影响单调区间,即y ②左右平移影响单调区间.如=2的减y x 间为(-∞,-1].③y =kf (x ),当k >0时单调区间与f (x=f (x )和y =f (x )+b 的单调区间相同. 的减区间为-∞,,=+2的减区(0]y (x 1))相同,当k <0时与f (x )相反.例2 已知f (x )>0在R 上恒成立,并且满f (x )>1,求证:f (x )在R 上是增函数.【证明证明】】 设x 1,x 2∈R 且x 1<x 2,则∵x >0时,f (x )>1,∴f (x 2-x 1)>1,又f (x )>0在R 上恒成立∴f (x 2)=f ((x 2-x 1)+x 1)=f (x 2-x 1)·f (∴f (x )在R 上是增函数. 并且满足f (x +y )=f (x )·f (y ),当x >0时,则x 2-x 1>0,成立,x 1)>f (x 1).。
第02课函数的单调性与最大(小)值(课件)
【典例】(多选)下列函数在(0,+∞)上单调递增的是( )
A.y=ex-e-x
B.y=|x2-2x|
C.y=x+cos x
D.y= x2+x-2
【解析】∵y=ex 与 y=-e-x 为 R 上的增函数,∴y=ex-e-x 为 R 上的增函数,故 A 正确; 由 y=|x2-2x|的图象知,故 B 不正确;对于选项 C,y′=1-sin x≥0,∴y=x+cos x 在 R 上为增函数,故 C 正确; y= x2+x-2的定义域为(-∞,-2]∪[1,+∞),故 D 不正确.
【典例】已知二次函数 f(x)=x2-2x+3, 当 x∈[t,t+1]时,求 f(x)的最小值 g(t).
【解析】①当 t>1 时,f(x)在[t,t+1]上是增函数, 所以当 x=t 时,f(x)取得最小值,此时 g(t)=f(t)=t2-2t+3. ②当 t≤1≤t+1,即 0≤t≤1 时,f(x)在[t,t+1]上先递减后递增, 故当 x=1 时,f(x)取得最小值,此时 g(t)=f(1)=2. ③当 t+1<1,即 t<0 时,f(x)在[t,t+1]上是减函数,所以当 x=t+1 时,f(x)取得最小值,
函数 f(x)= x-1在其定义域内是增函数.
【解析】函数 f(x)= x-1的定义域是[1,+∞),
设∀x1,x2∈[1,+∞),且 x1<x2,则 f(x2)-f(x1)= x2-1- x1-1
=
x2-1- x1-1 x2-1+ x2-1+ x1-1
x1-1=
x2-x12-+x1x1-1.
因为 x1,x2∈[1,+∞),且 x1<x2,所以 x2-1+ x1-1>0,x2-x1>0.
《函数的最大(小)值》函数的概念与性质PPT
1
提示:一个函数不一定有最值,例如y= 在定义域内没有最大值也
没有最小值.有的函数可能只有一个最大(或小)值,例如y=2x+1,x∈[-1,+∞).如果一个函数存在最值,那么函数的最大值和最
小值都是唯一的,但取最值时的自变量可以有多个,如y=x2,x∈[-2,2],
最大值只有一个为4,而取最大值的x有x=±2两个.
提示:点C是图象的最高点,即对定义域内任意x,均有f(x)≤f(x0)成
立.
(4)一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对
∀x∈I,都有f(x)≤M;
②∃x0∈I,使得f(x0)=M,那么我们就称M是函数y=f(x)的最大值.
其几何意义:函数y=f(x)的最大值是图象最高点的纵坐标.
第2课时
函数的最大(小)值
-1-
首页
课标阐释
1.理解函数的最大值和最小值的
概念及其几何意义.
2.能借助函数的图象和单调性,求
一些简单函数的最值(或值域).
3.能利用函数的最值解决有关的
实际应用问题.
思维脉络
课前篇
自主预习
一
二
一、函数的最大(小)值的定义
1.(1)如图所示是函数y=-x2-2x、y=-2x+1,x∈[-1,+∞)、y=f(x)的图
(5)类比函数最大值的定义,请你给出最小值的定义及其几何意义.
提示:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
①∀x∈I,都有f(x)≥M;
②∃x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.
函数最小值的几何意义:函数图象上最低点的纵坐标.
函数的基本性质ppt课件
1
即函数f(x)=x+ 为奇函数.
函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+
;
解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).
1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),
ppt-0302--函数单调性与极值、最值
y
b a
2 2
x y
(X
x).
令Y=0,得切线在x轴上的截距 X
a
2
.
x
令X=0,得切线在y轴上的截距 Y b2 . y
可知切线与两个坐标轴所围成的三角形面积为
S 1 XY a2b2 .
2
2xy
yb a
a2
x2 ,
S
a2b2 2xb a2 b2
a
(0 x a).
但是S最小当且仅当其分母 2bx a2 x2最大. a
令f (x) 0, 得到f (x)的驻点x1 1,x2 4.
f (1) 11,f (1) 41,f (2) 2,
6
6
3
可知f (x)在[1,2]上的最大值点为x 1,
最大值为f (1) 11. 6
最小值点为x 1,最小值为f (1) 41. 6
2
例6 设f (x) 1 2 (x 2)3,求f (x)在[0,3]上的最大值与 3
令y 0得驻点x1 1,x2 0,x3 3. y 12x2 16x 12.
y |x1 12 16 12 16 0
y |x0 12 0 y |x3 48 0
可知x1 1为函数的极小值点,
相应的极小值为y
| x 1
7. 3
x2 0为函数的极大值点,
相应极小大值为y |x0 0.
又因a,b为正常数,x a2 x2 0,
所以S最小当且仅当u x2 (a2 2x2 )最大.由于
u 2a2x 4x3 2x(a2 2x2 ),
令u 0,解出在(0,a)内的唯一驻点x0
2 a. 2
此时y0
2 b. 2
S a2b2 ab.
函数单调性课件(公开课)ppt
目录
• 函数单调性的定义与性质 • 判断函数单调性的方法 • 单调性在解决实际问题中的应用 • 函数单调性的深入理解 • 函数单调性的实际案例分析
01 函数单调性的定义与性质
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
的计算过程。
单调性与微分方程的关系
要点一
单调性决定了微分方程解的稳定 性
对于一阶线性微分方程,如果其系数函数在某区间内单调 递增(或递减),则该微分方程的解在此区间内是稳定的 。
要点二
单调性是研究微分方程的重要工 具
通过单调性可以判断微分方程解的存在性和唯一性,以及 研究解的动态行为。
05 函数单调性的实际案例分 析
总结词
利用单调性证明或解决不等式问题
详细描述
单调性在解决不等式问题中起到关键作用。通过分析函数的单调性,我们可以证明不等式或解决与不等式相关的 问题。例如,利用单调性可以证明数学归纳法中的不等式,或者在比较大小的问题中利用单调性进行判断。
单调性在函数极值问题中的应用
总结词
利用单调性求解函数的极值
详细描述
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该 区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数在区间I上单调递增,且 在区间J上单调递增,则函数在区间I和J的交集上也是单调递 增的。
函数单调性具有相对性,即如果函数在区间I上单调递增,且 另一个函数在区间J上单调递增,则这两个函数在区间I和J的 交集上也是单调递增的。
3.2.1单调性与最大(小)值(第二课时)课件(人教版)
x2 −x1
x2 ) +
x 1 x2
1
)
x1
=
− (x2 +
1
)
x2
x1 −x2
(x1 x2
x1 x2
= (x1 − x2 ) +
1
(
x1
1
− )
x2
− 1).
由x1 , x2 ∈ (1, +∞),得1 < x1 < x2 ,所以x1 x2 > 0, x1 x2 − 1 > 0.
又x1 < x2 ,所以x1 − x2 < 0,所以f(x1 ) − f(x2 ) < 0.即f(x1 ) < f(x2 ).
①存在x0∈I,使得f(x0)=m
②对于任意x∈I,都有f(x)≥m
几何意义
函数y=f(x)图象上
最高点的纵坐标
函数y=f(x)图象上
最低点的纵坐标
常用的求函数最值的方法:
(1)利用函数图像判断最值.
(2)利用函数的单调性判断最值.
所以f(x1 ) − f(x2 ) < 0.即f(x1 ) < f(x2 ).
所以函数f(x) = −3 +
那么f(x)max = −3
1
在区间[2,4]上单调递增.
1−x
+
1−4
=
10
− ;f(x)min
3
= −3
1
+
1−2
= −4.
=
x1 −x2
.
(1−x1 )(1−x2 )
练习巩固
练习4:已知函数f(x) = x 2 − ax + 1.
函数的单调性与最大(小)值PPT课件
∴f(x)在[-1,0]上是增函数,在(-∞,-1]上是减函数. 又x∈[0,1],u∈[-1,0]时,恒有f(x)≥f(u),等号只在x=u=0时取到,故
f(x)在[-1,1]上是增函数. (3)由(2)知函数f(x)在(0,1)上递增,在[1,+∞)上递减,则f(x)在x=1处
可取得最大值. ∴f(1)=, ∴函数的最大值为 ,无最小值.
x≤1,
.是
,
上的减函数, 那么a的取值范围是(
)
A.(0,1)
C.
1 7
,
1 3
B.
0,
1 3
D.
1 7
,1
[错解]依题意应有
3a 1 0, 0 a 1,
解得0
a
1 3
,
选B.
[剖析] 本题的错误在于没有注意分段函数的特点,只保证了函数
在每一段上是单调递减的,没有使函数f(x)在(-∞,1]上的最小值
【典例2】利用定义判断函数f x x x2 1在区间
R上的单调性.
[错解]设x1, x2 R,且x1 x2 ,则f x2 f x1
(x2 x22 1) (x1 x12 1)
x2 x1 ( x22 1 x12 1),
因为x1 x2 ,则x2 x1 0,且 x22 1 x12 1 0,
(2)在解答过程中易出现不能正确构造f(x2-x1)的形式或不能将不 等式右边3转化为f(2)从而不能应用函数的单调性求解,导致此 种错误的原因是没有熟练掌握单调性的含义及没弄清如何利 用题目中的已知条件或者不能正确地将抽象不等式进行转化.
错源一不注意分段函数的特点
【典例1】已知f
x
(3a 1)x 4a, logax, x 1
函数的单调性与最值 课件(共20张PPT)
求出在给定区间上的极值,最后结合端点值,求出最值.
课堂小结
单调性
定义
图象特征 判断方法
应用
定义法 图象变换 求导法 求最值 求参数范围 解不等式
祝同学们前程似锦!
专题一:判断、证明函数的单调性
例 1:(3)已知 f x 2x , x 2,6. (1)判断 f x 的单调性,并加以证明;(2)求 f x 的最值.
x 1
专题一:判断、证明函数的单调性
变式 3:讨论 f x ax a 0, 的单调性.
x 1
小结: 确定函数单调性的四种方法 (1)定义法;(2)导数法;(3)图象法;(4)性质法.
【学习目标】
01
理解函数的单调性、最大值、最小值及其 几何意义;
02
会运用函数图象理解和研究函数的单调性, 并利用单调性求最值或者求参数范围;
03
培养抽象概括、逻辑推理、运算求解等能 力.
复习回顾 1.函数的单调性 (1)单调函数的定义
增函数
减函数
一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 定义 当x1<x2时,都有__f_(x_1_)_<_f(_x_2)_, 当x1<x2时,都有_f_(_x_1)_>_f_(x_2_),
自左向右看图象是下降的
复习回顾
(2)单调区间的定义 如果函数y=f(x)在区间D上_单__调__递__增__或_单__调__递__减__,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
复习回顾 2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
单调性与最大(小)值PPT
【互动探究】 2.(2010 年天津)设函数 f(x)=x-1x,对任意 x∈[1,+∞),f(mx)
+mf(x)<0 恒成立,则实数 m 的取值范围是___m_<_-__1__. 解析:已知 f(x)为增函数且 m≠0,所以 2mx2<1+mm2.显然 m>0
时不符合题意.则 m<0,即有 1+m12<2x2.因为 y=2x2 在 x∈[1, +∞)上的最小值为 2,所以 1+m12<2,即 m2>1,解得 m<-1.
【互动探究】 1.试用函数单调性的定义判断函数 f(x)= x-2x1在区间(0,1)上
的单调性. 解:任取 x1,x2∈(0,1),且 x1<x2. 则 f(x1)-f(x2)=x12-x11-x22-x21=x12-x12-xx2-1 1. 由于 0<x1<x2<1,x1-1<0,x2-1<0,x2-x1>0, 故 f(x1)-f(x2)>0,即 f(x1)>f(x2). 所以,函数 f(x)=x-2x1在(0,1)上是减函数.
函数的单调性与最(小)值
考纲要求
考纲研读
利用函数单调性、图象等方法求
1.会求一些简单函数的值域. 一些简单函数的值域或最值;或
2.理解函数的单调性、最大值、 以最值为载体求参数的范围,并
最小值及其几何意义.
能解决实际生活中的一些优化
问题.
1.函数的单调性的定义 设函数 y=f(x)的定义域为 A,区间 I⊆A,如果对于区间 I 内 的任意两个值 x1,x2,当 x1<x2 时,都有__f_(x_1_)_<_f(_x_2)_,那么就说 y =f(x)在区间 I 上是单调增函数,I 称为 y=f(x)的___单__调__增__区__间___; 如果对于区间 I 内的任意两个值x1,x2,当x1<x2 时,都有_f_(_x1_)_>_f_(x_2,) 那么就说 y = f(x) 在区间 I 上 是单调减函数 ,I 称 为 y = f(x) 的 _单__调__减__区__间___.
《函数的基本性质》函数的概念与性质PPT(第2课时函数的最大值、最小值)
A.-1,0 C.-1,2 答案:C
B.0,2 D.12,2
栏目 导引
第三章 函数的概念与性质
函数 f(x)=1x在[1,+∞)上( ) A.有最大值无最小值 B.有最小值无最大值 C.有最大值也有最小值 D.无最大值也无最小值
栏目 导引
第三章 函数的概念与性质
解析:选 A.结合函数 f(x)=1x在[1,+∞)上的图象可知函数有 最大值无最小值.
栏目 导引
第三章 函数的概念与性质
图象法求最值的一般步骤
栏目 导引
ቤተ መጻሕፍቲ ባይዱ
第三章 函数的概念与性质
1.函数 f(x)在区间[-2,5]上的图象如图所示,则此函数的最 小值、最大值分别是( )
A.-2,f(2)
B.2,f(2)
C.-2,f(5)
D.2,f(5)
解析:选 C.由函数的图象知,当 x=-2 时,有最小值-2;当
x=5 时,有最大值 f(5).
栏目 导引
第三章 函数的概念与性质
x2-x(0≤x≤2),
2.已知函数 f(x)=x-2 1(x>2),
求函数 f(x)的最大值和
最小值.
解:作出 f(x)的图象如图.由图象可知,当 x=2 时,f(x)取最 大值为 2; 当 x=12时,f(x)取最小值为-14. 所以 f(x)的最大值为 2,最小值为-14.
栏目 导引
第三章 函数的概念与性质
利用函数的单调性求最值 已知函数 f(x)=xx-+12,x∈[3,5]. (1)判断函数 f(x)的单调性,并证明; (2)求函数 f(x)的最大值和最小值. 【解】 (1)f(x)是增函数.证明如下: ∀x1,x2∈[3,5]且 x1<x2, f(x1)-f(x2)=xx11+-21-xx22+-21=(x13+(2x)1-(xx22)+2),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则 (D ) A. k 1 B. k 1 2 2 C. k 1 D. k 1 2 2 解析 使y=(2k+1)x+b在(-∞,+∞)上是减函数,
1 则2k+1<0,即 k . 2
5.设x1,x2为y=f(x)的定义域内的任意两个变量,有以
下几个命题: ①(x1-x2)[f(x1)-f(x2)]>0; ②(x1-x2)[f(x1)-f(x2)]<0;
f ( x1 ) f ( x2 ) ③ 0; x1 x2 ④ f ( x1 ) f ( x2 ) 0. x1 x2 ①③ 其中能推出函数y=f(x)为增函数的命题为________.
x2 2 x1 2 0, 于是f(x2)-f(x1)=a a x2 1 x1 1 故函数f(x)在(-1,+∞)上为增函数.
x2 x1
3 (a 1), 方法二 x 1 求导数得 f ' ( x) a x ln a 3 2 , ( x 1) 3 x 0, ∵a>1,∴当x>-1时,a ln a>0, 2 ( x 1) f ( x) a x 1
§2.2 函数的单调性与最大(小)值 基础知识
要点梳理
1.函数的单调性 (1)单调函数的定义 增函数 减函数
自主学习
定 一般地,设函数f(x)的定义域为I.如果对于定 义 义域I内某个区间D上的任意两个自变量x1,x2
当x1<x2时,都有 定 义 f(x1)<f(x2) ,那 么就说函数f(x)在区 间D上是增函数
f′(x)>0在(-1,+∞)上恒成立, 则f(x)在(-1,+∞)上为增函数. 探究提高 对于给出具体解析式的函数,判断或证明 其在某区间上的单调性问题,可以结合定义(基本步
骤为取点、作差或作商、变形、判断)求解.可导函
数则可以利用导数解之.
ax 知能迁移1 试讨论函数 f ( x ) 2 , x∈(-1,1)的单 x 1 调性(其中a≠0).
________ 区间D 叫做f(x)的单调区间.
2.函数的最值 前提 设函数y=f(x)的定义域为I,如果存在实数
M满足
①对于任意x∈I, ①对于任意x∈I,都 f(x)≥M ; 都有___________ f(x)≤M ; 有____________ ②存在x0∈I,使得 ②存在x0∈I,使得 f(x0)=M _____________. f(x )=M _______________.
2.已知函数y=f(x)是定义在R上的增函数,则f(x)=0的 根 A.有且只有一个 C.至多有一个 B.有2个 D.以上均不对 (C )
解析
∵f(x)在R上是增函数,
∴对任意x1,x2∈R,若x1<x2,则f(x1)<f(x2), 反之亦成立.故若存在f(x0)=0,则x0只有一个. 若对任意x∈R都无f(x)=0,则f(x)=0无根.
解
方法一 根据单调性的定义求解.
设-1<x1<x2<1,
ax1 ax2 则f ( x1 ) f ( x2 ) 2 2 x1 1 x2 1 a ( x2 x1 )(x1 x2 1) . 2 2 ( x1 1)(x2 1) ∵-1<x1<x2<1,∴|x1|<1,|x2|<1,x2-x1>0,
a x2 a x1 a x1 (a x2 x1 1) 0,
又∵x1+1>0,x2+1>0,
x2 2 x1 2 ( x2 2)(x1 1) ( x1 2)(x2 1) x2 1 x1 1 ( x1 1)(x2 1) 3( x2 x1 ) 0, ( x2 1)(x1 1)
当x1<x2时,都有 f(x1)>f(x2),那么就 说函数f(x)在区间D 上是减函数
图 象 描 述
自左向右看图象是 上升的 ___________
自左向右看图象是 下降的 __________
(2)单调区间的定义 若函数f(x)在区间D上是________ 增函数 或________ 减函数 ,则称 函数f(x)在这一区间上具有(严格的)单调性,
3.已知f(x)为R上的减函数,则满足 f (| 的实数x的取值范围是 A.(-1,1) B.(0,1)
1 |) f (1) x
(C )
C.(-1,0)∪(0,1)
D.(-∞,-1)∪(1,+∞)
1 解析 由已知条件:| | 1, x
不等式等价于
| x | 1 x 0 ,
解得-1<x<1,且x≠0.
解析
依据增函数的定义可知,对于①③,当自变
量增大时,相对应的函数值也增大,所以①③可推 出函数y=f(x)为增函数.
题型分类
题型一 函数单调性的判断
x
深度剖析
x2 【例1】已知函数 f ( x) a (a 1). x 1 证明:函数f(x)在(-1,+∞)上为增函数.
思维启迪 证明 方法一 (1)用函数单调性的定义. 任取x1,x2∈(-1,+∞), (2)用导数法. 不妨设x1<x2,则x2-x1>0,a x2 x1 1且a x1 0,
2 x12 1 0, x2 1 0, | x1x2 | 1,
即-1<x1x2<1,∴x1x2+1>0.
( x2 x1 )(x1 x2 1) 0. 2 2 ( x1 1)(x2 1)
因此,当a>0时,f(x1)-f(x2)>0, 即f(x1)>)-f(x2)<0,
0
条件
结论
M为最大值
M为最小值
基础自测
1.下列函数中,在区间(0,2)上为增函数的是 (B )
B.y= x 2 2 C.y=x -4x+5 D.y x 2 2 解析 ∵y=-x+1,y=x -4x+5,y 分别为一次函 x 数、 二次函数、反比例函数,从它们的图象上可 A.y=-x+1
以看出在(0,2)上都是减函数.