基于MATLAB的水箱液位前馈-反馈复合控制方法的设计

合集下载

基于力控和Matlab的双容、多容水箱控制系统仿真课程设计

基于力控和Matlab的双容、多容水箱控制系统仿真课程设计

课程设计报告基于力控和Matlab双容、多容水箱控制系统仿真目录1. 设计题目 (3)2. 设计任务 (3)3. 设计要求 (3)4.设计任务分析 (3)5.设计内容 (4)5.1双容、多容水箱系统的数学建模 (4)5.1.1双容、多容水箱系统机理模型 (4)5.1.2双容、多容水箱系统模型的参数辨识 (5)5.2双容、多容水箱系统数学建模的仿真 (7)5.2.1控制系统仿真环境 (7)5.3双容、多容水箱系统数学建模的参数整定 (11)5.3.1 PID控制算法的参数整定 (11)5.4双容、多容水箱前馈反馈控制系统的仿真分析 (14)5.5运用力控组态软件对系统进行设计分析 (17)5.5.1I/O点收集及表单 (17)5.5.2创建实时数据库 (18)5.5.3制作双容液液位控制系统主画面 (19)5.5.4力控控制策略的运用 (21)6实习心得 (22)参考文献 (23)1. 设计题目双容水箱液位前馈反馈控制系统设计。

2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。

试设计前馈反馈控制系统以维持下水箱液位的恒定。

1图1 双容水箱液位控制系统示意图3. 设计要求1)上下水箱高都约为16m,具体几何尺寸不详,需仿真实验建模;2)进水量最大为16平方米/小时,调节阀前后压差最大为3.2Mpa;3)进水量的扰动为主要扰动。

4.设计任务分析1)要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s后施加的均值为0、方差为0.01的白噪声);2)针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID参数的整定要求写出整定的依据(选择何种整定方法,P、I、D各参数整定的依据如何),对仿真结果进行评述;3)针对该受扰的液位系统设计前馈反馈控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。

基于MATLAB的水箱水位模糊控制系统的设计

基于MATLAB的水箱水位模糊控制系统的设计

小相位特性、不稳定性、时滞和负荷干扰等。若采用单一的水位反馈控制难以达到预期的控 制效果,所以采用了仿人的模糊控制方法依据操作人员的现场经验制成模糊控制表,通过判 断水位的偏差及偏差变化率来控制输出,并易于在 PLC 上实现。模糊 PID 控制器的特点是在 大范围内利用模糊推理的方法调整系统的控制量 U,而在小偏差范围内转换成 PID 控制,两 者的转换根据事先给定的偏差范围自动实现[3]。这样做的好处是:既保证动态响应效果,又 能改善稳态控制精度。图 3 为模糊 PID 控制器的系统方框图。
r
+ _
PID 控制器 e
ec 模糊控制器 d/dt
e y
对象 U
变送器
图 3 模糊 PID 控制器系统方框图
其中,模糊控制器和 PID 控制器的切换是通过在 MATLAB 的 M 文件中事先设定误差 e 的 范围来自动实现的[4]。选取水位误差 e 的基本论域为[-10cm,10cm],选取误差变化率 ec 的 基本论域为[-4,4],选取控制量 u 的基本论域为[0,4000]。e、ec、u 的语言变量值分别 为:e={NB,NM,NS,ZE,PS,PM,PB},ec={NB,NM,NS,ZE,PS,PM,PB},u={NB,NM, NS,ZE,PS,PM,PB}。
在现代工业生产及日常生活中,有很多方面都会涉及到水位控制这个问题。而在绝大多 数情况下,我们是很难或是不可能得到被控对象的精确数学模型的,因此采用数学工具或计 算机仿真技术的传统控制理论已经无法解决此类系统的控制问题。[1]智能控制的概念主要是 针对控制对象及其环境、目标和任务的不确定性和复杂性而提出来的,而模糊逻辑控制则作 为一种新颖的智能控制方式越来越受到人们的重视。模糊逻辑控制是智能控制领域的重要发 展方向,模糊控制技术被称为“21 世纪的核心技术”。

下水箱液位前馈反馈控制系统实验

下水箱液位前馈反馈控制系统实验

下水箱液位前馈反馈控制系统实验一、实验目的1、学习前馈-反馈控制的原理。

2、了解前馈-反馈控制的特点。

3、掌握前馈-反馈控制的设计。

二、实验设备A3000-FS/FBS现场系统,任意控制系统。

三、实验原理1、控制原理前馈控制又称扰动补偿,它与反馈调节原理完全不同,是按照引起被调参数变化的干扰大小进行调节的。

在这种调节系统中要直接测量负载干扰量的变化,当干扰刚刚出现而能测出时,调节器就能发出调节信号使调节量作相应的变化,使两者抵消与被调量发生偏差之前。

因此,前馈调节对干扰的克服比反馈调节快。

但是前馈控制是开环控制。

其控制效果需要通过反馈加以检验。

前馈控制器在测出扰动之后,按过程的某种物质或能量平衡条件计算出校正值。

如果没有反馈控制,则这种校正作用只能在稳态下补偿扰动作用。

如图6-12所示。

设法保持下水箱液位,是用两个水泵注水。

图6-12 前馈-反馈控制系统原理图如果支路一出现扰动,经过流量计测量之后,测量得到干扰的大小,然后在第二个支路通过调整调节阀开度,直接进行补偿。

而不需要经过调节器。

如果没有反馈,就是开环控制,这个控制是有余差的。

增加反馈通道,使用PI 进行控制,如图6-12所示。

我们按照参考书上的内容,进行了部分简化。

前馈控制不考虑控制通道与对象通道延迟,则根据物料平衡关系,简单的前馈控制方程为:Qu=dF 。

也就是两个流量的和保持稳定。

但是有两个条件,一是准确知道第一个支路的流量,二是准确知道调节阀开度与流量对应关系1K ,如图6-13所示:图6-13 调节阀开度与流量比例关系2、测量与控制端连接表40806020调节阀FV101 AO03、实验方案被调量为调节阀,控制量是支路2流量,控制目标是下水箱液位。

首先实现前馈控制,通过测量支路1、2流量,控制调节阀,使得支路2流量变化跟踪支路1流量变化。

然后实现反馈控制,通过测量水箱液位,控制调节阀,从而把前馈控制不能修正的误差进行修正。

4、参考结果在前馈-反馈控制下的加法器系数K取不同值时的控制曲线如图6-14—6-17所示:图6-14 K=0时前馈-反馈控制曲线图6-15 K=1时前馈-反馈控制曲线图6-16 K=2时前馈-反馈控制曲线图6-17 K=3时前馈-反馈控制曲线四、实验要求1、设计前馈-反馈控制系统。

水箱液位控制系统

水箱液位控制系统

水箱液位控制及MATLAB仿真实现报告目录水箱液位控制及MATLAB仿真实现报告 (1)目录 (2)摘要 (3)水箱液位控制系统原理 (4)水箱液位控制系统的数学模型 (4)(一)确定过程的输入变量和输出变量 (4)(二)水箱液位控制系统的算法: (5)(三)水箱液位控制系统的MATLAB/simulink的仿真: (6)(四)结果分析: (7)总结 (9)摘要在人们生活和工业生产等诸多领域中经常涉及到液位和流量的控制系统问题,因此液面高度是工业控制过程中的一个重要参数,特别是在动态的过程下,采用合适的方法对液位进行检测、控制,能收到很好的效果。

PID控制是目前采用最多的控制方法。

本文介绍了双容水箱中控制液位的控制技术以及使用matlab仿真软件去进行液位仿真,通过PID控制实现液位的自动控制,用matlab 软件建立数学模型,再写出液位控制的PID算法进行数据模拟,最后实现水箱液位通过计算机技术自动控制。

通过matlab软件仿真实现了液位的实时测量和监控。

系统通过matlab仿真对实验所得的参数和仿真数据与曲线进行分析,总结参数变化对系统性能的作用。

关键字:PID控制液位控制 matlab仿真算法水箱液位控制系统原理控制系统由四个基本环节组成,即被控对象、侧量传送装置、控制装置和执行装置:水箱液位控制系统的数学模型(一)确定过程的输入变量和输出变量流入水箱的流量Q1是输入变量,流出水箱的流量L2取决于液位L和水箱出水阀门的开度,Q2为输出变量,被控对象是水箱,故系统控制模型图如下:(二) 水箱液位控制系统的算法:Q 1:水箱流入量Q 2:水箱流出量A :水箱截面积u :进水阀开度f :出水阀开度h :水箱液位高度h0:水箱初始液位高度K1:阀体流量比例系数假设f 不变,系统初始态为稳态,H 0=2m ,K 1=10,A=10m 2。

则由物料平衡得:dtdh A Q Q *21=- u k Q *11=h k Q *12=代入方程得: )**(111h k u k Adt dh -= ① 在稳定条件下:0)(*112=-Q Q A② 由①-②得:dth d A Q Q )(*21∆=∆-∆ ③ h h k Q ∆=∆*)*2/(012 ④u K Q ∆∆=*11 ⑤对①、②、③进行拉氏变换得:)(10)(**)(2)(1s H S s H A S s Q s Q ∆=∆=∆-∆1536.31010)(1)(2)(传递函数为:)(*1536.3)(*)0*2(1)(2)(*1)(1+=∆∆=∆=∆=∆∆=∆S S Q S Q S G S H S H h k S Q S u k S Q (三) 水箱液位控制系统的MATLAB/simulink 的仿真:(四)结果分析:(一)P(比例)控制:水箱系统液位控制系统在无调节器的情况下,过渡过程是一个非周期过程,是稳定的系统;调节时间较短,响应比较迅速,但是,该系统为一个有静差的系统。

题目12 下水箱液位前馈-反馈控制

题目12   下水箱液位前馈-反馈控制

题目12 下水箱液位前馈-反馈控制一、课程设计目的1、通过本实验进一步了解液位前馈-反馈控制系统的结构与原理。

2、掌握前馈补偿器的设计与调试方法。

3、掌握前馈-反馈控制系统参数的整定与投运方法。

二、课程设计使用的实验设备1. THJ-FCS 型高级过程控制系统实验装置。

2. 计算机及相关软件。

三、实验工作原理本实验的被控制量为下水箱的液位,主扰动量为变频器支路的流量。

本实验要求下水箱液位稳定至给定值,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,它与给定量比较后产生的差值为调节器的输入,其输出控制电动调节阀的开度,以达到控制下水箱液位的目的。

而扰动量经过前馈补偿器后直接叠加在调节器的输出,以抵消扰动对被控对象的影响。

本实验系统的结构图和方框图如图12-1所示。

图12-1 下水箱液位前馈-反馈控制系统(a)结构图 (b)方框图由图可知,扰动F (s )得到全补偿的条件为F(s)G f (s)+F(s)G F (s)G 0(s)=0G F (s)=-)()(0s G s G f (12-1)上式给出的条件由于受到物理实现条件的限制,显然只能近似地得到满足,即前馈控制不能全部消除扰动对被控制量的影响,但如果它能去掉扰动对被控制量的大部分影响,则认为前馈控制已起到了应有的作用。

为使补偿器简单起见,G F (s)用比例器来实现,如图其值按本章式(12-1)来计算。

四、静态放大系数K F 的整定方法(一)开环整定法开环整定法是在系统断开反馈回路的情况下,仅采用静态前馈作用,来克服对被控参数影响的一种整定法。

整定时,K F 由小到大缓慢调节,观察前馈补偿的作用,直至被控参数基本回到给定值上,即实现完全补偿。

此时的静态参数即为最佳的整定参数值K F ,实际上K F 值符合下式关系,即K F =f K K (12-2)式中:K f 、K 0分别为扰动通道、控制通道的静态放大系数。

开环整定法适用于在系统中其他扰动不占主要地位的场合,不然有较大偏差。

基于MATLAB的水箱液位控制系统的设计与

基于MATLAB的水箱液位控制系统的设计与

郑州工业应用技术学院
本科生毕业设计任务书
题目:基于MATLAB的水箱液位控制系统的设计与
仿真
起止日期: 2015年4月6日至2015年6月26日
指导教师:苏琦职称:副教授
学生姓名:李云丽学号: 1102120519 专业:电气工程及其自动化
院(系):机电工程学院
教研室主任: 20 年月日审查
院系负责人: 20 年月日批准
任务书填写要求
1.毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查,学院(系)领导签字后生效。

此任务书应在毕业设计(论文)开始前一周填好发给学生。

2.任务书内容必须用黑墨水笔工整书写或按教务处统一设定的电子文档标准格式(可从教务处网站下载)打印,不得随便涂改或潦草书写,禁止打印在其它纸上后剪贴。

3.任务书填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及学院(系)的主管领导审批后方可重新填写。

4.任务书内有关“学院(系)”“专业”等名称的填写,应写中文全称。

学生的学号要写全号。

5.有关年月日的填写,一律用阿拉伯数字书写。

如“2012年8月16日”或“2012-08-16”。

毕业设计任务。

上水箱非线性液位前馈-反馈控制

上水箱非线性液位前馈-反馈控制

过程控制综合实践上水箱非线性液位前馈反馈控制小组成员:尹国梁佐俊张素田风锐指导教师:徐宝昌许亚岚许锋聂建英前言说明 (2)一、被控对象的系统分析 (2)1.1被控对象的工艺流程解析 (2)1.2 控制需求 (3)1.3 对象特性分析 (3)二、上水箱非线性液位前馈-反馈控制系统设计的详细内容 (4)2.1 被控变量、操纵变量、扰动变量的选择 (4)2.2 控制回路、控制算法、安全联锁与报警等功能设计 (4)2.3 I/O表 (5)三、控制系统设备选型与电气控制图绘制 (5)3.1 控制系统设备选型 (5)3.2 电气控制图绘制P&ID图 (8)四、组态王监控软件的详细设计 (10)五、控制系统仿真研究 (15)六、控制系统的投运与参数整定实验 (21)七、实验结果及分析 (24)1.液位控制系统控制器参数整定 (24)2.实验结果 (24)3.控制方案优缺点,及如何改进控制方案 (1)八、其他 (26)1.设计中的主要感受和建议 (26)2.资料与文献列表 (26)说明:本题目进行复杂控制器的设计,这些设计难度比较高,实验需要的时间较长。

可以较充分的锻炼学生进行复杂控制系统设计的能力。

目的与要求:以A3000实验系统中的现场系统为基础,设计上水箱非线性液位前馈-反馈控制系统。

要求学生以现有实验装置为基础自行设计,进行该液位控制系统的设计。

确定选用的检测点和操纵变量,分析说明理由。

进行仪表的选型,利用实验室现有的计算机控制系统或模拟仪表控制系统来进行系统接线,完成系统的投运,设定合适的PID参数,以达到要求的控制系统性能指标。

可进一步采用一些先进控制算法来提高控制系统的性能。

综合考虑抗干扰问题、控制系统的稳定性、鲁棒性、动态性能、稳态偏差等,对所设计的控制系统进行分析,并分析PID的三个调整参数对控制系统的影响等。

一、被控对象的系统分析1.1 被控对象的工艺流程解析系统包括一个水泵,电磁流量计,电动调节阀,一个液位测量仪表。

基于MATLAB水箱液位控制系统的设计课程设计(可编辑)

基于MATLAB水箱液位控制系统的设计课程设计(可编辑)

基于MATLAB水箱液位控制系统的设计课程设计太原理工大学过程控制系统课程设计设计名称水箱液位系统的控制设计目录摘要III任务书IV第1章绪论 41.1过程控制的定义 41.2过程控制的目的 41.3过程控制的特点 51.4过程控制的发展与趋势5第2章水箱液位控制系统的原理 62.1 人工控制与自动控制 6 2.2 水箱液位控制系统的原理框图 7 2.3 水箱液位控制系统的数学模型 8第3章水箱液位控制系统的组成113.1 被控制变量的选择113.2 执行器的选择 113. 3 PID控制器的选择143.4 液位变送器的选择15第4章PID控制规律174.1 比例控制174.2积分控制(I) 194.3微分控制(D) 194.4比例积分控制(PI) 204.5比例积分微分控制(PID) 20第5章利用MATLAB进行仿真设计..205.1MATLAB设计205.2 MATLAB设计任务215.3 MATLAB设计要求215.4 MATLAB设计任务分析215.5 MATLAB设计内容255.5.1主回路的设计255.5.2副回路的设计255.5.3主、副回路的匹配265.5.4 单回路PID控制的设计27 5.5.5串级控制系统的设计32 5.5.6串级控制系统的PID参数整定 34总结36参考文献36摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题,?例如居民生活用水的供应,?饮料、食品加工,?溶液过滤,?化工生产等多种行业的生产加工过程,?通常需要使用蓄液池,?蓄液池中的液位需要维持合适的高度,?既不能太满溢出造成浪费,?也不能过少而无法满足需求。

因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。

?PID控制(比例、积分和微分控制)是目前采用最多的控制方法。

本文主要是对一水箱液位控制系统的设计过程,涉及到液位的动态控制、控制系统的建模、PID算法、传感器和调节阀等一系列的知识。

下水箱液位前馈-反馈控制 (2)

下水箱液位前馈-反馈控制 (2)

目录第一章绪论 (3)第二章课程设计主要仪器的介绍 (4)1.1 PLC的简介 (4)1.1.1 PLC的组成 (4)1.1.2 CPU的构成 (6)1.2 PLC的工作原理 (6)1.3PLC的外围接线 (8)2.1变频器的介绍 (8)2.1.1变频器的选择 (8)2.2 控制面板图 (9)2.4变频器的快速设置 (11)3.1电机的介绍 (12)3.1.1三项异步电动机调速 (12)第三章 PLC变频调速系统的设计与调试 (14)1 系统的接线 (14)1.1主回路接线 (14)1.2 控制回路接线 (14)2 外部接线图 (14)3 系统方案设计 (15)3.1 I/O地址分配表 (15)3.2梯形图程序 (16)4 软件系统的调试 (17)5 实验结果分析 (17)第四章控制系统的组成 (18)1系统简介 (18)2系统组成 (19)3电源控制台 (22)4总线控制柜 (22)5系统特点 (22)6装置的安全保护体系 (23)第五章下位机软件中的硬件配置和程序结构 (24)1 STEP 7简介 (24)2 STEP 7的硬件配置和程序结构 (24)第六章上位机组态软件简介 (28)1 WINCC 概述 (28)2 WINCC的通讯连接和画面组态方法 (28)第七章 PROFIBUS功能简介 (32)第八章下水箱液位前馈反馈控制 (33)实验内容与步骤 (35)第九章下水箱液位前馈反馈控制实验程序 (37)第十章实验结果和分析 (44)10.1实验图 (44)10.2分析 (46)第十一章结束语 (49)11.1 基于PLC控制的变频调速设置 (49)11.2下水箱前馈-反馈控制 (49)第十二章参考文献 (50)12.1基于PLC控制的变频调速设置 (50)12.2下水箱前馈-反馈控制 (50)第一章绪论随着微电子技术和计算机技术的发展,可编程序控制器有了突飞猛进的发展,其功能已远远超出了逻辑控制、顺序控制的范围,它与计算机有效结合,可进行模拟量控制,具有远程通信功能等。

基于MATLAB水箱液位控制系统的设计说明

基于MATLAB水箱液位控制系统的设计说明
1.2过程控制的目的
生产过程中,对各个工艺过程的物理量(或称工艺变量)有着一定的控制要求。有些工艺变量直接表征生产过程,对产品的数量与质量起着决定性的作用。例如,精馏塔的塔顶或塔釜温度,一般在操作的压力不变的情况下必须保持一定,才能得到合格的产品;加热炉出口温度的波动不能超出允许围,否则将影响后一段的效果;化学反应器的反应温度必须保持平稳,才能使效率达到指标。有些工艺变量虽不直接影响产品的质量和数量,然而保持其平稳却是使生产获得良好控制的前提。例如,用蒸汽加热反应器或在沸器,如果在蒸汽总压波动剧烈的情况下,要把反应温度或塔釜温度控制好将极为困难;中间储槽的液位高度与气柜压力,必须维持在允许的围之,才能使物料平衡,保持连续的均衡生产。有些工艺变量是决定安全生产的因素。例如,锅炉汽包的水位、受压容器的压力等,不允许超出规定的限定否则将威胁生产安全。还有一些工艺变量直接鉴定产品的质量。例如,某些混合气体环境的污染,因此,减小工业生产对环境的影响也已纳入过程控制的目标围。
由于对象的特性不同,其输入与输出可能不止一个,控制系统的设计在于适应这些不同的特点,以确定控制方案和控制其的设计或选型,以及控制器特性参数的计算与设定。这些都要以对象的特性为依据,而对象的特性复杂且难以认识,所以要完全通过理论计算进行系统设计与整定至今仍不可能。目前已设计出的各种各样的控制系统(如简单的位式控制系统、单回路及多回路控制系统,以及前馈控制、计算机控制系统等),都是通过必要的理论计算,采用现场的方法达到过程控制的目的。
主要技
术指标
或研究
目标
本过程控制系统,检测信号、控制信号及被控信号均采用ICE标准,即电压1--5V,电流4--20mA,供电要求:三相380V交流电,24V直流电。
通过本课题的设计,培养学生对自动控制系统的综合运用,对自动化仪表的选型、参数设计和调试的能力,检验所学习专业知识的综合利用能力,为今后工作打好基础。

基于MATLAB水箱液位控制系统的设计

基于MATLAB水箱液位控制系统的设计

基于MATLAB水箱液位控制系统的设计水箱液位控制系统是水处理领域的一个重要应用,可以实现对水箱液位的监测和控制。

本文将基于MATLAB平台设计一个水箱液位控制系统,并详细介绍其工作原理、设计步骤和实现方法。

1.设计目标和原理设计目标是实现水箱液位的实时监测和自动控制,保持液位在设定值附近波动。

系统原理是通过传感器实时检测水箱液位,将液位信号传输给控制器进行处理,控制器根据设定值和实际液位偏差调整执行机构的动作,使液位保持在设定值范围内。

2.设计步骤(1)确定传感器和执行机构:选择合适的液位传感器和执行机构,如浮球传感器和电动阀门。

(2)建立数学模型:根据系统特性建立数学模型,描述液位与传感器输出和执行机构控制信号之间的关系。

(3)设计控制器:根据液位模型设计控制器,如PID控制器。

(4)编写MATLAB程序:使用MATLAB编写程序,实现液位监测、控制器设计和控制信号输出。

3.系统实现方法(1)建立模拟环境:在MATLAB中建立水箱液位模拟环境,包括液位模型、传感器模型和执行机构模型。

(2)液位监测:读取传感器输出信号,获取实时液位信息。

(3)控制器设计:根据实时液位和设定值计算控制信号,可以使用PID控制器进行设计。

(4)控制信号输出:将控制信号发送给执行机构,实现对阀门的开关控制。

(5)反馈调整:根据执行机构的反馈信号对控制器参数进行调整,以进一步优化系统性能。

4.系统性能指标和优化(1)稳定性:控制系统在干扰的情况下能够保持液位稳定。

(2)响应速度:控制系统对液位变化的响应速度,可以通过调整控制器参数来实现快速响应。

(3)偏差:控制系统的液位偏差大小,可以通过调整控制器参数和设定值来控制偏差范围。

(4)抗干扰性能:控制系统对外界干扰(如水源变化)的抵抗能力。

(5)稳定性分析:通过系统稳定性分析,确定系统参数的合理范围。

(6)优化方法:通过试验和仿真,不断调整控制器参数和设定值,以实现最佳控制效果。

基于MATLAB的液位控制

基于MATLAB的液位控制

1 目录前言 (1)第一章串级控制系统及仿真概述 (2)1.1 串级控制系统简介 (2)1.1.1基本概念及组成结构 (2)1.1.2串级控制系统的工作过程 (2)1.1.3系统特点及分析 (3)1.1.4工程应用场合 (3)1.1.5系统设计 (3)1.2 串级控制系统的设计 (3)1.2.1主回路的设计 (3)1.2.2副回路的设计 (4)1.2.3主、副回路的匹配 (4)1.3串级控制系统的工业应用 (5)1.3.1用于克服被控过程较大的容量滞后 (5)1.3.2用于克服被控过程的纯滞后 (6)1.3.3用于抑制变化剧烈幅度较大的扰动 (6)1.3.4用于克服被控过程的非线性 (6)1.4 过程控制系统的MA TLAB计算与仿真 (6)1.4.1 控制系统计算机仿真 (6)1.4.2 控制系统的MATLAB计算与仿真 (7)第二章PID控制简介及整定方法 (10)2.1 PID控制简介 (10)2.2 PID参数整定方法 (13)第三章多容液位控制系统的建模 (18)3.1 过程建模的方法 (18)3.1.1 机理法 (18)3.1.2.测试法 (19)2 3.1.3 阶跃响应法 (19)3.2 有相互影响的双容建模 (20)3.3 无相互影响的多容过程 (22)第四章多容液位控制系统的仿真 (25)4.1 被控对象的仿真模型 (25)4.2 单回路控制系统的仿真 (25)4.3 串级控制系统的仿真 (31)第五章总结和展望 (39)致谢 (40)参考文献 (41)附录 (42)1 前言体不产生溢出。

所以人们对控制系统的控制精度、响应速度、系统稳定性与适应能力的要求越来越高。

而实际工业生产过程中的被控对象往往具有非线性、时延实用的控制算法的出现都对工业生产具有巨大的推动作用。

本文所提及的双容水箱液位控制系统是参考了国内外实验装置并充分考虑70%也往往是将这类系统作为最低层的控制系统。

的基础。

基于matlab的水箱液位控制系统实验设计及教学实践

基于matlab的水箱液位控制系统实验设计及教学实践

2020年8期教海探新高教学刊基于Matlab的水箱液位控制系统实验设计及教学实践*王佳庆,肖忠,王晓刚,张杰(广州大学机械与电气工程学院,广东广州510006)引言“计算机控制技术”课程是自动化、机器人工程等电气信息类专业的主干课程之一,课程理论知识内容较多,实践性较强。

该课程主要讲解计算机控制系统的基本理论、计算机控制系统的设计方法及系统的实现等教学内容。

实验教学环节是“计算机控制技术”课程教学的重要部分,它能够巩固理论知识的学习,培养学生对计算机控制系统的分析能力和设计能力。

为此,各高校教师根据实验条件,开发了不同的实验项目,各有特点,能够满足本科教学的需要[1-3]。

近年来,我校要求进行工程教育认证的专业的主干课程必须有综合性/设计性实验项目,实验项目应与专业毕业要求有较强的对应关系[4]。

“计算机控制技术”课程教师根据实验室的现有条件,开发了基于Matlab的水箱液位控制系统实验方案并进行了教学实践。

一、实验项目教学目标和内容我校的“计算机控制技术”课程内容包含离散控制系统理论、计算机控制系统的输入/输出通道、程序控制原理和设计、数字PID控制、最少拍控制、计算机控制系统实现等[5]。

为确保一个实验项目涵盖较多的教学知识点,我们对本实验项目提出了较高的教学目标:(1)掌握一种控制算法的编程语言和人机交互接口的编程语言;(2)掌握试凑法确定PID参数的方法;(3)掌握至少两种PID控制算法并实现;(4)掌握控制系统的硬件设计和数据处理方法;(5)培养学生在计算机控制技术方面分析问题和解决问题的能力。

针对提出的教学要求,需要完成的主要实验内容包括:(1)按照设计搭建水箱液位控制系统硬件;(2)数据的采集和处理;(3)设计控制系统人机交互界面和至少两种数字PID控制程序;(4)调试系统硬件和软件。

二、实验方案的硬件设计计算机控制系统的硬件主要包括控制对象和计算机系统两大部分。

根据实验室现有条件,设计的控制对象选择采用实验室的单容水箱或者双容水箱,控制参量为单个水柱的液位高度,采用带变送器的压力传感器检测液位,输出0-5V的电压信号。

水箱液位控制器matlab

水箱液位控制器matlab
subplot(2, 1, 2); plot(t, a2, 'ro', t, freightVolume, 'b+'); legend('网络输出货运量', '实际货运量'); xlabel('年份'); ylabel('货运量/万吨'); title('神经网络货运量学习与测试对比图'); grid on;
figure(1); plotfis(a2); figure(2); plotmf(a,'input',1); figure(3); plotmf(a,'output',1);
showrule(a); ruleview('tank');
for i=1:1:7 e(i)=i-4; Ulist(i)=evalfis([e(i)],a2);
end Ulist = round(Ulist);
disp('------------------------------------------------------'); disp('----------模糊控制表:e =[-3,3], u = [-4,4]-----------'); disp('------------------------------------------------------'); fprintf('| a |'); fprintf(' %d |',e); fprintf('\n'); fprintf('| u |'); fprintf(' %d |',Ulist); fprintf('\n');

自动控制原理实践教学的改革与探究-以基于MATLAB实时控制的水箱液位控制实验为例

自动控制原理实践教学的改革与探究-以基于MATLAB实时控制的水箱液位控制实验为例

自动控制原理实践教学的改革与探究-以基于MATLAB实时控制的水箱液位控制实验为例于建均;李慧杰;乔俊飞;杨金福;韩红桂;严爱军【摘要】Automatic Control Theory is the core foundation course in theprofessional of information and control, its practical teaching program not only takes on the tasks of comprehending, consolidating, deepening the theoretical knowledge through the class teaching, but also is the link between theory and practical application. In the practical teaching program of Automatic Control Theory, Experiment System is constructed based on MATLAB Real-Time Control module: Controller is debugged in the Simulink Module of MATLAB, the control signal is sent to the physical object model by means of multi-function card PCI1711.This practical teaching methods could organic bond the theory knowledge and practical application. Not only Implemented control action to the physical object, but also avoided the complex programming problem in the traditional real-time control. The running and debugging of the system is succinct and visual, and the efifciency of experiment has been improved.%自动控制原理是信息控制类专业的核心基础课程,其实践教学环节不仅担负着理解、巩固、加深课堂教学理论知识的任务,同时也是理论与实践应用之间的纽带。

基于MATLAB的多容对象液位控制系统仿真毕业设计

基于MATLAB的多容对象液位控制系统仿真毕业设计

基于MATLAB的多容对象液位控制系统仿真毕业设计摘要:本文基于MATLAB软件,设计了一个基于PID串级控制的多容对象液位控制系统仿真模型。

该系统由两个水箱和一个液位控制器组成,通过PID控制器对水箱流量进行调控,实现了液位的稳定控制。

通过对系统的建模和仿真,评估了PID控制器的性能,验证了系统的控制效果。

结果表明,PID串级控制能够实现对多容对象液位的稳定控制。

1.引言液位控制是工业生产过程中常见的一项控制任务,如石化、化工等领域对液位的控制要求较高。

PID控制器是一种常用的控制算法,在液位控制中有广泛应用。

PID串级控制是通过级联连接两个PID控制器,实现对多容对象液位的控制。

本文基于MATLAB软件,设计了一个基于PID串级控制的多容对象液位控制系统仿真模型。

通过对系统的建模和仿真,评估了PID控制器的性能,验证了系统的控制效果。

2.系统建模系统由两个水箱和一个液位控制器组成。

液位控制器通过调节两个水箱的流量,控制水位的高低。

水箱的模型可表示为一阶惯性过程,液位的变化速度与流量成正比。

控制器的模型采用PID算法进行控制调节。

3.仿真结果分析通过对系统进行仿真,得到了液位随时间的变化曲线。

分析结果显示,PID串级控制对水箱液位的控制效果较好,能够实现液位的稳定控制。

同时,通过调整PID控制器的参数,可以进一步提高系统的控制性能。

4.总结与展望本文基于MATLAB软件,设计了一个基于PID串级控制的多容对象液位控制系统仿真模型,并对系统进行了仿真分析。

结果表明,PID串级控制能够实现对多容对象液位的稳定控制。

未来的研究可以进一步优化PID控制器的参数,提高系统的控制性能,同时可以研究其他控制算法在液位控制中的应用。

MATLAB的毕业设计:前馈—反馈复合控制系统

MATLAB的毕业设计:前馈—反馈复合控制系统

前馈—反馈复合控制系统第一节前馈控制系统的组成在热工控制系统中,由于被控对象通常存在一定的纯滞后和容积滞后,因而从干扰产生到被调量发生变化需要一定的时间。

从偏差产生到调节器产生控制作用以及操纵量改变到被控量发生变化又要经过一定的时间,可见,这种反馈控制方案的本身决定了无法将干扰对被控量的影响克服在被控量偏离设定植之前,从而限制了这类控制系统控制质量的进一步提高。

考虑到偏差产生的直接原因是干扰作用的结果,如果直接按扰动而不是按偏差进行控制,也就是说,当干扰一出现调节器就直接根据检测到的干扰大小和方法按一定规律去控制。

由于干扰发生后被控量还未显示出变化之前,调节器就产生了控制作用,这在理论上就可以把偏差彻底消除。

按照这种理论构成的控制系统称为前馈控制系统,显然,前馈控制对于干扰的克服要比反馈控制系统及时的多。

从以上分析我们可以得出如下结论:若系统中的调节器能根据干扰作用的大小和方向就对被调介质进行控制来补偿干扰对被调量的影响,则这种控制就叫做前馈控制或扰动补偿。

前馈控制系统的工作原理可结合下面图1所示的换热器前馈控制进一步说明,图中虚线部分表示反馈控制系统。

一定。

当被加换热器是用蒸汽的热量加热排管中的料液,工艺上要求料液出口温度1热水流量发生变化时,若蒸汽两不发生变化,而要使出口温度保持不变,就必须在被加热水量发生变化的同时改变蒸汽量。

这就是一个前馈控制系统。

图中虚线所示是反馈控制的方法,这种方法没有前馈控制及时。

图1前馈控制系统的原理框图于图2所示。

图中,B k :测量变送器的变送系数;DZ W (s):干扰通道对象传递函数;D W (s):控制通道对象传递函数;B W (s):前馈控制装置或前馈调节器的传递函数。

第二节 前馈控制系统的特点理想的情况下,针对某种扰动的前馈控制系统能够完全补偿因扰动而引起的对被调量的影响。

实现对干扰完全补偿的关键是确定前馈控制器(前馈调节器)的控制作用,显然B W (s)取决于对象控制通道和干扰通道的特性。

基于MATLAB的水箱液位控制系统的研究

基于MATLAB的水箱液位控制系统的研究

基于MATLAB的水箱液位控制系统的研究张宇;范延滨;何金金【期刊名称】《工业控制计算机》【年(卷),期】2016(029)011【摘要】This paper mainly through the mechanism modeling to build a double tank water level control system models. Smith predictor and fuzzy control er are added to the traditional PID control system,and the use of Simulink in the MATLAB simulation tool for model simulation.%主要通过机理建模搭建出双容水箱液位控制系统的模型。

把Smith预估器和模糊控制器分别加入传统的PID控制系统中,并且运用MATLAB中Simulink仿真工具进行模型仿真。

通过对液位波形的仿真,分析各个控制算法在实际应用中的优缺点。

【总页数】3页(P59-60,63)【作者】张宇;范延滨;何金金【作者单位】青岛大学计算机科学技术学院,山东青岛 266071;青岛大学计算机科学技术学院,山东青岛 266071;青岛大学数据科学与软件工程学院,山东青岛266071【正文语种】中文【相关文献】1.基于OPC技术的PLC和MATLAB的水箱液位控制系统 [J], 王美刚2.基于Matlab的水箱液位控制系统实验设计及教学实践 [J], 王佳庆; 肖忠; 王晓刚; 张杰3.基于LabVIEW的双容水箱液位控制系统研究 [J], 孙明革;张嘉诚4.基于LabVIEW的双容水箱液位控制系统研究 [J], 孙明革;张嘉诚5.基于PLC的锅炉多水箱液位控制系统设计研究 [J], 王荣华;秦勇;唐勇因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题名称
基于MATLAB的水箱液位
孙虹
课题来源
生产实践
选题理由
在工业实际生产中,液位是过程控制系统的重要被控量,在石油﹑化工﹑环保﹑水处理﹑冶金等行业尤为重要。在工业生产过程自动化中,常常需要对某些设备和容器的液位进行测量和控制。通过液位的检测与控制,了解容器中的原料﹑半成品或成品的数量,以便调节容器内的输入输出物料的平衡,保证生产过程中各环节的物料搭配得当。通过控制计算机可以不断监控生产的运行过程,即时地监视或控制容器液位,保证产品的质量和数量。如果控制系统设计欠妥,会造成生产中对液位控制的不合理,导致原料的浪费﹑产品的不合格,甚至造成生产事故,所以设计一个良好的液位控制系统在工业生产中有着重要的实际意义液位是工业生产过程中重要的被控量之一,因而液位控制的研究具有很大的现实意义。
难易程度
适中
每位学生分工(子课题)
合计人数:
1人
相关文档
最新文档