最新初中数学锐角三角函数的图文答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学锐角三角函数的图文答案
一、选择题
1.一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A 处,此时观测到其正西方向50海里处有一座小岛B.若以港口O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()
A.(303-50,30) B.(30, 303-50) C.(303,30) D.(30,303)
【答案】A
【解析】
【分析】
【详解】
解:OA=15×4=60海里,
∵∠AOC=60°,∴∠CAO=30°,
∵sin30°=OC
AO
=
1
2
,
∴CO=30海里,
∴AC=303海里,
∴BC=(303-50)海里,
∴B(303-50,30).
故选A
【点睛】
本题考查掌握锐角三角函数的应用.
2.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D 重合,EF为折痕,则sin∠BED的值是()
A 5
B .35
C .22
D .23
【答案】B
【解析】
【分析】
先根据翻折变换的性质得到DEF AEF ∆≅∆,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ∠=,设1CD =,CF x =,则2CA CB ==,再根据勾股定理即可求解.
【详解】
解:∵△DEF 是△AEF 翻折而成,
∴△DEF ≌△AEF ,∠A =∠EDF ,
∵△ABC 是等腰直角三角形,
∴∠EDF =45°,由三角形外角性质得∠CDF +45°=∠BED +45°,
∴∠BED =∠CDF ,
设CD =1,CF =x ,则CA =CB =2,
∴DF =FA =2﹣x ,
∴在Rt △CDF 中,由勾股定理得,
CF 2+CD 2=DF 2,
即x 2+1=(2﹣x )2, 解得:34
x =, 3sin sin 5CF BED CDF DF ∴∠=∠=
=. 故选:B .
【点睛】
本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.
3.如图,点E 从点A 出发沿AB 方向运动,点G 从点B 出发沿BC 方向运动,同时出发且速度相同,DE GF AB =<(DE 长度不变,F 在G 上方,D 在E 左边),当点D 到达点B 时,点E 停止运动.在整个运动过程中,图中阴影部分面积的大小变化情况是( )
A.一直减小B.一直不变C.先减小后增大D.先增大后减小【答案】B
【解析】
【分析】
连接GE,过点E作EM⊥BC于M,过点G作GN⊥AB于N,设AE=BG=x,然后利用锐角三角函数求出GN和EM,再根据S阴影=S△GDE+S△EGF即可求出结论.
【详解】
解:连接GE,过点E作EM⊥BC于M,过点G作GN⊥AB于N
设AE=BG=x,则BE=AB-AE=AB-x
∴GN=BG·sinB=x·sinB,EM=BE·sinB=(AB-x)·sinB
∴S阴影=S△GDE+S△EGF
=1
2
DE·GN+
1
2
GF·EM
=1
2
DE·(x·sinB)+
1
2
DE·[(AB-x)·sinB]
=1
2
DE·[x·sinB+(AB-x)·sinB]
=1
2 DE·AB·sinB
∵DE、AB和∠B都为定值
∴S阴影也为定值
故选B.
【点睛】
此题考查的是锐角三角函数和求阴影部分的面积,掌握利用锐角三角函数解直角三角形和三角形的面积公式是解决此题的关键.
4.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是( )
A.
B.
C.
D.
【答案】A
【解析】
【分析】
先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠A.【详解】
解:因为AC=40,BC=10,sin∠A=BC AC
,
所以sin∠A=0.25.
所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为
故选:A.
点睛:
本题考查了计算器-三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.
5.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与
函数
1
y
x
=-、
2
y
x
=的图象交于B、A两点,则∠OAB大小的变化趋势为()
A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D
【解析】
【分析】
如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OE
OF AF
=;设B为(a,
1
a
-),A为
(b,2
b
),得到OE=-a,EB=
1
a
-,OF=b,AF=2
b
,进而得到222
a b=,此为解决问题的关