最新2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新2019年—2020年学年度武汉市九年级元月调考数学试卷
(含标准答案)
考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题,每小题3分,共30分)
1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1
的方程是( ) A .3x 2
+1=6x
B .3x 2
-1=6x
C .3x 2
+6x =1
D .3x 2
-6x =1
2.下列图形中,是中心对称图形的是( )
A .
B .
C .
D .
3.若将抛物线y =x 2
先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )
A .y =(x -1)2
+2 B .y =(x -1)2
-2
C .y =(x +1)2
+2
D .y =(x +1)2
-2
4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件
的是( )
A .两枚骰子向上一面的点数之和大于1
B .两枚骰子向上一面的点数之和等于1
C .两枚骰子向上一面的点数之和大于12
D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数
为( ) A .0
B .1
C .2
D .无法确定
6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁
中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( ) A .12.5寸
B .13寸
C .25寸
D .26寸
第6题图 第8题图 第9题图
7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏
鸟中恰有2只雄鸟的概率是( ) A .
6
1
B .
8
3 C .
8
5 D .
3
2 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应
点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .6
3π
-
B .
6
23π
- C .
8
23π
- D .3
3π
-
9.古希腊数学家欧几里得的《几何原本》记载,形如x 2
+ax =b 2
的方程的图解法是:如图,画
Rt △ABC ,∠ACB =90°,BC =
2a ,AC =b ,再在斜边AB 上截取BD =2
a
,则该方程的一个 正根是( ) A .AC 的长
B .B
C 的长
C .A
D 的长 D .CD 的长
10.已知抛物线y =ax 2
+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关
于x 的一元二次方程ax 2
+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个
B .3个
C .4个
D .5个
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知3是一元二次方程x 2
=p 的一个根,则另一根是___________
12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的
白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇 匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸 到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个
14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一
张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的
4
1
. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________
第14题图 第15题图 第16题图
15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加
___________m
16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点
G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________
三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2
-3x -1=0
18.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD
第18题图
19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、