量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15up
苏汝铿量子力学(第二版)课后习题(含答案)---第四章4.5-4.7#14(延边大学)三年级
14QM-4.5设粒子处于宽度为的无限深势阱中,求在能量表象中粒子的坐标和动量的矩阵表示。
解:设粒子所处的势场的表达式为(0)()0(0)()x U x x a x a ∞<⎧⎪=≤≤⎨⎪∞>⎩在0x <,x a >两个区域,粒子的波函数均为0.设在0x a ≤≤区域中粒子的波函数为ψ 则它满足薛定谔方程20;2E x a mψψ-''=≤≤ 当 相应的边界条件为:(0)0()0a ψψ=⎧⎨=⎩解得波函数的本征函数为:()sinn n x A x a πψ= 由归一化条件得:n A aπ= 在能量表象中的本征函数为()sin n n n x x a a ππψ=在能量表象中粒子的坐标的矩阵分量为:()()2002222ˆ()()sin sin 114[],,2a a mn n m m n n m x x x x dx mn x x x dx a a a a mn m n m n a m n πππψψπ*-⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎧--≠⎪⎪-=⎨⎪=⎪⎩⎰⎰ 在能量表象中粒子的动量的矩阵分量为()20022ˆ()()sin sin 211[],0,a amn n m m n h n d m p x p x dx i mn x x dx a a dx a ih mn m n a m n m n πππψψππ*-⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎧--⎪≠=⎨-⎪=⎩⎰⎰ 14QM-4.6证明两个厄米矩阵能用同一个幺正变换对角化的充要条件是它们彼此对易。
证明:我们知道任何一个厄米矩阵能被一个幺正矩阵对角化。
设,A B 两个矩阵是对易的,并且能被幺正矩阵L 对角化证明如下:已知0AB BA -=1()LAL A αβαααβδ-'= 则11LABL LBAL --= 1111LAL LBL LBL LAL ----=1111()()()()LAL LBL LBL LAL αααβαβββαβ----''''''=∑∑11()()A LBL LBL A αααβαβββ--''= 1()()0LBL A A αβααββ-''-= 若要1()0LBL αβ-≠则 A A ααββ''=即αβ= 所以1()LBL B αβαααβδ-'=即B 能被同一幺正矩阵L 对角化。
苏汝铿量子力学(第二版)课后习题(含答案)---第四章4.11-4.13#5(延边大学)三年级
4.11 已知波函数cos sin i i e e αβδχδ⎛⎫= ⎪⎝⎭,计算它的极化矢量p ,并求能将χ旋转为10⎛⎫⎪⎝⎭态的转动矩阵R U 。
解: *()122Re()2Re(cos sin )2cos()cos sin i x p C C e βαδδβαδδ-===-*()122Im()2Im(cos sin )2sin()cos sin i y p C C e βαδδβαδδ-===-222212cos sin z p C C δδ=-=-其中12cos ,sin i i C e C e αβδδ==故222cos()cos sin 2sin()cos sin cos sin p βαδδβαδδδδ-⎛⎫⎪=- ⎪ ⎪-⎝⎭由转动矩阵的定义,知:10⎛⎫⎪⎝⎭=R U χ 设11122122R a a U a a ⎛⎫=⎪⎝⎭,则: 10⎛⎫ ⎪⎝⎭=11122122a a aa ⎛⎫⎪⎝⎭cos sin i i e e αβδδ⎛⎫⎪⎝⎭故:11122122cos sin 1cos sin 0i i i i a e a e a e a e αβαβδδδδ⎧+=⎪⎨+=⎪⎩ 所以:11122122sin sin()cos sin sin()sin 0a a a a ββαδααβδ=-=-==即:11122122sin sin sin()cos sin()sin 00R a a U a a βαβαδαβδ⎛⎫⎛⎫⎪--== ⎪ ⎪⎝⎭ ⎪⎝⎭4.12 由下述三个纯态不相干混合而成的角动量为1的粒子体系,假定每个态都等概率,这三个态是:(1)100ψ⎛⎫ ⎪= ⎪ ⎪⎝⎭;(2)001001ψ⎛⎫⎛⎫⎪⎪=+⎪⎪⎪⎪⎭⎭;(3)001ψ⎛⎫⎪= ⎪ ⎪⎝⎭(1) 求这个体系的密度矩阵ρ,并证明1tr ρ=。
(2) 选1=,角动量为1的矩阵是010********;0;0002201000001x y z i L L i i L i -⎫⎫⎛⎫⎪⎪ ⎪==-=⎪⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭。
量子力学答案(第二版)苏汝铿第六章课后答案6.16-6#8
(s x + s y + s y ) ??
sin qe- iwt ÷ ÷ ÷ - cos q ÷
,设 f (t )=ç ç
¶f = Hf ¶t
骣 a(t )÷ ÷,则有 ç ÷ b(t )÷ 桫
i d a(t ) = cos qa(t ) + sin qe- iwt b(t )......(1) - m0 B dt i d b(t ) = - cos qb(t ) + sin qeiwt a(t ).....(2) - m0 B dt
c1' = iw1e- iwt c2
化简得: 其中:
c2' = iw1eiwt c1
cos q, w1 = m0 B sin q, w2 = w + 2w0
w0 =
m0 B
a(t ) = c1eiwt b(t ) = c2e- iwt
解得: c2 '' = iw2c2 '- w12c2 (*) 由初始条件:
( S1z - S 2 z )c 1 = 0 ( S1z - S 2 z )c 2 = 0 c 4 ( S1z - S 2 z )c 3 = c 3 ( S1z - S2 z )c 4 = 2 2
骣1 2 ç A ç ç 4 ç ç ç ç ç ç 0 ç 所以得到: H ' = ç ç eB ç ç ç ç mc 2 ç ç ç ç ç 0 ç 桫
eB ( S1z - S2 z ) mc 解: eB =H 0 + A( sx 2 + s y 2 + sz 2 ) + ( S1z - S2 z ) mc H = H 0 + AS1 S2 +
量子力学答案(第二版)苏汝铿第六章课后答案6.10-6#6 @
1 N L 2
耦合之后总磁矩
1 1 N L J ( g p g N )N S J J 2 2 R J ( J 1)
因 J LS 有
N 3 ( g p g N ) N (1) J / 2
旋 S , 然后总自旋再与轨道角动量 l 耦合形成总角动量 J , 用核磁子表示你的结果. 已知质子和 中子的磁矩分别是 2.79 和-1.91 核磁子. 解: (i) S,D 态的宇称为正, 而 P 态的宇称为负, 由于宇称守恒, 开始时为 S 态的量子态在任何 时刻都不可能有 P 态混入 (ii)
1 1 1.5 ( g p g N ) N J 0.31 N J 2 2
取 J 方向的投影并使 J s 为最大值 J 1 , 从而有 0.31 N 6.11 一个 介子(赝标粒子, 自旋为零, 奇宇称)最初别束缚在氘核周围, 并处在最低库仑态
的角分布是多少? (i). 反应前后宇称守恒, 有
p( ) p(d )(1) L1 p(n) p(n)(1) L
L1 , L2 分 别 是 d 及n+n 的 轨 道角 动量 . 但反 应 前 是 在库 仑 势的 最低 能 态
中, L1 0 , 且已知: p( ) 1, p(d ) 1 有
2/3 c , 2/ d 3 , 1/ 3
p 1,1 p 1, 1 0 n 1, 0
查 C G 系数表, 可得
a 1 / 3b ,
共振态的 I 3/ 2 , 经过此面的截面比为 1 2 4 2 a : b : c 1: a : ac 1: : 9 9
能的, 因为 L 1 , 所以几率为 0 (iii) 从而有 初始态为 J , J z 1,1 , 将其变成非耦合表象 L 1, S 1, L, L3 , S , S z
量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#5
S1 , S2 , S3 互相对易,而且
2 2 2 S1 S2 S3
3 4
因此
2 2 2 S 12 S1 S2 2S1 S2 2 S 123
3 2S1 S2 2
9 2( S1 S2 S2 S3 S3 S1 ) 4
(1, 2) (1) (2)
2
1 [ (1) (2) (1) (2)] 2
2
总自旋 S 共有两个本征值:0 和 2. S 0 的本征 (1) (2) (1) (2)] 2
2
在体系的自旋态 中测得 S 0 的概率为
2 S12 S ( S 1), S 0,1
2
2
2
2
2
2
1 1 3 2 S123 S ( S 1), S , , 2 2 2
代入 H 的表达式,就得到能级值,记为 ESS 。由于体系能量与 ( S123 ) z ,即总自旋 z 分量的 本征值 [S , S 1,
r 1 1 ] e [ S , S x ] e ( S [ x , S ] x [ S , S ]) r r r
l
和 S 对易,但 l 和 S n 并不对易,利用基本对易式 [l , x ] i x , 容易证明
[l , Sn ] [l , S
,(S )] 无关,故能级 ESS 的简并度 (2S 1) 。量子数 S , S 的可能组合以
及能级和简并度如下:
S S
1 3/2 1/2
0 1/2
ESS
简并度 (2S 1)
A B 4 2
量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15
1 的本征态,粒子 2
1 2 的本征态,取 =1 ,求体系总自旋 S 的可能值及相应的概率。 2
解: S x ;
1 Sz ; Sz ; 2
1 2
(1)
Sz ; Sx ;
(2)
系统处于 S1z ; S2 x ; 的态上,将其写到 S z 的表象中为
S1z ;
编辑者:霍团长 6— 7
对于两个自旋 1/2 的例子组成的体系,证明张量算符
S12
3 (σ1 r )(σ2 r ) σ1 σ2 r2
和 S 2 及 J 对易。 S 为总自旋, J 是总角动量 J = S + l ,l 是体系的轨迹角动量,在质心坐 标系中, l 的算符形式是:
l r p i r , r = r1 - r2
而 S s( s 1)
2
1 S2 z ; S2 z ; 2
其可能值为 0或2 总自旋为零的态可表示为:
0
1 S1z ; S2 z ; S1z ; S2 z ; 2
0
1 1 1 S2 z ; S1z ; S1z ; S2 z ; 2 2 2
证明: (1)
3 2 , σ1 3, ( 1n )2 1 4 1 S s1 s2 (σ1 σ2 ) 2 3 1 ∴ S 2 σ1 σ 2 2 2 1 1 Sn S n (σ1 n σ2 n) ( 1n 2 n ) 2 2 1 1 1 ∴ Sn 2 ( 1n 2 2 n 2 2 1n 2 n ) 1n 2 n 4 2 2
2 解:取系统的力学量完全集为 ( H , S12 , S 2 , Sz )
量子力学课后习题答案
Wnl (r)dr Rnl2 (r)r 2dr
例如:对于基态 n 1, l 0
W10 (r) R102 (r)r 2
4 a03
r e2 2r / a0
求最可几半径
R e 2 r / a0
10
a03 / 2
dW10 (r) 4 (2r 2 r 2 )e2r / a0
x)
k
2
2
(
x)
0
其解为 2 (x) Asin kx B cos kx
根据波函数的标准条件确定系数A、B,由连续性条件,得
2 (0) 1(0) B 0
2 (a) 3 (a) Asin ka 0
A0
sin ka 0
ka n
(n 1, 2, 3,)
[1 r
eikr
r
(1 r
eikr )
1 r
eikr
r
(1 r
eikr )]er
i1 1 11 1 1
2
[ r
(
r2
ik
) r
r
(
r2
ik
r )]er
k
r2
er
J1与er 同向。 1 表示向外传播的球面波。
习题
(2)
J2
i
2
(
2
* 2
2*
解:U (x)与t 无关,是定态问题
薛定谔方程为
2
2
d2 dx2
(x) U (x) (x)
E (x)
在各区域的具体形式为:
x0
量子力学教程(二版)习题答案
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。
证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
波长。
解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。
的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
《量子力学教程》_课后答案
(n 1, 2, 3,)
∴ 2 ( x) A sin
n x a
由归一化条件
得
( x) dx 1
2
A2
a
2 sin
0
n xdx 1 a
由
a
b
sin
m n a x sin xdx mn a a 2
14
A
2 a 2 n sin x a a
2 ( x)
23
2
23
T 100 K 时, E 1.381021 J 。
7
1.5 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化,光子 波长最大是多少? 解:转化条件为 h ec 2 ,其中 e 为电子的静止质量,而
c h ,所以 ,即有 ec
A2 2 T A2 2T pdq A 0 cos t dt 2 0 (1 cost )dt 2 nh , n 0,1,2,
2 2 T 2
A2 2 nh E nh , n 0,1,2, 2 T
6
v 2 v (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。由 evB ,得 R eB R
其解为
2 ( x) A sin kx B coskx
④
13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥
⑤
B0 A sin ka 0
A0 s i n ka 0 ka n
max
0 h 6.626 1034 c 0.024A (电子的康普顿波长)。 31 8 e c 9.1 10 3 10
苏汝铿量子力学(第二版)课后习题(含答案)--第七章7.4-7.5#12 @(延边大学)三年级
第十二小组 姚郁飞 孟兆楷7.4 一个无自旋的质量为m ,带电为q 的粒子被束缚在一个半径为R 的圆周上运动。
分别就下面各种情况求允许的能级:i) 粒子的运动是非相对论的。
ii) 在与圆面垂直的方向上由一均匀磁场B ;iii) 同样的磁通量穿过圆面,但它现在被包在一个半径为b (b R <)的螺线管内; iv) 在圆面上有一极强的电场E 存在()22/qE mR >>v) 没有E B 和,但粒子的运动是极端相对论的; vi) 圆现在被一等圆周但一般面积的椭圆代替。
解:i)22p H m =,变换到极坐标,2222ˆ2d H mR d θ=- 代入定态薛定谔方程,得()()()222222()d E mR d ψθψθψθψθπ⎧-=⎪⎨⎪=+⎩边界条件 由此解得()20,1,2,...12in nn n n E m R θψθ⎧=⎪⎪=±±⎨⎛⎫⎪= ⎪⎪⎝⎭⎩ii) 当加上磁场后1,2q H p A m c ⎛⎫=- ⎪⎝⎭ 其中1ˆ2A Br e θ=⋅ 所以相应薛定谔方程为:()212i d q BR E m R d c ψθψθ⎛⎫--= ⎪⎝⎭边界条件()()2ψθψθπ=+ 由于qBR c只是一常数项,可以归入E ,故参考1)可取解()in Ce θψθ= 由此可得21, 0,1,2,...22n n q E BR n m R c ⎛⎫=-=±±⎪⎝⎭iii)2B ds A ds dl A A R φπ=⋅=∇⨯⋅=⋅=⎰⎰⎰因为磁通量不变,所以A 也不变。
所以n E 同上。
iv) 加一极强的电场E()2222cos 2d H qER mR d θθ=-+-由于22/qE mR >>,即势能V 比动能大很多,因此如果取电场方向为00θ=,则粒子处在0θ=时的概率很大。
故对cos θ作展开:1cos 12θθ2≈-所以222221ˆ122d HqER mR d θθ⎛⎫=--- ⎪⎝⎭(7.4) 为了不至于与能量E 混淆,将电场强度重新记作ε 显然,方程(7.4)中q R ε-为常数项,可以归入E 并222, M mR q R M εω== 则相应的薛定谔方程为()22222122d M q R E M d ωθψεψθ⎛⎫-+=+ ⎪⎝⎭显然,这就是一个谐振子的薛定谔方程 所以12n q R E n εω⎛⎫+=+⎪⎝⎭1122n qEE n q R n qER mRωε⎛⎫⎛⎫=+-=+- ⎪ ⎪⎝⎭⎝⎭,0,1,2,...n =v) 应用波尔量子化条件pdq nh =⎰取广义坐标θ,则p 就是角动量。
量子力学答案(第二版)苏汝铿第六章课后答案6.13-6#1
E E E E 1 2 2s c xc 1 2 2c s xs 2 2 4 4
而
E E 2c / s 2 x 1 s1 2 2s / c 2 x 1 c12 4 4
2 2
1 1 2 2 2 1 1 x 2 cos s c 4s 2c 2 cos E2 E3 t / 2 2 2 2 1 x 2
1 x 2 Et /
1
1 sin 2 1 x2
1 x 2 Et / 2
编辑者:霍团长 6.13、讨论一个中性粒子,它的内禀角动量是 S ( S 1) ,其中 S ,即它是一个自旋为 1 的
2
2
粒子。假设这粒子有一磁矩 M S , 是一个常数。这个粒子的量子态可用自旋空间描述。它的 基矢是 S x 的两个本征态 和 ,分别代表其自旋方向平行和反平行于 z 轴,即有
批注 [JL1]: 应为 S z
Sz
2
, Sz
2
在 t 0 时,体系状态是
(t 0) 。这一粒子沿 y 轴运动,通过一沿 y 轴方向的均匀磁场
B B0 j 。
(ⅰ)、求
(t ) ,用 和 来表示。
(ⅱ)、 S x 、 S y 、 S z 作为时间函数的表达式。
状态的自旋波函数是: 1 1 2 , 2 S 1 2 C12 , 3 C1 2 S12 , 4 1 2 ,其
批注 [JL3]:
H E / 41 2 1 2
中
z i i i
1,ຫໍສະໝຸດ z i i iz
量子力学教程答案(第二版)
2 (a) 3 (a) ⑥
⑤ B0
⑥
Asin ka 0
A0
sin ka 0
ka n (n 1, 2, 3,)
由归一化条件
∴ 2 (x)
A sin
n a
x
(x) 2 dx 1
得
A2
a
sin 2
0
n a
xdx 1
7
由
a sin
b
m a
x sin
n a
xdx
a2 mn
A
将会更小,这从某种意义上告诉我们,当涉及到粒子的衰变,产生,转 化等问题,一般所需的能量是很大的。能量越大,粒子间的转化等现象
就越丰富,这样,也许就能发现新粒子,这便是世界上在造越来越高能 的加速器的原因:期待发现新现象,新粒子,新物理。
第二章波 函数和薛定谔方程
2.1 证明在定态中,几率流与时间无关。 证:对于定态,可令
1 e ikr r
从所得结果说明 1 表示向外传播的球面波, 2 表示向内(即向原点) 传
(2)
J2
i 2m
(
2
* 2
2*
)
i [1 eikr 2m r
r
(1 eikr ) r
1 eikr r
r
(1r eikr )]r0
播的球面波。
解: J1和J 2只有r分量
在球坐标中
r0
r
e
1 r
这里 =2θ,这样,就有
A B E
k
d
sin
0
根据式(1)和(2),便有
这样,便有
A E
k
E
k
n 2
h
(2)
苏汝铿量子力学课后习题及答案
ALL RIGHTS RESERVED, BY SHAO-YU YIN, YI LI, JIA ZHOU NOT FOR DISTRIBUTION
Prof.
Ru-Keng Su
Shaoyu Yin Jia Zhou & Yi Li Department of Physics, Fudan University, Shanghai 200433, China
2ikA ˜ 2ik−V ˜A V ˜ 2ik−V
(13)
(14)
(15)
= = 3
ik A, ik−mV /¯ h2 2 mV /¯ h A. ik−mV /¯ h2
(16)
So the transmission ratio is
ALL RIGHTS RESERVED, BY SHAO-YU YIN, YI LI, JIA ZHOU NOT FOR DISTRIBUTION
T =
h ¯ω p2 C (p, t) C (p, t)dp = =− 2m 4
∗
h ¯ 2 d2 ψ (x, t) ψ (x, t)dx. 2m dx2
∗
Or using the Virial theorem (QM book of Su, Chapter 3.8, P117 ), T = 1 dU 1 h ¯ω x = U = E = . 2 dx 2 4 (9)
1/3
1.41 ∗ 10−12 eV.
(23)
2.4. (QM book of Su, Ex.2.14.) The state of electron in Hydrogen atom is ψ = √1 3 e−r/a0 , where a0 is the Bohr radius. Try to find: (i) The expectation value of r.
量子力学答案(第二版)苏汝铿第六章课后答案6.4-6#14 @
2 2 2 2
i[ J 2 , A] J iJ [ J 2 , A] (J A A J ) J J (J A A J )
ˆ AJ ˆ ˆ 2) ˆ) ˆ2 A ˆ J ˆA J 4 A AJ 4 2 J 2 AJ 2 ( 2 J 4J (
因此 S12 的 本征值为 (13 )
S12 2,0, 4
这个结论可以由式(6)得到,由于 S 2 与 S n 对易,所以本征值为
(14)
S 2 0( S 0), Sn 0, S12 0 S 2 2( S 1), Sn 1, S12 2
(14 )
Sn 0, S12 4
同样地, ( S y )
2
S y
0 i 1 (1, 0) 0 2 i 0 0
2
(S y )2
4
4 2
所以 (S x ) (S y )
2
16
14QM-6.5 设 J J1 J 2 ,求证
i j ' m ' J1z
ˆ 则有 ˆ A 取J 1
ˆ4J ˆ J ˆJ ˆ 4 2J 2 J J 2 ( J 2 J 2 J1 J1 J 2)= 4 J (J J1) 1 1 1
对上式两端 取矩阵元 jm '
jm ,即得
2j(j+1) jm ' J1 jm j ( j 1) j1 j1 1 j2 j2 1 jm ' J jm 易见 jm ' J1 jm 0和 jm ' J jm 0的选择定则相同,为
量子力学教程课后习题答案
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dvλλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=h v ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学答案(第二版)苏汝铿第六章课后答案6.1-6#3
(iv)显然, l 1, ml 1, ms 1/ 2, j l S 3/ 2, m j ml ms 3/ 2
J 2 的本征值为 j j 1
2
15 4
2
, J z 的本征值为
3 2
ˆ 的可能值为 可见, S z
2
,
1 cos 1 cos 和 2 2 1 cos 1 cos Sz cos 2 2 2 2 2 同理,对应于 S n 的本征函数为 2
相应的几率为
1 cos 2 1 (Sn ) 2 cos i cos 2(1 cos )
cos i cos cos
2 2
cos
2
(cos i cos ) 0 cos 2
(cos i cos )
2 2
即
2
4
cos 2
4
(cos 2 cos 2 ) 0
又 cos
2
cos2 cos2 1
2
( ii) 2 ( iii) 3
1 2 1 ( S z )10 ( , ) 1 ( S z )11 ( , ) 3 2 2 1 2 1 ( S z )10 ( , ) 1 ( S z )11 ( , ) 3 2 2
第六章
编辑者:霍团长
自旋和角动量
6.1 如果 m 是 Lz 的本征态,满足本征方程 Lz m m m ,现在将 z 轴转一 个角度 ,变成 z 轴,求证: Lz m cos
证明: Lz Lx cos x, z Ly cos y, z Lz cos 由于 m 是 Lz 的本征态 则有
苏汝铿量子力学答案1-8章
D
1.3 1030 rad 0.9 1030 rad
a2 ( k k0 )2 4
L
1.7 一个德布罗意波在 k 空间的表示 C (k )
2
a (2 )
1 4
e
求:
(ⅰ) ( x, t ) 和 ( x, t ) ,在时刻 t 这是否是个高斯波包? (ⅱ)波包的宽度 x(t ) ;
e
dk
积分上式可得
( x, t ) e
i ( k0 ) t
1 4
1 i t
2
exp[
( x vg t ) 2 2 2(1 i 2t ) exp[
]eik0 x
则
( x, t )
2
1 2
( x vg t ) 2 2 1 2 4t 2
1 ( x ) dx A 2 x 2 e 2x dx
2 0
1 2 A 4 3
∴ A 2 3 / 2
( x) 23 / 2 xe 2x
( x) 0
c ( p, t ) ( 1 2
( x 0) ( x 0)
1 2
1 i[ kx vg ( k k0 ) ( k k0 )2 ] 2
dk
(3)
当
C (k )
e
4
a2 ( k k0 )2 4
代入(3)式可得:
( x, t )
ei ( k0 )t ( )
1 2
a (2 )
1 4
e
a2 1 ( k k0 )2 i[ kx vg ( k k0 ) ( k k0 )2 ] 4 2
量子力学(二)习题参考答案
ψ 1 (− a ) = ψ 2 (− a ) → −C sin ka = A1e −α a
比较以上两式可以得到
B2 = − A1
A1eα x , x < − a 于是有 ψ 0 ( x) = C sin kx, −a < x < a − A e −α x , x > a 1
——奇宇称态!
+∞
( p x x − Et )
4) 、由归一化条件 ψ * ( x)ψ p ' ( x )dx = δ ( p ' − p '' ) 可定出归一化常数 p'
−∞
∫
A= 1
2π h h2 d 2 ,U = 0 2 I dϕ 2
µ =− 4、平面转子(见教科书)—— H
其解为: E m =
m2 h2 , m = 0, ±1, ±2 …… 2I 1 imϕ e , 2π
比较得到:
B2 = A1
于是得
A1eα x , x < − a ψ e ( x) = C cos kx, − a < x < a −α x A1e , x > a
——偶宇称态!
(23)
其中的 C,A1 可由归一化条件和连续性条件定出。 7、 δ 形势—— U ( x ) = f ( x )δ ( x) U(x) E 1 0 2 x (1)
①
②
由①和②消去 B
→ 2 A = (1 +
2k1 k2 k +k )C = 1 2 C → C = A k1 k1 k1 + k 2
③
由①和②消去 C
→
A − B k2 = → A + B k1
量子力学(第二版)【苏汝铿】课后习题解答
解:矩阵
的本征多项式
.
即矩阵 的本征值为
.
当 时,解本征方程
.由
得归一化本征函数
.
当
时,解本征方程
.由
得归一化本征函数
.
当 时,解本征方程
.由
得归一化本征函数
.
即矩阵
的本征值为
,归一化的本征矢量是
,
和
.
这些本征矢量不正交,因为只有对称矩阵的本征矢量才正交,而矩阵 只是一般矩阵,不是对称矩阵.
*限于水平,错误或不妥之处在所难免,诚恳地希望读者批评指正。E-mail:ifreestudy@
量 和 可能得到的值.
解:设体系处在 状态, 与 有共同的本征函数
,满足本征方程
,
由
,即
. .
又 也是
的本征态,同时
在
表象中, 的本征值为
在
表象中, 的本)
,
;(2)
,
;
故测量 和 可能得到的值是
.
计算概率,以 为例
设 出现
的概率分别为
由归一化解:
.
由对称性:
12
和
.
(v)由 表象到 表象的幺正变换矩阵 满足
其中
,
,于是使 对角化的幺正变换
. ,
故
9
量子力学(第二版)【苏汝铿】课后习题解答
4.3 如果体系的哈密顿量不显含时间,证明下列求和规则
式中 是坐标, , 是相应于 态和 态的能量,求和对一切可能的状态进行. (注:由于质量 与态 字母一样,故将质量 改为 ,避免混淆)
解:
,
,
故
4.6 证明两个厄米矩阵能用同一个幺正变换对角化的充要条件是它们彼此对易.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 2 , σ1 3, ( 1n )2 1 4 1 S s1 s2 (σ1 σ2 ) 2 3 1 ∴ S 2 σ1 σ 2 2 2 1 1 Sn S n (σ1 n σ2 n) ( 1n 2 n ) 2 2 1 1 1 ∴ Sn 2 ( 1n 2 2 n 2 2 1n 2 n ) 1n 2 n 4 2 2
又 [Sn , S ] [ S n, S ] [ S , S ] n S [n, S ] 0
2 2 2 2
∴ [S12 , S ] 6[ Sn , S ] 6Sn [ Sn , S ] 6[ Sn , S ]Sn 0
2 2 2 2 2
(2)
2 [ S12 , J ] [6Sn 2S 2 , J ] 2 6[ Sn , J ] 2[ S 2 , J ]
其可能值为 0或2 总自旋为零的态可表示为:
0
1 S1z ; S2 z ; S1z ; S2 z ; 2
0
1 1 1 S2 z ; S1z ; S1z ; S2 z ; 2 2 2
则总自旋 S 2 为 0 的几率是:
P 0
2
1 4
而总自旋 S 2 为 4 的几率是
3 4
6— 9
考虑三个自旋为 1/2 的非全同粒子组成的体系。体系的哈密顿量是:
H AS1 S2 B( S1 S2 ) S3
A、B 为实常数,试找出体系的守恒量,并确定体系的能级和简并度(取 1 为单位) 。
2 解:取系统的力学量完全集为 ( H , S12 , S 2 , Sz )
解: S x ;
1 Sz ; Sz ; 2
1 2
(1)
Sz ; Sx ;
(2)
系统处于 S1z ; S2 x ; 的态上,பைடு நூலகம்其写到 S z 的表象中为
S1z ;
而 S s( s 1)
2
1 S2 z ; S2 z ; 2
2 ∵ s1
故有
3 (σ1 r )(σ 2 r ) σ1 σ 2 r2 3(σ1 n)(σ 2 n) σ1 σ 2 S12 3 1n 2 n σ1 σ 2 1 1 3 1 6( 1n 2 n ) 2( σ1 σ 2 ) 2 2 2 2 2 2 6Sn 2 S
其中 S12 S1 S2 , S S12 S3 S1 S2 S3 ,则本征函数取为 S12 , S3 , S , mS , 定态方程为
H S12 , S3 , S , mS E S12 , S3 , S , mS ,
H AS1 S2 B( S1 S2 ) S3 A 2 B [ S12 S12 S2 2 ] [ S 2 S12 2 S32 ] 。 2 2 A 2 3 B 2 3 [ S12 ] [ S S12 2 ] 2 2 2 4
利用 [l , x ] i x
1 [ S n, lz ] [lz , S x x S y y S z z ] r 1 i ( yS x xS y ) r 1 i (r S ) z r
则 [ Sn , l ] [ S n, l ] i
S12 0, 3 E A ,此能级简并度是 2; 4 S 1/ 2,
S12 1, 1 E A B ,此能级简并度是 2; 4 S 1/ 2,
S12 1, 1 1 E A B ,此能级简并度是 4; 4 2 S 3/ 2,
r S r
故 [ Sn , J ] [ Sn , S ] [ Sn , l ] 0 又 [S 2 , J ] 0 故 [ S12 , J ] 0
6— 8
一个由两个自旋为 1/2 的非全同粒子组成的体系。已知粒子 1 处在 S1z 2 处在 S1x
1 的本征态,粒子 2
1 2 的本征态,取 =1 ,求体系总自旋 S 的可能值及相应的概率。 2
则
3 B 3 A H S12 , S3 , S , mS [(S12 1) S12 ] [ S ( S 1) S12 ( S12 1) ] S12 , S3 , S , mS 2 2 4 2
E A 3 B 3 [( S12 1) S12 ] [ S ( S 1) S12 ( S12 1) ] 2 2 2 4
6Sn [ Sn , J ] 6[ Sn , J ]Sn 2[ S 2 , J ]
∵
[ S n , S ] [ S n, S ] [ S n , S e ] [ S , S ]n e i S n e (i S n )e i S r r
编辑者:霍团长 6— 7
对于两个自旋 1/2 的例子组成的体系,证明张量算符
S12
3 (σ1 r )(σ2 r ) σ1 σ2 r2
和 S 2 及 J 对易。 S 为总自旋, J 是总角动量 J = S + l ,l 是体系的轨迹角动量,在质心坐 标系中, l 的算符形式是:
l r p i r , r = r1 - r2