平行四边形及特殊的平行四边形测试题

合集下载

(完整版)平行四边形及特殊平行四边形含答案

(完整版)平行四边形及特殊平行四边形含答案

平行四边形、菱形、矩形、正方形测试题一、 选择题(每题3分,共30分)。

1.平行四边形ABCD 中,∠A=50°,则∠D=( )A. 40°B. 50°C. 130°D. 不能确定 2.下列条件中,能判定四边形是平行四边形的是( )A. 一组对边相等B. 对角线互相平分C. 一组对角相等D. 对角线互相垂直3.在平行四边形ABCD 中,EF 过对角线的交点O ,若AB=4,BC=7,OE=3,则四边形EFCD 周长是( ) A .14 B. 11 C. 10 D. 174.菱形具有的性质而矩形不一定有的是( )A . 对角相等且互补B . 对角线互相平分C . 一组对边平行另一组相等D . 对角线互相垂直5.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线的长分别为( ) A .6cm ,8cm B. 3cm ,4cm C. 12cm ,16cm D. 24cm ,32cm6. 如图在矩形ABCD 中,对角线AC 、BD 相交于点O ,则以下说法错误的是( )A .AB=21AD B .AC=BDC .ο90===∠=∠CDA BCD ABC DAB D .AO=OC=BO=OD7.如图5连结正方形各边上的中点,得到的新四边形是 ( ) A .矩形 B.正方形 C.菱形 D.平行四边形8. 一矩形两对角线之间的夹角有一个是600, 且这角所对的边长5cm,则对角线长为( ) A. 5 cm B. 10cm C. 52cm D. 无法确定 9. 当矩形的对角线互相垂直时, 矩形变成( )A. 菱形B. 等腰梯形C. 正方形D. 无法确定. 10.如图所示,在ABCD 中,E 、F 分别AB 、CD 的中点,连结DE 、EF 、BF ,则图中平行四边形共有( )A .2个B .4个C .6个D .8个 二、 填空题(每题3分,共24分 )11.□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm.12.已知:四边形ABCD 中,AB =CD ,要使四边形ABCD 为平行四边形,需要增加__________,(只需填一个你认为正确的条件即可)你判断的理由是:_____________________________。

第一章特殊的平行四边形 复习测试 2021-2022学年北师大版九年级数学上册(word含答案)

第一章特殊的平行四边形  复习测试  2021-2022学年北师大版九年级数学上册(word含答案)

北师大版九年级数学上册第一章特殊的平行四边形复习测试一.选择题1.对角线互相垂直平分的四边形是()A.平行四边形B.菱形C.矩形D.任意四边形2.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°3.下列关于∠ABCD的叙述,正确的是()A.若AB∠BC,则∠ABCD是菱形B.若AC=BD,则∠ABCD是矩形C.若AC平分∠BAD,则∠ABCD是正方形D.若AC∠BD,则∠ABCD是正方形4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.CE∠DE C.∠ADB=90°D.BE∠DC5.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE 6.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.87.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠CBF为()A.75°B.60°C.55°D.45°8.如图,在菱形ABCD中,AC=8,BD=6,则∠ABC的周长是()A.14B.16C.18D.209.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,在正方形ABCD中,∠ABE和∠CDF为直角三角形,∠AEB=∠CFD =90°,AE=CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.711.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连接OE.若OE=3,则菱形ABCD的周长是()A.6B.12C.18D.2412.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∠BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=()A.60°B.45°C.30°D.22.5°二.填空题13.如图,在Rt∠ABC中,E是斜边AB的中点,若AC=8,BC=6,则CE=.14.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.15.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD 上移动,则PE+PC的最小值是.16.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF =20°,则∠AED等于度.17.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别为AB,BC,CD,DA的中点,连接EG,HF交于点O.则EG2+FH2=.18.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=___ .三.解答题19.如图,在菱形ABCD中,CE=CF.求证:AE=AF.20.如图,将∠ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:∠ABD∠∠BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.21.已知:如图,在∠ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:∠ABE∠∠CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∠AC交BC的延长线于点E,当AB=6,AC=8时,求∠BDE 的周长.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将∠ADF绕点A顺时针旋转90°后,得到∠ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)∠当AE=cm时,四边形CEDF是矩形;∠当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)25.在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连接BE.【感知】如图∠,过点A作AF∠BE交BC于点F.易证∠ABF∠∠BCE.(不需要证明)【探究】如图∠,取BE的中点M,过点M作FG∠BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连接CM,若CM=1,则FG的长为.【应用】如图∠,取BE的中点M,连接CM.过点C作CG∠BE交AD于点G,连接EG、MG.若CM=3,则四边形GMCE的面积为.北师大版九年级数学上册第一章特殊的平行四边形复习测试答案提示一.选择题1.对角线互相垂直平分的四边形是()选:B.A.平行四边形B.菱形C.矩形D.任意四边形2.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()选:D.A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°3.下列关于∠ABCD的叙述,正确的是()选:B.A.若AB∠BC,则∠ABCD是菱形B.若AC=BD,则∠ABCD是矩形C.若AC平分∠BAD,则∠ABCD是正方形D.若AC∠BD,则∠ABCD是正方形4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()选:D.A.AB=BE B.CE∠DE C.∠ADB=90°D.BE∠DC5.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()选:D.A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE6.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()选:A.A.2B.C.6D.87.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠CBF为()选:A.A.75°B.60°C.55°D.45°8.如图,在菱形ABCD中,AC=8,BD=6,则∠ABC的周长是()选:C.A.14B.16C.18D.209.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()选:D.A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,在正方形ABCD中,∠ABE和∠CDF为直角三角形,∠AEB=∠CFD =90°,AE=CF=5,BE=DF=12,则EF的长是()选:C.A.7B.8C.7D.7解:如图所示:∠四边形ABCD是正方形,∠∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠∠BAE+∠DAG=90°,在∠ABE和∠CDF中,,∠∠ABE∠∠CDF(SSS),∠∠ABE=∠CDF,∠∠AEB=∠CFD=90°,∠∠ABE+∠BAE=90°,∠∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∠∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在∠ABE和∠ADG中,,∠∠ABE∠∠ADG(AAS),∠AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∠EG=GF=FH=EF=12﹣5=7,∠∠GEH=180°﹣90°=90°,∠四边形EGFH是正方形,∠EF=EG=7;11.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连接OE.若OE=3,则菱形ABCD的周长是()选:D.A.6B.12C.18D.2412.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∠BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=()选:D.A.60°B.45°C.30°D.22.5°二.填空题13.如图,在Rt∠ABC中,E是斜边AB的中点,若AC=8,BC=6,则CE=5.14.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC,使四边形DBCE是矩形.15.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD 上移动,则PE+PC的最小值是.16.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF =20°,则∠AED等于65度.17.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别为AB,BC,CD,DA的中点,连接EG,HF交于点O.则EG2+FH2=.答案36解析连接EF,FG,GH,HE,∠点E,F,G,H分别是AB,BC,CD,DA的中点,AC=3,∠EF∠AC∠GH,EF=GH=12BD=3,EH∠BD∠FG,EH=FG=12∠EF=FG=GH=EH,∠四边形EFGH是菱形.∠EG∠FH,OE=OG,OH=OF.∠EG2+FH2=(2OE)2+(2OH)2=4OE2+4OH2=4(OE2+OH2)=4EH2=36.18.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=__2n+1__.三.解答题19.如图,在菱形ABCD中,CE=CF.求证:AE=AF.证明:如图,连接AC,∠四边形ABCD是菱形,∠∠BCA=∠DCA,∠CE=CF,AC=AC,∠∠ECA∠∠FCA(SAS),∠AE=AF.20.如图,将∠ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:∠ABD∠∠BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∠CD,则BE∠CD.又∠AB=BE,∠BE=DC,∠四边形BECD为平行四边形,∠BD=EC.∠在∠ABD与∠BEC中,,∠∠ABD∠∠BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∠四边形ABCD为平行四边形,∠∠A=∠BCD,即∠A=∠OCD.又∠∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∠∠OCD=∠ODC,∠OC=OD,∠OC+OB=OD+OE,即BC=ED,∠平行四边形BECD为矩形.21.已知:如图,在∠ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:∠ABE∠∠CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.(1)证明:∠四边形ABCD是平行四边形,∠AB=CD,∠BAE=∠DCF,在∠ABE和∠CDF中,,∠∠ABE∠∠CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∠四边形ABCD是平行四边形,∠AD∠BC,AD=BC,∠AE=CF,∠DE=BF,∠四边形BEDF是平行四边形,∠OB=OD,∠DG=BG,∠EF∠BD,∠四边形BEDF是菱形.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∠AC交BC的延长线于点E,当AB=6,AC=8时,求∠BDE 的周长.解:(1)∠四边形ABCD是菱形,∠AD∠BC,AO=OC,∠,∠OM=ON.(2)∠四边形ABCD是菱形,∠AC∠BD,AD=BC=AB=6,∠BO==2,∠,∠DE∠AC,AD∠CE,∠四边形ACED是平行四边形,∠DE=AC=8,∠∠BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即∠BDE的周长是20.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将∠ADF绕点A顺时针旋转90°后,得到∠ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.证明:(1)∠将∠ADF绕点A顺时针旋转90°后,得到∠ABQ,∠QB=DF,AQ=AF,∠BAQ=∠DAF,∠∠EAF=45°,∠∠DAF+∠BAE=45°,∠∠QAE=45°,∠∠QAE=∠F AE,在∠AQE和∠AFE中,∠∠AQE∠∠AFE(SAS),∠∠AEQ=∠AEF,∠EA是∠QED的平分线;(2)由(1)得∠AQE∠∠AFE,∠QE=EF,由旋转的性质,得∠ABQ=∠ADF,∠ADF+∠ABD=90°,则∠QBE=∠ABQ+∠ABD=90°,在Rt∠QBE中,QB2+BE2=QE2,又∠QB=DF,∠EF2=BE2+DF2.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)∠当AE= 3.5cm时,四边形CEDF是矩形;∠当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)(1)证明:∠四边形ABCD是平行四边形,∠CF∠ED,∠∠FCG=∠EDG,∠G是CD的中点,∠CG=DG,在∠FCG和∠EDG中,,∠∠FCG∠∠EDG(ASA)∠FG=EG,∠CG=DG,∠四边形CEDF是平行四边形;(2)∠解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM∠BC于M,∠∠B=60°,AB=3,∠BM=1.5,∠四边形ABCD是平行四边形,∠∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∠AE=3.5,∠DE=1.5=BM,在∠MBA和∠EDC中,,∠∠MBA∠∠EDC(SAS),∠∠CED=∠AMB=90°,∠四边形CEDF是平行四边形,∠四边形CEDF是矩形,故答案为:3.5;∠当AE=2时,四边形CEDF是菱形,理由是:∠AD=5,AE=2,∠DE=3,∠CD=3,∠CDE=60°,∠∠CDE是等边三角形,∠CE=DE,∠四边形CEDF是平行四边形,∠四边形CEDF是菱形,故答案为:2.25.在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连接BE.【感知】如图∠,过点A作AF∠BE交BC于点F.易证∠ABF∠∠BCE.(不需要证明)【探究】如图∠,取BE的中点M,过点M作FG∠BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连接CM,若CM=1,则FG的长为2.【应用】如图∠,取BE的中点M,连接CM.过点C作CG∠BE交AD于点G,连接EG、MG.若CM=3,则四边形GMCE的面积为9.解:感知:∠四边形ABCD是正方形,∠AB=BC,∠BCE=∠ABC=90°,∠∠ABE+∠CBE=90°,∠AF∠BE,∠∠ABE+∠BAF=90°,∠∠BAF=∠CBE,在∠ABF和∠BCE中,,∠∠ABF∠∠BCE(ASA);探究:(1)如图∠,过点G作GP∠BC于P,∠四边形ABCD是正方形,∠AB=BC,∠A=∠ABC=90°,∠四边形ABPG是矩形,∠PG=AB,∠PG=BC,同感知的方法得,∠PGF=∠CBE,在∠PGF和∠CBE中,,∠∠PGF∠∠CBE(ASA),∠BE=FG,(2)由(1)知,FG=BE,连接CM,∠∠BCE=90°,点M是BE的中点,∠BE=2CM=2,∠FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∠ME=3,同探究(1)得,CG=BE=6,∠BE∠CG,∠S四边形CEGM=CG×ME=×6×3=9,故答案为9.。

特殊平行四边形综合测试题(可直接打印)

特殊平行四边形综合测试题(可直接打印)
二.填空题(共 5 题,每小题 3 分,共 15 分) 1.如图,菱形 ABCD 中,已知∠ABD=20o,则∠C=______.
2.如图,在矩形 ABCD 中,∠BOC=120o,AB=5,则 BD=_______;矩形的面积为_______。
3.如图,边长为 1 的正方形 ABCD 中,点 E 是对角线 BD 上的一点,且 BE=BC,点 P 在 EC 上,PM
为________.
三.解答题(共 8 题,共 85 分) 1.(10 分)如图,矩形 ABCD 中,AC 与 BD 交于点 O,BE⊥AC,CF⊥BD,垂足分别为 E,F,
求证:BE=CF
2.(10 分)如图,在平行四边形 ABCD 中,点 E、F 分别在 AB、CD 上,且 AE=CF (1)求证: △ADE ≌ △CBF (2)若 DF=BF,求证:四边形 DEBF 为菱形。
的面积为( A )
A. 2 3
B.4 C. 4 3
D.8
6.如图,矩形 ABCD 中,AB=8,BC=6,E、F 是 AC 上的三等分点,则三角形 BEF 的面积为( A )
A.8
B.12
C.16
D.24
1
7.已知如图,矩形 ABCD 中 AB=4cm,BC=3cm,点 P 是 AB 上除 A、B 外任意一点,对角线 AC 与 BD 相交 与点 O,DP,CP 分别交 AC,BD 于点 E、F,且△ADE 和△BCF 面积之和为 4cm2,则四边形 PEOF 的面积为(A )
A.AB=CD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC
4.如图,矩形 ABCD 的对角线交于点 O,若∠ACB=30o,AB=2,则 OC 的长为(A )
A.2 B.3

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在平行四边形ABCD 中 AB AD ≠ ()0180A αα∠=︒<<︒ 点E F G H 分别是AB BC CD DA 的中点 连接EF FG GH HE 当α从锐角逐渐增大到钝角的过程中 四边形EFGH 的形状的变化依次为( )A .平行四边形→菱形→平行四边形B .平行四边形→菱形→矩形→平行四边形C .平行四边形→矩形→平行四边形D .平行四边形→菱形→正方形→平行四边形 2.如图 平行四边形ABCD 中 16AB = 12AD = 60A ∠=︒E 是边AD 上一点 且8AE =F 是边AB 上的一个动点 将线段EF 绕点E 逆时针旋转60︒ 得到EG 连接BG CG 则BG CG +的最小值是( ).A .4B .415C .421D 373.图1是一张菱形纸片ABCD 点,EF 是边,AB CD 上的点.将该菱形纸片沿EF 折叠得到图2 BC 的对应边B C ''恰好落在直线AD 上.已知60,6B AB ∠=︒= 则四边形AEFC '的周长为( )A .24B .21C .15D .124.如图 在矩形ABCD 中 8AB = 6BC = 点H 是AC 的中点 沿对角线AC 把矩形剪开得到两个三角形 固定ABC 不动 将ACD 沿AC 方向平移 (A '始终在线段AC 上)得到A C D '''△ 连接HD ' 设平移的距离为x 当HD '长度最小时 平移的距离x 的值为( )A .710B .185C .75D .2455.如图 Rt ABC △中 90C ∠=︒ 30A ∠=︒ 9AC = D 为AB 中点 以DB 为对角线长作边长为3的菱形DFBE 现将菱形DFBE 绕点D 顺时针旋转一周 旋转过程中当BF 所在直线经过点A 时 点A 到菱形对角线交点O 之间的距离为( )A B C D 6.中国结寓意团圆 美满 以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴 小陶家有一个菱形中国结装饰.测得8cm,6cm BD AC ==.则该菱形的面积为( )A .224cmB .248cmC .210cmD .212cm7.如图 在矩形ABCD 中 点O M 分别是,AC AD 的中点 3,5OM OB == 则AD 的长为( )A .12B .10C .9D .88.如图 已知正方形ABCD 和正方形BEFG 且A B E 三点在一条直线上 连接CE 以CE 为边构造正方形CPQE PQ ,交AB 于点M 连接CM 设APM BCM αβ∠=∠=,.若点Q B F 三点共线 tan tan n αβ= 则n 的值为( )A .12 B .23 C .35 D .67二 填空题9.如图 矩形ABCD 中 BE BF 将ABC ∠三等分 连接EF .若90BEF ∠=︒ 则:AB BC 的比值为 .10.如图 四边形ABCD 是边长为6的正方形 点E 在直线BC 上 若2BE = 连接AE 过点A 作AF AE ⊥ 交直线CD 于点F 连接EF 点H 是EF 的中点 连接BH 则BH = .11.如图 在平行四边形ABCD 中 对角线AC BD 、相交于点O 在不添加任何辅助线的情况下 请你添加一个条件 使平行四边形ABCD 是菱形.12.如图 在矩形ABCD 中 2AB = 对角线AC 与BD 交于点O 且120AOD ∠=︒ DE OC ∥ CE OD ∥ 则四边形OCED 的周长为 .13.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .三 解答题14.如图 在菱形ABCD 中 连接AC 过B 作BE BA ⊥交AC 于点E 过D 作DF DC ⊥交AC 于点F .(1)求证:ADF CBE △≌△(2)若12AD = 60DAB ∠=︒ 求EF 的长.15.已知:在梯形ABCD 中 AD BC ∥ 90ABC ∠=︒ 6AB = :1:3BC AD = O 是AC 的中点 过点O 作OE OB ⊥ 交BC 的延长线于点E .(1)当BC EC =时 求证:AB OE =(2)设BC a = 用含a 的代数式表示线段BE 的长 并写出a 的取值范围(3)连结OD DE 当DOE 是以DE 为直角边的直角三角形时 求BC 的长.16.如图 平行四边形ABCD 中 点E 是对角线AC 上一点 连接BE DE , 且BE DE =.(1)求证:四边形ABCD 是菱形(2)若5AB = tan 2BAC ∠= 求四边形ABCD 的面积.17.已知:矩形ABCD 中 动点M 在BC 边上(不与点B C 、重合) MN AM ⊥交CD 于点N 连接DM .(1)如图1 若DM 平分ADC ∠ 求证:BM CN =(2)如图2 若2,3AB BC == 动点M 在移动过程中 设BM 的长为,x CN 的长为y ①则y 与x 之间的函数关系式为______①线段CN 的最大值为______.18.如图1 正方形ABCD 和正方形QMNP M 是正方形ABCD 的对称中心 MN 交AB 于F QM 交AD 于E .(1)猜想:ME 与MF 的数量关系为______(2)如图2 若将原题中的“正方形”改为“菱形” 且NMQ ABC 其它条件不变 探索线段ME 与线段MF 的数量关系 并说明理由(3)如图3 若将原题中的“正方形”改为“矩形” 且:1:2AB BC = 其它条件不变 直接写出:线段ME 与线段MF 的数量关系为______.参考答案:1.A2.C3.C4.C5.D6.A7.D8.B93:10.24211.AC BD ⊥12.8133①点E 是BC 的中点14.(1)解:①菱形ABCD①ADC CBA ∠=∠ AD BC = DAC BCA ∠=∠①BE BA ⊥ DF DC ⊥①90CDF ABE ∠=∠=︒①ADC CDF CBA ABE ∠-∠=∠-∠ 即:ADF CBE ∠=∠①()ASA ADF CBE ≌(2)解:①60DAB ∠=︒ 12AD = ①11603022BAE BAD ∠=∠=⨯︒=︒ 12AB CD AD === 33123AC AB ===①cos30ABAE===︒同理FC=BE CE==AC AE CE∴=+=①EF AE FC AC=+-==故答案为:15.(1)证明:90ABC∠=︒O是AC的中点OB OC∴=OBC OCB∴∠=∠OE BC⊥90BOEBC EC=CO BC∴=BC BO∴=90ABC BOE∠=∠=︒()ASAABC EOB∴≌AB EO∴=(2)解:OBC OCB∠=∠ABC BOE∠=∠ABC EOB∴∽∴BC ACOB BE=BC a=6AB=AC∴∴1a=236(06)2aBE aa+∴=<<(3)解:设BC a=则3AD a=①当90OED∠=︒时延长BO交AD于点G90BOE =︒∠BOE OED ∴∠=∠∴BG ED ∥//BE AD∴四边形BGDE 是平行四边形 BE DG ∴=BC AD ∥ ∴BCCOAG AO =BC AG a ∴== ∴23632a a a a +=-23a ∴= ①当90ODE ∠=︒时 分别过点O E 作OM AD ⊥ EN AD ⊥ 垂足分别为MNOMD DNE ∴∠=∠ MOD EDN ∠=∠OMD DNE ∴∽ ∴OMMDDN EN = 1122AM CB a ==52MD a ∴=2236365322a a DN AN AD a a a +-=-=-=∴253236562aa a=-a ∴=.综上所述BC 的长为 16.(1)证明:如图 连接BD 交AC 于O①平行四边形ABCD①BO DO =①BO DO = OE OE = BE DE = ①()SSS BOE DOE ≌①BEO DEO ∠=∠①AE AE = BEA DEA ∠=∠ BE DE = ①()SAS BEA DEA ≌①AB AD =①四边形ABCD 是菱形(2)解:①tan 2BAC ∠= ①2BO AO= 即2BO AO = ①四边形ABCD 是菱形①AC BD ⊥ 22AC AO BD BO ==,由勾股定理得 AB =解得 2AO =①48AC BD ==, ①1162ABCD S AC BD =⨯=四边形 ①四边形ABCD 的面积为16. 17.(1)解:在矩形ABCD 中 ,90AB CD B C ADC =∠=∠=∠=︒ DM 平分ADC ∠1452CDM ADC ∴∠=∠=︒ 45CDM CMD ∴∠=∠=︒CM CD AB ∴==90,BAM AMB MN AM ∠+∠=︒⊥90AMB CMN ∴∠+∠=︒BAM CMN ∴∠=∠()ABM MCN ASA ∴≌BM CN ∴=(2)解:①设BM 的长为,x CN 的长为y 则3MC x =- 由(1)得 ,,90BAM CMN AB CD B C ∠=∠=∠=∠=︒ ABM MCN ∴∽AB BM MC CN∴= 23x x y∴=- 213(03)22y x x x ∴=-+<< 故答案为:213(03)22y x x x =-+<< ①当32x =时 y 有最大值 最大值为98. 即线段CN 的最大值为98. 故答案为:98. 18.(1)解:①正方形ABCD 和正方形QMNP①90AMD EMF ∠=∠=︒ ,45DM AM ADM FAM =∠=∠=︒ DME AMF ∴∠=∠()ASA MDE MAF ∴≌ME MF ∴=.故答案为:相等.(2)解:过点M 作MH AD ⊥于H MG AB ⊥于G .①M 是菱形ABCD 的对称中心 ①M 是菱形ABCD 对角线的交点 ①AM 平分BAD ∠①MH MG =.①QMN B ∠=∠①180EMF BAD ∠+∠=︒. 又90MHA MGF ∠=∠=︒ ①180HMG BAD ∠+∠=︒ ①EMF HMG ∠=∠①EMH FMG ∠=∠. ①MHE MGF ∠=∠①()ASA MHE MGF ≌ ①ME MF =.(3)解:过点M 作MH AD ⊥于HMG AB ⊥于G .①QMN ABC ∠=∠①90BAD EMF ∠=∠=︒. 又①90MHA MGA ∠=∠=︒ ①90HMG ∠=︒.①EMF HMG ∠=∠①EMH FMG ∠=∠.①MHE MGF ∠=∠①MHE MGF △△∽①ME MH MF MG=.又①M是矩形ABCD的对称中心①M是矩形ABCD对角线的交点.又①MG AB⊥①MG BC∥且12MG BC=.同理可得12 MH AB=①2ME MF=.。

第一章 特殊平行四边形 单元测试(含答案)

第一章  特殊平行四边形 单元测试(含答案)

第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。

特殊的平行四边形同步测试题

特殊的平行四边形同步测试题

特殊的平行四边形同步练习题江苏 刘东升教材跟踪训练(一) 填空题(共16分)1.(2分)矩形除了具备平行四边形的性质外,还有一些特殊性质:四个角 ,对角线 .2.(1分)在矩形ABCD 中,对角线AC 、BD 交于点O ,若100AOB ∠=,则OAB ∠= .3.(1分)已知菱形一个内角为120,且平分这个内角的一条对角线长为8cm ,则这个菱形的周长为 .4.(3分)矩形的两条对角线把这个矩形分成了四个 三角形.菱形的两条对角线把这个菱形分成了四个 三角形.正方形的两条对角线把这个正方形分成了四个 三角形.5.(2分)如图,把两个大小完全相同的矩形拼成“L ”型图案,则FAC ∠= ,FCA ∠= .6.(2分)正方形的边长为a ,则它的对角线长 ,若正方形的对角线长为b ,它的边长为 .7.(1分)边长为a 的正方形,在一个角剪掉一个边长为的b 正方形,则所剩余图形的周长为 .8.(4分)顺次连接四边形各边中点,所得的图形是 .顺次连接对角线 的四边形的各边中点所得的图形是矩形.顺次连接对角线 的四边形的各边中点所得的四边形是菱形.顺次连接对角线 的四边形的各边中点所得的四边形是正方形.(二) 选择题(每小题2分,共14分)1.正方形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角2.下列命题是真命题的是()A.有一个角是直角的四边形是矩形B.有一组邻边相等的四边形是菱形C. 有三个角是直角的四边形是矩形D. 有三条边相等的四边形是菱形3.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是()A.150B. 135C. 120D.1004.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形 ②菱形 ③等腰梯形 ④对角线互相垂直的四边形A.①③B.②③C.③④D.②④5.在平行四边形、菱形、矩形、正方形中,能够找到一个点,使该点到各顶点距离相等的图形是()A.平行四边形和菱形B.菱形和矩形C.矩形和正方形D.菱形和正方形6.矩形的边长为10cm 和15cm ,其中一个内角的角平分线分长边为两部份,这两部份的长为()A.6cm 和9cmB. 5cm 和10cmC. 4cm 和11cmD. 7cm 和8cm7.如图,点E 是正方形ABCD 对角线AC 上一点,AF BE 于点F ,交BD 于点G ,则下述结论中不成立的是()A.AG=BEB.△ABG ≌△BCEC.AE=DGD.∠AGD=∠DAGB(三) 解答题(每小题3分,共21分)1.已知:如图Rt △ABC 中,∠ACB =90°,CD 为∠ACB 的平分线,DE ⊥BC 于点E ,DF ⊥AC 于点F.求证:四边形CEDF 是正方形.C B2.已知,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F.求证:四边形AEDF 是菱形.C3.求证:顺次连接一个等腰梯形的各边中点,所得到的四边形是菱形.4.如图,△ABC 中,BD 、CE 是△ABC 的两条高,点F 、M 分别是DE 、BC 的中点.求证:FM ⊥DE.C5.如图,点E 、F 分别是正方形ABCD 的边CD 和AD 的中点,BE 和CF 交于点P.求证:AP=AB.D6.如图,已知点F是正方形ABCD的边BC的中点,CG平分∠DCE,GF⊥AF.求证:AF=FG.F E7.菱形周长为40cm,它的一条对角线长10cm.⑴求菱形的每一个内角的度数.⑵求菱形另一条对角线的长.⑶求菱形的面积.综合应用创新(一)学科内综合题(共14分)1.(1分)矩形的对角线相交构成的钝角为120°,短边等于5cm,则对角线的长为.2. (1分)菱形的面积为24cm2,边长为5cm,则该菱形的对角线长分别为.3.(2分)已知ABCD中对角线AC的垂直平分线交AD于点F,交BC于点E.求证:四边形AECF是菱形.证明:∵EF是AC的垂直平分线(已知)∴四边形AECF是菱形(对角线互相垂直平分的四边形是菱形).老师说小明的解答不正确⑴你能找出小明错误的原因吗?请你指出来.⑵请你给出本题的证明过程.E4.(3分)如图,四边形ABCD是一个正方形.⑴请你在平面内找到一个点O,并连接OA、OB、OC、OD使得到△OAB、△BOC、△COD、△OAD都是等腰三角形.⑵这样的点,你能找到多少个?⑶试写出你找到的等腰三角形的顶角的度数.B5.(5分)已知ABCD,对角线AC、BD相交于点O.⑴若AB=BC,则ABCD是.⑵若AC=BD,则ABCD是.⑶若∠BCD=90°,则ABCD是.⑷若OA=OB,且OA⊥OB,则ABCD是.⑸若AB=BC,且AC=BD,则ABCD是.6.(2分)如图,已知AE是正方形ABCD中∠BAC的平分线,AE交BD、BC于点E、F,AC、BD相交于点O.求证:OF=12 CE.E(二) 综合创新应用题(共14分)1.(2分)⑴四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图1所示.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13.每个直角三角形两直角边的和为5,求中间小正方形的面积. 图1⑵现在一张长为6.5,宽为2的纸片,如图2,请你将它分割成6块,再拼合成一个正方形.(要求:先在图2中画出分割线,再画出拼成的正方形草图并标明相应数据)图22.(3分)请你画出把下列矩形的面积两等分的直线,并且根据你所画的直线回答下列问题.⑴在一个矩形中,把此矩形面积两等分的直线最多有多少条?它们必须都经过哪个点?⑵你认为还有具有这个性质的四边形吗?如果有,请你找出来.⑶你认为具有此性质的四边形应该具有什么特征的四边形呢?B3.(3分)木匠师傅要检查一下一扇窗是否是矩形的,可是他身上只带一把卷尺,你能说明一下木匠师傅可以用什么样的方法进行检验吗?请你说明这样操作的依据是什么?4.请阅读如下材料.(共3分)如图,已知正方形ABCD的对角线AC、BD于点O,E是AC上一点,AG⊥BE,垂足为G.求证:OE=OF.证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,且OA=OE.又∵AG⊥BE,∴∠1+∠3=90°=∠2+∠3,即∠1=∠2.∴Rt△B OE≌Rt△AOF,∴OE=OF.⑴(2分)根据你的理解,上述证明思路的核心是利用使问题得以解决,而证明过程中的关键是证出 .⑵(1分)若上述命题改为:点E在AC的延长线上,AG⊥BE交EB的延长线于点G,延长AG交DB的延长线于点F,如图,其他条件不变.求证:OA=OE.E5.(3分)某乡镇四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划由四个村庄联合架设一条线路,现设计了四种架设方案.如图中实线部分,请你帮助计算一下,哪种方案最省电线.(三)中考模拟题(共12分)1.(6分)工人师傅做铝合金窗框分下面三个步骤进行.⑴先截出两对符合规格的铝合金窗(如图①)使AB=CD,EF=GH;⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学是:;⑶将直角尺靠窗框一个角(如图3)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4)说明窗框合格.这是窗框是形.根据的数学道理是: .2.(1分)如图,ABCD的对角线交于点O,且AD CD,过点O作OM⊥AC,交AD于点M,如果△CDM的周长为a,那么平行四边形ABCD的周长是.3.(2分)如图,正方形ABCD 中,点E 、F 分别是AB 和AD 上的点.已知CE ⊥BF ,垂足为点M.求证:⑴∠EBM=∠ECB ;⑵EB=AF.4.(2分)如图,矩形纸片ABCD ,长AD =9cm ,宽AB =3 cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别为 和 .5.(2分)已知在矩形ABCD 中,E 为DC 边上一点BF ⊥AE 于点F ,且BF =BC. 求证:AE =AB.B6.(2分)已知菱形ABCD 中,E 、F 分别是CB 、CD 上的点,且BE=DF.求证:⑴△ABE ≌△ADF ;⑵∠AEF=∠AFE.B E7.(6分)如图,把边长为2的正方形剪成四个全等的直角三角形.请用这四个直角三角形拼成符合下列要求的图形.(全部用上,互不重叠且不留空隙)并把你的拼法依照图1按实际大小画在方格纸内(方格纸为1×1).⑴不是正方形的菱形(一个);⑵不是正方形的矩形(一个);⑶梯形(一个);⑷不是矩形和菱形的平行四边形(一个);⑸不是梯形和平行四边形的凸四边形(一个);⑹与以上画出四边形不全等的凸四边形(画出的图形互不全等,能画几个画几个,至少三个).特殊平行四边形同步练习参考答案教材跟踪训练参考答案(一)填空题1.都是直角,相等2.40°3.32cm4.等腰,直角,等腰直角5.90°,45°7.4a8.平行四边形,互相垂直,相等,互相垂直且相等(二)选择题1.C2.C3.C4.D5.C6.B7.D(三)解答题1.∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF,∠DFC=90°,∠DEC=90°又∵∠ACB=90°,∴四边形DECF是矩形,∴矩形DECF是正方形.2.∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠FAD,∵∠EAD=∠FAD,∴∠EAD=∠EDA,∴EA=ED ,∴AEDF是菱形.3.提示:运用三角形中位线定理及等腰梯形两对角线相等.4.连接MD、ME.∵Rt△CBD中M为BC的中点,∴MD=12BC,∵Rt△CBE中M为BC的中点,∴ME=12BC,∴MD=ME,∵F是DE的中点,∴FM⊥DE.5.提示:延长CF、BA交于点M,先证△BCE≌△CDF,得BE=CF.再证:△CDF≌△AMF得BA=MA,由直角三角形中斜边中线等于斜边的一半,可得Rt△MBP中AP=12BM,即AP=AB.提示:取AB的中点M,连接FM,由∠FAM=∠GFC,AM=FC,∠AMF=∠FCG=135°,可证△FAM≌△GFC,即得AF=FG..7.⑴60°和120°⑵另一条对角线长⑶菱形面积为cm2综合应用创新(一)学科内综合题1.10cm2.6cm和8cm3.⑴小明错在AC和EF并不是互相平分的,EF垂直平分AC,但AC并不平分EF,需要通过证明得出.⑵∵四边形ABCD是平行四边形,∴∠FAC=∠ECA.在△AOF与△COE中FAC ECA OA OCAOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOF≌△COE,∴EO=FO∴四边形AECF 是菱形.4.⑴如图所示,九个黑点就是所求的点⑵这样的点共有九个⑶这些等腰三角形的顶角可能是30°,60°,90°,150°5.⑴菱形 ⑵矩形 ⑶矩形 ⑷正方形 ⑸正方形6.提示:取AE 的中点M 连接OM ,则OM =12CE,再证△OFM 是等腰三角形,那得OF =12CE . (二) 综合创新应用题1.⑴设直角三角形的长边为a ,短边为b ,则22135a b a b ⎧+=⎨+=⎩解之得32a b =⎧⎨=⎩,∴小正方形的面积为2(32)1-=.⑵如图所示.2.⑴有无数条,它们必须都经过对角线的交点.⑵正方形、菱形、平行四边形也都是具有这种性质的四边形.⑶具有此性质的四边形就是中心对称图形的四边形.(答成都是平行四边形也可以)3.提示:可以先用卷尺测量一下这个四边形的两组对边是否相等,如果相等,那么这个四边形就是平行四边形,再用卷尺测量这个四边形的两条对角线是否相等,如果相等那么这个平行四边形就是矩形.4.⑴三角形全等,∠1=∠2⑵∵四边形ABCD是正方形,∴∠AOF=∠BOE=90°,且OA=OB,又∵∠F+∠FAO=90°,∠E+∠FAO=90°,即∠E=∠F∴Rt△A OF≌Rt△B OE,∴OE=OF.5.方案(4)最省电线,提示:设正方形边长为a,则方案①需用线3a,方案②需用线3a,方案③需用线a4(2)(1a a ⨯+⨯=.故方案④最省线.(三)中考模拟题1. ⑴平行四边形,两组对边分别相等的四边形是平行四边形.⑵矩形,有一个角是直角的平行四边形是矩形.2.2a.提示:由CM垂直平分AC得AM=MC,所以AD+DC=a.故平行四边形的周长为2a.3.⑴∵四边形ABCD是正方形,∴AB=BC,∠ABF+∠CBM=90°∵CE⊥BF,∴∠ECB+∠CBM=90°,∴∠EBM=∠ECB.⑵在Rt△ABF与Rt△CBE中,EBM ECB AB BCA CBE∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt△ABF≌Rt△CBE(ASA),∴EB=AF.4.5cm提示:设DE为xcm,则AE为(9)x cm-,在Rt△ABE中,AB2+AE2=BE2 2223(9),5x x x+-=∴=,即DE=5cm.过F作FM⊥AD于M,由勾股定理得EF5.∵四边形ABCD为矩形,∴AD=BC,AB∥CD,∴∠BAE=∠DEA,∵BF=BC,∴AD=BF.在Rt△ADE与Rt△BFA中D BFADEA BAEAD BF∠=∠⎧⎪∠=⎨⎪=⎩∴△ADE≌△BFA,∴AE=AB.6.⑴四边形ABCD是菱形,∴AB=AD,∠B=∠D,在△ABE 与△ADF 中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ADF.⑵∵△ABE ≌△ADF ,∴AE=AF,∴∠AEF=∠AFE.7.⑴⑵⑶两个中任意画一个.⑷四个中任意画一个⑸两个中任画一个⑹在上面所画的图中剩余的图形中任画三个以上.。

初二年级平行四边形典型题

初二年级平行四边形典型题

平行四边形测试题一、选择题1.若平行四边形ABCD的周长是40cm,△ABC的周长是27cm,则AC的长为( ) A.13cm B.3cm C.7cm D.11.5 cm2.根据下列条件,不能判定四边形是平行四边形的是( )A.一组对边平行且相等的四边形 B.两组对边分别相等的四边形C.对角线相等的四边形 D.对角线互相平分的四边形3.已知平行四边形周长为28cm,相邻两边的差是4cm ,则两边的长分别为( ) A.4cm、10cm B.5cm、9cm C.6cm、8cm D.5cm、7cm4.下列条件中,能判定一个四边形是平行四边形的是( )A.一组对边平行,另一组对边相等 B.一组对边平行,一组对角相等 C.一组邻边相等,一组对角相等 D.一组对边平行,一组对角互补5.若A、B、C三点不在同一条直线上,则以其为顶点的平行四边形共有( )个A.1 B.2 C.3 D.46.能够判定四边形是平行四边形的条件是( )A.一组对角相等 B.两条对角线互相垂直C.两条对角线互相平分 D.一条邻角互补7.已知平行四边形的一条边长为14,下列各组数中能分别作它的两条对角线长的是( )A.10与6 B.12与16 C.20与22 D.10与188.四边形ABCD中,AD∥BC,当满足条件( )时,四边形ABCD是平行四边形A.∠A+∠C =︒180180 B.∠B+∠D =︒C.∠A+∠B =︒180180 D.∠A+∠D =︒9.已知下列三个命题⑴两组对角分别相等的四边形是平行四边形⑵一个角与相邻两角都互补的四边形是平行四边形⑶一组对角相等,一组对边平行的四边形是平行四边形其中错误的命题的个数是( )A.0个 B.1个 C.2个 D.3个10.平行四边形ABCD中,对角线AC、BD交于点O,AC = 10,BD = 8,则AD的取值范围是( )A.AD>1 B.AD<9 C.1<AD<9 D.AD>9二、填空题11.一个平行四边形的周长为40,两邻边的比为3∶5,则四边形的长为_________.12.一个平行四边形的一个内角比它的邻角大︒24,则这个四边形的四个内角分别是________.13.在平行四边形ABCD中,EF过对角线交点O,交CD、AB于E、F,若AB= 4cm,AD = 3cm,OF = 1.3cm,则四边形BCEF周长为_____________.14.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长为_____.15.在平行四边形ABCD中,对角线BD = 7cm,∠DBC =︒30,BC = 5cm,则平行四边形ABCD的面积为___________.16.从平行四边形的一锐角顶点引另两条边的垂线,两垂线夹角︒135,则此四边形的四个角分别为_____________.三、解答题:17.平行四边形周长等于68cm ,被两条对角线分成两个不同的三角形的周长和等于80cm ,两对角线的长度之比是2∶3,求两条对角线的长度.18.如图,AD 、BC 垂直相交于点O ,AB ∥CD ,又BC = 8,AD = 6,求:AB +CD 的长. 19.如图,某村有一口呈四边形的池塘,在它的四个角A 、B 、C 、D 处均种有一棵大核桃树,这村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问这村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由.20.已知如图,在平行四边形ABCD 中,∠A =︒60,E 、F 分别为AB 、CD 的中点,AB = 2AD ,求证:BD =3EF .1.在ABCD 中,∠A=︒50,则∠B(2)如果ABCD 中,∠A —∠A= 度,B= 度,C= 度,∠D= 度.(3)如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm ,CD= cm .2.证明:平行四边形的对边相等.对边相等,对角线互相平分3.证明:两组对边分别相等的四边形是平行四边形3. 如图,在平行四边形ABCD 中,AE=CF ,A DB AB OC DEEC求证:AF=CE.4.在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.5.在下列图形的性质中,平行四边形不一定具有的是().(A)对角相等(B)对角互补(C)邻角互补(D)内角和是360 6.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个7.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.8.已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.9.在平行四边形中,周长等于48,①已知一边长12,求各边的长②已知AB=2BC,求各边的长③已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长10.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC 的周长是____ ___cm.3.ABCD一内角的平分线与边相交并把这条边分成cm7的两条线段,5,cm则ABCD的周长是__ ___cm.1.判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()2.在 ABCD中,AC=6、BD=4,则AB的范围是__ ______.3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD 为平行四边形.2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD 于点O.求证:EO=OF.1.(选择)下列条件中能判断四边形是平行四边形的是().(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等(D)对角线互相平分2.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥AC,求证:BE=CF已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC 于F.求证:四边形BEDF是平行四边形.1.(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是().(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.3.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.求证:四边形AFCE是平行四边形.七、课后练习1.判断题:(1)相邻的两个角都互补的四边形是平行四边形;( )(2)两组对角分别相等的四边形是平行四边形;( )(3)一组对边平行,另一组对边相等的四边形是平行四边形;( )(4)一组对边平行且相等的四边形是平行四边形;( )(5)对角线相等的四边形是平行四边形;( )(6)对角线互相平分的四边形是平行四边形. ( )2.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.3.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)4.已知:如图(1),在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.1.(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是 m,理由是.2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.七、课后练习1.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是 cm.2.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是 cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.参考答案:一、选择题:C.C.B. B. C.C.C.D.A.C.二、填空题:11.7.5、12.5、7.5、12.5 12.︒102、︒78、︒102、︒78 13.9.6 cm 14.68 15.17.5 cm216.︒45,︒135,︒45,︒135三、解答题:17.设一条对角线长为2a,则另一条对角线长为3a.∵平行四边形周长等于68cm,∴相邻两边的长为 34cm,BOC D∴34+2a +3a = 80,解得a = 9.2,2a = 18.4,3a = 27.6.即两条对角线的长度分别为18.4 cm 和3a = 27.6 cm .18.过点C 作CE ∥AD 交BA 延长线于E ,∵AB ∥CD ,∴四边形AECD 是平行四边形,∴AE = CD ,∠BCE =∠BOA =︒90,CE = AD = 6, BE =22CE BC +=2268+= 10.∵ BE = AB +AE =AB +CD ,∴AB +CD = 10.19.这村能实现他们的设想.① 分别过点A 、C 作BD 的平行线1l 、2l ,② 分别过点B 、D 作AC 的平行线3l 、4l ,3l 交1l 、2l 于点M 、N ;4l 交1l 、2l 于点P 、Q ,则四边形MNPQ 就是所求的平行四边形.20.连结DEAB =//CD ,DF =21CD ,∴DF =//AE , ∴四边形AEFD 又∵AB = 2AD ,AB = 2AE ,∴AD = AE ,且∠A =︒60,∴DE = AE = BE , A D CB A B OC DE C∴∠1 =21∠2 =21×︒30,∴∠ADB =︒90, BD =22AD AB -=22)2(AD AD -=3AD , ∴BD =3EF .。

平行四边形测试题及答案

平行四边形测试题及答案

平行四边形测试题及答案一、选择题1. 平行四边形的定义是什么?A. 两组对边分别平行的四边形B. 两组对边分别相等的四边形C. 对角线互相平分的四边形D. 四边形的对角线互相垂直答案:A2. 平行四边形的对角线具有什么性质?A. 互相垂直B. 互相平分C. 相等D. 互相平行答案:B3. 下列哪个图形不是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形答案:C4. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 互相垂直答案:B5. 平行四边形的对角线将平行四边形分成几个全等的三角形?A. 1B. 2C. 4D. 8答案:B二、填空题6. 平行四边形的对角线互相________。

答案:平分7. 平行四边形的对边互相________。

答案:平行8. 如果一个四边形的对角线互相平分且相等,那么这个四边形一定是________。

答案:矩形9. 平行四边形的面积可以通过底和高的乘积来计算,公式为________。

答案:面积 = 底× 高10. 菱形是特殊的平行四边形,它的四条边都________。

答案:相等三、简答题11. 请描述平行四边形的判定定理。

答案:一个四边形是平行四边形,如果满足以下任一条件:(1)两组对边分别平行;(2)两组对边分别相等;(3)对角线互相平分;(4)一组对边平行且相等。

12. 在平行四边形中,如果一组对边是垂直的,那么这个平行四边形是什么形状?答案:如果一组对边垂直,那么这个平行四边形是矩形。

四、计算题13. 已知平行四边形的底为10cm,高为5cm,求其面积。

答案:面积= 10cm × 5cm = 50平方厘米14. 已知平行四边形的对角线长度分别为8cm和6cm,且对角线互相平分,求平行四边形的面积。

答案:设平行四边形的面积为S,对角线交点为O,那么OA=4cm,OB=3cm,根据三角形面积公式,S = 2 × (1/2) × OA × OB = 2 × (1/2) × 4cm × 3cm = 12平方厘米。

初中数学青岛版八年级下册第6章 平行四边形6.3特殊的平行四边形-章节测试习题(8)

初中数学青岛版八年级下册第6章 平行四边形6.3特殊的平行四边形-章节测试习题(8)

章节测试题1.【题文】如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥AB,PF⊥AD,垂足分别为E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?【答案】见解答.【分析】首先根据定理:到角两边距离相等的点在角的平分线上,可得到∠DAC=∠CAE,然后证明∠DAC=∠DCA,可得到DA=DC,再根据菱形的判定定理:邻边相等的平行四边形是菱形,进而可得到结论.【解答】是菱形.理由如下:∵PE⊥AB,PF⊥AD,且PE=PF,∴AC是∠DAB的角平分线,∴∠DAC=∠CAE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠DCA=∠CAB,∴∠DAC=∠DCA,∴DA=DC,∴平行四边形ABCD是菱形.【点评】此题主要考查了菱形的判定,证明∠DAC=∠DCA是解此题的关键.2.【题文】如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点.(1)求证:四边形EFGH是平行四边形;(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论.【答案】见解答.【分析】(1)根据中位线的判定GH=EF= AB,EH=FG= CD,所以四边形EFGH是平行四边形.(2)根据菱形的判定,四边都相等的四边形是菱形,只要证明EF=FG=GH=HE就可以了,这就需要AB=CD这个条件.【解答】(1)证明:∵E、F分别是AD,BD的中点,G、H分别中BC,AC的中点,∴EF∥AB,EF= AB;GH∥AB,GH= AB.(2分)∴EF∥GH,EF=GH.∴四边形EFGH是平行四边形.(2分)(2)当AB=CD时,四边形EFGH是菱形.(1分)理由:∵E、F分别是AD,BD的中点,H,G分别是AC,BC的中点,G、F分别是BC,BD的中点,E,H分别是AD,AC的中点,∴EF= AB,HG= AB,FG= CD,EH= CD,又∵AB=CD,∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3分)【点评】此题考查了三个判定:平行四边形的判定、菱形的判定、中位线的判定,牢记这几个判定,解此类问题就轻而易举了.3.【题文】如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作A G∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.【答案】见解答.【分析】(1)利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.【解答】(1)证明:∵四边形ABCD是平行四边形∴AB∥CD且AB=CD,AD∥BC且AD=BCE,F分别为AB,CD的中点,∴BE= AB,DF= CD,∴BE=BF,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE= AB=AD,而∠DAB=60°∴△AED是等边三角形,即DE=AE=AD,故DE=BE∴平行四边形DEBF是菱形.(2)解:四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB∴四边形AGBD是平行四边形由(1)的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°故∠ADB=90°∴平行四边形AGBD是矩形.【点评】本题考查了矩形的性质、等边三角形的判定及性质、三角形中位线定理等知识,解题的关键是弄清菱形及矩形的判定方法.4.【题文】如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.【答案】见解答.【分析】(1)根据角平分线的性质得出∠FAD=∠B,以及AD∥BC,再利用∠D=∠ACD,证明AC=AD;(2)根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出.【解答】证明:(1)∵AB=AC,∴∠B=∠BCA,∵AD平分∠FAC,∴∠FAD=∠DAC= ∠FAC,∵∠B+∠BCA=∠FAC,∴∠B= ∠FAC,∴∠B=∠FAD,∴AD∥BC,∴∠D=∠DCE,∵CD平分∠ACE,∴∠ACD=∠DCE,∴∠D=∠ACD,∴AC=AD;(2)∵∠B=60°,AB=AC,∴△ABC为等边三角形,∴AB=BC,∴∠ACB=60°,∠FAC=∠ACE=120°,∴∠BAD=∠BCD=120°,∴∠B=∠D=60°,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定和角平分线的性质等内容,注意菱形与平行四边形的区别,得出AB=BC是解决问题的关键.5.【题文】已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.【答案】见解答.【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相垂直平分,根据对角线互相垂直且平分的四边形是菱形,即可判定四边形AEMF 是菱形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)解:四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC-BE=DC-DF(等式的性质),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF,∴平行四边形AEMF是菱形.【点评】本题主要考查对正方形的性质,平行四边形的判定,菱形的判定,平行线分线段成比例定理,全等三角形的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.6.【题文】如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.【答案】见解答.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.(3分)∵AC平分∠BAD,∴∠BAC=∠DAC,(4分)又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,(5分)∴AD=DC,(6分)∴四边形AECD是菱形.(8分)【点评】考查了平行四边形和菱形的判定,比较简单.7.【题文】两块完全相同的三角板Ⅰ(△ABC)和Ⅱ(△A 1 B 1 C 1)如图①放置在同一平面上(∠C=∠C 1 =90°,∠ABC=∠A 1 B 1 C 1 =60°),斜边重合.若三角板Ⅱ不动,三角板Ⅰ在三角板Ⅱ所在的平面上向右滑动,图②是滑动过程中的一个位置.(1)在图②中,连接BC 1、B 1 C,求证:△A 1 BC 1≌△AB 1 C;(2)三角板Ⅰ滑到什么位置(点B 1落在AB边的什么位置)时,四边形BCB 1 C 1是菱形?说明理由.【答案】见解答.【分析】利用全等三角形的性质得出一些条件,然后再进行证明.【解答】(1)证明:∵三角板Ⅰ(△ABC)和Ⅱ(△A 1 B 1 C 1)是两块完全相同的三角板,∴AC=A 1 C 1 AB=A 1 B 1∠A=∠A 1∴在图②中A 1 B=AB 1∴△A 1 BC 1≌△AB 1 C.(2)解:点B 1落在AB边的中点.理由如下:如图②所示,由已知条件知BC=B 1 C 1,BC∥B 1 C 1∴四边形BCB 1 C 1是平行四边形.要使四边形BCB 1 C 1是菱形,则BC=CB 1∵∠ABC=∠A 1 B 1 C 1 =60°,∴△BCB 1为等边三角形.∴BB 1 =B 1 C=BC,又∵∠A=30°,在直角三角形ABC中,BC= AB,∴BB 1 = AB,∴点B 1落在AB边的中点.【点评】(1)灵活把握题中隐含的条件是解题的关键.(2)菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.8.【题文】将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图(1);再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF,如图2,证明:四边形AEDF是菱形.【答案】见解答.【分析】第一次折叠,AC落在AB边上,则折痕AD平分∠BAC,∠EAD=∠FAD;第二次折叠,A、D重合,则∠EAF=∠EDF、∠EDA=∠FDA;AE=ED、AF=FD;易证得△AED≌△AFD,得AE=AF、DE=DF,再根据第二次折叠所得到的AE=DE、AF=FD,可证得四边形AEDF的四边相等,由此可判定四边形AEDF是菱形.【解答】证明:由第一次折叠可知:AD为∠CAB的平分线,∴∠1=∠2(2分)由第二次折叠可知:∠CAB=∠EDF,∵AE=ED,AF=FD,∴∠1=∠3,∠2=∠4,∵∠1=∠2,∴∠3=∠4(4分),在△AED与△AFD中1=∠2,AD=AD,∠3=∠4∴△AED≌△AFD(ASA)(6分)∴AE=AF,DE=DF,∴EO=FO,AO=DO,AD⊥EF,故四边形AEDF是菱形.(9分)【点评】此题考查了折叠的性质、全等三角形的判定和性质及菱形的判定方法.9.【题文】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.【答案】见解答.【分析】(1)首先可根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)连接OE,通过证四边形BOEC是平行四边形,得OE=BC;根据菱形的面积是对角线乘积的一半,可求得四边形ODEC的面积.【解答】解:(1)四边形OCED是菱形.(2分)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,(3分)又在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(4分)(2)连接OE.由菱形OCED得:CD⊥OE,(5分)又∵BC⊥CD,∴OE∥BC(在同一平面内,垂直于同一条直线的两直线平行),又∵CE∥BD,∴四边形BCEO是平行四边形;∴OE=BC=8(7分)∴S 四边形OCED = OE•CD=×8×6=24.(8分)【点评】本题主要考查矩形的性质,平行四边形、菱形的判定,菱形面积的求法;菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.10.【题文】如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E、F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.【答案】见解答.【分析】(1)四边形ABCD是平行四边形,则BC∥AF,可得同位角∠BPE=∠F;在等腰△BEP中,∠E=∠BPE,等量代换后即可证得所求的结论;(2)由EF∥BD,可得同位角∠ABD=∠E,∠ADB=∠F;由(1)知∠E=∠F,等量代换后可证得∠ABD=∠ADB,即AB=AD,根据一组邻边相等的平行四边形是菱形即可判定四边形ABCD是菱形.【解答】证明:(1)在▱ABCD中,BC∥AF,∴∠1=∠F,∵BE=BP,∴∠E=∠1,∴∠E=∠F;(2)∵BD∥EF,∴∠2=∠E,∠3=∠F,∵∠E=∠F,∴∠2=∠3,∴AB=AD,∴▱ABCD是菱形.【点评】此题主要考查了平行四边形的性质及菱形的判定:一组邻边相等的平行四边形是菱形.11.【题文】如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.【答案】见解答.【分析】要证明四边形AEOF是菱形,可根据“四条边相等的四边形是菱形”或“一组邻边相等的平行四边形是菱形”进行证明.【解答】证明:∵点E,F分别为AB,AD的中点∴AE= AB,AF= AD (2分),又∵四边形ABCD是菱形,∴AB=AD,∴AE=AF (4分),又∵菱形ABCD的对角线AC与BD相交于点O∴O为BD的中点,∴OE,OF是△ABD的中位线.(6分)∴OE∥AD,OF∥AB,∴四边形AEOF是平行四边形(8分),∵AE=AF,∴四边形AEOF是菱形.【点评】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.12.【题文】某同学用两个完全相同有一个角为60°的直角三角尺重叠在一起(如图)固定△ABC不动,将△DEF沿线段AB向右平移,当D移至AB中点时(如图②).(1)求证:△ACD≌△DFB;(2)猜想四边形CDBF的形状,并说明理由.【答案】见解答.【分析】(1)根据已知可以得出∠CAB=∠FDE,AC=DF,BD=AD,即可得出△ACD≌△DFB;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;【解答】(1)证明:∵两个完全相同有一个角为60°的直角三角尺重叠在一起(如图②)固定△ABC不动,将△DEF沿线段AB向右平移,∴∠CAB=∠FDE=60°,AC=DF,∵D移至AB中点时,∴BD=AD,∴在△ACD与△DFB中,,∴△ACD≌△DFB;(2)菱形.理由:∵在直角三角形ABC中,AD=BD,∴CD=AD=BD,根据平移的性质,图形平移前后对应线段相等,对应点平移距离相等,得到CF=BD,BF=CD,∴CF=BD=BF=CD,∴四边形CDBF是菱形;【点评】此题主要考查了菱形的判定,综合运用直角三角形的性质和平移的性质进行分析计算,考查学生综合运用数学知识的能力.13.【题文】如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.【答案】见解答.【分析】(1)由CE、BF的内错角相等,可得出△CED和△BFD的两组对应角相等;已知D是BC的中点,即BD=DC,由AAS即可证得两三角形全等;(2)若AB=AC,则△ABC是等腰三角形,而D是底边BC的中点,根据等腰三角形三线合一的性质可证得AD⊥BC;由(1)的全等三角形,易证得四边形BFCE的对角线互相平分;根据对角线互相垂直平分的四边形是菱形即可判定四边形BFCE是菱形.【解答】证明:(1)∵CE∥BF,∴∠ECD=∠FBD,∠DEC=∠DFB;又∵D是BC的中点,即BD=DC,∴△BDF≌△CDE;(AAS)(2)∵AB=AC,∴△ABC是等腰三角形;又∵BD=DC,∴AD⊥BC(三线合一),由(1)知:△BDF≌△CDE,则DE=DF,DB=DC;∴四边形BFCE是菱形(对角线互相平分且互相垂直的四边形为菱形).【点评】此题主要考查的是全等三角形的判定和性质、等腰三角形的性质及菱形的判定方法.14.【题文】如图,在梯形ABCD中,AC平分∠BAD,在底边AB上截AE=CD.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.【答案】见解答.【分析】(1)根据四边形ABCD是梯形得到AB∥DC,从而得到∠DCA=∠EAC,利用EC平分∠BAD,得到∠BAC=∠DAC,从而∠DAC=∠DCA,所以AD=CD,利用邻边相等的平行四边形是菱形判定四边形AECD是菱形;(2)利用若点E是AB的中点,得到AE=BE,根据CE=AE,得到CE=BE,从而得到△ABC为直角三角形.【解答】(1)证明:∵四边形ABCD是梯形,∴AB∥DC,又∵AE=CD,∴四边形AECD是平行四边形.∴∠DCA=∠EAC,∵AC平分∠BAD,∴∠BAC=∠DAC,∴∠DAC=∠DCA,∴AD=CD,∴四边形AECD是菱形;(2)解:∵若点E是AB的中点,∴AE=BE,∵CE=AE,∴CE=BE,∴∠EBC=∠ECB,∠EAC=∠ECA∴∠ECB+∠ECA=90°∴△ABC为直角三角形.【点评】本题考查了梯形的性质及菱形的判定,解题的关键是熟知梯形的性质,并理解其基本辅助线的作法.15.【题文】如图,在Rt△ABC中,∠ABC=90°,∠BAC=60°,D为AC的中点,以BD为折痕,将△BCD折叠,使得C点到达C 1点的位置,连接AC 1.求证:四边形ABDC 1是菱形.【答案】见解答.【分析】要证四边形ABDC 1为菱形,则要通过题中的条件证出四边相等即可得出答案.【解答】证明:∵∠ABC=90°,∠BAC=60°,∴∠C=30°∴BA= AC.又∵BD是斜边AC的中线,∴BD=AD= AC=CD.∴BD=AB=CD,∴∠C=∠DBC=30°,∵将△BCD沿BD折叠得△BC 1 D,∴△CBD≌△C 1 BD,∴CD=DC 1,∴AB=BD=DC 1,∴∠C 1 BA=∠BC 1 D=30°,∴BA∥DC 1,DC 1 =AB,∴四边形ABDC 1为平行四边形,又∵AB=BD,∴平行四边形ABDC 1为菱形.【点评】此题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.16.【题文】如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E.DF平分∠ADC交BC于F.(1)求证:△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.【答案】见解答.【分析】(1)由平行四边形ABCD可得出的条件有:①AB=CD,②∠A=∠C,③∠ABC=∠CDA;已知BE、CD分别是等角∠ABD、∠CDA的平分线,易证得∠ABE=∠CDF④;联立①②④,即可由ASA判定所求的三角形全等;(2)由(1)的全等三角形,易证得DE=BF,那么DE和BF平行且相等,由此可判定四边形BEDF 是平行四边形,根据对角线垂直的平行四边形是菱形即可得出EBFD的形状.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,∠ABC=∠ADC,∵BE平分∠ABC,DF平分∠ADC,∴∠ABE=∠CDF,∴△ABE≌△CDF(ASA);(2)解:若BD⊥EF,则四边形EBFD是菱形.证明:由△ABE≌△CDF,得AE=CF,在平行四边形ABCD中,AD平行BC,AD=BC,∴DE∥BF,DE=BF,∴四边形EBFD是平行四边形,∴若BD⊥EF,则四边形EBFD是菱形.【点评】此题主要考查了平行四边形的性质、全等三角形的判定和性质及菱形的判定方法.17.【题文】如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点.(1)求证:四边形DECF是平行四边形;(2)若AC=BC,则四边形DECF是什么特殊四边形?请说明理由.【答案】见解答.【分析】(1)根据一组对边平行且相等的四边形是平行四边进行证明;(2)根据一组邻边相等的平行四边形是菱形进行证明.【解答】(1)证明:方法一:∵D、E、F分别是边AB、BC、CA的中点,∴DE∥AC,DE= AC,CF= AC.(3)分∴DE∥CF,DE=CF.∴四边形DECF是平行四边形,5分)方法二:∵D、E、F分别是边AB、BC、CA的中点,∴DE∥AC,DF∥BC,(3分)∴四边形DECF是平行四边形.(5分)(2)解:四边形DECF是菱形(6分)理由:∵E、F分别是边BC、CA的中点,∴CE= BC,CF= AC,又∵AC=BC,∴CE=CF.(8分)由(1)知,四边形DECF是平行四边形,∴四边形DECF是菱形.(10分)【点评】考查了平行四边形和菱形的判定.形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.18.【题文】如图,在平行四边形ABCD中,点E、F分别在BC、AD上,且∠BAE=∠DCF.(1)求证:△ABE≌△CDF;(2)若AC⊥EF,试判断四边形AECF是什么特殊四边形,并证明你的结论.【答案】见解答.【分析】(1)平行四边形的对边相等,对角相等,即∠B=∠D,AB=CD,根据已知给出的∠BAE=∠DCF,可证明两个三角形全等.(2)可先证明四边形AECF中对角线的关系,根据AC⊥EF,从而判断出到底是什么特殊的四边形.【解答】解:(1)∵在平行四边形ABCD中,∴∠B=∠D,AB=CD,又∵∠BAE=∠DCF.∴△ABE≌△CDF;(2)∵△ABE≌△CDF,∴BE=DF,∴BC-BE=AD-FD,∴EC=AF,∵AD∥BC,∴∠FAC=∠ECA,∠CEF=∠AFE,∴△AOF≌△COE,∴AO=CO,EO=FO,又∵AC⊥EF,∴四边形AECF是菱形.【点评】本题考查了平行四边形的判定和性质,平行四边形的对边平行且相等,对角相等,全等三角形的判定和性质,菱形的判定.19.【题文】△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE 是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.【答案】见解答.【分析】(1)根据等边三角形的性质可得AB=AC,AE=AD,∠BAC=∠EAD=60°,然后求出∠BAE=∠CAD,再利用“边角边”证明△AEB和△ADC全等;②四边形BCGE是平行四边形,因为△AEB≌△ADC,所以可得∠ABE=∠C=60°,进而证明∠ABE=∠BAC,则可得到EB∥GC又EG∥BC,所以四边形BCGE是平行四边形;(2)根据(1)的思路解答即可.(3)当CD=CB时,四边形BCGE是菱形,由(1)可知△AEB≌△ADC,可得BE=CD,再证明BE=CB,即邻边相等的平行四边形是菱形.【解答】证明:(1)①∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°.又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠EAB=∠DAC,∴△AEB≌△ADC(SAS).②方法一:由①得△AEB≌△ADC,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC,∴EB∥GC.又∵EG∥BC,∴四边形BCGE是平行四边形.方法二:证出△AEG≌△ADB,得EG=AB=BC.∵EG∥BC,∴四边形BCGE是平行四边形.(2)①②都成立.(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.理由:方法一:由①得△AEB≌△ADC,∴BE=CD又∵CD=CB,∴BE=CB.由②得四边形BCGE是平行四边形,∴四边形BCGE是菱形.方法二:由①得△AEB≌△ADC,∴BE=CD.又∵四边形BCGE是菱形,∴BE=CB∴CD=CB.方法三:∵四边形BCGE是平行四边形,∴BE∥CG,EG∥BC,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°∴∠F=∠FBE=60°,∴△BEF是等边三角形.又∵AB=BC,四边形BCGE是菱形,∴AB=BE=BF,∴AE⊥FG∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30°.【点评】本题主要考了平行线四边形的判定和性质、等边三角形的性质、全等三角形的判定和性质以及菱形的判定,解题关键在于根据题意画出图形,通过求证三角形全等,推出等量关系,即可推出结论.20.【题文】如图,在△ABC中,AB=2BC,点D、点E分别为AB、AC的中点,连接DE,将△ADE 绕点E旋转180°,得到△CFE.试判断四边形BCFD的形状,并说明理由.【答案】见解答.【分析】四边形BCFD应该是菱形,要证四边形AFCE是菱形,只需通过定义证明它是一组邻边相等的平行四边形即可,此题实际是对判定菱形的方法“一组邻边相等的平行四边形是菱形”的证明.【解答】解:四边形BCFD是菱形,理由如下:∵点D、点E分别是AB、AC的中点,∴DE∥BC,DE= BC,又∵△CFE是由△ADE旋转而得,∴DE=EF,∴DF∥BC,DF=BC,∴四边形BCFD是平行四边形,又∵AB=2BC,且点D为AB的中点,∴BD=BC,∴BCFD是菱形.【点评】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.还有就是本题中一组邻边相等的平行四边形是菱形.。

特殊的平行四边形测试题及答案

特殊的平行四边形测试题及答案

特殊的平行四边形测试题一一、填空题1.用一把刻度尺来判定一个零件是矩形的方法是 . 2.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .3.(08贵阳市)如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.4.如图1,DE ∥BC ,DF ∥AC ,EF ∥AB ,图中共有_______个平行四边形.5若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形. 6.在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为17,AB =6,那么对角线AC +BD =⒎ 以正方形ABCD 的边BC 为边做等边△BCE ,则∠AED 的度数为 . 8.延长正方形ABCD 的边AB 到E ,使BE =AC ,则∠E = ° 9.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2那么AP 的长为 .10.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .二、选择题11.如图4在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD至E ,连结EF ,则∠E +∠F =( ) A .110° B .30° C .50° D .70° 12.菱形具有而矩形不具有的性质是 ( )A .对角相等B .四边相等C .对角线互相平分D .四角相等 13.平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm14.已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积为 ( )A .8B .6C .4D .315.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形(6)E AF DC B H G( )A .①③⑤B .②③⑤C .①②③D .①③④⑤ 16.如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是 ( )A .88 mmB .96 mmC .80 mmD .84 mm 17、(08甘肃省白银市)如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠= ,则AEF ∠=( )A .110°B .115°C .120°D .130°18、(08哈尔滨市)某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形。

初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形-章节测试习题

初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形-章节测试习题

章节测试题1.【题文】如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数.【答案】见解析【分析】(1)由垂直的定义得到∠ADB=∠ADC=90°,根据已知条件即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠DCE,根据直角三角形的性质得到AM=DM,DN=CN,由等腰三角形的性质得到∠MAD=∠MDA,∠NCD=∠NDC,等量代换得到∠ADM=∠CDN,即可得到结论.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD与△CDE中,∵AD=CD,∠ADB=∠ADC,DB=DE,∴△ABD≌△CDE;(2)解:∵△ABD≌△CDE,∴∠BAD=∠DCE,∵M、N分别是AB、CE的中点,∴AM=DM,DN=CN,∴∠MAD=∠MDA,∠NCD=∠NDC,∴∠ADM=∠CDN,∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°,∴∠MDN=90°.2.【题文】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG且EG⊥CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?【答案】(1)证明见解析;(2)成立,证明见解析;(3)成立,即EG=CG且EG⊥CG.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;【解答】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△D AG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。

平行四边形及特殊的平行四边形测试题

平行四边形及特殊的平行四边形测试题

四边形综合练习题一. 选择题(每小题2分,共12分)1.一个等腰梯形的两底之差为12,高为6,则等腰梯形的两底的一个锐角为 ( ) A.︒30 B. ︒45 C.︒60 D.︒752.在Rt ⊿ABC 中,∠ACB =︒90,∠A =︒30,AC =cm 3,则AB 边上的中线为( )A.cm 1 B .cm 2 C.cm 5.1 D.cm 33.等边三角形一边上高线长为cm 32,那么这个等边三角形的中位线长为 ( )A. cm 3 B.cm 5.2 C .cm 2 D.cm 4 4.下列判定正确的是 ( ) A 对角线互相垂直的四边形是菱形 B 两角相等的四边形是梯形 C 四边相等且有一个角是直角的四边形是正方形 D 两条对角线相等且互相垂直的四边形是正方形5.顺次连结等腰梯形各边中点得到的四边形是( ) A 矩形 B.菱形 C.正方形 D .平行四边形6.直角梯形的两个直角顶点到对腰中点的距离 ( ) A .相等 B. 不相等 C.可能相等也可能不相等 D .互相垂直 二.填空题:(每小题3分,共24分)7.已知菱形的周长为cm 40,一条对角线长为cm 16,则这个菱形的面积为 ;8.如图:EF 过平行四边形ABCD 的对角线交点O ,交AD 于E ,交BC 于F ,已知AB =4,BC =5,OE =5.1,那么四边形EFCD 的周长为 ; 9.已知,如图:平行四边形ABCD 中,AB =12,AB 边上的高为3,BC 边上的高为6,则平行四边形ABCD 的周长为 ; 10.⊿ABC 中,AB = AC =13,∠BAC 的平分线AD 交BC 于D ,则D 点到AB 的距离为 ;11.如图,在Rt ⊿ABC 中,∠C =︒90,AC = BC ,AB =30矩形DEFG 的一边在AB 上,顶点G 、F 分别在AC 、BC D 、E 在AB 上,若DG :GF =1:4,则矩形DEFG 的面积 为 ; 12.在⊿ABC 和⊿ADC 中:下列论断:①AB = AD ; ②∠BAC =∠DAC ;③BC = DC ,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题是: ;13.如图,在⊿ABC 中,∠C =︒90,∠B =︒15,AB的垂直平分线交AB 于D ,交BC 于D ,DB =10,那么AC = ; 14.在⊿ABC 中,∠C =︒90,周长为cm )325(+,斜边上的中线CD =cm 2,则Rt ⊿ABC 的面积为 ; 三.(6分)15.作图题:已知三个村庄的位置如图,三村联合打一口井,向三个村庄供水,使水井到三个村庄的距离相等,水井的位置设在何处?请用尺规画出水井位置,不写作法,保留痕迹。

第一章《特殊的平行四边形》测试卷2022-2023学年北师大版九年级数学上册2

第一章《特殊的平行四边形》测试卷2022-2023学年北师大版九年级数学上册2

第一章《特殊的平行四边形》测试卷满分:150分时间:120分钟一、选择题(本大题共6小题,每小题3分,共18分)1.如图,矩形ABCD中,对角线AC,BD相交于点O,若∠0AD=40°,则∠COD=()A.20°B.40°C.80°D.100°第1题图第3题图第4题图2.菱形、矩形、正方形都具有的性质是()A.对角线相等且互相平分B.对角线相等且互相垂直平分C.对角线互相平分D.四条边相等,四个角相等3.如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是CD中点,连接OE,则下列结论中不一定正确的是()ABA.AB=ADB.OE=12C.∠DOE=∠DEOD.∠EOD=∠EDO4.如图,一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c.则正确的是( )A.仅①B.仅③C.①②D.②③5.如图,正方形ABCD的面积为2,菱形AECF的面积为1,则E、F两点间的距离为()D.√2A.1B.2C.√22第5题图第6题图第8题图6.如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种二、填空题(本大题共6小题,每小题3分,共18分)7.直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为.8.如图,菱形ABCD的顶点C在直线MN上,若∠1=50°,∠2=20°,则∠BDC 的度数为.9.如图,矩形ABCD中,对角线AC、BD交于点O,E为OB的中点,且AELBD,BD=4,则CD=.第9题图第10题图第11题图10.如图,已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为11.有两个全等矩形纸条,长与宽分别为8和6,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH的周长为12.在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为.三、(本大题共5小题,每小题6分,共30分)13.在平行四边形ABCD中,∠BAD的平分线交CD于点E.交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形.14.如图,在正方形ABCD内有一点P,满足PB=PC,连接AP,PD.求证:△APB ≌△DPC.15.如图,在菱形ABCD中,DELAB于点E,DFLBC于点F,求证:DE=DF.某同学的证明过程如下:证明:∵四边形ABCD是菱形,∴∠A=∠C,AD=DC(根据1).在△ADE和△CDF中,AD=DC,∠A=∠C,∠AED=∠CFD=90°,∴△ADE≌ACDF(根据2)∴DE=DF.(1)以上证明过程中的根据1是指,根据2是指;(2)请你写出该题的另外一种证法.16.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,连接CD,过点D作DE⊥BC于E,过A作AF⊥ED的延长线于F.(1)若∠B=25°,求∠ADC的度数;(2)若AF=2DF,求证:四边形ACEF是正方形.17.请仅用无刻度的直尺,分别按下列要求完成画图:(1)如图①,在菱形ABCD中,E,F分别是AB,BC上的中点,以EF为边画一个矩形;(2)图②是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形.四、(本大题共3小题,每小题8分,共24分)18.如图,矩形ABCD中,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F,DE=DF.(1)求证:四边形DEBF是菱形;(2)若BE=5,BD=8,求菱形DEBF的面积.19.如图,菱形ABCD中,点E,O,F分别是边AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)猜测:当AB与BC满足条件时,四边形AEOF是正方形,请说明理由.20.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处,若点D的坐标为(10,8).(1)求CE的长;(2)写出点E的坐标.五、(本大题共2小题,每小题9分,共18分)21.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)问BE与DF有什么关系?请说明理由22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN//BC.设MN交∠ACB的平分线于点E,交△ABC的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由;(3)当点O在边AC上运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?六、(本大题共12分)23. 在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.(1)【观察猜想】如图①,当点D在线段BC上时:①BC与CF的位置关系为;②BC,CD,CF之间的数量关系为(将结论直接写在横线上)(2)【数学思考】如图②,当点D在线段CB的延长线上时,结论①②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)【拓展延伸】如图③,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若AB=2√2,CD=1,请求出GE的长.。

平行四边形测试题及答案

平行四边形测试题及答案

平行四边形测试题及答案一、选择题(每题3分,共30分)1. 平行四边形的对边具有什么性质?A. 平行且相等B. 垂直且相等C. 平行且垂直D. 垂直且不等答案:A2. 如果一个平行四边形的对角线互相平分,那么这个平行四边形是:A. 矩形B. 菱形C. 梯形D. 任意平行四边形答案:A3. 平行四边形的面积可以通过以下哪种方式计算?A. 底乘以高B. 对角线乘积的一半C. 周长乘以半径D. 以上都不是答案:A4. 如果一个平行四边形的对角线相等,那么这个平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形答案:C5. 菱形的四个角中,相邻角的度数之和是多少?A. 90°B. 180°C. 270°D. 360°答案:B6. 下列哪个选项不是平行四边形的性质?A. 对边平行B. 对角相等C. 对角线互相平分D. 对角线垂直答案:D7. 矩形的对角线有什么特点?A. 相等B. 垂直C. 平行D. 以上都不是答案:A8. 梯形的中位线与两底边的关系是什么?A. 等于两底边之和的一半B. 等于两底边之差的一半C. 等于两底边之和D. 等于两底边之差答案:A9. 平行四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 1080°答案:A10. 以下哪个图形不是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形答案:C二、填空题(每题2分,共20分)11. 平行四边形的对角线________。

答案:互相平分12. 如果平行四边形的两组对边分别相等,那么这个平行四边形是________。

答案:矩形13. 菱形的面积公式是________。

答案:底乘以高14. 正方形是特殊的________。

答案:矩形15. 平行四边形的周长是________。

答案:两组对边之和的两倍16. 梯形的上底和下底的长度之和等于________。

特殊平行四边形单元过关测试题 (1)

特殊平行四边形单元过关测试题 (1)

特殊平行四边形单元过关测试题一、精心选一选,想信你一定能选对!(每题5分,共60分)1.不能判定四边形ABCD 为平行四边形的题设是( ) (A )AB 平行且等于CD 。

(B )∠A=∠C ,∠B=∠D 。

(C )AB=AD ,BC=CD 。

(D )AB=CD ,AD=BC 。

2.下面性质中菱形有而矩形没有的是( )(A )邻角互补(B )内角和为360°(C )对角线相等 (D )对角线互相垂直 3.正方形具有而菱形不一定具有的性质是( ) (A )四条边相等 (B )对角线互相垂直平分 (C )对角线平分一组对角 (D )对角线相等 4、下列命题中,真命题是( ) A 、有两边相等的平行四边形是菱形 B 、有一个角是直角的四边形是矩形 C 、四个角相等的菱形是正方形D 、两条对角线互相垂直且相等的四边形是正方形5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( ) A.18° B.36° C.72° D.108° 6.下列命题中,真命题是( ) A 、有两边相等的平行四边形是菱形 B 、对角线垂直的四边形是菱形 C 、四个角相等的菱形是正方形 D 、两条对角线相等的四边形是矩形7、平行四边形各内角平分线若围成一个四边形,则这个四边形一定是( ) A 、矩形 B 、平行四边形 C 、菱形 D 、正方形8、关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC 和BD 相等;以上四个条件中可以判定四边形ABCDEDCBA是平行四边形的有()。

(A) 1个(B)2个(C)3个(D)4个9、下列四边形中,是中心对称而不是轴对称的是()A、平行四边形B、矩形C、菱形D、正方形10等腰梯形ABCD中,AD∥BC, ∠B=60°,AD=2,BC=8,则此等腰梯形的周长为()A.19 B.20 C.21 D.2211、下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、有一个角是直角的四边形是矩形C、四个角相等的菱形是正方形D、两条对角线互相垂直且相等的四边形是正方形12、下列几组图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是()A.正方形、菱形、矩形、平行四边形B.正三角形、正方形、菱形、矩形C.正方形、菱形、矩形D.平行四边形、正方形、等腰三角形二、细心填一填,相信你填得又快又准!(每题5分,共30分)13、□ABCD中,∠A=50°,则∠B=__________,∠C=__________。

特殊的平行四边形测试题十二

特殊的平行四边形测试题十二

特殊的平行四边形 一、选择题:1.既是轴对称图形,又是中心对称图形的个数有( )(1)菱形 (2)矩形 (3)平行四边形 (4)正方形 A .1 B .2 C .3 D .42.如图,若平行四边形ABCD 与平行四边形EFCD 关于CD 所在直线对称, 80=∠ADE ,则F ∠的度数为 A. 100B. 80C. 50D.4003.平行四边形、矩形、菱形、正方形共有的性质是( )A 、对角线相等B 、对角线互相平分C 、对角线互相垂直D 、对角形互相垂直平分4.矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =5cm ,则矩形的对角线长是( )A 、5cmB 、10cmC 、cm 52D 、2.5cm5.菱形的两条对角线长分别为6㎝和5㎝,那么这个菱形的面积为( )A 、30㎝2B 、15㎝2C 、215㎝2 D 、415㎝26.矩形ABCD 中,CE ⊥BD ,E 为垂足,∠DCE ∶∠ECB =3∶1,那么∠ACE = 度。

A.45B.67.5C.22.5D.3007.顺次连结任意四边形各边中点所得的四边形是( )A 、平行四边形B 、矩形C 、菱形D 、正方形8.如图,四边形OABC 是平行四边形,点A 在反比例函数2y x=上,点B 在反比例函数4y x=上,点C 在x 轴的正半轴上,则四边形OABC的面积是A.4B.3C.2D.19.如图,Rt △ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,E 、F 分别是AB 、AC 的中点,∠C =30°,BC =4㎝,则四边形AEDF 的周长是( )A 、4㎝B 、34㎝C 、)32(+㎝D 、)322(+㎝FE D CBA 第16题10.边长为15cm 、25cm 的一个矩形,如果一个内角的平分线分边长为两部分,则两部分的长为( )A 、12.5cm ,12.5cmB 、16cm ,9cmC 、15cm ,10cmD 、18 cm ,7cm11.下列命题中,真命题是 ( )(1)两条对角线相等且互相平分的四边形是矩形 (2)两条对角线互相垂直平分的四边形是菱形 (3)两条对角线互相平分的四边形是平行四边形 (4)两条对角线互相垂直且相等的四边形是正方形 A . 1 B . 2 C . 3 D .412.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点D ,下列结论①AE=BF;②AE⊥BF ;③ AO=OE ; ④S △AOB=S 四边形DEOF 中,正确的有( )(A) ①②③④ (B) ②③④ (C) ①②④ (D) ①②③二、填空题:13.一个菱形的两条对角线分别为12cm 、16cm ,这个菱形的边长为______;面积S =_________。

平行四边形测试题(含答案)

平行四边形测试题(含答案)

平行四边形测试题一、选择题(共10小题)1.如图、在□ABCD 中,AD =8,点E ,F 分别是BD ,CD 的中点,则EF 等于( )A .2B .3C .4D .52.如图,在平行四边形ABCD 中,都不一定成立的是( )①AO =CO ;②AC ⊥BD ;③AD ∥BC ;④∠CAB =∠CADA. ①和④B. ②和③C. ③和④D. ②和④3.下列识别图形不正确的是( )A. 有一个角是直角的平行四边形是矩形B. 有三个角是直角的四边形是矩形C. 对角线相等的四边形是矩形D. 对角线互相平分且相等的四边形是矩形4.正方形具有而菱形不具有的性质是( )A. 四边相等B. 四角相等C. 对角线互相平分D. 对角线互相垂直5.如图,在平行四边形ABCD 中,AD =7,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A. 4B. 3C. 2.5D. 26.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD ,垂足为E ,AE =3,ED =3BE ,则AB 的值为( )A. 6B. 5C. 2√3D.3√37.如图所示,在菱形ABCD 中,∠A =60°,AB =2,E ,F 两点分别从A ,B 两点同时出发,以相同的速度分别向终点B ,C 移动,连接EF ,在移动的过程中,EF 的最小值为( )A. 1B. 2C. 32D. 38.已知ABCD ,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )A. ∠DAE =∠BAEB. ∠DEA =12∠DAB C. DE =BE D. BC =DE 第1题 第2题第5题 第6题 第7题 第8题 第9题9.如图,在□ABCD 中,连接AC ,若∠ABC =∠CAD =45°,AB =1,则BC 的长是( )A.22B. 1C. 2D. 2 10.如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形……,如此操作下去,那么,第6个三角形的直角顶点坐标为( )A. (-2116,2116) B . (-118,118) C . (-4332,4332) D . (-8564,8564)二.填空题(共5小题)11.在直角三角形ABC 中,∠C =90°,CD 是AB 上的中线,如果CD =2,那么AB =_________.12.矩形的面积为12cm 2,一边长为4cm ,那么矩形的对角线长是_________cm.13.菱形的一个内角是120°,边长是5cm ,则这个菱形较短的对角线长是_________cm.14.如图,AO =OC ,BD =16cm ,则当OB =___________cm 时,四边形ABCD 是平行四边形.15.如图,在长方形ABCD 中,AF ⊥BD ,垂足为E ,AF 交BC 于点F ,连接DF ,图中有全等三角形_______对,有面积相等但不全等的三角形_______对.三.解答题(共9小题)16.如图,在平行四边形ABCD 中,点E 、F 分别是AD 、BC 的中点,求证:AF =CE .……x y y yx x 第14题 第15题17.如图,在□ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形18.如图,E是□ABCD的边CD的中点,延长AE交BC的延长线于点F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形及特殊的平行四边形测试题一、选择题(每小题3分,共30分)1.如图,在ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18 cm,CD︰DA=2︰3,△AOB的周长为13 cm,那么BC的长是()A.6 cmB.9 cmC.3 cmD.12 cm2. 一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为()A.30° B. 45° C. 60° D. 75°3. (2013·山东泰安中考)如图,在ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A.23B. 43C.4D.84.如图,在梯形中,∥,∠∠90°,分别是的中点,若 cm, cm,那么()A.4 cmB.5 cmC.6.5 cmD.9 cm5.直角梯形的两个直角顶点到对腰中点的距离()A.相等B.不相等C.可能相等也可能不相等D.无法比较6.在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形 B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形7.从菱形的钝角顶点,向对角的两条边作垂线,垂足恰好是该边的中点,则菱形的内角中钝角的度数是()A.150°B. 135°C. 120°D. 100°8.如图所示,在菱形ABCD中,对角线AC与BD相交于点O,OE∥DC且交BC于点E,AD=6 cm,则OE的长为()A.6 cmB.4 cmC.3 cmD.2 cm9. 如图,四边形ABCD是矩形,F是AD上一点,E是CB延长线上一点,且四边形AECF是等腰梯形,下列结论中,不一定正确的是()A.AE=FCB.AD=BCC.BE=AFD.∠E=∠CFD10. (2013·山东聊城中考)下列命题中的真命题是()A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形 C.顺次连接矩形四边中点得到的四边形是菱形 D.正五边形既是轴对称图形又是中心对称图形二、填空题(每小题3分,共24分)11.已知菱形的周长为40 cm,一条对角线长为16 cm,则这个菱形的面积是 .12.如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB = 4,BC = 5,OE = 1.5,那么四边形EFCD的周长是 .13.已知:如图,在平行四边形ABCD中,AB= 12,AB边上的高DF为3,BC边上的高DE为6,则平行四边形ABCD的周长为 .14.如图▣ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为 .15.已知菱形一个内角为120°,且平分这个内角的一条对角线长为8 cm,则这个菱形的周长为 .16.如图,把两个大小完全相同的矩形拼成“L”型图案,则∠________,∠________.17.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是 .18.如图所示,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是 .二、解答题(共66分)19.(8分)如图,在四边形中,,⊥,⊥,垂足为,,求证:四边形是平行四边形.20.(8分)如图,在△中,∠,⊥于,平分∠,交于,交于点,⊥于,求证:四边形是菱形.30,21.(8分)如图,在正方形,过作∥,∠交于点,求证:22.(8分)辨析纠错已知:如图,在△中,是∠的平分线,∥,∥.求证:四边形是菱形.对于这道题,小明是这样证明的:证明:∵平分∠,∴∠1=∠2(角平分线的定义).∵∥,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴(等角对等边).同理可证,∴四边形是菱形(菱形定义).老师说小明的证明过程有错误,你能看出来吗?(1)请你帮小明指出他的错误是什么?(先在解答过程中标出来,再说明他错误的原因)(2)请你帮小明做出正确的解答.23.(8分)如图,在中,,点E为中点,求∠的度数.24.(8分)如图,在△中,∠0°,BC 的垂直平分线DE交BC于点D,交AB于点E,F在DE上,且.⑴求证:四边形是平行四边形;⑵当∠B满足什么条件时,四边形ACEF是菱形?并说明理由.25.(8分)(2013·山东聊城中考)如图,在四边形ABCD中,∠A= ∠BCD=90°,BC=CD,CE⊥AD,垂足为E.求证:AE=CE.26. (10分)(2013·山东临沂中考)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.第三章证明(三)检测题参考答案1.A 解析:因为 cm,所以cm. 因为△的周长为13 cm,所以 cm.又因为,所以 cm.2.B 解析:如图,在梯形ABCD中,高则所以∠,故选B.3. B解析:∵AE是∠BAD的平分线,∴∠BAE=∠DAE.在ABCD中,∵AB∥CD,∴∠BAE=∠AFD=∠DAE,∴AD=DF.∵点F是CD的中点,AB=CD=4,∴DF=AD=2.在Rt△ADG中,∵DG=1,AD=2,∴AG=,∴AF=2.∵AD∥BE,∴∠ADF=∠FCE.又∵DF=CF,∠AFD=∠EFC,∴△ADF≌△ECF,∴EF=AF=2,∴AE=4.4.A 解析:如图,作EG∥AB,EH∥DC,因为∠∠,所以∠.因为四边形和四边形都是平行四边形,所以.又因为cm, cm,所以cm,,根据直角三角形斜边上的中线等于斜边的一半,得 cm.5.A 解析:如图,在直角梯形中,是的中点,设是的中点,连接,则E是梯形的中位线,所以∥,即⊥.又,所以是的垂直平分线,所以.6. C 解析:四边相等的四边形不一定是正方形,也可能是菱形,故选项A错误;对角线相等的四边形不一定是菱形,也可能是矩形,等腰梯形,故选项B错误;四个角相等的四边形是矩形,故选项C正确;对角线互相垂直的四边形不一定是平行四边形,故选项D错误.7.C 解析:如图,在菱形中⊥连接,因为,所以是的垂直平分线,所以,所以三角形是等边三角形,所以∠,从而∠.8. C 解析:OE=AB=AD=×6=3(cm).9. C 解析:由等腰梯形的条件可知A正确;由四边形ABCD是矩形,可知B正确;又∠E=∠FCB,由AD//BC得∠CFD=∠FCB,故∠E=∠CFD,D正确;只有C不一定正确.10. C 解析:判断一个命题是否为真命题,需要分析题设是否能推出结论,进而利用排除法得出答案.不是真命题的可以利用反例排除:三个角相等的四边形不一定是矩形,例如三个角分别为80°,第四个角为120°的四边形不是矩形,故选项A错误;如图,对角线互相垂直且相等的四边形不一定是正方形,故选项B错误;正五边形只是轴对称图形,不是中心对称图形,故选项D错误;对于选项C,由三角形的中位线性质和矩形的性质以及菱形的判定,可得本选项正确.11.解析:如图,菱形ABCD的周长为40 cm,cm,则cm,cm,又OA⊥OB,所以cm,AC = 12 cm,所以菱形的面积为=96 cm2.12.12 解析:由平行四边形可得,∠∠OCB,又∠∠,所以△≌△,所以,,所以四边形的周长为.13.36 解析:由平行四边形的面积公式,得,即,解得,所以平行四边形的周长为.14. 15 解析:本题综合考查了平行四边形的性质以及三角形的中位线定理.∵点E,O分别是CD,BD的中点,∴OE是△DBC的一条中位线,∴OE=BC,∴△DOE的周长=OE+DE+OD=BC+CD+BD= (BC+CD)+6=ABCD的周长+6=9+6=15.15.32 cm 解析:由菱形有一个内角为120°,可知菱形有一个内角是60°,由题意可知菱16.90°,45° 解析:通过证明△FGA≌△ABC可得.17.6解析:较短的对角线将菱形分成两个全等的等边三角形,所以较短的对角线长为6.18. 15°或165°解析:如图(1)所示,∵AB=AD,BE=DF,AE=AF,∴△ABE≌△ADF,∴∠BAE=∠DAF=(∠BAD-∠EAF)=(90°-60°)=15°.如图(2)所示,易证△ABE≌△ADF,∴∠BAE=∠DAF.∴∠BAF=∠DAE= (360°-∠BAD -∠EAF)= (360°-90°-60°)=105°,∴∠BAE=∠BAF+∠EAF=105°+60°=165°.19. 证明:因为DE⊥AC,BF⊥AC,所以∠∠.因为,所以.又因为,所以△ADE≌△CBF,所以∠∠,所以AD∥BC.又因为,所以四边形ABCD是平行四边形.20. 证明:∵平分∠,∴.∵,∴∥. ∴∠∠.又∠∠,∴∠∠,得,∴.又∥,得四边形是平行四边形.又,∴四边形是菱形.21. 证明:连接交于点,作于,∵∠,∴又∥,∴ 四边形D 是矩形, ∴. 又,∴,∴ ∠.又∠∠∠,∴ ∠∠E ,∴22. 解:⑴小明错用了菱形的定义,标记略. ⑵改正:∵ ∥,∥,∴ 四边形是平行四边形.∵平分∠,∴ ∠1=∠2.又∵ ∠3=∠2,∴ ∠1=∠3. ∴,∴ 平行四边形是菱形.23. 解法1:∵ 为中点,∴21BC . ∵ ,∴∴ ∠∠,∠∠.∵ 四边形是平行四边形,∴. 又,∴ ,∴∴.解法2:如图,设F 为AD 的中点,连接EF . 因为,所以又因为∥,所以四边形是菱形.所以∠∠ 同理,∠∠所以∠∠24.(1)证明:由题意知,∴∥,∴ .又∵ ,∴ △≌△,∴, ∴ 四边形ACEF 是平行四边形 . (2)解:当∠时,四边形是菱形 .理由如下:∵AB 21. ∵ 垂直平分,∴ 又∵,∴ 四边形是菱形. 25.分析:因为AE 与CE 不在同一个三角形内,所以考虑添加辅助线,构造全等三角形,通过证明两个三角形全等进而得到AE =CE .证明:过点B 作BF ⊥CE 于点F . 90.CED ∴∠=︒90,A BCD ∠=∠=︒,90.CE AD CED ⊥∴∠=︒∴ ∠1+∠2=90°,∠D +∠2=90°, ∴ ∠1=∠D .又BC =CD ,∴ Rt △BCF ≌Rt △CDE (AAS). ∴ BF =CE .∵ ∠A =∠AEF =∠EFB =90°,∴ 四边形ABFE 是矩形.∴ BF =AE ,∴ AE =CE . 26.分析:(1)先证出△AFE ≌△DBE ,可得AF =DB ,又DB =DC ,从而AF =DC ;(2)先证明四边形ADCF 是平行四边形,再由“直角三角形斜边上的中线等于斜边的一半”可得AD =CD ,从而得出四边形ADCF 是菱形.(1)证明:∵ E 是AD 的中点,∴ AE =ED . ∵ AF ∥BC ,∴ ∠AFE =∠DBE ,∠FAE =∠BDE . ∴ △AFE ≌△DBE , ∴ AF =DB .∵ AD 是BC 边上的中线,∴ DB =DC ,∴ AF =DC . (2)解:四边形ADCF 是菱形. 理由:由(1)知,AF =DC ,∵ AF ∥CD ,∴ 四边形ADCF 是平行四边形. 又∵ AB ⊥AC ,∴ △ABC 是直角三角形. ∵ AD 是BC 边上的中线,∴ AD =BC =DC .∴ 平行四边形ADCF 是菱形.点拨:(1)三角形全等是证明线段相等最常用的方法;(2)判定一个四边形是菱形最常用的方法是先证它是平行四边形,再证有一组邻边相等或对角线互相垂直,或直接证四边形的四条边相等.。

相关文档
最新文档