第3章 分析化学中的误差及数据处理.
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)可变性:时大、时小,可正,可负
3)服从统计规律——正态分布
(三) 过失
由于疏忽或差错引起 注意: 如果不能确定是因过失引起的,一般情况下, 数据的取舍应当由数理统计的结果来决定
系统误差与随机误差的比较
项目 产生原因 分类 性质 影响 消除或减 小的方法 系统误差 随机误差 固定因素,有时不存在 不定因素,总是存在 方法误差、仪器与试剂 环境的变化因素、主 误差、主观误差 观的变化因素等
可能有±1个单位的误差。
2、有效数字位数的确定
试样质量 0.2560g
0.25g 溶液体积 25.00mL 25mL 离解常数 溶液酸度 Ka=1.8×10-5 pH=11.20
四位有效数字(分析天平称取)
二位有效数字(托盘天平称取) 四位有效数字
(滴定管或移液管移取)
二位有效数字(量筒量取) 二位有效数字 二位有效数字 标准溶液浓度 0.1000mol/L 四位有效数字
三、系统误差和随机误差 (一)系统误差(偏倚、可测误差)
由固定因素引起 特点: 1)重现性 2)单向性 3)可测性(数值基本固定,能设法减免或校正) 分类: 1)方法误差 2)仪器误差 3)试剂误差 4)操作误差 5)个人误差(主观误差)
(二) 随机误差(偶然误差、不定误差)
由某些难以控制且无法避免的偶然因素造成 特点: 1)不可避免性:可设法减小,不能校正
x5
xM x3
xM ( x3 x2 ) / 2
x1 x2 x3 x 4
(四) 极差(全距) R
R xmax xmin
(五)准确度与误差
准确度是指测量值与真值之间符合的程度 准确度的高低用误差来衡量。 绝对误差 相对误差
Ea x xT
Ea Er 100% xT
绝对误差和相对误差都有正值和负值
π、e等可看作无限多位有效数字。
二、有效数字的修约规则
应保留的有效数字位数确定之后,舍弃多余数字的 过程称为数字修约 修约规则:“四舍六入五成双” 即 被修约的尾数的首位≤4 被修约的尾数的首位≥6 被修约的尾数 的首位为5 舍去 进位 进位后得偶数,则进 5后为“0” 进位后得奇数,则不进 5后有数 进位
常量滴定管可估计到±0.01mL
一般常量分析中,分析结果的精密度以相对平
均偏差来衡量,要求小于0.3%;准确度以相对误差
来表示,要求小于0.3%。
误差传递,每一个测定步骤应控制相对误差更小 如,称量相对误差小于0.1%
滴定相对误差小于0.1%
(样本)标准偏差
s
x x
i 1 i
n
2
第三章 误差与分析数据的处理
第一节
分析化学中的误差
一、误差与偏差
(一)真值(xT) 客观存在的真实数值 理论真值 计量学约定真值 相对真值
(二)算术平均值(简称平均值) x
x1 x2 xn 1 n x xi n n i 1
(三) 中位数 xM
x1 x2 x3 x4
析结果中去,影响分析结果的准确度。
误差传递的规律依系统误差和随机误差有 所不同
第二节 有效数字及其运算规则
一、有效数字
在滴定管上读取溶液的体积,甲:26.23mL,
乙:26.25mL
1、概念
有效数字是实际上能测量到的数字,除最后一 位是可疑的外,其余的数字都是准确可靠的 对有效数字的最后一位可疑数字,通常理解为
问题: a: 基准物:硼砂 Na2B4O7· 10H2O M=381
碳酸钠
Na2CO3
M=106
选那一个更能使测定结果准确度高? (不考虑其他原因,只考虑称量)
b:如何确定滴定体积消耗?(滴定的相对误差
小于0.1% ) 0~10ml; 20~30ml; 40~50ml
万分之一的分析天平可称准至±0.1mg
重现性、单向性(或周 服从概率统计规律、 期性)、可测性 不可测性
准确度 校正 精密度 增加测定的次数
四、公差
公差是生产部门对分析结果误差允许的一种限量 公差范围的确定,与许多因素有关:对分析结果 准确度的要求、试样组成及待测组分含量、分析方法 所能达到的准确度
ຫໍສະໝຸດ Baidu
五、误差的传递
分析结果是通过各个测量值按一定的公式 运算得到的,是间接测量值。 每个测量值都有各自的误差,将要传到分
三、有效数字的运算规则
1. 加减法 例:0.0121+25.64+1.05782 = ? 26.71 0.0121 25.64 + 1.05782 26.70992 总结: 数据相加或相减时,它们的和或差的有效数字的 保留,以小数点后位数最少的数据为依据,即以绝对 误差最大的数字为依据。
说明: 1)零的作用 标准溶液浓度 0.0010mol/L
2)极大或极小的数:科学记数法 45000 0.00055 4.5×104、4.50×104、4.500×104 5.5×10-4、5.50×10-4、5.500×10-4
3)pH,lgK等对数值 有效数字的位数仅取决于小数部分数字(尾数)的位数。 4)不是测量得到的倍数、比率、原子量、化合价、
n 1
测定次数较多
式中n-1称为自由度,用f 表示。
自由度是指独立偏差的个数
相对标准偏差(变异系数)
s sr 100% x
偏差也可用极差表示。简单直观,但未利用全部数据。
二、准确度与精密度
对于分析结果,精密度高不一定准确度高, 准确度高一定需要精密度高,精密度是保证准确 度的先决条件,精密度高的分析结果才有可能获 得高准确度。
例如,将下列数据修约为2位有效数字:
0.2146
7.36 7.451
→ 0.21
→ 7.4 → 7.5
7.45
7.35
→ 7.4
→ 7.4
注意: 在修约数字时,应一次修约到位,不得连续多次修 约。 例如,将0.2146修约为2位有效数字,不能先修约 为0.215,再修约为0.22,而应一次修约为0.21。
(六) 精密度与偏差
精密度表示在相同条件下,同一试样的重复 测定值之间的符合程度。 重复性 再现性
绝对偏差 d x x
d RD 100% x n 平均偏差 d d1 d2 dn 1 di n n i 1 相对平均偏差 RMD d 100% x
相对偏差 平均相对偏差 相对偏差 / n