北京邮电大学电子电路实验报告
电子电路测量实验(北邮)
北京邮电大学电子电路综合设计实验实验报告课题名称:函数信号发生器院系:电子工程学院摘要本实验的目的在于使用集成运算放大器设计一个方波—三角波—正弦波发生器。
其中,由施密特触发器组成的多谐振荡器产生方波,再经积分运算电路产生三角波。
最后,经过差分放大器,利用晶体管的非线性特性将三角波变换为正弦波。
并要求波形达到一定的幅值、频率等要求。
关键词函数信号发生器方波三角波正弦波集成运放正文一、设计任务要求1基本要求(1)信号输出频率在1~10kHz范围内连续可调,无明显失真。
(2)方波信号输出电压U opp=12V(误差≤20%),上升、下降沿小于10us,占空比范围为30%~70%。
(3)三角波信号输出电压U opp=8V(误差≤20%)。
(4)正弦波信号输出电压U opp≥1V2提高要求(1)将输出方波改为占空比可调的矩形波,占空比可挑范围为30%‐70%;(2)三种波形的输出峰峰值U opp均可在1V-10V 范围内连续可调。
3+二、实验原理及设计过程1总体思路函数信号发生器的构成方法多样。
本实验来看,可以先产生方波,由方波积分得到三角波,在由三角波经过整形得到正弦波;也可以先产生正弦波,将正弦波进行整形得到方波,在通过积分器产生三角波。
在器件使用上,可以是分立元件电路,也可以采用集成电路。
根据提供的器材和资料,选择设计由集成运算放大器和晶体管放大器构成的方波—三角波—正弦波发生电路(如下图二)。
2原理结构框图三、Multisim仿真过程及波形输出1元器件选择(1)方波—三角波发生电路(最终电路见附录)●芯片选择:对比uA741CP与LM318N的相关参数。
选择转换速度较快的LM318N作为矩形波发生电路的芯片,uA741CP作为三角波发生电路的芯片。
●稳压管选择:根据方波U opp =12V,方波幅度限制在-(U Z+U D)~+(U Z+U D),故选择稳压值为U Z =6V的稳压管。
查阅资料,在Multisim中选择1N4734A单稳压管,放置为稳压对管。
北邮电子电路综合设计实验报告
北邮电⼦电路综合设计实验报告北京邮电⼤学电⼦电路综合设计实验报告课题名称:函数信号发⽣器的设计学院:信息与通信⼯程学院班级:2013211123姓名:周亮学号:2013211123班内序号:9⼀、摘要⽅波与三⾓波发⽣器由集成运放电路构成,包括⽐较器与RC积分器组成。
⽅波发⽣器的基本电路由带正反馈的⽐较器及RC组成的负反馈构成;三⾓波主要由积分电路产⽣。
三⾓波转换为正弦波,则是通过差分电路实现。
该电路振荡频率和幅度便于调节,输出⽅波幅度⼤⼩由稳压管的稳压值决定,⽅波经积分得到三⾓波;⽽正弦波发⽣电路中两个电位器实现正弦波幅度与电路的对称性调节,实现较理想的正弦波输出波形。
⼆、关键词:函数信号发⽣器⽅波三⾓波正弦波三、设计任务要求1.基本要求:设计制作⼀个函数信号发⽣器电路,该电路能够输出频率可调的正弦波、三⾓波和⽅波信号。
(1) 输出频率能在1--‐10KHz范围内连续可调,⽆明显失真。
(2) ⽅波输出电压Uopp=12V(误差⼩于20%),上升、下降沿⼩于10us。
(3) 三⾓波Uopp=8V(误差⼩于20%)。
(4) 正弦波Uopp1V,⽆明显失真。
2. 提⾼要求:(1) 输出⽅波占空⽐可调范围30%--‐70%。
(2) 三种输出波形的峰峰值Uopp均可在1V--‐10V内连续可调电源电路⽅波--‐三⾓波发⽣电路正弦波发⽣电路⽅波输三⾓波输正弦波输现输出信号幅度的连续调节。
利⽤⼆极管的单向导通性,将⽅波--‐三⾓波中间的电阻改为两个反向⼆极管⼀端相连,另⼀端接⼊电位器,抽头处输出的结构,实现占空⽐连续可调,达到信号发⽣器实验的提⾼要求。
五、分块电路和总体电路的设计过程1. ⽅波--‐三⾓波产⽣电路设计过程:①根据所需振荡频率的⾼低和对⽅波前后沿陡度的要求,选择电压转换速率S R合适的运算放⼤器。
⽅波要求上升、下降沿⼩于10us,峰峰值为12V。
LM741转换速率为0.7V/us,上升下降沿为17us,⼤于要求值。
北京邮电大学电路实验报告-(小彩灯)
北京邮电大学电路实验报告-(小彩灯)电子电路综合实验报告课题名称:基于运算放大器的彩灯显示电路的设计与实现姓名:班级:学号:一、摘要:运用运算放大器设计一个彩灯显示电路,通过迟滞电压比较器和反向积分器构成方波—三角波发生器,三角波送入比较器与一系列直流电平比较,比较器输出端会分别输出高电平和低电平,从而顺序点亮或熄灭接在比较器输出端的发光管。
关键字:模拟电路,高低电平,运算放大器,振荡,比较二、设计任务要求:利用运算放大器LM324设计一个彩灯显示电路,让排成一排的5个红色发光二极管(R1~R5)重复地依次点亮再依次熄灭(全灭→R1→R1R2→R1R2R3→R1R2R3R4→R1R2R3R4R5→R1R2R3R4→R1R2R3→R1R2→R1→全灭),同时让排成一排的6个绿色发光二极管(G1~G6)单光三角波振荡电路可以采用如图2-28所示电路,这是一种常见的由集成运算放大器构成的方波和三角波发生器电路,图2-28中运放A1接成迟滞电压比较器,A2接成反相输入式积分器,积分器的输入电压取自迟滞电压比较器的输出,迟滞电压比较器的输入信号来自积分器的输出。
假设迟滞电压比较器输出U o1初始值为高电平,该高电平经过积分器在U o2端得到线性下降的输出信号,此线性下降的信号又反馈至迟滞电压比较器的输入端,当其下降至比较器的下门限电压U th-时,比较器的输出发生跳变,由高电平跳变为低电平,该低电平经过积分器在U o2端得到线性上升的输出信号,此线性上升的信号又反馈至迟滞电压比较器的输入端,当其上升至比较器的上门限电压U th+时,比较器的输出发生跳变,由低电平跳变为高电平,此后,不断重复上述过程,从而在迟滞电压比较器的输出端U o1得到方波信号,在反向积分器的输出端U o2得到三角波信号。
假设稳压管反向击穿时的稳定电压为U Z,正向导通电压为U D,由理论分析可知,该电路方波和三角波的输出幅度分别为:式(5)中R P2为电位器R P动头2端对地电阻,R P1为电位器1端对地的电阻。
北京邮电大学电路与电子学基础实验报告
《电路与电子学基础》实验报告实验名称班级学号姓名实验3交流电路的性质实验3.1 串联交流电路的阻抗 一、实验目的1.测量串联RL 电路的阻抗和交流电压与电流之间的相位,并比较测量值与计算值。
2.测量串联RC 电路的阻抗和交流电压与电流之间的相位,并比较测量值与计算值。
3.测量串联RLC 电路的阻抗和交流电压与电流之间的相位,并比较测量值与计算值。
二、实验器材双踪示波器 1台 信号发生器 1台 交流电流表 1个 交流电压表 1个 0.1µF 电容 1个 100mH 电感 1个 1K Ω电阻 1个三、实验准备两个同频率周期函数(例如正弦函数)之间的相位差,可通过测量两个曲线图之间及曲线一个周期T 的波形之间的时间差t 来确定。
因为时间t 与周期T 之比等于相位差θ(单位:度)与一周相位角的度数(360°)之比θ/360°=t/T所以,相位差可用下式计算θ=t(360°)/T在图3-1,图3-2和图3-3中交流电路的阻抗Z 满足欧姆定律,所以用阻抗两端的交流电压有效值V Z 除以交流电流有效值I Z 可算出阻抗(单位:Ω)IzVz Z =在图3-1中RL 串联电路的阻抗Z 为电阻R 和感抗XL 的向量和。
因此阻抗的大小为22LXRZ +=阻抗两端的电压VZ 与电流IZ 之间的相位差可由下式求出⎪⎭⎫⎝⎛=RXLarctan θ图3-1 RL 串联电路的阻抗在图3-2中RC 串联电路的阻抗Z 为电阻R 和容抗Xc 的向量和,所以阻抗的大小为CXR Z 22+=阻抗两段的电压Vz 和电流Iz 之间的相位差为⎪⎭⎫⎝⎛-=R X C arctan θ 当电压落后于电流时,相位差为负。
图3-2 RC 串联电路的阻抗在图3-3中RLC 串联电路的阻抗Z 为电阻 R 和电感与电容的总电抗X 之向量和,总电抗X 等于感抗XL 与容抗Xc 的向量和。
因此感抗与容抗之间有180°的相位差,所以总电抗X 为C LX XX -=这样,RLC 串联电路的阻抗大小可用下式求出22XRZ +=阻抗两端的电压Vz 与电流Iz 之间的相位差为⎪⎭⎫⎝⎛=R X arctan θ图3-3 RLC 串联电路的阻抗感抗X L 和容抗Xc 是正弦交流电频率的函数。
北京邮电大学电子电路基础实验报告
电子电路基础实验报告——晶体管β值检测电路的设计2012211117班2012210482号信通院17班01号张仁宇一、摘要:晶体管β值测量电路的功能是利用晶体管的电流分配特性,将放大倍数β值的测量转化为对晶体管电流的测量,同时实现用发光二极管显示出被测晶体管的放大倍数β值。
该电路主要由晶体管类型判别电路、β-V转换电路、晶体管放大倍数档位判断电路、显示电路、报警电路及电源电路六个基本部分组成。
首先通过LED发光二极管的亮灭实现判断三极管类型,并将β值的变化转化为电压的变化从而利用电压比较器及LED管实现β值档位(<150、150~200、200~250、>250)的判断与显示、并在β>250时通过LED管闪烁报警。
二、关键字:β值;晶体管;档位判断;闪烁报警三、实验目的1、加深对晶体管β值意义的理解2、了解掌握电压比较器的实际使用3、了解发光二极管的使用4、提高电子电路综合设计能力四、设计任务要求1、基本要求设计一个简易的晶体管放大倍数β值检测电路,该电路能够实现对放大倍数β值大小的初步测定1)电路能够测出NPN,PNP三极管的类型2)电路能将NPN晶体管的β值分别为大于250,大于200小于250,大于150小于200和小于150共四个档位进行判断3)用发光二极管指示被测三极管的放大倍数β值在哪一个档位4)在电路中可以用手动调节四个档位值得具体大小5)当β值大于250时可以光闪报警2、扩展要求1)电路能将PNP晶体管的β值分别为大于250,大于200小于250,大于150小于200和小于150共四个档位进行判断在电路中可以用手动调节四个档位值得具体大小。
2)NPN,PNP三极管β值的档位的判断可以通过手动或自动切换3)用PROTEL软件绘制该电路及其电源电路的印制电路版图。
五、设计思路与总体结构框图晶体管类型判别电路β-V转换电路放大倍数档位判断电路显示电路报警电路电源电路三极管类型判别电路的功能是利用NPN 型和PNP 型三极管的电流流向相反的特性判别晶体管的类型。
北邮电子电路简易晶体管图示仪报告
电子电路综合实验报告课题名称:简易晶体管图示仪的设计与实现专业:信息工程班级:学号:姓名:班内序号:指导老师:张君毅课题名称:简易晶体管图示仪的设计与实现一、摘要本报告主要介绍了通过主要通过数字器件实现的简易晶体管图示仪的设计方法与实现过程。
并且分模块给出了仿真框图以及仿真的结果。
给出了示波器上的一些实验数据,并且总结了在实验过程中遇到的问题以及解决的方法。
二、关键词方波,三角波,阶梯波,输出特性曲线三、设计任务要求1、基本要求:①设计一个阶梯波发生器, f≥500Hz ,Uopp≥3V ,阶数 N=6;。
②设计一个三角波发生器,三角波Vopp≥2V;③设计保护电路,实现对三极管输出特性的测试;2、提高要求:①可以识别NPN,PNP 管,并正确测试不同性质三极管;②设计阶数可调的阶梯波发生器。
四、设计思路本试验要求用示波器稳定显示晶体管输出特性曲线。
我的设计思路是先用NE555时基振荡器产生符合条件的方波。
然后将产生的方波一方面作为计数器74LS169的时钟信号,74LS169是模16的同步二进制计数器,可以通过四位二进制输出来计时钟沿的个数,实验中利用它的三位输出为多路开关CD4051提供地址。
CD4051是一个数据选择器,根据16进制计数器74LS169给出的地址进行选择性的输出,来输出阶梯波,接入基极。
另一方面将方波输入双运放LF353,第一级运放作为积分器产生三角波,第二级运放作为放大器产生符合条件的三角波,最后将符合要求的三角波作为集电极输入到三极管集电极,通过示波器如图连接即可观察到输出特性曲线五、分块电路和总体设计5.1:通过NE555产生方波,电路图如下:仿真阶梯波效果图:5.2:阶梯波的产生利用74LS169N和CD4051实现阶梯波的产生。
将产生的方波输入74LS169N中,让其统计时钟沿个数,作为地址输入到CD4051,然后作为译码器产生阶梯波电路图如下,因为multisim没有CD4051所以用ADG508来代替阶梯波波形:5.3:方波的产生将产生的方波输入双运算放大器LF353中,利用其第一个运放作为积分器产生三角波,利用第二级运放作为放大器,产生符合要求的三角波:电路图:波形图:5.4:晶体管输出特性曲线的显示晶体管的输出特性曲线指在基级输入电流Ib一定的时候,Ic和Uce的关系。
北京邮电大学电子电路实验报告
北京邮电大学电子电路实验报告实验一:函数信号发生器的设计与调测院系:信息与通信工程学院班级:2009211129姓名:班内序号:学号:指导教师:王老师课题名称:函数信号发生器的设计与调测摘要:本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。
方波—三角波发生电路采用运放组成,由自激的单线比较器产生方波,通过积分电路产生三角波,在经过差分电路可实现三角波—正弦波变换。
该电路振荡频率和幅度用电位器调节,输出方波幅度的大小有稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。
关键词:方波、三角波、正弦波、频率调节、幅度调节,占空比调节设计任务要求:基本要求:a)设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us,占空比可调范围30%—70%;3,三角波Uopp = 8V;4,正弦波Uopp≥1V。
b)用PROTEL软件绘制完整的电路原理图(SCH)设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。
本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。
单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。
差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。
北邮AGC电路实验报告
自动增益控制(AGC )电路的设计与实现实验报告姓名:_________班内序号:____________学号: ________学院:—班级: _______一.课题名称:自动增益控制电路的设计与实现二.实验目的1.了解AGC(自动增益控制)的自适应前置放大器的应用;2.掌握AGC电路的一种实现方法;3.提高独立设计电路和验证实验的能力。
三.实验摘要自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小范围内变化的特殊功能电路,简称为AGC 电路。
本实验采用短路双极晶体管直接进行小信号控制的方法,简单有效地实现AGC功能关键词:自动增益控制,直流耦合互补级,电压跟随器,反馈四.设计任务要求1. 基本要求:设计一个AGC 电路,要求设计指标以及给定条件为:•输入信号:0.5〜50mVrm§•输出信号:0.5〜1.5Vrms;•信号带宽:100〜5KHz2. 提高要求:设计一种采用其他方式的AGC电路。
五.设计思路和总体结构框图设计思路在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况;另外,在其他应用中,如监控系统中的多个相同传感器返回的信号中,频谱结构和动态范围大体相似,而最大波幅却相差很多。
此时,可以使用带自动增益控制的自适应前置放大器,使其增益应能随信号强弱而自动调整,以保持输出相对稳定。
AGC 电路的实现有反馈控制、前馈控制和混合控制等三种,典型的反馈控制AGC由可变增益放大器(VGA以及检波整流控制组成,本实验中电路采用了短路双极晶体管直接进行小信号控制的方法,从而简单而有效的实现AGC功能。
在下图1中,可变分压器由一个固定电阻R i和一个可变电阻构成,控制信号的交流振幅。
可变电阻由采用基极—集电极短路方式的双极晶体管微分电阻实现,为改变Q 的电阻,可从一个有电压源U和大阻值电阻艮组成的电流源直接向短路晶体管注入电流。
(完整版)北邮电子院专业实验报告
电子工程学院ASIC专业实验报告班级:姓名:学号:班内序号:第一局部语言级仿真LAB1:简单的组合逻辑设计一、实验目的掌握根本组合逻辑电路的实现方法。
二、实验原理本实验中描述的是一个可综合的二选一开关,它的功能是当sel=0否那么给出结果out=b。
在Verilog HDL 中,描述组合逻辑时常使用时,给出out=a,assign结构。
equal=(a==b)?1:0是一种在组合逻辑实现分支判断时常用的格式。
parameter定义的参数决定位宽。
测试模块用于检测模块设计的是否正确,它给出模块的输入信号,模块的内部信号和输出信号。
size观察三、源代码mux.vmodulescale_mux(out,sel,b,a);parametersize=1;output[size-1:0]out;input[size-1:0]b,a;inputsel;assignout=(!sel)?a:(sel)?b:{size{1'bx}};endmodulemux_test.v`definewidth8`timescale1ns/1nsmodulemux_test;reg[`width:1]a,b;wire[`width:1]out;regsel;scale_mux#(`width)m1(.out(out),.sel(sel),.b(b),.a(a)); initialbegin$monitor($stime,,"sel=%ba=%bb=%bout=%b",sel,a,b,out); $dumpvars(2,mux_test);sel=0;b={`width{1'b0}};a={`width{1'b1}};#5sel=0;b={`width{1'b1}};a={`width{1'b0}};#5sel=1;b={`width{1'b0}};a={`width{1'b1}};#5sel=1;b={`width{1'b1}};a={`width{1'b0}};#5$finish;endendmodule四、仿真结果与波形LAB2:简单时序逻辑电路的设计一、实验目的掌握根本时序逻辑电路的实现。
北京邮电大学 计算机学院 电子电路基础
《电路与电子学基础》实验目录实验1 戴维南和诺顿等效电路 (4)实验2 一阶电路的过渡过程 (6)实验2.1 电容器的充电和放电 (6)实验2.2 电感中的过渡过程 (9)实验3交流电路的性质 (12)实验3.1 串联交流电路的阻抗 (12)实验3.2 串联谐振 (17)实验4 桥式整流电路 (21)实验5 基本放大电路电路 (23)实验5.1 NPN三极管分压偏置电路 (23)实验5.2 射极跟随器 (25)实验6 差动放大器 (28)实验7 集成运算放大器应用 (32)实验7.1 反相比例放大器 (32)实验7.2 加法电路 (34)实验1 戴维南和诺顿等效电路一、实验目的1.对一个已知网络,求出它的戴维南等效电路。
2.对一个已知网络,求出它的诺顿等效电路。
3.确定戴维南定理的真实性。
4.确定诺顿定理的真实性。
5.对一个已知网络,确定它的戴维南等效电路。
6.对一个已知网络,确定它的诺顿等效电路。
二、实验器材直流电压电源 1个直流电压表 1个直流电流表 1个电阻数个三、实验准备1.戴维南定理任何一个具有固定电阻和电压源的线性二端网络,都可以用一个串联电阻的等效电压源来代替。
这个等效电压源的电压可称为戴维南电压V th,它等于原网络开路时的端电压V oc,如图1-1所示。
串联电阻可称为戴维南电阻R eq,它等于原网络两端的开路电压V oc除以短路电流I sc。
所以V th=V ocReq=V oc/I sc短路电流Isc可在原网络两端连接一个电流表来测量,如图1-2所示(注:电流表具有很小的内阻,可视为短路。
)短路电流Isc也可在原网络的输出端连接一短路线来计算。
确定戴维南电阻Req的另一个方法是,将源网络中所有的电压源用短路线代替,把所有的电流源短路,这时输出端的等效电阻就是Req。
在实验室里对一个未知网络确定其戴维南电阻Req的最好方法是,在未知网络两端连接一个可变电阻,然后调整阻值直至端电压等于开路电压Voc的一半,这时可变电阻的阻值就等于戴维南电阻Req。
北邮电子电路实验-函数信号发生器-实验报告
北京邮电大学电子电路综合设计实验实验报告实验题目:函数信号发生器院系:信息与通信工程学院班级:姓名:学号:班内序号:一、课题名称:函数信号发生器的设计二、摘要:方波-三角波产生电路主要有运放组成,其中由施密特触发器多谐振荡器产生方波,积分电路将方波转化为三角波,差分电路实现三角波-正弦波的变换。
该电路振荡频率由第一个电位器调节,输出方波幅度的大小由稳压管的稳压值决定;正弦波幅度和电路的对称性分别由后两个电位器调节。
关键词:方波三角波正弦波频率可调幅度三、设计任务要求:1.基本要求:设计制作一个方波-三角波-正弦波信号发生器,供电电源为±12V。
1)输出频率能在1-10KHZ范围内连续可调;2)方波输出电压Uopp=12V(误差<20%),上升、下降沿小于10us;3)三角波输出信号电压Uopp=8V(误差<20%);4)正弦波信号输出电压Uopp≥1V,无明显失真。
2.提高要求:1)正弦波、三角波和方波的输出信号的峰峰值Uopp均在1~10V范围内连续可调;2)将输出方波改为占空比可调的矩形波,占空比可调范围30%--70%四、设计思路1. 结构框图实验设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。
此次实验采用迟滞比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。
除保证良好波形输出外,还须实现频率、幅度、占空比的调节,即须在基本电路基础上进行改良。
由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。
其中方波三角波生成电路为基本电路,添加电位器调节使其频率幅度改变;正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
2.系统的组成框图五、分块电路与总体电路的设计1.方波—三角波产生电路如图所示为方波—三角波产生电路,由于采用了运算放大器组成的积分电路,可得到比较理想的方波和三角波。
北邮-电子电路综合设计实验(函数信号发生器)报告.
电子电路综合设计实验报告实验1 函数信号发生器的设计与实现姓名:------学号:----------班内序号:--一. 实验名称:函数信号发生器的设计与调试二.实验摘要:采用运放组成的积分电路产生方波-三角波,可得到比较理想的方波和三角波。
根据所需振荡频率的高低和对方波前后沿陡度的要求以及对所需方波、三角波的幅度可以确定合适的运放以及稳压管的型号、所需电阻的大小和电容的值。
三角波-正弦波的转换是利用差分放大器来完成的,选取合适的滑动变阻器来调节三角波的幅度以及电路的对称性。
同时利用隔直电容、滤波电容来改善输出正弦波的波形。
关键词:方波三角波正弦波频率可调三、设计任务要求1.基本要求:(1)输出频率能在1-10KHz范围内连续可调,无明显失真;(2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%-70%;(3)三角波Uopp=8V;(4)正弦波Uopp错误!未找到引用源。
1V.(5)设计该电路的电源电路(不要求实际搭建)2.提高要求:(1)正弦波、三角波和方波输出波形的峰峰值Uopp均可在1V-10V内连续可调。
(2)三种输出波形的输出端口的输出阻抗小于100Ω。
(3)三种波形从同一端口输出,并能够显示当前输出信号的种类、大小和频率(4)用CPLD设计DDS信号源(5)其他函数信号发生器的设计方案四、设计思路以及总体结构框图本课题中函数发生器结构组成如下所示:由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
图4-1 函数信号发生器的总体框图五.分块电路和总体电路的设计(1)方波——三角波产生电路图5-1 方波-三角波产生电路方波-三角波产生电路如图5-1所示,由于采用了运放组成的积分电路,可得到理想的方波和三角波。
电子电路综合设计实验报告(数控直流稳压电源设计)
电⼦电路综合设计实验报告(数控直流稳压电源设计)北京邮电⼤学电⼦电路综合设计实验实验报告实验名称:简易数控直流稳压电源的设计学院:电⼦⼯程学院班级:XXX班学号:XXXXXXXX姓名:XXX班内序号:XX2012年3⽉25⽇课题名称:简易数控直流稳压电源的设计摘要:本设计实验要求我们设计出简易数控直流稳压电源,通过⼿动调节实现输出不同电压的功能,通过电压与电流的放⼤实现较强的带负载能⼒,通过滤波电容消除纹波对直流的影响,并运⽤protel 软件进⾏仿真。
该设计实验旨在培养我们的实验兴趣与学习兴趣,提⾼实验技能与探究技能,引导我将所学所想运⽤到实际中去。
关键字:稳压电源,设计,仿真⼀、设计任务要求1.基本要求(1)设计实现⼀个简易数控直流稳压电源,设计指标及给定条件为:1) 输出电压调节范围:5V ~ 9V,步进0.5V 递增,纹波⼩于50mV;2) 输出电流⼤于100mA;3) 由预制输⼊控制输出电压递增;4) 电源为12V。
(2)设计+5V电源电路(不要求实际搭建),⽤PROTEL软件绘制完整的电路原理图(SCH)。
2.提⾼要求(1) 数字控制部分采⽤+/-按键来调整控制⼀可逆⼆进制计数器来预设电压值;(2) ⽤PROTEL软件绘制电路的印刷电路板图(PCB)。
3.探究要求输出电压调节范围更宽,步进更⼩:范围:0 ~ 10 V, 步进:0.1V。
本次探究实验主要着重完成了基本要求部分的设计与探究。
⼆、设计思路、总体结构框图本实验要求设计⼀个可以充当数控直流稳压电源的电路,电路由数字控制部分、D/A 转换部分、可调稳压部分组成。
数字控制部分采⽤+/-按键来调整控制⼀可逆⼆进制计数器来预设电压值(此部分为提⾼部分),⼆进制计数器输出输⼊到D/A 转换器中,经过D/A 转换后实现输出电压的可调。
其框图如图1所⽰。
图1 系统总体结构框图三、分块电路和总体电路的设计1.第⼀部分——数字电路控制部分此部分是电路的数字控制部分,也是电路输⼊端,其电路原理图如图2所⽰。
数电实验报告北邮(3篇)
第1篇一、实验名称数字电路基础实验二、实验目的1. 熟悉数字电路的基本原理和组成。
2. 掌握常用数字电路元件(如逻辑门、触发器、计数器等)的功能和使用方法。
3. 培养动手能力和实验技能。
三、实验原理数字电路是由逻辑门、触发器、计数器等基本元件组成的。
逻辑门是数字电路的基本单元,用于实现基本的逻辑运算。
触发器是数字电路中的记忆单元,用于存储信息。
计数器是数字电路中的时序单元,用于实现计数功能。
四、实验仪器与设备1. 数字电路实验箱2. 万用表3. 导线4. 74LS00集成电路5. 74LS20集成电路五、实验内容1. 组合逻辑电路分析(1)搭建一个4输入与非门电路,输入端分别为A、B、C、D,输出端为Y。
(2)搭建一个2输入与非门电路,输入端分别为A、B,输出端为Y。
(3)搭建一个4输入与非门电路,输入端分别为A、B、C、D,输出端为Y。
要求输出Y为A、B、C、D的异或运算结果。
2. 触发器应用(1)搭建一个D触发器电路,输入端为D,输出端为Q。
(2)搭建一个JK触发器电路,输入端为J、K,输出端为Q。
(3)搭建一个计数器电路,使用D触发器实现一个4位二进制计数器。
3. 计数器应用(1)搭建一个十进制计数器电路,使用74LS90集成电路实现。
(2)搭建一个任意进制计数器电路,使用74LS90集成电路实现。
(3)搭建一个分频器电路,使用计数器实现。
六、实验步骤1. 根据实验原理和电路图,在实验箱上搭建实验电路。
2. 使用万用表测试电路的各个节点电压,确保电路连接正确。
3. 根据实验要求,输入不同的信号,观察输出结果。
4. 记录实验数据,分析实验结果。
七、实验结果与分析1. 组合逻辑电路分析(1)4输入与非门电路:当A、B、C、D都为0时,Y为1;否则,Y为0。
(2)2输入与非门电路:当A、B都为0时,Y为1;否则,Y为0。
(3)4输入与非门电路:当A、B、C、D中有奇数个1时,Y为1;否则,Y为0。
电子电路实验报告 北邮
指数运算电路的设计与实现摘要:指数放大电路由对数放大器和反对数放大器及温度补偿电路构成。
首先进行主要单元电路的设计,在实际应用中,基于二极管PN节的指数伏安特性实现对数反对数运算,用三极管替代PN节以增加集电极电流动态运用范围。
同时引入运算放大器,利用其方向端的“虚地特性”把PN节上的电压电流关系转化为电路的输入输出电压关系。
由于晶体管的相关参数T U,ES I是温度函数,其运算精度受温度影响较大,故加上温度补偿电路。
关键词:对数放大电路,反对数放大电路,温度补偿电路,指数放大电路,调试一、设计任务要求:设计实现一个指数运算电路,要求电路的输入输出满足指数运算关系uu k i。
o1、基本要求(1)本实验要求K=2或K=3(2)电路的输入阻抗R≥100KΩ。
i(3)输入信号幅度为0~2V(4)设计该电路的电源电路(不要求实际搭建)2、提高要求(1)可以手动的选取不同的K 值,并用数码管显示K 值。
(2)在指数运算电路的基础上进一步实现乘法,除法,乘方,开方等电路(3)其他设计、解决与功能扩展方案。
二、设计思路及总体结构框图 1、设计思路:利用二极管的PN 结的指数型伏安特性,实现对数运算。
通过电阻与晶体管位置的互换实现反对数运算电路。
加入温度补偿电路,消除温度对三极管参数的影响。
同时由电路特性确定电路中的电阻值,使之满足i R ≥100k Ω 2、系统组成框图如图所示,指数运算电路由对数放大器,放对数放大器及温度补偿电路三部分构成。
基本数学推导: i o u k u ln '=i ou k u o Be Be u ln '==Bu e o uk i=ln两边取对数: Bu u k o i ln ln =k oi u Bu =调整相关参数使B=1 即k i o u u = 3、主要单元电路设计 (1)基本对数放大器由图可知,晶体管集电极电流为e I i U uTES c =又因为 i c =i R ,u U o -=所以 Rui=-e I U uT ES从而得出RI u U ES i T o U ln-=注意:在该电路中,i u >0且输出电压不能超过0.7V 以使晶体管处于放大导通状态;此外,I ES ,T U 都是温度的函数,其运算结果受温度影响很大,所以需用对管消除I ES 的影响;用温度补偿电路消除T U 的温度影响。
北京邮电大学电子电路实验报告-基于运算放大器的彩灯显示电路的设计与实现
北邮通电实验报告
一、实验名称:北邮通电实验二、实验目的:1. 了解电路的基本组成和基本原理。
2. 掌握电路元件的正确使用方法。
3. 熟悉电路的搭建与调试过程。
4. 培养实验操作能力和分析问题的能力。
三、实验仪器与材料:1. 电源:直流稳压电源2. 电阻:1kΩ、10kΩ、100kΩ3. 电容:0.1μF、1μF4. 电流表:0-1A5. 电压表:0-20V6. 开关:单刀双掷7. 导线:红色、黑色、蓝色、黄色等8. 螺丝刀、剪刀等辅助工具四、实验原理:通电实验主要是通过搭建一个简单的电路,观察电路中电流和电压的变化情况,从而了解电路的基本组成和原理。
五、实验步骤:1. 搭建电路:1.1. 根据电路图,将电阻、电容、电流表、电压表等元件按照正确的连接方式连接起来。
1.2. 将开关置于断开状态。
1.3. 检查电路连接是否正确,确保没有短路或接触不良的情况。
2. 通电实验:2.1. 将开关置于闭合状态,给电路通电。
2.2. 观察电流表和电压表的示数,记录实验数据。
2.3. 逐渐调整电阻或电容的值,观察电流和电压的变化情况,记录实验数据。
3. 数据分析:3.1. 根据实验数据,分析电路中电流和电压的变化规律。
3.2. 计算电路的电阻、电容、电流和电压等参数。
3.3. 分析实验结果与理论值之间的差异,找出原因。
六、实验结果与分析:1. 电路组成:实验中搭建的电路主要由电源、电阻、电容、电流表、电压表等元件组成。
电路的基本原理是,当电路通电时,电流会流过电阻和电容,从而产生电压和电流。
2. 电流和电压变化规律:2.1. 当电阻或电容的值增大时,电路中的电流减小,电压增大。
2.2. 当电阻或电容的值减小时,电路中的电流增大,电压减小。
2.3. 电流和电压的变化与电阻和电容的值呈反比关系。
3. 实验结果与理论值之间的差异:3.1. 实验结果与理论值之间的差异主要来自于实验误差和电路元件的参数误差。
3.2. 为了减小误差,可以采用以下措施:1. 仔细检查电路连接,确保没有短路或接触不良的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京邮电大学电子电路实验报告实验一:函数信号发生器的设计与调测院系:信息与通信工程学院班级:2009211129姓名:班内序号:学号:指导教师:王老师课题名称:函数信号发生器的设计与调测摘要:本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。
方波—三角波发生电路采用运放组成,由自激的单线比较器产生方波,通过积分电路产生三角波,在经过差分电路可实现三角波—正弦波变换。
该电路振荡频率和幅度用电位器调节,输出方波幅度的大小有稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。
关键词:方波、三角波、正弦波、频率调节、幅度调节,占空比调节设计任务要求:基本要求:a)设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us,占空比可调范围30%—70%;3,三角波Uopp = 8V;4,正弦波Uopp≥1V。
b)用PROTEL软件绘制完整的电路原理图(SCH)设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。
本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。
单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。
差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。
传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。
Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。
方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW的滑动比(即滑动头对地电阻与电位器总电阻之比)。
即调节RW可改变振荡频率。
根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。
产生三角波的时候选用LM741。
其中R1、Rf的值根据实验要求设定在20K和30K,根据计算可设定R2=3.3K欧姆,C=0.01uF。
根据运放两端电阻要求的电阻平衡,选择R4的阻值和R2的相等,即R4=3.3K欧姆。
根据所需要输出方波的幅度选择合适的稳压管和限流电阻R0的大小。
稳压管为给定的2DW232,其稳压幅度已经给定。
选择限流电阻R0为600欧姆。
为使ā的变化范围较大,信号的频率范围达到要求,电位器RW选择为1K欧姆范围内可调。
Ⅱ、三角波—正弦波产生电路设计差动放大器具有很大的共模抑制比,被广泛应用于集成电路中,常作为输入级或中间级。
差动放大器的设计:1,确定静态工作点电流Ic1、Ic2、Ic3静态时,差动放大器不加入输入信号,对于电流镜Re3=Re4=Re Ir=Ic4+Ib3+Ib4=Ic4+2Ib4= Ic4+2 Ic4/β≈Ic4= Ic3 而 Ir= Ic4= Ic3=(Ucc+Uee-Ube)/(R+Re4) 上式表明恒定电流Ic3主要由电源电压Ucc、Uee和电阻R、Re4决定,与晶体管的参数无关。
由于差动放大器得静态工作点主要由恒流源决定,故一般先设定Ic3。
Ic3取值越小,恒流源越恒定,漂移越小,放大器的输入阻抗越高。
因此在实验中,取Ic3为1mA。
有Ic1= Ic3=1/2 Ic3=0.5mA。
由R+Re=(Ucc+Uee-Ube)/Ir,其中Ucc为12V,Uee也为12v, Ube 的典型值为0.7V(在本次取值中可以忽略) Ir为1mA,故取R=22KΩ,Re4=2KΩ。
由于镜像电流源要求电阻对称,故取Re3=2KΩ。
2,差模特性差动放大器的输入和输出各含有单端和双端输入两种方式,因此,差动放大器的输入输出共有四种不同的连接方式。
不同的连接方式,电路的特性不同。
Rp 的取值不能太大,否则反馈太强,一般取 100Ω左右的电位器,用来调整差动放大器的对称性。
3,三角波—正弦波变换电路三角—正弦波变换电路三角波—正弦波变换电路的种类很多,有二极管桥是电路,二极管可变分压器电路和差分放大器等。
利用差分放大器传输特性曲线的非线性,实现三角波—正弦波的变换。
图中RP1调节三角波的幅度,RP2调整电路的对称性,并联电阻RE用来减小差分放大器传输特性曲线的线性区。
电容C1,C2,C3为隔直流电容,用单向的大电容不但很好的滤除直流分量,还能避免双向耦合,使输出地波形清晰稳定。
C4为滤波电容,以滤除高频信号干扰,改善输出正弦波的波形,减少不确定的信号干扰。
电解电容C1、C2、C3为隔直流电容,为达到良好的隔直流、通交流的目的,其容值应该取的相对较大,故取 C1=10uF C2=10uF C3=10uF。
Rp1调节三角波的幅度,为满足实验要求,其可调范围应该比较大,故取Rp1=22kΩ。
Rb1与Rb2为平衡电阻,取值为Rb1= Rb2=6.8KΩ。
流进T1,T2集电极电流约为0.5mA,为满足其正弦波的幅度大于1mA,取Rc1= Rc2=5.1kΩ,使得电流流经Rc2的电压降不至于很大。
C4为滤波电容,其值应该满足要求的正弦电压幅度与频率,其值不能取太大,否则会是幅度太小无法达到要求,故取C4=0.01uF。
至此,电路的设计基本完成,需要在实验中进一步调试电路。
电路的安装与调试:一,三角波---正弦波转换电路的安装与调试:安装三角波——正弦波变换电路1. 在面包板上接入差分放大电路,注意三极管的各管脚的接线;2. 搭生成直流源电路;3. 接入各电容及电位器;4. 按图接线,注意直流源的正负及接地端。
调试三角波——正弦波变换电路1. 接入直流源后,把 C4 接地,利用万用表测试差分放大电路的静态工作点;2. 测试 C,D 两端电压,当不相等时调节 RP 使其相等;3. 在 C5 端接入示波器观察,逐渐增大输入电压,当输出波形刚好不失真时记入其最大不失真电压;二,方波—三角波发生电路的安装与调试:安装方波—三角波产生电路1. 把 2 块集成运放插入面包板,注意布局;2. 分别把各电阻放入适当位置,尤其注意电位器的接法;3. 按图接线,注意直流源的正负及接地端。
调试方波—三角波产生电路1. 接入电源后,用示波器进行双踪观察;2. 调节 RP,微调波形的频率;3. 观察示波器,各指标达到要求后进行下一部安装。
三,总电路的安装与调试:1. 把两部分的电路接好,即把三角波的输出与差动放大器的输入相连接,进行整体测试、观察2. 针对各阶段出现的问题,逐各排查校验,使其满足实验要求,即使方波的峰峰值为12伏,三角波为8伏,使正弦波的峰峰值大于 1V。
所实现功能说明功能实现及必要数据:通过万用表,毫伏表,以及示波器测量:如图:输出方波在±5.04v之间(可能因为插板时电阻取了近似,导致R0较大),但基本满足实验要求,上升、下降沿小10us,频率可以通过电位器RP调节,在1-10Hz 左右内输出稳定。
输出三角波:三角波Uopp=7.6V输出正弦波:正弦波Uopp≥1v 三种输出波形的输出频率均可在1-10Hz内可调。
在实验中,除了峰峰值有些误差外方波和三角波波形较好,正弦波波形较粗。
但总体上还是比较美观的。
必要的测试方法:1,调节Rp调节电路的对称性。
用万用表进行调零监测2,电路A.B两输入端接地,将万用表直流电压档接在C.D端之间,调节Rp,是万用表指示为0。
注意万用表先用大量程档,逐渐减小量程,直到最小量程档指示为0。
3,用示波器进行调零监测电路A.B两输入端接地,双踪示波器输入耦合方式设为DC,示波器第一路接电路输出端C端与地之间,第二路接电路另一个输出端D端与地之间,将第二路反向按钮摁下,再选择ADD档,则可用示波器观察 C.D端之间的电压,调节Rp,使示波器显示的C.D端之间的电压为0。
4,通过调节恒流源改变电路的静态工作电流差动电路的 T1 与 T2 的静态工作电流由恒流源偏置电路决定,可改变恒流源偏置电路中的电阻 R 来改变各个晶体管的静态工作电流。
差动电路的静态调零完成后,可以测各个晶体管的静态工作电流。
故障及问题分析测试前的电路检验:∙电路是否正确,对照实验原理图仔细检查。
∙测量仪器是否有问题,仪器显示是否正确。
∙电源供电(包括极性)、信号源连线是否正确检查直流极性是否正确,信号线是否连接正确。
并且用电压表测试保证直流电源输出符合要求。
∙检查元器件引脚之间有无短路,连接处有无接触不良,二极管、集成电路和电解电容极性等是否连接有误。
测试出现的故障:∙在试验中本想设计出占空比可调。
连电路是碰巧发现若是将滑动变阻器与两个稳压分别并联会改变占空比但是由于调试时不尽人意而放弃。
∙整个电路比较复杂,连接电路时出现的问题比较多,需要仔细的检查,反复的测试才能得到需要的实验结果。
∙在实验之前需要检查电路的正确性,避免电路连接错误而造成的烧毁电路或是不出波形。
∙实验过程中,面包板可能短路,由于电阻的接线比较长,完全插入后可能错综在一起,造成短路,此时就应利用万用表,挨个检查,更换面包板,插线时不宜过深。
∙实验过程中,在帮同学调试的时候,有一回差点烧坏运放。
通电时不出函数。
检查时一摸运放特别烫,急忙断了电。
才没有烧坏。
这说明在实验前一定不能马虎,一定要好好检查一遍。
不然,接错电源导线连错的话很容易烧毁器件。
∙在三角波—正弦波转换电路中,即使在调节了电路平衡之后,输出波形也会存在一个偏斜。
这时就需要调节RP1使波形变得正常。
这个过程就需要调一会才会变化,所以需要有耐心。
∙失真问题在调试过程中,正弦波出现了以下失真,产生失真的原因及采取的措施如下: 1)钟形失真,传输特性曲线的线性区太宽,应减小 Re。
从而减小了线性区的放大效应。
2)非线性失真,三角波传输特性区线性度差引起的失真,主要是受到运放的影响。
可在输出端加滤波网络改善输出波形。
本次试验中可以通过增加 C4 的大小来减小波形的非线性失真。
3)截止失真或饱和失真。
这可是由于电路设计时工作点选的不好。