第七章 生物质热解技术

合集下载

生物质热解技术

生物质热解技术

生物质压缩成型技术1 压缩成型原理生物质主要有纤维素、半纤维素和木质素组成。

木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。

木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。

在冷却以后强度增加,成为成型燃料。

压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。

对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。

当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。

这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。

2 压缩成型生产工艺压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。

生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料主要操作步骤如下:(1)干燥生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料的含水率降低至8%-10%。

如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。

(2)粉碎木屑及稻壳等原料的粒度较小,经筛选后可直接使用。

而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。

(3)调湿加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。

(4)成型生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。

生物质热解技术

生物质热解技术

生物质热解技术按温度,升温速率,固定停留时间(反应时间)和颗粒大小等实验条件可将热解分为炭化(慢热解),快速热解和气化。

由于液体产物的诸多优点和随之而来的人们对其研究兴趣的日益高涨,对液体产物收率相对较高的快速热解技术的研究和应用越来越受到人们的重视。

快速热解过程在几秒或更短的时间内完成。

所以,化学反应,传热传质以及相变现象都起重要作用。

关键问题是使生物质颗粒只在极短的时间内处于较低温度(此种低温利于生成焦炭),然后一直处于热解过程最优温度。

要达到此目的的一种方法是使用小生物质颗粒(应用于流化床反应器),另一种方法是通过热源直接与生物质颗粒表面接触达到快速传热(这一方法应用于生物质烧蚀热解技术中)。

由众多实验研究得知,较低的加热温度和较长气体停留时间会有利于炭的生成,高温和较长停留时间会增加生物质转化为气体的量,中温和短停留时间对液体产物增加最有利。

秸秆发电商品化前景分析解决浪费性生物质能资源的唯一出路在于商品化。

生物质能秸秆发电技术,不仅为农村提供更多电力,更有意义的是将使生物质能资源的商品化成为可能,一方面农民可通过出售秸秆获得更多的收入;另一方面过去农村使用直接燃烧秸秆的方式进行炊事,要为秸秆的收集、运输、储存以及在直接燃烧时花费大量的时间和劳力。

如果能使用秸秆发电,农村使用更多的商品能源,农民将获得更多的时间从事生产性劳动,以尽早脱贫致富。

因此,将秸秆发电进行能源方式转化,是一件利国利民的好事。

1 生物质能秸秆发电的工艺流程农作物秸秆在很久以前就开始作为燃料,直至1973年第一次石油危机时丹麦开始研究利用秸秆作为发电燃料。

在这个领域丹麦BWE公司是世界领先者,第一家秸秆燃烧发电厂于1998年投入运行(Haslev,5Mw)。

此后,BWE公司在西欧设计并建造了大量的生物发电厂,其中最大的发电厂是英国的Elyan发电厂,装机容量为38Mw。

1.1 秸秆的处理、输送和燃烧发电厂内建设两个独立的秸秆仓库。

生物质快速热解技术

生物质快速热解技术

生物质快速热解技术摘要:生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为2l世纪研究的重要课题。

本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以度其产物——生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。

生物质是地球上绿色植物通过光合作用获得的各种有机物质,它是以化学方式储存太阳能,也是以可再生形式储存在生物圈的碳。

主要包括林业生物质、农业废弃物、水生植物、能源作物、城市垃圾、有机废水和人、畜粪便等。

据统计,世界每年生物质产量约l460亿吨,其中农村每年的生物质产量就有300亿吨,而生物质的利用却仅占世界能源消耗总量的l4%,发达国家占3%,发展中国家占35%,是继石油、煤炭、天然气等化石能源之后,当今全球第四大能源。

但随着化石能源利用中产生诸如“酸雨”、“温室效应”等环境问题的日益突出,以及化石燃料本身可开采量的逐渐减少,生物质能源凭借其是一种环境友好型能源,及其利用中较低的SO、NO产出和CO净排放量为零等优点,引起了越来越多人的关注。

不言而喻,生物质能源将是未来可持续发展能源体系的重要组成部分,无论是从环境,还是从资源方面考虑,研究生物质能源的转化与利用都是一项迫在眉睫的重大课题。

1生物质转化利用方法1.1生物法或称为微生物法生物质(主要是农作物秸秆、粪便、有机废水等)在厌氧条件下发酵制得沼气,主要成分是甲烷;糖类、淀粉类原料水解发酵制取酒精。

1.2化学处理法生物质中的半纤维素在酸l生条件下加热水解获得重要的化工原料糠醛;利用稻壳生产白炭黑等。

1.3热化学转化法1.3.1热解生物质在隔绝或少量氧气的条件下,热解反应获得气体、固体、液体3类产品。

近几十年来国外研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,其得率高达70%以上,是一种很有开发前景的生物质应用技术。

生物质的快速热解及热解机理研究

生物质的快速热解及热解机理研究

生物质的快速热解及热解机理研究生物质是一种可再生的能源资源,其快速热解技术在能源利用和环境保护方面具有重要意义。

本文将探讨生物质的快速热解及其热解机理研究。

快速热解是一种高温、短时间内对生物质进行加热分解的过程,通过这一过程可以得到液体燃料、气体燃料和固体炭等有用的产物。

快速热解技术在能源转化和减少碳排放方面具有重要的应用价值。

生物质的热解机理是指生物质在高温下发生化学和物理反应的过程。

热解过程中,生物质中的纤维素、半纤维素和木质素等主要成分会发生热解反应,产生液体、气体和固体产物。

热解反应主要包括干馏、裂解、气化和炭化等过程。

干馏是指在缺氧或低氧条件下,生物质中的挥发性物质被释放出来。

这些挥发性物质主要包括水、酸、醛、酮等。

干馏是生物质热解的第一步,对于液体和气体产物的生成具有重要影响。

裂解是指在高温下,生物质中的高分子化合物被断裂为低分子化合物。

裂解过程中,纤维素和半纤维素会分解为糖类、酚类和醇类等低分子化合物。

木质素则会分解为苯酚类和芳香烃类化合物。

裂解反应是生物质热解的关键步骤,对于液体和气体产物的生成具有重要影响。

气化是指生物质在高温下与气体反应生成气体的过程。

气化过程中,生物质中的碳水化合物被分解为一氧化碳和氢气等气体产物。

气化反应是生物质热解的重要环节,产生的气体可用于发电、供热和合成化学品等领域。

炭化是指生物质在高温下失去挥发性物质,生成固体炭的过程。

炭化过程中,生物质中的无机物质也会得以保留,形成矿物质残留物。

炭化反应是生物质热解的最终阶段,产生的固体炭可以用作燃料或其他工业用途。

研究生物质的快速热解及热解机理对于提高生物质能源的利用效率和减少环境污染具有重要意义。

研究人员通过实验和数值模拟等手段,探索不同反应条件下生物质热解的机理和影响因素。

研究结果表明,反应温度、反应时间、生物质种类和粒径等因素对于热解产物的种类和产率有重要影响。

在实际应用中,快速热解技术可以将农林废弃物、城市固体废弃物和能源作物等生物质资源转化为有用的能源产品。

生物质热解气化原理与技术-绪论

生物质热解气化原理与技术-绪论

生物质热解气化原理与技术第一章绪论生物质能是绿色植物通过光合作用转换和储存下来的太阳能,是重要的可再生能源,也是人类最早主动利用的能源,在人类文明史中起到了重要的作用。

至今,生物质能仍然是世界上消费量位居第四的一次能源,在我国农村和发展中国家得到广泛应用。

传统生物质能利用方式主要是家用炉灶中的直接燃烧,是自然经济生活方式的延续。

现代生物质能技术包括热化学转换和生物化学转换两大类。

其中热化学转换技术与化石燃料技术有很强大的兼容性,在许多方面可以替代化石燃料,实现可持续发展和低碳排放,为人们所重视。

生物质热解气化是热化学转换的重要技术方向,经过科学家和工程师们的长期努力,已经发展成为一个丰富多彩的技术门类,出现了形式多样的装置和工程实例,生产出热力、电力、液体燃料、气体燃料等品位较高的二次能源,还有许多新型技术在开发之中。

生物质热解气化技术的发展一切有生命的或者曾经有生命的物质都是生物质,这是一个包罗万象的总概念,但是只有那些可以作为燃料的固体生物质才被用作热化学过程。

固体生物燃料主要包括:(1)木本原料,即树木和各种采伐、加工残余物;(2)草本原料,即草类、秸秆和各种加工残余物;(3)果壳类原料,如板栗壳、棕榈壳、花生壳等;(4)混杂燃料。

[1]生物质热解气化是通过热化学过程转变固体生物质的品质和形态,使其应用起来更加方便、高效和清洁的技术。

基本技术形式形形色色的生物质热解气化技术都是从热解和气化两个基本技术形式派生出来的,反应过程中不供应足够的氧气,以获得含有化学能的可燃烧产物为目的。

1.生物质热解生物质热解是在热作用下生物质中有机物质发生的分解反应。

在高温下,构成生物质的大分子碳氢化合物化学键断开,裂解成为较小分子的挥发物质,从固体中释放出来。

热解开始温度为200~250℃,随着温度升高,更多的挥发物质释放出来,而挥发物质质也被进一步裂解,最后残留下由碳和灰分组成的固体物质。

挥发物质中含有常温下不可凝结的简单气体,如H2、CO、CO2、CH4等,也含有常温下凝结为液体的物质,如水、酸、碳氢化合物和含氧化合物等。

生物质热解制气反应技术研究

生物质热解制气反应技术研究

生物质热解制气反应技术研究随着人们对可再生能源的需求越来越大,生物质能作为一种重要的再生能源形式也越来越受到关注。

生物质利用的方式有很多种,其中之一就是将生物质通过热解反应转化为气体,从而得到可用于发电等方面的燃气。

本文将从生物质热解制气反应技术的原理、方法、存在的问题以及未来发展方向等方面进行探讨。

一、生物质热解制气反应技术的原理生物质是指一切来自于生物的原始物质,包括各种植物、动物和微生物等。

在生物质热解制气反应中,生物质通过在高温和缺氧条件下的加热分解,产生一种混合气体,主要成分是CO、H2和CH4等可燃气体。

这些可燃气体可以直接用于发电或者作为替代化石燃料使用。

生物质热解制气反应的原理主要包括以下几个方面:1. 生物质的物理和化学变化:随着温度的升高,生物质中的大分子物质会被分解为小分子物质,同时会释放出水和气体。

2. 生物质热解反应的基本原理:在缺氧条件下,将生物质加热到一定的温度,生物质中的主要组成部分会发生热解反应,产生可燃气体。

3. 反应机理:生物质中的主要可热解组分是纤维素、半纤维素和木质素等,其热解反应机理主要包括裂解、异构化和缩合等过程。

二、生物质热解制气反应技术的方法1. 固定床热解技术:该技术是将生物质放置于密闭的反应室中,通过加热来进行热解反应。

热解产生的气体在反应过程中会不断冲刷或者从反应室中流出,然后被分离和收集。

2. 旋转炉热解技术:该技术是将生物质放置在旋转的反应室中,通过加热和旋转来增加生物质与反应介质之间的接触面积,从而提高产气速率。

3. 流化床热解技术:该技术是将生物质通过气流向上喷射到一定高度的反应器中,使其进入流化状态,然后通过高温和缺氧条件下的热解反应来生产可燃气体。

三、存在的问题虽然生物质热解制气反应技术具有很多优点,如可再生、环保、资源广泛等,但是在实践应用中仍然存在一些问题:1. 生物质类型和含量的影响:不同种类和质量的生物质对热解反应的影响有很大的差异,因此需要对生物质的类型和含量进行精准的控制。

生物质热解技术的发展现状与趋势

生物质热解技术的发展现状与趋势

生物质热解技术的发展现状与趋势当今社会面临着严重的环境问题,能源资源的稀缺和污染问题越来越严重。

因此,使用可再生能源成为解决环境和能源问题的重要途径。

生物质能源作为一种可再生的资源,吸引了越来越多的关注。

生物质热解技术是将生物质转化为燃料和其他有用产品的一种重要方法。

本文将介绍生物质热解技术的现状和未来趋势。

一、生物质热解技术的发展历程生物质热解技术起始于19世纪末,当时用于制备木炭和燃料,并发展成为以木质素为原料的化工工业。

20世纪70年代,随着油价的不断上涨,研究人员开始将目光投向生物质能源,并发展出了新的热解技术,如快速热解和流化床热解等技术。

近年来,随着生物质能在能源和环境领域的不断应用,热解技术也得到了广泛的研究和应用。

二、生物质热解技术的原理及分类生物质热解是将生物质在高温条件下,通过热解反应,将其分解为固体、液体和气体三种组分的一种技术。

其中,固体产物包括生物质炭和灰,液体产物包括木质素油、醇和酸等化合物,气体产物主要是一氧化碳、二氧化碳和氨等气体。

根据生物质热解的反应条件,可将其分为缓慢热解和快速热解两种类型。

缓慢热解是在低温下进行的反应,主要产生生物质炭和液态产物,其中液态产物含有丰富的木质素化合物。

快速热解是在高温下进行的反应,主要产生气态产物,其中以一氧化碳和二氧化碳比例最高。

快速热解相比较缓慢热解,具有反应速度快、能耗低和产气率高的特点。

三、生物质热解技术的应用现状生物质热解技术的应用现状主要存在于两个方面:一是生产生物质炭和木质素油,用于能源开发和生物质化学制品生产;二是用于污水、垃圾和农业残留物等的处理,达到减少污染和资源再利用的目的。

生物质炭是生物质热解的重要产物之一,其具有高效的吸附性能和热值,被广泛用于农业、太阳能、污水处理、水质净化和园林等领域。

近年来,随着环保意识的不断加强,生物质炭的需求量逐年上升。

木质素油是生物质热解的另一种重要产物,其含有许多有机化学品,如酚、醇、甲醛、醛酮等,适用于制备各种化学品和生物质燃料。

生物质热解气化技术

生物质热解气化技术

生物质热解气化技术
电子科技大学硕士学位论文
生物质热解气化技术
摘要
随着经济的发展,人类对于能源的需求量也在不断的增加,而传统的化石燃料由于质量逐渐减少和污染排放量的增多,使得我国必须寻求替代能源。

生物质是一种可以取代传统化石燃料的清洁替代能源,其中还存在着大量未开发利用的可再生能源。

然而,由于生物质是复杂的有机物质,催化转化技术难以进行,受转化效率限制。

因此,将生物质在高温热解气化反应中转化为燃料气和其他催化剂的气相活
性物质,是高效减少生物质污染物浓度的有效手段,是当前生物质转化技术研究的热点,也是未来生物质能源开发利用的重点。

本文的研究重点为热解气化技术在生物质转化中的研究进展及可能的应用,主要包括四个方面:生物质热解气化机理研究,催化剂包衣材料研究,多元组分生物质转化及反应机理研究以及生物质热解气化技术的应
用研究,并对今后的研究方向进行了总结和展望。

- 1 -。

概述生物质热解的基本原理

概述生物质热解的基本原理

概述生物质热解的基本原理
生物质热解是一种将生物质分解成可燃性气体、液体和固体炭的热化学过程。

其基本原理是通过在高温下加热生物质,使其发生热裂解,产生一系列气体、液体和固体产物。

具体而言,生物质热解的过程可以分为三个阶段:干燥阶段、热解阶段和固化阶段。

在干燥阶段,生物质中的水分被蒸发,使得生物质与热能相互作用。

在热解阶段,生物质中的有机物开始分解,并释放出可燃性气体和液体产品。

这些产品包括甲烷、一氧化碳、一氧化二氮、醋酸等。

在固化阶段,热解产物进一步分解生成可燃性固体炭。

这些炭可以作为生物质燃料使用,也可以用于制备材料、活性炭等。

生物质热解的基本原理是通过高温将生物质中的有机物分解成可燃性气体、液体和固体炭。

这一过程可以将生物质转化为更高能值的燃料,同时也可以利用热解产生的气体和液体产品。

生物质热解是一种重要的生物能源转化技术,具有广阔的应用前景。

生物质热解

生物质热解

生物质热解通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。

目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。

生物质热解是指生物质在没有氧化剂(空气、氧气、水蒸气等)存在或只提供有限氧的条件下,加热到逾500?,通过热化学反应将生物质大分子物质(木质素、纤维素和半纤维素)分解成较小分子的燃料物质(固态炭、可燃气、生物油)的热化学转化技术方法。

生物质热解的燃料能源转化率可达95.5%,最大限度的将生物质能量转化为能源产品,物尽其用,而热解也是燃烧和气化必不可少的初始阶段。

1 热解技术原理1.1 热解原理从化学反应的角度对其进行分析,生物质在热解过程中发生了复杂的热化学反应,包括分子键断裂、异构化和小分子聚合等反应。

木材、林业废弃物和农作物废弃物等的主要成分是纤维素、半纤维素和木质素。

热重分析结果表明,纤维素在52?时开始热解,随着温度的升高,热解反应速度加快,到350,370?时,分解为低分子产物,其热解过程为:(C6H10O5)n?nC6H10O5C6H10O5?H2O+2CH3-CO-CHOCH3-CO-CHO+H2?CH3-CO-CH2OHCH3-CO-CH2OH+H2?CH3-CHOH-CH2+H2O半纤维素结构上带有支链,是木材中最不稳定的组分,在225,325?分解,比纤维素更易热分解,其热解机理与纤维素相似。

从物质迁移、能量传递的角度对其进行分析,在生物质热解过程中,热量首先传递到颗粒表面,再由表面传到颗粒内部。

热解过程由外至内逐层进行,生物质颗粒被加热的成分迅速裂解成木炭和挥发分。

其中,挥发分由可冷凝气体和不可冷凝气体组成,可冷凝气体经过快速冷凝可以得到生物油。

一次裂解反应生成生物质炭、一次生物油和不可冷凝气体。

生物质热解

生物质热解

生物质热解分慢速热解和快速热解。

快速热解为生物质在常压中等温度(约500℃),较高的升温速率103一104℃/s,蒸汽停留时间1s以内,据文献报道液体生物油的产率最高可达85%,并仅有少量可燃的不凝性气体和炭产生。

生物质快速热解技术始于20世纪70年代,是一种新型的生物质能源转化技术。

它在隔绝空气或少量空气的条件下,采用中等反应温度,很短的蒸汽停留时间,对生物质进行快速的热解过程,再经过骤冷和浓缩,最后得到深棕色的生物油。

众所周知,目前生物质气化法是大规模集中处理生物质的主要方式,但也存在气体热值低,不易存贮、输送,小规模设备发电成本高以及上电网困难等问题;而固体燃料直接燃烧存在燃烧不完全,热利用率低,使用场合受限制等缺点。

鉴于上述情形,生物质快速热解技术作为一项资源高效利用的新技术逐渐受到重视,已成为国内外众多学者研究的热点课题。

因为生物油易于储存和运输,热值约为传统燃料油的一半以上,又可以作为合成化学品的原料,同时产生的少量气、固体产物可以在生产中回收利用。

2.1国外快速热解现状国际能源署(IEA)组织了加拿大、芬兰、意大利、瑞典、英国及美国的10余个研究小组进行了10余年的研究工作,重点对这一过程发展的潜力、技术、经济可行性以及参与国之间的技术交流进行了协调,并在所发表的报告中得出了十分乐观的结论。

欧美从20世纪70年代第一次进行生物质快速热解实验以来,已经形成比较完备的技术设备和工业化系统,表1较详细列出了欧美地区快速热解技术正常运行的反应器。

其中加拿大的Dyna Motive Energy Systems是目前利用生物质快速热解技术实行商业化生产规模最大的企业,其处理量为1500kg/h,生产以树皮、白木树、刨花、甘蔗渣为原料,在隔绝氧气450~500℃条件下,采用鼓泡循环流化床反应器,生物油的产率为60%一75%,炭15%一20%,不凝性气体10%~20%以上均为质量产率。

生物油和炭可以作为商业产品出售,而不凝性气体则为循环气体燃烧使用,整个过程无废弃物产生,从而达到原料100%的利用率。

生物质热解过程的理论和实验研究

生物质热解过程的理论和实验研究

生物质热解过程的理论和实验研究一、引言生物质是一种可再生的资源,具有广泛的应用前景。

在能源不断消耗的今天,生物质热解技术成为了一种备受瞩目的能源转化技术。

生物质热解是指在缺乏氧气条件下,利用高温加热将生物质中的有机物转化为液态、气态和固态产品的过程。

热解产物除了固定碳和水分外,还含有一定量的挥发物、液态油和焦油。

生物质热解技术正在逐步地成熟,因此,对其理论和实验研究的深入探讨是非常必要和重要的。

二、生物质热解的理论1.热解反应原理生物质热解是一种复杂的非均相反应过程,主要涉及物理和化学反应机制。

在高温下,生物质中的糖类、蛋白质、脂肪等有机复合物分解为小分子化合物,如酚类、酮类、醇类、醛类、酸类等。

同时,生物质中的水分也会分解出来。

这些高分子化合物分解为低分子化合物的过程称为裂解反应。

2.热解产物组成及溢流原因生物质热解产物主要包括挥发物、液态油和固态残渣。

其中挥发物是指分解出的气体和液体,包括氢气、甲烷、一氧化碳、氧化物等;液态油是指裂解出的有机液体,如烷类、苯类、芳香烃等;固态残渣主要是生物质中不可转化成气体和液体的物质,如固体炭。

3.热解反应动力学生物质热解反应动力学是指生物质热解反应速率随时间变化的规律。

生物质热解速率随温度、压力、碳水化合物含量、水分含量等因素的变化而变化。

高温、高压和较高的碳水化合物含量可加速生物质热解反应速率。

水分含量过高会使生物质热解反应速率降低。

三、生物质热解的实验研究1.实验设备生物质热解实验通常采用热解批式反应器和热解流式反应器两种设备。

其中热解批式反应器采用密闭容器,在高温下进行实验;而热解流式反应器主要是通过稳定的热水流或气体流来实现。

2.实验方法生物质热解实验通常采用不同的方法,如热重分析、制样热分析和热流分析等。

在热重分析中,通过测定生物质在不断升温过程中的重量变化,可以得到热解过程中的重要信息。

制样热分析是在生物质热解过程中使用样品制备技术的一种方法,该方法能够提供有关生物质的物理和化学特性的信息。

生物质催化热解技术研究

生物质催化热解技术研究

生物质催化热解技术研究Introduction在全球环境问题和化石能源储备问题的双重压力下,开发新的替代能源和可持续资源已成为世界各国共同的挑战。

生物质热能利用是可持续发展的能源利用方式之一,可以潜在地提供大量的清洁能源。

生物质催化热解技术是逐渐受到人们关注的一项技术。

本文将从生物质热解技术的具体过程、技术的应用和发展前景三方面入手,对生物质催化热解技术进行探讨。

生物质催化热解技术的过程生物质热解是指将生物质在一定温度下处理后,使生物质分子中的化学键断裂、分解成小分子气体和液体,进而进行化学反应和合成的热解过程。

在生物质热解的过程中,存在许多产物,其中液体产物是生物质能够被广泛利用的主要产物。

常见的液体产物为木质素油、纤维素油和半纤维素油。

由于生物质本身的特殊性质,生物质热解产物的性质和组成也受到影响,这也成为了生物质热解技术开发的一个挑战。

生物质催化热解技术的优势相对于传统的生物质热解技术,催化热解技术有许多优势。

首先,催化剂能够提高生物质热解过程的效率和产物的质量,同时还能减少生产过程中的排放物,即该技术具有很好的环保性。

其次,催化剂具有促进生物质在热解过程中的裂解,促进化学反应生成产物等作用,提升了生物质热解的效率和品质。

此外,催化剂的强力化学作用还能够避免催化剂的再利用过程对环境造成影响,使得催化热解技术具有很好的寿命。

生物质催化热解技术的应用目前,生物质催化热解技术被广泛地应用于能源领域、化学领域和环保领域等多个领域。

在能源领域,生物质热解产生的液体燃料可以用于发电和供热等能源利用方式;在化学领域,生物质热解产生的液体产物可以继续转化为化学原料,如生物基燃料和生物基化学品;在环保领域中,生物质热解技术能够减少环境污染和碳排放,形成环保产业链。

生物质催化热解技术的发展前景生物质热解技术具有广泛的应用前景,但是其实际开发和应用仍面临一系列问题和挑战。

解决这些问题,发展生物质催化热解技术,有望成为未来能源利用和环境保护的重要途径。

生物质热解技术

生物质热解技术

需氧
氧需求

解 放热
能量
与 焚
二氧化碳、水
产物
烧 就地利用
利用

较 二次污染大
污染
无氧或缺氧 吸热 气、油、炭黑 贮存或远距离运输 二次污染较小
研究报道表明,热解烟气量是焚烧的1/2,NO是焚 烧的1/2,HCl是焚烧的1/25,灰尘是焚烧的1/2。
3 热解的过程及产物
固体废物热解过程是一个复杂的化学反应过程。包括大分 子的键断裂,异构化和小分子的聚合等反应,最后生成各 种较小的分子。
REY、Ni/REY等各种沸石催化剂。
热解的基本工艺有两种:一种是将 废塑料加热熔融,通过热解生成简 单 的碳氢化合物,然后在催化剂的 作用下生成可燃油品。另一种将热 解和催化热解分为两段。
热解工艺主要由:前处理-熔融- 热分解-油品回收-残渣处理-中和 处理-排气处理等七道工序组成
废橡胶热解工艺
7.4 城市生活垃圾的热解
城市垃圾中可燃组分日趋增长,纸张、塑料以及合成纤 维等占有很大比重。可燃组分,热解后可回收燃料油和 燃料气.因此,城市垃圾作为资源回收也是一个重要的方 面。
目前,用于处理城市垃圾的热解技术方式主要有:移动 床熔融炉方式、回转窑方式、流化床方式、多段炉方式 及Flush Pyrolysis方式等。其中,移动床熔融炉方式是 城市垃圾热解技术中最成熟的方法。
按热解温度
中温热解: T=600~700℃,主要用 在比较单一的废物的热解,如废轮 胎、废塑料热解油化
低温热解: T< 600℃。农业、林业和 农业产品加工后的废物用来生产低硫 低灰的炭,生产出的炭视其原料和加 工的深度不同,可作不同等级的活性 炭和水煤气原料。
生物质能概述

生物质能利用原理与技术pdf

生物质能利用原理与技术pdf

生物质能利用原理与技术一、生物质能转化原理生物质能是指利用有机物质(例如植物、动物废弃物、有机废水等)所蕴含的太阳能,通过生物转化技术将其转化为高品位、高能效的能源形式。

生物质能转化原理主要包括热化学转化和生物化学转化两种方式。

热化学转化包括燃烧、热解、气化等,生物化学转化主要包括厌氧消化、生物发酵等。

二、生物质燃烧技术生物质燃烧技术是最常见的生物质能转化技术之一,其原理是将生物质在炉膛内进行高温燃烧,释放出的热能可用来发电或供热。

通过优化燃烧条件,可提高燃烧效率,减少污染物排放。

三、生物质气化技术生物质气化技术是将生物质转化为可燃气体(主要为氢气、一氧化碳和甲烷等)的过程。

气化反应在缺氧或无氧条件下进行,通过热化学反应将生物质转化为气体燃料。

四、生物质液化技术生物质液化技术是将生物质转化为液体燃料的一种技术,主要方法有间接液化(生物油制备)和直接液化(生物燃料乙醇制备)。

间接液化是将生物质经过热解或气化生成气体,再通过催化剂作用转化为液体燃料;直接液化则是将生物质经过化学处理,直接转化为液体燃料。

五、生物质热解技术生物质热解技术是在无氧或少量氧存在下,将生物质高温热解为可燃气体、液体燃料和焦炭的过程。

热解产物中,气体主要成分为氢气和一氧化碳,液体主要成分为木焦油和木醋液,可用于化工原料或燃料。

六、生物质制氢技术生物质制氢技术是利用生物质在特定条件下分解产生氢气的过程。

该技术主要包括生物发酵制氢和光合作用制氢两种方式。

生物发酵制氢是通过厌氧发酵产生氢气,光合作用制氢则是利用光合细菌或藻类在光照条件下将二氧化碳和水转化为氢气。

七、生物燃料乙醇制备生物燃料乙醇是以淀粉、纤维素等含糖物质为原料,经过发酵、蒸馏等工艺制备而成的一种可再生能源。

制备过程中,淀粉、纤维素等物质经过糖化、发酵生成乙醇,再经过蒸馏提纯得到乙醇产品。

八、生物柴油制备工艺生物柴油是以动植物油脂为原料,经过酯交换反应生成脂肪酸酯类化合物,可作为柴油替代品使用的一种可再生能源。

第7章 生物质热解炭化技术

第7章 生物质热解炭化技术

7.2 生物质烧炭及烧炭装置
炭窑 移动式炭化炉 果壳炭化炉 立式多槽炭化炉 螺旋炉 流态化炉 多层炭化炉
炭窑
炭窑及烧炭流程 筑窑: 炭化室 烟道 燃烧室 烘窑:新窑需要 装料、点火、炭化 封窑冷却 出窑
炭窑
炭窑的产品: 黑炭和白炭,其区别在哪?
黑炭:闷窑熄火 白炭:趁热扒出,湿沙熄火流态化炉优点?
缺点?
多层炭化炉
果壳炭化炉、立式多槽炭化炉、螺旋炉
果壳炭化炉 立式多槽炭化炉 螺旋炉
7.3 生物质干馏及干馏装置
外热式干馏釜 内热式干馏釜
外热式干馏釜(车辆式)
内热式干馏釜(连续立式)

谢!
炭窑
炭窑优点: ① 最简单的烧炭技术 ② 投资成本最低 炭窑缺点: ① ② ③ ④ 生产周期长 劳动强度大 炭产率低 污染严重
移动式炭化炉
移动式炭化炉及烧炭流程 安装 密封 装炉 点火炭化 封炉冷却 出炉
炭窑
移动式炭化炉优点(和炭窑相比): ① 生产强度降低 ② 生产周期缩短 移动式炭化炉缺点(和炭窑相比): ① ② 投资成本增加 污染严重
第七章 生物质热解炭化技术


7.1. 生物质热解炭化技术概述 7.2. 生物质烧炭及烧炭装置 7.3. 生物质干馏及干馏装置
7.1 概述
可燃气
烧炭 干馏
焦炭
生物质
液体
炭化工艺类型:烧炭(有限供氧)和干馏(隔绝空气) 焦炭产物可作为燃料或广泛用于制造活性炭、渗碳剂、二硫 化碳、饲料添加剂、工艺品等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机固体废物 气体(H2 、CH4 、CO、CO2 ) + 有机液体(有机酸、芳烃、焦油)+ 固体(炭黑、灰)
有机物+热 绝 热 或缺氧 气体+液体+固体
如纤维素热解化学式为: 3C66HH81O0O为5→焦8油H。2O+C6H8O+3CO2+CH4+H2+8C ,其中C
7.2 热解工艺
热解是一种古老的工业化生产技术,该技术最早应用于煤 的干馏,所得到的焦炭产品主要作为冶炼钢铁的燃料。 热解(pyrolysis)在工业上也称为干馏 热解技术主要是针对城市垃圾、污泥、废塑料、废橡胶、 废树脂等工业和农业废弃物,还有石油、煤等具有一定能 量的有机固体废弃物。
③ 当温度高于300℃时, 橡胶分解加快, 断裂出来的化学物质分子 量较小, 产生的油流动性较好, 而且透明
橡胶的热解处理
废轮胎高温热解靠外部加热使化学链打开, 有机物得以分 解或液化、汽化。热解温度在250℃~500℃范围内,当温 度高于250℃时, 破碎的轮胎分解出的液态油和气体随温度 升高而增加,400℃以上时依采用的方法不同, 液态油和固 态炭黑的产量随气体产量的增加而减少。
Purox系统
1—破碎机;2磁选机;3—热解炉;4—产气装置;5—水洗塔; 6—电除尘器;7—气体冷凝器;8出渣装置
废塑料的热解产物及流程
➢ 塑料热解是近年来国内外非常注重研究的一种能源回收方法, 被认为是一种最有效、最科学的回收塑料的途径。
➢ 热解产物主要是燃料油或化工原料等。 ➢ 使用的催化剂种类主要有硅铝类化合物和H-Y、ZSM-5、
主要是指天然橡胶生产的废轮胎、废皮带、废胶管等;而对人工合 成的氯丁橡胶、丁腈橡胶,因在热解时会产生HCl及HCN,不适宜热 解。 天然橡胶制品的热解产物: 气体(22%):甲烷、乙烷、 乙烯、丙烯、水、CO2、H2、 丁二烯等; 液体(27%):苯、甲苯 及其它芳烃; 炭灰(39%); 钢丝(27%)。
影响较大;挥发分和水分的含量对焦油产率也影响较大 加热速率也是重要因素。因为热解反应的进行主要由物料在热解终温
下的停留时间决定的,在同样反应终温和反应时间里,慢加热方式时 物料在终温的反应时间要大大少于其在快加热方式时的反应时间。
各种影响因素的关联度大小为:热解终温>物料特性>加热速率>物料 的填实度>物料粒径。热解终温的关联度数值最大,这说明热解终温 是一个最重要的参数之一。
城市垃圾热解后生成的气体有N2、H2、CO、CO2、CH4、 C2H6、C2H4等。
一是以美国为代表的、以回收贮存性能源(燃料气、燃料油和炭黑)为 目的;
另一个是以日本为代表的、以减少焚烧造成的二次污染和需要填埋处置 的废物量,以无公害型处理系统的开发为目的。
Occidental系

Landgard系
生物质热裂解是指生物质经过在无氧条件下加 热或在缺氧条件下不完全燃烧后最终转化成生 物油、木炭和可燃气体的过程。
生物质直接液化是在高温高压条件下进行的生 物质热化学转化的过程,通过液化可将生物质 转化成高热值的液体燃料。
转化技术 热裂解 液化 气化
一次产品
加工技术
水 混合
炭 改性
油 透平
中热值燃气 低热值燃气
现代生物质能
可以大规模应用的生物质能,包括现代林业生产的废弃物、甘 蔗渣和城市固体废物等。
3、生物质能特点
总量大,地球上每年生物质能总量约1400-1800亿 吨(干重),相当于目前每年总能耗的10倍。
低污染,通过碳、氢、氧循环利用太阳能的过程,理 论上不产生温室气体,低含量的N,S化合物,可以 大量减少SOx等有毒气体排放,被称为“绿色石油”
7.4 城市生活垃圾的热解
城市垃圾中可燃组分日趋增长,纸张、塑料以及合成纤 维等占有很大比重。可燃组分,热解后可回收燃料油和 燃料气.因此,城市垃圾作为资源回收也是一个重要的方 面。
目前,用于处理城市垃圾的热解技术方式主要有:移动 床熔融炉方式、回转窑方式、流化床方式、多段炉方式 及Flush Pyrolysis方式等。其中,移动床熔融炉方式是 城市垃圾热解技术中最成熟的方法。

蒸馏容器

烧嘴
锅炉
残渣卸出
新日铁系统
该系统是将热解和熔融一体化的设备,通过控制炉温和供氧条件,使垃圾 在同一炉体内完成干燥、热解、燃烧和熔融。干燥段温度约为300℃,热 解段温度为300~1000℃,熔融段温度为1700~1800℃,
1—吊车;2—大型垃圾储罐;3—破碎机;4—垃圾渣槽;5—熔融渣槽;6—熔融炉; 7—燃烧用鼓风机;8—热风炉;9—鼓风机;10—喷水冷却器(或锅炉)燃烧室; 11—电除尘器;12—引风机;13—烟囱
流化床热解反应器
气体流速足 够高,固体物料 始终悬浮。反应 性能好,分解效 率高、尺寸小; 热损失大,洁净 度差,避免灰渣 结块,也适于含 水量大的物料。
破碎的 固体废物
预热的 空气或O2
排出气体 980~1650℉
1400~1800℉
蒸汽
灰渣 热燃料
回转炉热解反应器
废物
燃料气体再循环


燃烧室
15-转子流量机;16--气旋
此外,外国公司还研究了用废轮胎作制水泥原料 的试验。结果表明,在水泥原料中投入废轮胎, 生产每吨水泥可节省C号重油3%,轮胎中的S转变 成了 SO2 CaSO4,既变成了水泥中的有用成 分,又防止了SO2的污染;而金属丝在1200 ℃锻 烧温度下 Fe2O3 Fe2O3再进一步与水泥中的 CaO及Al2O3反应转变成水泥中的组分。
轮胎橡胶的热稳定性分为:~ 200℃, 200℃~ 300℃及300℃以 上3个区域。
① 在200℃以下无氧存在时, 橡胶较稳定,橡胶作为一种高聚物, 其物理状态取决于分子的运动形式。
② 在200℃~ 300℃, 橡胶特性粘数迅速改变, 低分子量的物质被 “热馏”出来, 残余物成为不溶性干性物。此时橡胶中的高分 子链有些还未断裂, 有些断裂成为较大分子量的化学物质, 因 此产生的油黑而且粘, 分子量大, 碳黑生成很不完全。

主要热
解技术
Purox系统
流化床系统 Garret系统
新日铁系统
热解反应器
结构相对
简单、气体热 损失少,系统
固体废物
热效率较高,
但气体中易夹 底物流 带挥发性物质,
如焦油、蒸汽
等。
气体
干燥和预热
高温分解
93~315℃ 气流
980~1650℃
预热的空 气或O2
融渣或灰渣
典型的固定燃烧床热解反应器
水蒸汽
供热方 式
➢直接加热 、间接加热

热解温 度不同
➢高温热解、中温热解、低温热解


热解炉 结构
➢固定床、移动床、流化床和旋转炉

艺 分
产物物 理形态
➢气化方式、液化方式、炭化方式
类 热解、
燃烧位 置
➢单塔式和双塔式
是否生 成炉渣
➢造渣型和非造渣型
直接供热(内热式热解)
内热式热解也称为部分燃 烧热分解,反应器中的可燃 性垃圾或部分热解产物燃烧, 以燃烧热使垃圾发生热分解。 通常得到4000-8000 kJ/m3的 低品位燃料气。
第七章 生物质热解技术
7.1 热解原理
1 热解定义
热解,是将有机物在无氧或缺氧状态下加热,使之 成为气态、液态或固态可燃物质的化学分解过程。
有机物
加热 无氧或缺氧
G+L+S
气态产物:氢、甲烷、一氧化碳;
液态产物:CH3OH、CH3COCH3、C2H5COOH、 CH3CHO及焦油、溶剂油等;
固态产物:焦炭、碳黑。
由于燃烧需提供氧气,因而就会产生 CO2、H2O等惰性气体混在热解可燃气 中,稀释了可燃气,结果降低了热解产 气的热值。
直接加热法的设备简单,可采用高温 , 其处理量和产气率也较高,但所产 气的热值不高,
作为单一燃料直接利用还不行,而且 采用高温热解,在NOx产生的控制上,
还需认真考虑。
间接供热(外热式热解)
此外,热解产生的可燃气体及NH3、HCN等有害气体组分 必须经过二燃室以实现其无害化,通常情况下,HCN的热 解温度在800~900℃,还应对二燃室排放的高温气体进 行预热回收。
按热解温度
中温热解: T=600~700℃,主要用 在比较单一的废物的热解,如废轮 胎、废塑料热解油化
低温热解: T< 600℃。农业、林业和 农业产品加工后的废物用来生产低硫 低灰的炭,生产出的炭视其原料和加 工的深度不同,可作不同等级的活性 炭和水煤气原料。
生物质能概述
1、定义 生物质是直接或间接通过光合作用而形成的各种有机体,包括
REY、Ni/REY等各种沸石催化剂。
热解的基本工艺有两种:一种是将 废塑料加热熔融,通过热解生成简 单 的碳氢化合物,然后在催化剂的 作用下生成可燃油品。另一种将热 解和催化热解分为两段。
热解工艺主要由:前处理-熔融- 热分解-油品回收-残渣处理-中和 处理-排气处理等七道工序组成
废橡胶热解工艺
需氧
氧需求

解 放热
能量
与 焚
二氧化碳、水
产物
烧 就地利用
利用

较 二次污染大
污染
无氧或缺氧 吸热 气、油、炭黑 贮存或远距离运输 二次污染较小
研究报道表明,热解烟气量是焚烧的1/2,NO是焚 烧的1/2,HCl是焚烧的1/25,灰尘是焚烧的1/2。
3 热解的过程及产物
固体废物热解过程是一个复杂的化学反应过程。包括大分 子的键断裂,异构化和小分子的聚合等反应,最后生成各 种较小的分子。
所有的动植物和微生物。 生物质能是太阳能以化学能形式储存在生物质中的能量形式,
相关文档
最新文档