Richard组合数学第5版-第5章课后习题答案(英文版)

合集下载

3.2组合数及其性质教案-2023-2024学年高二上学期数学北师大版(2019)选择性必修第一册

3.2组合数及其性质教案-2023-2024学年高二上学期数学北师大版(2019)选择性必修第一册
5. 教学软件和工具:准备一些教学软件和工具,如PowerPoint、Mathematica、Geogebra等,以便于展示和讲解组合数的概念和性质,以及进行实验操作。
6. 教学指导书:为学生提供一本教学指导书,其中包括本节课的学习目标、教学内容、学习方法、练习题和答案等,以便学生能够更好地学习本节课的内容。
作用和目的:通过拓展练习和数学活动,帮助学生深入理解和应用组合数及其性质,提高学生的数学应用能力。
拓展与延伸
1. 提供与本节课内容相关的拓展阅读材料:
《组合数学导论》(作者:Richard A. Brualdi,ISBN:978-0-521-57498-1)
《概率论与数理统计》(作者:李尚志,ISBN:978-7-04-038045-0)
3.2组合数及其性质教案-2023-2024学年高二上学期数学北师大版(2019)选择性必修第一册
主备人
备课成员
教学内容分析
本节课的主要教学内容为组合数及其性质,属于北师大版(2019)选择性必修第一册,第3.2节。
组合数是组合数学中的基本概念,它是指从n个不同元素中,任取m(m≤n)个元素的所有不同组合的数目,记为C(n,m)。组合数具有以下性质:
板书设计
1. 组合数的定义与计算公式
- 定义:组合数是从n个不同元素中,任取m(m≤n)个元素的所有不同组合的数目,记为C(n,m)。
- 计算公式:C(n,m) = n! / [m!(n-m)!]。
2. 组合数的性质
- 非负性:C(n,m) ≥ 0,且当n=m时,C(n,m)=1。
- 对称性:C(n,m) = C(n,n-m)。
2. 组合数的性质:组合数的非负性、对称性和组合性。
3. C(5,2) = 5! / [2!(5-2)!] = 10。

Richard组合数学第5版-第5章课后习题答案(英文版)

Richard组合数学第5版-第5章课后习题答案(英文版)

Richard组合数学第5版-第5章课后习题答案(英⽂版)Math475Text:Brualdi,Introductory Combinatorics5th Ed. Prof:Paul TerwilligerSelected solutions for Chapter51.For an integer k and a real number n,we shown k=n?1k?1+n?1k.First assume k≤?1.Then each side equals0.Next assume k=0.Then each side equals 1.Next assume k≥1.RecallP(n,k)=n(n?1)(n?2)···(n?k+1).We haven k=P(n,k)k!=nP(n?1,k?1)k!.n?1 k?1=P(n?1,k?1)(k?1)!=kP(n?1,k?1)k!.n?1k(n?k)P(n?1,k?1)k!.The result follows.2.Pascal’s triangle begins111121133114641151010511615201561172135352171182856705628811936841261268436911104512021025221012045101···13.Let Z denote the set of integers.For nonnegative n∈Z de?ne F(n)=k∈Zn?kk.The sum is well de?ned since?nitely many summands are nonzero.We have F(0)=1and F(1)=1.We show F(n)=F(n?1)+F(n?2)for n≥2.Let n be /doc/6215673729.htmling Pascal’s formula and a change of variables k=h+1,F(n)=k∈Zn?kk=k∈Zn?k?1k?1=k∈Zn?k?1k+h∈Zn?h?2h=F(n?1)+F(n?2).Thus F(n)is the n th Fibonacci number.4.We have(x+y)5=x5+5x4y+10x3y2+10x2y3+5xy4+y5and(x+y)6=x6+6x5y+15x4y2+20x3y3+15x2y4+6xy5+y6.5.We have(2x?y)7=7k=07k27?k(?1)k x7?k y k.6.The coe?cient of x5y13is35(?2)13 185.The coe?cient of x8y9is0since8+9=18./doc/6215673729.htmling the binomial theorem,3n=(1+2)n=nk=0nSimilarly,for any real number r,(1+r)n=nk=0nkr k./doc/6215673729.htmling the binomial theorem,2n=(3?1)n=nk=0(?1)knk3n?k.29.We haven k =0(?1)k nk 10k =(?1)n n k =0(?1)n ?k n k 10k =(?1)n (10?1)n =(?1)n 9n .The sum is 9n for n even and ?9n for n odd.10.Given integers 1≤k ≤n we showk n k =n n ?1k ?1.Let S denote the set of ordered pairs (x,y )such that x is a k -subset of {1,2,...,n }and yis an element of x .We compute |S |in two ways.(i)To obtain an element (x,y )of S there are n k choices for x ,and for each x there are k choices for y .Therefore |S |=k n k .(ii)Toobtain an element (x,y )of S there are n choices for y ,and for each y there are n ?1k ?1 choices for x .Therefore |S |=n n ?1k ?1.The result follows.11.Given integers n ≥3and 1≤k ≤n .We shown k ? n ?3k = n ?1k ?1 + n ?2k ?1 + n ?3k ?1.Let S denote the set of k -subsets of {1,2,...,n }.Let S 1consist of the elements in S thatcontain 1.Let S 2consist of the elements in S that contain 2but not 1.Let S 3consist of the elements in S that contain 3but not 1or 2.Let S 4consist of the elements in S that do|S |= n k ,|S 1|= n ?1k ?1 ,|S 2|= n ?2k ?1 ,|S 3|= n ?3k ?1 ,|S 4|= n ?3k .The result follows.12.We evaluate the sumnk =0(?1)k nk 2.First assume that n =2m +1is odd.Then for 0≤k ≤m the k -summand and the (n ?k )-summand are opposite.Therefore the sum equals 0.Next assume that n =2m is even.Toevaluate the sum in this case we compute in two ways the the coe?cient of x n in (1?x 2)n .(i)By the binomial theorem this coe?cient is (?1)m 2m m .(ii)Observe (1?x 2)=(1+x )(1?x ).We have(1+x )n =n k =0n k x k,(1?x )n =n k =0nk (?1)k x k .3By these comments the coe?cient of x n in(1?x2)n isn k=0nn?k(?1)knk=nk=0(?1)knk2.2=(?1)m2mm.13.We show that the given sum is equal ton+3k .The above binomial coe?cient is in row n+3of Pascal’s /doc/6215673729.htmling Pascal’s formula, write the above binomial coe?cient as a sum of two binomial coe?ents in row n+2of Pascal’s triangle.Write each of these as a sum of two binomial coe?ents in row n+1of Pascal’s triangle.Write each of these as a sum of two binomial coe?ents in row n of Pascal’s triangle.The resulting sum isn k+3nk?1+3nk?2+nk?3.14.Given a real number r and integer k such that r=k.We showr k=rr?kr?1k.First assume that k≤?1.Then each side is0.Next assume that k=0.Then each side is 1.Next assume that k≥1.ObserverP(r?1,k?1)k!,andr?1k=P(r?1,k)k!=(r?k)P(r?1,k?1)k!.The result follows.15.For a variable x consider(1?x)n=nk=0nk(?1)k x k.4Take the derivative with respect to x and obtain n(1x)n1=nk=0nk(?1)k kx k?1.Now set x=1to get(?1)k k.The result follows.16.For a variable x consider(1+x)n=nk=0nkx k.Integrate with respect to x and obtain(1+x)n+1 n+1=nk=0nkx k+1k+1+Cfor a constant C.Set x=0to?nd C=1/(n+1).Thus (1+x)n+1?1n+1=nk=0nkx k+1k+1.Now set x=1to get2n+1?1 n+1=k+1.17.Routine.18.For a variable x consider(x?1)n=nk=0nk(?1)n?k x k.Integrate with respect to x and obtain(x?1)n+1 n+1=nk=0nk(?1)n?kx k+1k+1+Cfor a constant C.Set x=0to?nd C=(?1)n+1/(n+1).Thus (x?1)n+1?(?1)n+1n+1=nk=0nk(?1)n?kx k+1k+1Now set x =1to get(?1)n n +1=n k =0n k(?1)n ?k 1k +1.Therefore1n +1=n k =0 n k (?1)k 1k +1 .19.One readily checks2 m 2 + m 1=m (m ?1)+m =m 2.Therefore n k =1k 2=nk =0k 2=2nk =0 k 2 +n k =0k1=2 n +13 +n +12 =(n +1)n (2n +1)6.20.One readily checksm 3=6 m 3 +6 m 2 + m1.Thereforen k =1k3=n=6nk =0 k3+6n k =0 k2 +n k =0k1 =6 n +14 +6 n +13 +n +12 =(n +1)2n 24= n +12 2.621.Given a real number r and an integer k .We showrk=(?1)kr +k ?1k .First assume that k <0.Then each side is zero.Next assume that k ≥0.Observe r k =(r )(r 1)···(r k +1)k !=(?1)kr (r +1)···(r +k ?1)k !=(?1)kr +k ?1k.22.Given a real number r and integers k,m .We showr m m k = r k r ?km ?k.First assume that mObserver m m k =r (r ?1)···(r ?m +1)m !m !k !(m ?k )!=r (r ?1)···(r ?k +1)k !(r ?k )(r ?k ?1)···(r ?m +1)(m ?k )!= r k r ?k m ?k .23.(a) 2410.(b) 94 156.(c) 949363.(d)94156949363.24.The number of walks of length 45is equal to the number of words of length 45involving10x ’s,15y ’s,and 20z ’s.This number is45!10!×15!×20!.725.Given integers m 1,m 2,n ≥0.Shown k =0m 1k m 2n ?k = m 1+m 2n .Let A denote a set with cardinality m 1+m 2.Partition A into subsets A 1,A 2with cardinalitiesm 1and m 2respectively.Let S denote the set of n -subsets of A .We compute |S |in two ways.(i)By construction|S |= m 1+m 2n .(ii)For 0≤k ≤n let the set S k consist of the elements in S whose intersection with A 1has cardinality k .The sets {S k }n k =0partition S ,so |S |= nk =0|S k |.For 0≤k ≤n we now compute |S k |.To do this we construct an element x ∈S k via the following 2-stage procedure: stage to do #choices 1pick x ∩A 1 m 1k2The number |S k |is the product of the entries in the right-most column above,which comes to m 1k m 2n ?k .By these comments |S |=n k =0m 1k m 2n ?k .The result follows.26.For an integer n ≥1shown k =1 n k n k ?1 =12 2n +2n +1 ? 2n n .Using Problem 25,n k =1 n k nk ?1 =n k =0n k n k ?1 =n k =0n k nn +1?k =2n n +1 =12 2n n ?1 +12 2n n +1.8It remains to show12 2nn ?1 +12 2n n +1 =12 2n +2n +1 ? 2n n.This holds since2n n ?1 +2 2n n + 2n n +1 = 2n +1n +2n +1n +1= 2n +2n +1.27.Given an integer n ≥1.We shown (n +1)2n ?2=nk =1Let S denote the set of 3-tuples (s,x,y )such that s is a nonempty subset of {1,2,...,n }and x,y are elements (not necessarily distinct)in s .We compute |S |in two ways.(i)Call an element (s,x,y )of S degenerate whenever x =y .Partition S into subsets S +,S ?with S +(resp.S ?)consisting of the degenerate (resp.nondegenerate)elements of S .So |S |=|S +|+|S ?|.We compute |S +|.To obtain an element (s,x,x )of S +there are n choices for x ,and given x there are 2n ?1choices for s .Therefore |S +|=n 2n ?1.We compute |S ?|.To obtain an element (s,x,y )of S ?there are n choices for x,and given x there are n ?1choices for y ,and given x,y there are 2n ?2choices for s .Therefore |S ?|=n (n ?1)2n ?2.By these comments|S |=n 2n ?1+n (n ?1)2n ?2=n (n +1)2n ?2.(ii)For 1≤k ≤n let S k denote the set of elements (s,x,y )in S such that |s |=k .Thesets {S k }nk =1give a partition of S ,so |S |= n k =1|S k |.For 1≤k ≤n we compute |S k |.To obtain an element (s,x,y )of S k there are n k choices for s ,and given s there are k 2ways to choose the pair x,y .Therefore |S k |=k 2 nk .By these comments|S |=n k =1k 2 n k .The result follows.28.Given an integer n ≥1.We shown k =1k n k 2=n 2n ?1n ?1 .Let S denote the set of ordered pairs (s,x )such that s is a subset of {±1,±2,...,±n }andx is a positive element of s .We compute |S |in two ways.(i)To obtain an element (s,x )of S There are n choices for x ,and given x there are 2n ?1n ?1 choices for s .Therefore|S |=n 2n ?1n ?1.9(ii)For1≤k≤n let S k denote the set of elements(s,x)in S such that s contains exactlyk positive elements.The sets{S k}nk=1partition S,so|S|=nk=1|S k|.For1≤k≤nwe compute|S k|.To obtain an element(s,x)of S k there are nkways to pick the positiveelements of s and nn?kways to pick the negative elements of s.Given s there are kways to pick x.Therefore|S k|=k nk2.By these comments |S|=nk=1knk2.The result follows.29.The given sum is equal tom2+m2+m3n .To see this,compute the coe?cient of x n in each side of(1+x)m1(1+x)m2(1+x)m3=(1+x)m1+m2+m3.In this computation use the binomial theorem.30,31,32.We refer to the proof of Theorem5.3.3in the text.Let A denote an antichain such that|A|=nn/2.For0≤k≤n letαk denote the number of elements in A that have size k.Sonk=0αk=|A|=nn/2.As shown in the proof of Theorem5.3.3,≤1,with equality if and only if each maximal chain contains an element of A.By the above commentsnk=0αknn/2nknk≤0,with equality if and only if each maximal chain contains an element of A.The above sum is nonpositive but each summand is nonnegative.Therefore each summand is zero and the sum is zero.Consequently(a)each maximal chain contains an element of A;(b)for0≤k≤n eitherαk is zero or its coe?cient is zero.We now consider two cases.10Case:n is even.We show that for0≤k≤n,αk=0if k=n/2.Observe that for0≤k≤n, if k=n/2then the coe?cient ofαk isnonzero,soαk=0.Case:n is odd.We show that for0≤k≤n,eitherαk=0if k=(n?1)/2orαk=0 if k=(n+1)/2.Observe that for0≤k≤n,if k=(n±1)/2then the coe?cient ofαk is nonzero,soαk=0.We now show thatαk=0for k=(n?1)/2or k=(n+1)/2. To do this,we assume thatαk=0for both k=(n±1)/2and get a contradiction.By assumption A contains an element x of size(n+1)/2and an element y of size(n?1)/2. De? ne s=|x∩y|.Choose x,y such that s is maximal.By construction0≤s≤(n?1)/2. Suppose s=(n?1)/2.Then y=x∩y?x,contradicting the fact that x,y are incomparable. So s≤(n?3)/2.Let y denote a subset of x that contains x∩y and has size(n?1)/2. Let x denote a subset of y ∪y that contains y and has size(n+1)/2.By construction |x ∩y|=s+1.Observe y is not in A since x,y are comparable.Also x is not in A by the maximality of s.By construction x covers y so they are together contained in a maximal chain.This chain does not contain an element of A,for a contradiction.33.De?ne a poset(X,≤)as follows.The set X consists of the subsets of{1,2,...,n}. For x,y∈X de?ne x≤y whenever x?y.Forn=3,4,5we display a symmetric chain decomposition of this poset.We use the inductive procedure from the text.For n=3,,1,12,1232,233,13.For n=4,,1,12,123,12344,14,1242,23,23424,For n=5,,1,12,123,1234,123455,15,125,12354,14,124,124545,1452,23,234,234525,23524,2453,13,134,134535,13534,345.1134.For 0≤k ≤ n/2 there are exactlyn kn k ?1symmetric chains of length n ?2k +1.35.Let S denote the set of 10jokes.Each night the talk show host picks a subset of S for his repertoire.It is required that these subsets form an antichain.By Corollary 5.3.2each antichain has size at most 105 ,which is equal to 252.Therefore the talk show host can continue for 252nights./doc/6215673729.htmlpute the coe?cient of x n in either side of(1+x )m 1(1+x )m 2=(1+x )m 1+m 2,In this computation use the binomial theorem.37.In the multinomial theorem (Theorem 5.4.1)set x i =1for 1≤i ≤t .38.(x 1+x 2+x 3)4is equal tox 41+x 42+x 43+4(x 31x 2+x 31x 3+x 1x 32+x 32x 3+x 1x 33+x 2x 33)+6(x 21x 22+x 21x 23+x 22x 23)+12(x 21x 2x 3+x 1x 22x 3+x 1x 2x 23).39.The coe?cient is10!3!×1!×4!×0!×2!which comes to 12600.40.The coe?cient is9!3!×3!×1!×2!41.One routinely obtains the multinomial theorem (Theorem 5.4.1)with t =3.42.Given an integer t ≥2and positive integers n 1,n 2,...,n t .De?ne n = ti =1n i .We shownn 1n 2···n t=t k =1n ?1n 1···n k ?1n k ?1n k +1···n t.Consider the multiset{n 1·x 1,n 2·x 2,...,n t ·x t }.Let P denote the set of permutations of this multiset.We compute |P |in two ways.(i)We saw earlier that |P |=n !n 1!×n 2!×···×n t != n n 1n 2···n t.12(ii)For1≤k≤t let P k denote the set of elements in P that have?rst coordinate x k.Thesets{P k}tk=1partition P,so|P|=tk=1|P k|.For1≤k≤t we compute|P k|.Observe that|P k|is the number of permutations of the multiset{n1·x1,...,n k?1·x k?1,(n k?1)·x k,n k+1·x k+1,...,n t·x t}. Therefore|P k|=n?1n1···n k?1n k?1n k+1···n t.By these comments|P|=tn1···n k?1n k?1n k+1···n t.The result follows.43.Given an integer n≥1.Show by induction on n that1 (1?z)n =∞k=0n+k?1kz k,|z|<1.The base case n=1is assumed to hold.We show that the above identity holds with n replaced by n+1,provided that it holds for n.Thus we show1(1?z)n+1=∞=0n+z ,|z|<1.Observe1(1?z)n+1=1(1?z)n11?z=∞k=0n+k?1kz k∞h=0z h=0c zwherec =n?1+n1+n+12+···+n+ ?1=n+.The result follows.1344.(Problem statement contains typo)The given sum is equal to (?3)n .Observe (?3)n =(?1?1?1)n=n 1+n 2+n 3=nnn 1n 2n 3(?1)n 1+n 2+n 3=n 1+n 2+n 3=nnn 1+n 2+n 3=nnn 1n 2n 3(?1)n 2.45.(Problem statement contains typo)The given sum is equal to (?4)n .Observe (?4)n =(?1?1?1?1)n=n 1+n 2+n 3+n 4=nnn 1n 2n 3n 4(?1)n 1+n 2+n 3+n 4=n 1+n 2+n 3+n 4=nnn 1n 2n 3n 4(?1)n 1?n 2+n 3?n 4.Also0=(1?1+1?1)n= n 1+n 2+n 3+n 4=nnn 1n 2n 3n 4(?1)n 2+n 4.46.Observe√30=5=5∞ k =01/2k z k.For n =0,1,2,...the n th approximation to √30isa n =5n k =0 1/2k 5?k.We have14n a n051 5.52 5.4753 5.47754 5.47718755 5.477231256 5.4772246887 5.4772257198 5.4772255519 5.477225579 47.Observe101/3=21081/3=2(1+z)1/3z=1/4,=2∞k=01/3kz k.For n=0,1,2,...the n th approximation to101/3isnk=01/3k4?k.We haven a n021 2.1666666672 2.1527777783 2.1547067904 2.1543852885 2.1544442306 2.1544327697 2.1544350898 2.1544346059 2.15443470848.We show that a poset with mn+1elements has a chain of size m+1or an antichain of size n+1.Our strategy is to assume the result is false,and get a contradiction.By assumption each chain has size at most m and each antichain has size at most n.Let r denote the size of the longest chain.So r≤m.By Theorem5.6.1the elements of the posetcan be partitioned into r antichains{A i}ri=1.We have|A i|≤n for1≤i≤r.Thereforemn+1=ri=1|A i|≤rn≤mn, 15for a contradiction.Therefore,the poset has a chain of size m+1or an antichain of size n+1.49.We are given a sequence of mn+1real numbers,denoted{a i}mni=0.Let X denote the setof ordered pairs{(i,a i)|0≤i≤mn}.Observe|X|=mn+1.De?ne a partial order≤on X as follows:for distinct x=(i,a i)and y=(j,a j)in X,declare xof{a i}mni=0,and the antichains correspond to the(strictly)decreasing subsequences of{a i}mni=0sequence{a i}mni=0has a(weakly)increasing subsequence of size m+1or a(strictly)decreasingsubsequence of size n+1.50.(i)Here is a chain of size four:1,2,4,8.Here is a partition of X into four antichains:8,124,6,9,102,3,5,7,111Therefore four is both the largest size of a chain,and the smallest number of antichains that partition X. (ii)Here is an antichain of size six:7,8,9,10,11,12.Here is a partition of X into six chains:1,2,4,83,6,1295,10711Therefore six is both the largest size of an antichain,and the smallest number of chains that partition X.51.There exists a chain x116。

高中数学人教版必修5课后习题答案[电子档]之欧阳德创编

高中数学人教版必修5课后习题答案[电子档]之欧阳德创编

欧阳德创编 2021.03.07高中数学必修5课后习题答案欧阳德创编 2021.03.07第二章数列2.1数列的概念与简单表示法练习(P31)2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N n a n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈习题2.1 A 组(P33)1、(1)2,3,5,7,11,13,17,19;(2);(3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49;12(1)n n a n +=-;(2)12; n a =4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+.习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72)n n a =⨯+﹪.3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d .5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立;(2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立.习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s.习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯再加上原有的沙化面积5910⨯,答案为59.2610⨯; (2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略.2.3等差数列的前n 项和练习(P45)1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =;将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =. (2)将1,37,6293n d n S ===代入1(1)n a a n d=+-,1()2n n n a a S +=, 得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-. (2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++126(6)(6)(6)a d a d a d =++++++ 126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-. 3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km. 4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1n a n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和.2.4等比数列练习(P52)1、 2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++. 令,1,2,k i b a i +==,则数列12,,k k a a ++可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++是等比数列. (2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a a q k a a a +-=====≥.所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列.(3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a ,则1112231111121110(1)k k a a a q k a a a +-=====≥所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅=所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项.同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>.5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯=还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==.2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪.那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=11(1)22)n n q --===.那么数列{}n a12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为505050131000.052 5.6310 mm 5.6310 m a a q ==⨯≈⨯=⨯这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列. 由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈ 6、由已知条件知,,2a bA G +==,且02a b A G +-===所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10.习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m nm n n a a q q a a q ---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730 则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===.解得 4221n ≈,所以动物约在距今4221年前死亡.3、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个 问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a s a q= 根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅.2.5等比数列的前n 项和练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a qS q----===----. 2、设这个等比数列的公比为q 所以101256710()()S a a a a a a =+++++++555S q S =+55(1)q S =+50=同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元)习题2.5 A 组(P61)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm ) 4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=- 当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=-- (2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n n n n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++……①则 212(1)n n n xS x x n x nx -=+++-+……②①-②得,21(1)1n n n x S x x x nx --=++++-……③当1x =时,(1)1232n n n S n +=++++=;当1x ≠时,由③得,21(1)1n nn x nx S x x-=---5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=-所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n =6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+即,8252a a a =+,故285,,a a a 成等差数列习题2.5 B 组(P62)1、证明:11111()(1())1n n n n n n n n n b b b a b a a a b b a a b aa ab a+++---+++=+++==--2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++=141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =.所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t ) (2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m )4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪ 故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略.(2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪ 解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪.根据题意,76(12)(12)(12)40x x x ++++++=﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元)故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+; (3)7(101)9n n a =-; (4)1(1)n n a =+-或1cos n a n π=+.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d-=+得:1313121001310208020002S ⨯=⨯+⨯=>.所以第二种领奖方式获奖者受益更多. 8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n n S a a a a nd a nd a nd ++=+++=++++++2121()22n a a a n nd S n d =++++⨯=+容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=--223(1)(1)4(1)267a f x x x x x =-=---+=-+因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯.所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪.4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-. 因此,当工作时间小于10天时,选用第一种付费方式.10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -.所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a = 6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=-- 所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯.由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪ 2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ (5)年后达到资金54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪解得 459x ≈(万元)第三章不等式3.1不等关系与不等式练习(P74)1、(1)0a b +≥;(2)4h ≤;(3)(10)(10)3504L W L W++=⎧⎨>⎩.2、这给两位数是57.3、(1)>;(2)<;(3)>;(4)<;习题3.1 A 组(P75)1、略.2、(1)24+;(2>3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++(2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+ (4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+>所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥所以28x ≥,且30x ≤所以2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩ 所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少.3.2一元二次不等式及其解法练习(P80)1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤;(2)R ;(3){}2x x ≠;(4)12x x ⎧⎫≠⎨⎬⎩⎭;(5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或;(6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或;(7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x 的集合是1⎧⎪+⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x 的集合为11x x x ⎧⎪<>⎨⎪⎪⎩⎭或;使2362y x x =-+的值小于0的x 的集合是11x x ⎧⎪<<⎨⎪⎪⎩⎭. (2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或.(3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R.(4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅; 使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠.习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或;(2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或;(4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒.依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)x ⎧⎪<<⎨⎪⎪⎩⎭;(2){}37x x <<;(3)∅;(4)113xx ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为33x x x ⎧⎪<<⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =,所以22450b +<,即150150b -<<而150151)13.7202=≈(h ),3001520=. 所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题练习(P86)1、B .2、D .3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+,当直线经过点A 时,z 取得最大值. 解方程组24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元.习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤;(2)22x y ->;(3)2y -≤;(4)3x ≥2、3解:设每周播放连续剧甲x 次,播放连续剧乙y 次,收视率为z . 目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+=(万)答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率.4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z .则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组2312 236x yx yxy+⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y+--+>表示的区域.3、设甲粮库要向A镇运送大米x吨、向B镇运送大米y吨,总运费为z. 则乙粮库要向A镇运送大米(70)x-吨、向B镇运送大米(110)y-吨,目标函数(总运费)为122025101512(70)208(110)609030200 z x y x y x y=⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++.所以,题目中包含的限制条件为100(70)(110)80 070x yx yxy+⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y==时,总运费最省min 37100z=(元)所以当0,100x y==时,总运费最不合理max 39200z=(元)使国家造成不该有的损失2100元.答:甲粮库要向A镇运送大米70吨,向B镇运送大米30吨,乙粮库要向A镇运送大米0吨,向B镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A镇运送大米0吨,向B镇运送大米100吨,乙粮库要向A镇运送大米70吨,向B镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42 a b+≤练习(P100)1、因为0x>,所以12xx+=≥当且仅当1xx=时,即1x=时取等号,所以当1x=时,即1xx+的值最小,最小值是2.2、设两条直角边的长分别为,a b,0,a>且0b>,因为直角三角形的面积等于50.即1502ab =,所以20a b +=≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20.3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab = 所以用纸面积是222324()32323264S ab bc ac a b =++=+++=+=≥当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少.习题3.4 A 组(P100)1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m .3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=.所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x= 123600312006800580048005800580034600z y x x x⨯=⨯+⨯+=++=≥当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元.习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-.设PC a =,则DP x a =- 所以222(12)()x x a a-+-=,可得21272x x a x-+=,1272x DP x a x-=-=. 所以ADP ∆的面积211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++由基本不等式与不等式的性质6[18]6(18108S ⨯-=⨯-=-≤当72x x=,即x =m 时,ADP ∆的面积最大,最大面积是(108-2m .2、过点C 作CD AB ⊥,交AB 延长线于点D . 设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+=当且仅当()()a cbc x x --=,即x =时,tan β取得最大,从而视角也最大.第三章复习参考题A 组(P103)1<2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x都成立,所以,30k -<<. 4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以070494860360xyx yx y⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y=+把160252z x y=+变形为40163252y x z=-+,得到斜率为4063-,在y轴上的截距为1252z,随z变化的一族平行直线. 在可行域的整点中,点(5,2)M使得z取得最小值. 所以每天派出A型车5辆,B型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x,扇形的弧长为y,因为12S xy =扇形的周长为2Z x y=+=≥当2x y=,即x=,y=时,Z可以取得最小值,最小值为.7、设扇形的半径是x,扇形的弧长为y,因为2P x y=+扇形的面积为221112(2)()244216x y PZ xy x y+===≤当2x y=,即4Px=,2Py=时,Z可以取得最大值,半径为4P时扇形面积最大值为216P.8、设汽车的运输成本为y,2()s say bv a sbvv v=+⨯=+当sasbvv=时,即v=c时,y有最小值.2say sbvv=+=≥2当c时,由函数say sbvv=+的单调性可知,v c=时y有最小值,最小值为sasbcc+.第三章复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或(2)231334x x x x ⎧⎫-<>⎨⎬⎩⎭或或≤≤3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥5、因为22x y +是区域内的点到原点的距离的平方 所以,当240330x y x y -+=⎧⎨--=⎩即2,3A A x y ==时,22x y +的最大值为13.当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45.6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1mp kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ 比较两次购物的平均价格:欧阳德创编 2021.03.07欧阳德创编 2021.03.07 221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济.一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。

离散数学第5版答案

离散数学第5版答案

⇔ p ∧ (q ∨ ¬q)
(分配律)
⇔ p ∧1
(排中律)
⇔ p.
(同一律)
(2)从右边开始演算 p → (q ∧ r)
⇔ ¬p ∨ (q ∧ r)
(蕴含等值式)
⇔ (¬p ∨ q) ∧ (¬p ∨ r) (分配律)
⇔ ( p → q) ∧ ( p → r). (3)从左边开始演算 ¬( p ↔ q)
001,…,111 题中指派 p, q 为 0, r 为 1,于是就是考查 001 是该公式 p ∧ (q ∧ r)
的成真赋值,还是成假赋值,易知 001 是它的成假赋值。
2° 在公式(2),(3),(4)中均含 4 个命题就项,因而共有 24 = 16 个赋值:
0000,0001,…,1111。现在考查 0011 是它的成假赋值。
⇔0↔q
(矛盾律)
⇔ ( p → q) ∧ (q → 0)
(等价等值式)
⇔ (¬0 ∨ q) ∧ (¬q ∨ 0)
(蕴含等值式)
⇔ (1∨ q) ∧ ¬q
(同一律)
⇔ 1∧ ¬q
(零律)
⇔ ¬q
(同一律)
到最后一步已将公式化得很简单。由此可知,无论 p 取 0 或 1 值,只要 q 取 0 值,原公式取值为 1,即 00 或 10 都为原公式的成真赋值,而 01,11 为成假赋 值,于是公式为非重言式的可满足式。
⇔ ¬¬(( p ∨ q) ∧ ¬( p ∧ q)
⇔ ¬(¬( p ∨ q) ∨ ¬¬( p ∧ q))
⇔ ¬((¬p ∨ ¬q) ∨ ( p ∧ q))
⇔ ¬((¬p ∧ q) ∧ (¬p ∨ q) ∧ (¬q ∨ p) ∧ (¬q ∨ q))
⇔ ¬(1 ∧ p ∨ q) ∧ (¬q ∨ p) ∧1

综合英语第五册unit5课后答案

综合英语第五册unit5课后答案
solace console
Console suggests the attempt to make up for a loss by offering something in its place, as well as the effort of one person to mitigate the serious grief felt by another. Solace might sound more precious than comfort and it suggests a tender intensity of fellow-feeling.
4. They_s_o_la_c_e_d_their wretchedness, however, by duets after supper.
ห้องสมุดไป่ตู้
CA-LGWK-synonyms-3 Explaining | Synonyms | Filling | Sentences | Grammar | Cloze
1. All the four convicts _p_le_a_d_e_d_ guilty but appealed for leniency. 2. In the face of questioning by the police, he _p_le_a_d_e_d_ ignorance of the bottle of white powder in his suitcase.
implore: to ask someone in a begging manner for sth or doing sth.
CA-LGWK-synonyms-5 Explaining | Synonyms | Filling | Sentences | Grammar | Cloze

组合数学【第5版】(英文版)第3章答案

组合数学【第5版】(英文版)第3章答案

Math475Text:Brualdi,Introductory Combinatorics5th Ed. Prof:Paul TerwilligerSelected solutions for Chapter31.For1≤k≤22we show that there exists a succession of consecutive days during which the grandmaster plays exactly k games.For1≤i≤77let b i denote the number of gamesplayed on day i.Consider the numbers{b1+b2+···+b i+k}76i=0∪{b1+b2+···+b j}77j=1.There are154numbers in the list,all among1,2,...,153.Therefore the numbers{b1+b2+···+b i+k}76i=0∪{b1+b2+···+b j}77j=1.are not distinct.Therefore there exist integers i,j(0≤i<j≤77)such that b i+1+···+b j=k.During the days i+1,...,j the grandmaster plays exactly k games.2.Let S denote a set of100integers chosen from1,2,...,200such that i does not divide j for all distinct i,j∈S.We show that i∈S for1≤i≤15.Certainly1∈S since 1divides every integer.By construction the odd parts of the elements in S are mutually distinct and at most199.There are100numbers in the list1,3,5,...,199.Therefore each of 1,3,5,...,199is the odd part of an element of S.We have3×5×13=195∈S.Therefore none of3,5,13,15are in S.We have33×7=189∈S.Therefore neither of7,9is in S.We have11×17=187∈S.Therefore11∈S.We have shown that none of1,3,5,7,9,11,13,15 is in S.We show neither of6,14is in S.Recall33×7=189∈S.Therefore32×7=63∈S. Therefore2×32×7=126∈S.Therefore2×3=6∈S and2×7=14∈S.We show10∈S. Recall3×5×13=195∈S.Therefore5×13=65∈S.Therefore2×5×13=130∈S. Therefore2×5=10∈S.We now show that none of2,4,8,12are in S.Below we list the integers of the form2r3s that are at most200:1,2,4,8,16,32,64,128,3,6,12,24,48,96,192,9,18,36,72,144,27,54,108,81,162.In the above array each element divides everything that lies to the southeast.Also,each row contains exactly one element of S.For1≤i≤5let r i denote the element of row i that is contained in S,and let c i denote the number of the column that contains r i.We must have c i<c i−1for2≤i≤5.Therefore c i≥6−i for1≤i≤5.In particular c1≥5so r1≥16,and c2≥4so r2≥24.We have shown that none of2,4,8,12is in S.By the above comments i∈S for1≤i≤15.3.See the course notes.4,5,6.Given integers n≥1and k≥2suppose that n+1distinct elements are chosen from{1,2,...,kn}.We show that there exist two that differ by less than k.Partition{1,2,...,nk}=∪ni=1S i where S i={ki,ki−1,ki−2,...,ki−k+1}.Among our n+1chosen elements,there exist two in the same S i.These two differ by less than k.17.Partition the set{0,1,...,99}=∪50i=0S i where S0={0},S i={i,100−i}for1≤i≤49,S50={50}.For each of the given52integers,divide by100and consider the remainder. The remainder is contained in S i for a unique i.By the pigeonhole principle,there exist two of the52integers for which these remainders lie in the same S i.For these two integers the sum or difference is divisible by100.8.For positive integers m,n we consider the rational number m/n.For0≤i≤n divide the integer10i m by n,and call the remainder r i.By construction0≤r i≤n−1.By the pigeonhole principle there exist integers i,j(0≤i<j≤n)such that r i=r j.The integer n divides10j m−10i m.For notational convenience define =j−i.Then there exists a positive integer q such that nq=10i(10 −1)m.Divide q by10 −1and call the remainder r. So0≤r≤10 −2.By construction there exists an integer b≥0such that q=(10 −1)b+r. Writingθ=m/n we have10iθ=b+r 10 −1=b+r10+r102+r103+···Since the integer r is in the range0≤r≤10 −2this yields a repeating decimal expansion forθ.9.Consider the set of10people.The number of subsets is210=1024.For each subset consider the sum of the ages of its members.This sum is among0,1,...,600.By the pigeonhole principle the1024sums are not distinct.The result follows.Now suppose we consider at set of9people.Then the number of subsets is29=512<600.Therefore we cannot invoke the pigeonhole principle.10.For1≤i≤49let b i denote the number of hours the child watches TV on day i.Consider the numbers{b1+b2+···+b i+20}48i=0∪{b1+b2+···+b j}49j=1.There are98numbers in the list,all among1,2,...,96.By the pigeonhole principle the numbers{b1+b2+···+b i+20}48i=0∪{b1+b2+···+b j}49j=1.are not distinct.Therefore there existintegers i,j(0≤i<j≤49)such that b i+1+···+b j=20.During the days i+1,...,j the child watches TV for exactly20hours.11.For1≤i≤37let b i denote the number of hours the student studies on day i.Considerthe numbers{b1+b2+···+b i+13}36i=0∪{b1+b2+···+b j}37j=1.There are74numbers in the list,all among1,2,...,72.By the pigeonhole principle the numbers{b1+b2+···+b i+13}36i=0∪{b1+b2+···+b j}37j=1are not distinct.Therefore there exist integers i,j(0≤i<j≤37)such that b i+1+···+b j=13.During the days i+1,...,j the student will have studied exactly13hours.12.Take m=4and n=6.Pick a among0,1,2,3and b among0,1,2,3,4,5such that a+b is odd.Suppose that there exists a positive integer x that yields a remainder of a(resp.b) when divided by4(resp.by6).Then there exist integers r,s such that x=4r+a and x=6s+bining these equations we obtain2x−4r−6s=a+b.In this equation the2left-hand side is even and the right-hand side is odd,for a contradiction.Therefore x does not exist.13.Since r (3,3)=6there exists a K 3subgraph of K 6that is red or blue.We assume that this K 3subgraph is unique,and get a contradiction.Without loss we may assume that the above K 3subgraph is red.Let x denote one of the vertices of this K 3subgraph,and let {x i }5i =1denote the remaining five vertices of K 6.Consider the K 5subgraph with vertices{x i }5i =1.By assumption this subgraph has no K 3subgraph that is red or blue.The only edge coloring of K 5with this feature is shown in figure 3.2of the text.Therefore we may assume that the vertices {x i }5i =1are labelled such that for distinct i,j (1≤i,j ≤5)the edge connecting x i ,x j is red (resp.blue)if i −j =±1modulo 5(resp.i −j =±2modulo5).By construction and without loss of generality,we may assume that each of x 1,x 2is connected to x by a red edge.Thus the vertices x,x 1,x 2give a red K 3subgraph.Now the edge connecting x and x 3is blue;otherwise the vertices x,x 2,x 3give a second red K 3subgraph.Similarly the edge connecting x and x 5is blue;otherwise the vertices x,x 1,x 5give a second red K 3subgraph.Now the vertices x,x 3,x 5give a blue K 3subgraph.14.After n minutes we have removed n pieces of fruit from the bag.Suppose that among the removed fruit there are at most 11pieces for each of the four kinds.Then our total n must be at most 4×11=44.After n =45minutes we will have picked at least a dozen pieces of fruit of the same kind.15.For 1≤i ≤n +1divide a i by n and call the reminder r i .By construction 0≤r i ≤n −1.By the pigeonhole principle there exist distinct integers i,j among 1,2,...,n +1such that r i =r j .Now n divides a i −a j .bel the people 1,2,...,n .For 1≤i ≤n let a i denote the number of people aquainted with person i .By construction 0≤a i ≤n −1.Suppose the numbers {a i }n i =1are mutually distinct.Then for 0≤j ≤n −1there exists a unique integer i (1≤i ≤n )such that a i =j .Taking j =0and j =n −1,we see that there exists a person aquainted with nobody else,and a person aquainted with everybody else.These people are distinct since n ≥2.These two people know each other and do not know each other,for a contradiction.Therefore the numbers {a i }n i =1are not mutually distinct.17.We assume that the conclusion is false and get a bel the people 1,2,...,100.For 1≤i ≤100let a i denote the number of people aquainted with person i .By construction 0≤a i ≤99.By assumption a i is even.Therefore a i is among 0,2,4,...,98.In this list there are 50numbers.Now by our initial assumption,for each even integer j (0≤j ≤98)there exists a unique pair of integers (r,s )(1≤r <s ≤100)such that a r =j and a s =j .Taking j =0and j =98,we see that there exist two people who know nobody else,and two people who know everybody else except one.This is a contradiction.18.Divide the 2×2square into four 1×1squares.By the pigeonhole principle there exists a 1×1square that contains at least two of the five points.For these two points the distance apart is at most √2.319.Divide the equilateral triangle into a grid,with each piece an equilateral triangle of side length1/n.In this grid there are1+3+5+···+2n−1=n2pieces.Suppose we place m n=n2+1points within the equilateral triangle.Then by the pigeonhole principle there exists a piece that contains two or more points.For these two points the distance apart is at most1/n.20.Color the edges of K17red or blue or green.We show that there exists a K3subgraph of K17that is red or blue or green.Pick a vertex x of K17.In K17there are16edges that contain x.By the pigeonhole principle,at least6of these are the same color(let us say red).Pick distinct vertices{x i}6i=1of K17that are connected to x via a red edge.Consider theK6subgraph with vertices{x i}6i=1.If this K6subgraph contains a red edge,then the twovertices involved together with x form the vertex set of a red K3subgraph.On the other hand,if the K6subgraph does not contain a red edge,then since r(3,3)=6,it contains a K3subgraph that is blue or green.We have shown that K17has a K3subgraph that is red or blue or green.21.Let X denote the set of sequences(a1,a2,a3,a4,a5)such that a i∈{1,−1}for1≤i≤5 and a1a2a3a4a5=1.Note that|X|=16.Consider the complete graph K16with vertex set X.We display an edge coloring of K16with colors red,blue,green such that no K3 subgraph is red or blue or green.For distinct x,y in X consider the edge connecting x and y.Color this edge red(resp.blue)(resp.green)whenever the sequences x,y differ in exactly 4coordinates(resp.differ in exactly2coordinates i,j with i−j=±1modulo5)(resp. differ in exactly2coordinates i,j with i−j=±2modulo5).Each edge of K16is now colored red or blue or green.For this edge coloring of K16there is no K3subgraph that is red or blue or green.22.For an integer k≥2abbreviate r k=r(3,3,...,3)(k3’s).We show that r k+1≤(k+1)(r k−1)+2.Define n=r k and m=(k+1)(n−1)+2.Color the edges of K m with k+1colors C1,C2,...,C k+1.We show that there exists a K3subgraph with all edges the same color.Pick a vertex x of K m.In K m there are m−1edges that contain x.By the pigeonhole principle,at least n of these are the same color(which we may assume is C1).Pick distinct vertices{x i}ni=1of K m that are connected to x by an edge colored C1.Considerthe K n subgraph with vertices{x i}ni=1.If this K n subgraph contains an edge colored C1,then the two vertices involved together with x give a K3subgraph that is colored C1.On the other hand,if the K n subgraph does not contain an edge colored C1,then since r k=n, it contains a K3subgraph that is colored C i for some i(2≤i≤k+1).In all cases K m hasa K3subgraph that is colored C i for some i(1≤i≤k+1).Therefore r k≤m.23.We proved earlier thatr(m,n)≤m+n−2n−1.Applying this result with m=3and n=4we obtain r(3,4)≤10.24.We show that r t(t,t,q3)=q3.By construction r t(t,t,q3)≥q3.To show the reverse inequality,consider the complete graph with q3vertices.Let X denote the vertex set of this4graph.Color the t -element subsets of X red or blue or green.Then either (i)there exists a t -element subset of X that is red,or (ii)there exists a t -element subset of X that is blue,or (iii)every t -element subset of X is green.Therefore r t (t,t,q 3)≤q 3so r t (t,t,q 3)=q 3.25.Abbreviate N =r t (m,m,...,m )(k m ’s).We show r t (q 1,q 2,...,q k )≤N .Consider the complete graph K N with vertex set X .Color each t -element subset of X with k colors C 1,C 2,...,C k .By definition there exists a K m subgraph all of whose t -element subsets are colored C i for some i (1≤i ≤k ).Since q i ≤m there exists a subgraph of that K m with q i vertices.For this subgraph every t -element subset is colored C i .26.In the m ×n array assume the rows (resp.columns)are indexed in increasing order from front to back (resp.left to right).Consider two adjacent columns j −1and j .A person in column j −1and a person in column j are called matched if they occupy the same row of the original formation.Thus a person in column j is taller than their match in column j −1.Now consider the adjusted formation.Let L and R denote adjacent people in some row i ,with L in column j −1and R in column j .We show that R is taller than L.We assume that L is at least as tall as R,and get a contradiction.In column j −1,the people in rows i,i +1,...,m are at least as tall as L.In column j ,the people in rows 1,2,...,i are at most as tall as R.Therefore everyone in rows i,i +1,...,m of column j −1is at least as tall as anyone in rows 1,2,...,i of column j .Now for the people in rows 1,2,...,i of column j their match stands among rows 1,2,...,i −1of column j −1.This contradicts the pigeonhole principle,so L is shorter than R.27.Let s 1,s 2,...,s k denote the subsets in the collection.By assumption these subsets are mutually distinct.Consider their complements s 1,s 2,...,s k .These complements are mutu-ally distinct.Also,none of these complements are in the collection.Therefore s 1,s 2,...,s k ,s 1,s 2,...,s k are mutually distinct.Therefore 2k ≤2n so k ≤2n −1.There are at most 2n −1subsets in the collection.28.The answer is 1620.Note that 1620=81×20.First assume that 100i =1a i <1620.We show that no matter how the dance lists are selected,there exists a group of 20men that cannot be paired with the 20women.Let the dance lists be bel the women 1,2,...,20.For 1≤j ≤20let b j denote the number of men among the 100that listed woman j .Note that 20j =1b j = 100i =1a i so ( 20j =1b j )/20<81.By the pigeonhole principle there exists an integer j (1≤j ≤20)such that b j ≤80.We have 100−b j ≥20.Therefore there exist at least 20men that did not list woman j .This group of 20men cannot be paired with the 20women.Consider the following selection of dance lists.For 1≤i ≤20man i lists woman i and no one else.For 21≤i ≤100man i lists all 20women.Thus a i =1for 1≤i ≤20and a i =20for 21≤i ≤100.Note that 100i =1a i =20+80×20=1620.Note also that every group of 20men can be paired with the 20women.29.Without loss we may assume |B 1|≤|B 2|≤···≤|B n |and |B ∗1|≤|B ∗2|≤···≤|B ∗n +1|.By assumption |B ∗1|is positive.Let N denote the total number of objects.Thus N = n i =1|B i |and N = n +1i =1|B ∗i |.For 0≤i ≤n define∆i =|B ∗1|+|B ∗2|+···+|B ∗i +1|−|B 1|−|B 2|−···−|B i |.5We have∆0=|B∗1|>0and∆n=N−N=0.Therefore there exists an integer r(1≤r≤n)such that∆r−1>0and∆r≤0.Now0<∆r−1−∆r=|B r|−|B∗r+1|so|B∗r+1|<|B r|.So far we have|B∗1|≤|B∗2|≤···≤|B∗r+1|<|B r|≤|B r+1|≤···≤|B n|.Thus|B∗i|<|B j|for1≤i≤r+1and r≤j≤n.Defineθ=|(B∗1∪B∗2∪···∪B∗r+1)∩(B r∪B r+1∪···∪B n)|.We showθ≥ing∆r−1>0we have|B∗1|+|B∗2|+···+|B∗r|>|B1|+|B2|+···+|B r−1|=|B1∪B2∪···∪B r−1|≥|(B1∪B2∪···∪B r−1)∩(B∗1∪B∗2∪···∪B∗r+1)|=|B∗1∪B∗2∪···∪B∗r+1|−θ=|B∗1|+|B∗2|+···+|B∗r+1|−θ≥|B∗1|+|B∗2|+···+|B∗r|+1−θ.Thereforeθ>1soθ≥2.6。

第一章整除

第一章整除
a=bq+r(0 )
它可以重作是整除的推广。同时也可以用带余除法定理来定义整除性,(即当余数r=0时)。带余除法可以将全体整数进行分类,从而可将无限的问题转化为有限的问题。这是一种很重要的思想方法,它为我们解决整除问题提供了又一条常用的方法。同时也为我们建立同余理论建立了基础。读者应熟知常用的分类方法,例如把整数可分成奇数和偶数,特别对素数的分类方法。例全体奇素数可以分成4k+1,4k+3;或6k+1,6k+5等类型。
( )=
设 则有[ ]=
素数是数论研究的核心,许多中外闻名的题目都与素数有关。除1外任何正整数不是质数即为合数。判断一个已知的正整数是否为质数可用判别定理去实现。判别定理又是证明素数无穷的关键。实际上,对于任何正整数n>1,由判别定理一定知存在素数p,使得p∣n。即任何大于1的整数一定存在一个素因数p。素数有几个属于内在本身的性质,这些性质是在独有的,读者可以用反例来证明:素数这一条件必不可少。以加深对它们的理解。其中p∣ab p∣a或
近几十年来,数论在计算机科学、组合数学,代数编码,信号的数字处理等领域内得到广泛的应用,而且许多较深刻的结果(包括一些近代的结果)都得到了应用.比如RSA密码系数已在美国大多数保密体系中使用,产生了深远的影响。
由于研究数论的方法不同,数论包括初等数论,代数数论,解析数论,乘法数论,超越数论,组合数论,计算数论,堆垒数论,数的几何及模形式理论等等。这些领域不仅可以丰富数学的理论宝库,而且推动整个基础数学研究的发展!
最后,给大家提一点数论的学习方法,即一定不能忽略习题的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经说过如果学习数论时只注意到它的内容而忽略习题的作用,则相当于只身来到宝库而空手返回而异。

组合数学 第四版 (Richard A[1].Brualdi 著) 机械工业出版社作业答案

组合数学 第四版 (Richard A[1].Brualdi 著) 机械工业出版社作业答案

解法 1 因此,
对任意非负整数 n 和 k, (k 1) 即 , , (n 1) k k k 1 k 1 k 1 n 1 1 n 1 n 1 n 1 n 1 (1) n 2 1 3 2 4 3 n 1 n
k 1 k 1 k n 1 k 1 n 1 (1) k 0 n
w.

k 0
da
(1) k n 1 1
n 1 k 1


2n (3 (1)) n
n n nk n nk k 3 ( 1 ) k (1)k k 3 k 0 k 0
a1 , a 2 , , a 37 和 a1 13, a 2 13,, a 37 13 都是严格单调递增序列。因为总的学习时间
co
m
③ 考虑 6 位整数。最高位不能为 0,因此 8 位整数有 7 P(7, 5) 个。 ④ 考虑 5 位整数。最高位不能为 0,因此 8 位整数有 7 P (7, 4) 个。 ⑤ 考虑 4 位整数。若千位数字大于 5,有 3 P(7, 3) 个。若千位数字等于 5,则百位数字 必须大于等于 4,有 4 P(6, 2) 个。
至少已拿出 12 个相同种类的水果。因此,需要 45 分钟。 17. 证明:在一群 n 1 个人中,存在两个人,他们在这群人中有相同数目的熟人(假设没 有人与他/她自己是熟人) 。
w.
证明 因为每个人都不是自己的熟人,所以每个人的熟人的数目是从 0 到 n 1 的整数。若 有两个人的熟人的数目分别是 0 和 n 1 ,则有人谁都不认识,有人认识所有的人,这是不 可能的。因此,这 n 个人的熟人的数目是 n 1 个整数之一,必有两个人有相同数目的熟人。

新视野大学英语读写教程第五册课后答案unit5

新视野大学英语读写教程第五册课后答案unit5

新视野大学英语读写教程第五册课后答案unit5新视野大学英语教程第五册课后答案 unit 5Unit FiveComprehension of the Text]. Almost all America had been occupied, except for its northwest coast.2. He noticed an inlet, but not realizing it was the mouth of the Columbia River, he didn't sail inland to exploreit.3. One so-called "major street" was merely an opening slashed in the forest with a solid wal]of trees on both sides.4. Vancouver's wonderful surroundings.5. It is a tree-covered peninsula across the bay, with a thousand-acre sea of green.6. It was nothing but barren sand.7. Because the factories and mills moved away.8. Preservation of the original features, including the original structures of buildings andpedestrian paths.9. First, the whole operation cost the city government not one cent, and second, it attracts manyvisitors.10. The unique balance refers to the balance of the "elements of urban life". Vocabulary1. slashed2. destined3. poked4. erupt5. inhabited6. lured7. dodged8. revive9. shabby 10. undermine 11. pedestrians 12. brewingExercises on CD and web course only: 13. virgin 14. agreeable 15. perfume1. except for2. passed by3. be attached to4. alive with5. filled in6. are destined to7. is always .a reminder of 8. set foot on9. takes efforts to 10. contributes toward11. nothing but 12. ripe forExercises on CD and web course only: 13. be attached to 14. succeeds in 15. erupted fromCollocation1. trust2. standards3. authority4. respect5. strength6. democracy7. hopes8. lifeExercises on CD and web course only: 9. foundation 10. healthPlease note that all the collocations of the verb underminewith trust, standards, authority.., havealready appeared in our previous books or some files that have been used for our web course. Here is fulllist of all the collocations that have previously appeared with their sources indicated. Translation1. The firm will slash its employees from 5,000 to 3,000 because its business is slack.2. We should treasure and maintain the cordial relationship established with them in 1990.3. The patient died after he was infected as a result of a hospital blunder.4. To do simuRaneous interpretation of speeches needs special training and sldlls.5. Ifyou don't follow the objective law, you will be destined to fail.6. It was clear that the government failed to revive the economy or reform the social institutions last year.7. The miners' strike in July showed how quickly workers' anger erupted.8. Whenever you visit the city, on a rainy day or on a sunny one, it gives a scene of an industrial flavor as cheerful and busy as ever.9. He realized that it was difficult to inhabit this barren island any longer.10. Overweight people are often lured by modern food products which claim to be able to helpthem lose weight.i America was once troubled by employment crisis. Now in this land, there are employees, those who have lost their jobs and those who will never find a job. For decades, the government took no notice of the changes in itseconomic base and their effect on employment and lifestyle. As a result, many people lost job opportunities. Many experts came up with various ideas to address unemployment. However, what is most important now is to stimulate consumption.1.人们在参观温哥华期间,会反复地听人说这座城市是多么的年轻,广阔的加拿大西部有人定居也就是近期的事。

新编英语教程第五册课后练习试题答案解析

新编英语教程第五册课后练习试题答案解析

新编英语教程第五册课后练习题答案Answers to the exercises in Unit 1II. Paraphrase1.A writer who is particular about the exactness of an expression in English will never feel happy with a word which fails to express an idea accurately.2. To a certain extent, the process of finding the right words to use isa process of perfection where you try to search for words that may most accurately express your thoughts and feelings, and words that may most effectively make your listeners and readers understand your thoughts and feelings.3. Finding the most suitable word to use is in no sense easy. But there is nothing like the delight we shall experience when such a word is located.4. Once we are able to use language accurately, we are in a position to fully understand our subject matter.III. Translate1.After citing many facts and giving a number of statistical figures, he finally drove home his point.2. It took us half a year more or less to carry through the research project.3. What he said was so subtle that we could hardly make out his true intention.4. His new book looks squarely at the contemporary social problems.5. The younger generation today are very much alive to the latest information found on the Internet.6. It is a matter of opinion whether a foreign language is more easily learned in one’s childhood or otherwise.7. Never lose heart in the face of a setback; take courage and deal with it squarely.8. Rice, meat, vegetables, and fruit constitute a balanced diet.Language WorkIII.1. clumsy-unskillful2. deft-skilful3. loose-vague4. subtle-tricky5. precise-accurate6. shift-alteration7. vague-ambiguous8. scrupulous-conscientious9. ignorance-want of knowledge 10. disadvantages-drawbacks 11. cultivating-developing 12.mistaken-erroneous 13.unimportant-trivial 14. dark-dim 15.flexible-adaptable 16. fine-subtle 17. sentimental-emotional 18. essence-quintessence19. coercion-compulsion 20. fascinating-absorbingV.1. less2. because/since/as3. not/disagree4. that5. resistance6. runners7. solve/resolve8. More9. That 10. without11.achievement/feat/accomplishment 12. in 13. do/achieve/finish 14. physical 15. those 16. few 17. cannot 18. the 19. with 20. notAnswers to the exercises in unit 2II. Paraphrase1. What happens is that the Mediterranean, the cradle of many ancient cultures, is seriously polluted. It is the first of the seas that has been made to suffer from a situation resulting from development mixed with an irresponsible mentality.2. Further, while the places such as Cannes and Tel Aviv dispose of their wastes through a pipe stretching out half a mile from the shore, most cities do not even bother to do that but simply dump their sewage directly into the sea along the coastline.3. There is an even bigger hazard hidden in the seafood dishes that are forever so appealing to those holiday- makers.4.Factories are set up around the coastline, few of which, including the most sophisticated, have been equipped with a satisfactory system for dealing with their effluents.Translation1. One man’s effort is not enough to cope with such a complicated situation.2. When do you think the new IT (information technology) regulations will take effect?3.The chances of winning a prize in a lottery are slim; perhaps only a one-in-a-hundred chance.4. It is deplorable that many a youngster has fallen victim to the use of drugs.5.There is virtually no one who is in favor of his proposal.6. Beware of the swindler with a slick tongue and a smiling face.7. Don’t touch the bag! The explosive in it may blow up at any minute. Your life will be at risk.8. He looked quite confident about the job, though some doubts lurked in the depth of his mind.Language WorkI.1-5 BABBA 6-10 DBADCII.1-5 CDBCC 6-10 CDCDCIII.1. in contras2. on the contrary3. but/except4. Apart from/ Besides5. besides/apart from6. without7. except for8. except for/ apartfrom 9. also 10. In contrast 11. Apart from/Except for 12. beside 13. on the contrary 14. In … contrastVI.1. heats2. If3. colder4. climate5. affected/influenced6. maritime7. warm/mild8. continental9. evaporates 10. absorb/hold 11.sponge/cloth 12. saturate 13. surface 14. small/tiny 15. raindrop 16. clouds 17. As 18. out 19. landAnswers to the exercises in Unit 3II. Paraphrase1. This natural ability of getting to the essence of a subject was the key to the great discoveries made by him in science-This natural gift and his unusual awareness of beauty.2. His engrossment in ideas was incredibly intense and deep. When attacking a problem difficult to solve, he kept attempting to deal with it with great effort, just as an animal chases and bites a weaker animal it preys upon until the latter gives in.3. He would look lost in thought, thinking about something distant, and yet meditating within himself. He did not seem to be in deep thought, nor did he knit his brows—he was just in self-contained peaceful contemplation.4.The theories, considered isolated one by one, was really credible, so much so that they seem to be simple and clear. But when considered together, they were so strongly contradictory to each other that a less learned scholar would have given up one or the other completely and would no longer take up the issue again.5. Einstein’s work was done quietly with pencil on paper and seemed to be far removed from the confusion of everyday life, but his ideas were so radical that they led to strong arguments and made people unreasonably angry.III. Translation(1) He honked his car horn to alert the pedestrians.(2) The fast development of Information Technology is an outstanding example of human endeavour.(3) Mary groped for the appropriate words to express her indebtedness to her teacher.(4) The school principal’s plain words conveyed a message of challenge to the young people.(5) Don’t tamper with the wires, or you may cause a short circuit.(6) He thought he could beat everyone at the competition, but his excessive confidence failed him.(7) What he said seemed simple and clear, but there was an implied meaning that we couldn’t quite fathom.(8) He tried to steer the group’s random talk towards some constructive subjects.Answers to the exercises in Unit 6II. Paraphrase(1) When I got ready to enter college, I was expecting a college education in some definite fields. I was very eager to know the answers to some questions difficult to understand, and that has made me work and improve myself; especially in areas of study where there were no prompt answers, but there were endless questions.(2) When he read or recited Greek poetry, it seemed that what was described in the verse became alive; both the romantic ideas and the poetical lines sounded like beautiful music, and I, just like him, was motivated to be neither a hero in poetry nor a poet who created poetry, but only a student of Greek culture and poetry, in such a way that I would be able to interpret Greek poetry.(3) “Come on, boy. The world belongs to you—you are expected to do creative thinking and to act creatively for the world. There is still a lot to be accomplished, and a lot to be found out. No poem written can be called the greatest and no railroad built can be the best. The perfect state has yet to be conceived. Everything has yet to be done.(4) What I was hearing was the unrestrained, earnest, and sparkling interchanges of great intellect as sharp as first-rate tools. They were always polite, speaking one at a time; no one spoke to anyone in secret and no one digressed; they all spoke when there was an issue everyone was interested in; and while they were explaining something, anyone, no matter whether he was for or against the issue, would tell others what he knew about a philosopher’s opinion or a poet’s phrase in order to clarify or to beautify the theme.III. Translate1. Can you make out the meaning of his long-winded harangue?2. Being worried about his exam results, he was not in the least attentive to the visiting professor’s lecture.3. Is it easier for a child or a grown-up to pick up the rudiments of a foreign language in a short period of time?4. Did what he said about the short-term training course appeal to you?5. The biography of the great scientist inspired him to greater efforts in doing research.6. Should we be indifferent to the living conditions of the people in the lower income bracket?7. The decision made recently by the school board had little to bear on our curriculum.8. The ship was so strongly built that it can withstand any storm.Language WorkI 1-5. ABCBD 6-10. BBBADAnswers to the exercises in unit 7II. Paraphrase1. In my opinion, gifted children are children who are specially endowed with natural abilities which rank high on testing scales.2. I am of the opinion that children should be grouped according to their interest and ability and be subject to a form of training that will develop their abilities and capabilities to the utmost.3. It is the teacher, rather than the way that the classes are formed, that influences the students in how they look at differences in ability among themselves.4.I am confident that if teachers are aware of individual differences and motivate young people in different ways, the students will develop through cultivating their own interests and abilities.III. Translate1. Her questions about the functioning of the software manifest a great interest in Information Technology on her part.2. We have no grounds to prove the validity of the theory of the “missing link.”3. To a certain extent, his reasoning is valid, but not as a general rule.4. His tireless efforts yielded great fruits –a new theory in genetics.5. Don’t think that all great scientists are endowed with special talents –it’s 99% of perspiration and only 1% of inspiration that make them great.6. What criteria did you use when you elected the chairperson of the Students’ Union?7. Can you identify the handwriting of all your students?8. Whether or not the outcome is successful lies with the efforts made by the candidates.Language WorkI.1-5 ACBDC 6-10. DACBB 11-15 ADACA 16-20 BBCADAnswers to the exercises in Unit 8II. Paraphrase.1.People spend much of their life time trying hard to keep things in good shape. They think a product, after leaving its factory, should last at least for a reasonably long period before ceasing to work.2. Quality-control instruments and testing devices are also governed by Murphy’s Law, so they are not reliable.3. Look at the artifacts of the pre-industrial era exhibited in a museum and you will see that technology is not the factor that decided the quality of these items.4. If a handmade basket or boat is made by an inexperienced or irresponsible worker, it may break down as easily as machine-made baskets or boat.5. My opinion is that it is the social relationship between producer and consumer rather than the technological relationship between producer and product that makes “handmade” items so highly regarded.III. Translate1. The harsh reality of daily life dispelled all his hopes for a bright future.2. Our sports meet will be postponed to next week because of the unpredictable weather.3. Every visitor to this exhibition must show his/her identity card no matter who he/she is.4. The renovation plan for the old city centre is subject to the approval of the municipal government.5. His hopes withered away after he had experienced one failure after another.6. E-mail is so quick and convenient in sending messages that it may soon replace ordinary mail service.7. The sight of the Great Wall evoked a sense of wonder in him.8. The maintenance of quality-control instrument can be very costly.Language WorkI 1-5. ABADA 6-10. CCBDB 11-15. DCBCD 16-20. ADDBDAnswers to the exercises in Unit 9II. Paraphrase1. The other was a newspaperman through and through—uncompromising, energetic, and intelligent about how to report reliable news based on facts.2. The different ways of providing news, i.e., the newspaper, television, and radio seem all to follow the belief that all news is bad news. Why is this so? Could it be because people are used to dwelling on negative news as a rule and because newspaper people are generally sensitive to such news when facing everyday happenings?3. I do not mean to propose that we make up some “good” news and use it as a remedy for the catastrophes reported on the front page. Neither do I consider good news as a thorough and detailed news story about how the local YMCA operates.4. What the news media report on us and on the world is the only information about ourselves and about the world we get. Such reportage had better be faithful to our life—and not be a distortion—because we must rely on the truthful picture of our life to make our decisions and plan our future.5. The knowledge that you come to possess by your own efforts over a long period of time does not become part of your inborn character. You may be able to earn the good life in a good society, but such good life cannot be yours permanently. If the understanding of the good life in a good society is not passed on, you will lose what you have earned.III. Translate1. If there is anything you are not clear about the device, address your inquiry to our head office.2. Before we put the new plan into practice, we had better scrutinize every aspect of it to make sure that it is practicable.3. We expect that there will be a change for the better in this area after the new regulations are implemented.4. Don’t take his words literally. He's just cracking a joke.5. The prospect of employing nitrogen fixation in agriculture is promising.6. His attempt at contriving a correcting fluid which leaves no marks on paper ended in failure.7. The non-Chinese-speaking foreigner gestured to make a request, but he just couldn’t get hi s idea across.8. Without considering the urgency of the matter, he gave us a flat refusal, once and for all.Language WorkI 1-5 BBCCC 6-10 BACAC 11-15 CC A/C BB 16-20 AAC A/B A21-22 A/B CAnswers to the exercises in Unit 11II. Paraphrase1. The more you attempt to shake off your worry, the harder it will be for you to get rid of it/have it off your mind.2. It is not a good idea to begin thinking of pursuing a hobby when you have already grown old.3. It is no good believing that you are in a p osition to enjoy at a moment’s notice any pastime which happens to catch your fancy; pleasure comes from exerting one’s talents in a hobby suited to one’s circumstances.4. Since those very wealthy people can afford to get access to almost anything they may think of and to turn the most fanciful ideas into reality, there is nothing in this world that can interest or excite them any more. To them, a new pleasure, a new excitement may very often make them even more bored about life.5. In fact, it is probably those whose work provides them with their enjoyment are those who are most in need of periodic distractions from their work.III. Translation1. His attempt at insinuating that John was the culprit turned out to be futile.2. He is very clever at improvising excuses when he fails to do what is expected of him.3. His trip to Tibet will gratify his desire to see the Potala.4. This corporation commands excellent human resources.5. Think of an alternative way of entertaining your guests. Don’t always show them VCDs.6. It is harmful to indulge in whims and caprices.7. Try not to lay your hands on anything that you are not entitled to.8. He did not come to the competition. It may well be that he had forgotten all about it.Language WorkI 1-5 ACCDA 6-10 DBBCD 11-15 ADBBC 16-20 BCDBAAnswers to the exercises in Unit 12II. Paraphrase1. A person's life is, above all else, shaped by conformity to the customs passed down in his society.2. We cannot understand the complexities of human life unless we know the role of custom in all its manifestations.3. If we conduct any systematic inquiry, it is essential for us to be unbiased/ we need to be unbiased towards every component part of the subject under examination.4. While people were convinced that differences between themselves on the one hand and aboriginal and backward people on the other hand were irreconcilable, the scientific study of the human race as such was not possible.III. Translate1Conventions are different from tradition in that the former are the generally accepted standards of behavior in a society, whereas the latter refers to the customary way of thinking or behaving that has been passed down from the past to the present.2. For a long time the teachings of Confucius and Mencius held sway over Chinese society.3. His scribbling is unintelligible to anyone but himself.4. He appealed to the higher court on the premise that he was unjustly sentenced to two years' imprisonment.5. One of my classmates finds it very difficult to differentiate between the two consonants /f/ and /v/.6.The predominant feature of the botanical garden is its spaciousness.7. Do you believe that human beings have evolved from the apes?8. It is incumbent on the teachers not only to impart knowledge but also to teach the students moral principles.Language WorkI. 1-5 ACBAC 6-10 ACBAB 11-15CBAAD 16-20 BDADB。

Unit 5 参考译文及答案======1.doc

Unit 5 参考译文及答案======1.doc

Unit FiveSection AHow to Increase Your Mental Potential 参考译文如何提高你的智力潜能新的研究表明,智慧中包含着许多技能,普通人可以有意识地去提高这些技能。

—J H D[1]这个十来岁的孩子给父母带来了沉重的消息。

生下来就迟钝,在学校很调皮。

耻辱的开除令使他在学业上彻底失败:“你扰乱课堂秩序,影响其他学生”。

[2]很多年以后,他很有哲理性地回忆起小时候学习上的困惑:“我的智力发展很迟缓,因而直到我长大后,我才开始对空间和时间方面产生一些疑惑。

当然我对问题的考虑要比一个孩子深刻。

”就这样,年轻的爱因斯坦在被从学校驱逐出十一年之后,发表了改变我们对宇宙理解的相对论。

[3]在这一世纪中没有其他人比爱因斯坦更广泛地被认为是天才。

然而他小时候智力发展存在问题和他的特有天赋使我们对有关天才、智慧或智商的传统观点产生了怀疑。

一方面,爱因斯坦小时候在智力测试所看重的能力上表现出有缺陷;而另一方面,他独特的智能却远远超出了对于智慧的大多数定义。

特别是他的智能发展表现出一种独特的渐进过程,这与智力是天生和不变的流行观念是矛盾的。

他学会的而不是天生的能力一一尤其是他顽强的毅力和善于思索的技能一一很明显,与任何智力上的明显优势一样对他的才能起着决定的作用。

[4]传统定义所忽略的这些起重要作用的智力因素在新的研究活动中正在引起密切的关注。

这一现象是出现在早期的多年研究揭露了通常的智力测量的局限性之后。

研究表明,智力是多方面的,是奇异的:它包括个性特征、创造技能和知识才能,这些都是无法测试的。

[5]特别令人兴奋的研究结果是,这些被下了错误定义的能力中的某一些是许多人都具备的。

只要了解这些被忽略了的技能,就会帮助我们发现并培养我们自身及我们孩子的未开发的潜能。

四个主要方面的研究可以帮助我们较好地的理解这些能力。

[6]1、智商智商测试的分数并不象以前所认为的那样重要。

长期研究表明,在人的一生中,智商数可能有很大的变化。

组合数学第五版第七章答案

组合数学第五版第七章答案

1
0
1
9 34
0
1
2
··
·
·
·
··
·
·
·
The sequence repeats with period 3 (resp. 8) (resp. 6) if m = 2 (resp. m = 3) (resp. m = 4). The result follows.
4. For an integer n ≥ 5 we have
8. By construction h0 = 1 and h1 = 2. We now find hn for n ≥ 2. Consider a coloring of the 1 × n chessboard. The first square is colored red or blue. If it is blue, then there are hn−1 ways to color the remaining n − 1 squares. If it is red, then the second square is blue, and there are hn−2 ways to color the remaining n − 2 squares. Therefore hn = hn−1 + hn−2. Comparing the above data with the Fibonacci sequence we find hn = fn+2.
m = qn + r
1 ≤ r ≤ n − 1.
Observe that
GCD(n, r) = GCD(m, n) = d.
By induction and since r ≤ n − 1,

Richard组合数学第5版-第4章课后习题答案(英文版)

Richard组合数学第5版-第4章课后习题答案(英文版)
5. The integer k is equal to the total number of inversions for the given permutation. Any switch of adjacent terms ab → ba either decreases this total by one (if a > b) or increases this total by one (if a < b). Therefore we cannot bring the given permutation to 12 · · · n by fewer than k successive switches of adjacent terms.
7365 412
73658412
8. (a) For a permutation of {1, 2, 3, 4, 5, 6} the corresponding inversion sequence
(b1, b2, b3, b4, b5, b6) satisfies 0 ≤ bi ≤ 6 − i for 1 ≤ i ≤ 6. The total number of inversions is
←− ←− ←− ←− ←− 12534 ←− ←− →− ←− ←− 12543 ←− ←− ←− ←− ←− 14523 ←−4 ←−1 →−5 ←−2 ←−3 →−4 ←−1 ←−5 ←−3 ←−2 ←−1 →−4 →−5 ←−3 ←−2 ←− ←− ←− →− ←− 13542 ←− ←− →− ←− →− 13524 ←− ←− ←− ←− ←− 31524 ←−3 ←−1 →−5 ←−4 ←−2
(c) The set {x6} corresponds to coordinate 7 6 5 4 3 2 1 0 entry 0 1 0 0 0 0 0 0

综合教程5、6单元课后练习答案

综合教程5、6单元课后练习答案

综合教程5、6单元课后练习答案Key to Exercises of College EnglishUnit 5★ Text AVocabularyI.1. 1) startled 2) mere 3) motion 4)sweating 5) stretched 6) vain 7) On one occasion8) anxiety 9) emotions 10) ashamed11) In my mind’s eye 12) recurring 2. 1) Mrs. White’s birthday coincides with her husband’s.2) They make big profits on the stuffthey sell by creating anartificial shortage, which send sthe prices soaring/results in thesoaring of prices.3) It has been a week of alternate sunshine and rain.4) Politics and philosophy have beenhis lifelong passions, although hestudied economics at university.5) Tension came over her, as she waited for her first TV interview.3. 1) media, dedication to, grace 2) his competitors, in excitement, hug him, congratulate him on3) emotions, numerous, intensity, passion forII.1.Mike, a Green, made the suggestion that a large park be built near the community.2.In a letter to his daughter, Mr. Smith expressed his wish that she (should) continue her education to acquire still another degree.3.There is no reason to hold the belief that humans have no direct moral responsibility to safeguard the welfare of animals.4.Children need to feel safe about the world they grow up in, and it is unwise to give them the idea that everythingthey come into contact with might bea threat.5.Anxiety can result from the notion that life has not treated us fairly.6.Nobody believed his claim that he was innocent.III.1.I work out in the gym for one hour every morning.2.Florence has worked as cleaner at the factory for five years.3.The wounded man worked his way across the field on his hands and knees.4.The safe load for a truck of this type works out at about twenty-five tons.5.It is difficult to understand how human minds work.6.To my disappointment, the manager’s plan of promoting the new products doesn’t work at all.7.The teacher has a lot of experienceof working with children who don’t know how to learn.8.The medicine was like magic, and it worked instantly after you took it. Comprehensive ExerciseI.1. 1) In my mind’s eye 2) groan 3)competitor 4) intensity 5)anxiety 6) tense7) sweat 8) tension 9) soaring10) recurring 11) brought meback to earth12) fantasy 13) sweat 14)congratulate 15) numerous 16)media2. 1) engineer 2) forget 3) convinced 4) how 5) build 6) accident7) thought 8)only 9) sharp 10) touched 11) instructions 12) finallyII. Translation1. 1) It is the creativity anddedication of the workers andexecutives that turned thecompany into a profitablebusiness.2) The prices of food and medicine have soared in the past three months.3) We plan to repaint the upper floors of he office building.4) His success shows that popularity and artistic merit sometimes coincide.5) I don’t want to see my beloved grandmother lying in a hospital bed and groaning painfully.2. Numerous facts bear out theargument/statement/claim that in order to recover speedily from negative emotion, you should allow yourself to cry. You needn’t/don’t have to be ashamed of crying.Anxiety and sorrow can flow out ofthe body along with tears.Consider the case of/Take Donna, Her son unfortunately died in a caraccident. The intensity of the blowmade her unable to cry. She said, “Itwas not until two weeks later that Ibegan to cry. And then I felt as ifa big stone had been lifted from myshoulders. It was the tears thatbrought me back to earth and helpedme survive the crisis.”★ Text BComprehension Check: b c b b c a Language Practice1. a e d c b h f g2.1) aid 2) inclined 3) in good health 4) shortcomings 5) penetrated6) dismiss 7)has suffered from8)progressive 9)optimistic 10)to adegree 11)hold on to 12)installUnit 6★ Text AVocabularyI.1. 1) culture/cultural 2) indication 3) miniature 4) ironic 5) stumbled into 6) decent7) buzzing 8) abnormal 9) mechanical 10) Shuddering 11) implied 12) leap2. 1) You can convert RMB into US dollars in the foreign exchange office a the airport.2) I figured she didn’t know the firstthing about cooking as she lookedpuzzled as to how to cook rice withthe rice cooker.3) The manager glowed with pleasureupon hearing that in spite of theirfaulty equipment the team hadaccomplished some very usefulwork.4) I’m grateful to my company forallowing me to work flexible hoursas long as I work eight hours a day.5) On seeing the comments made in themargins by previous readers, Tomcouldn’t help thinking the bookmust be quite fascinating.3. 1) will not panic/feel panic, ’ll beat a disadvantage 2) hybrid, transmission3) crave, One indication, to distinguishII. 1. also 2. as well/too 3. too 4. also 5. as well/too 6. too 7. also 8. AlsoIII. 1. I’ve had enough 2. WhenI was old enough to work and earn money3. can’t get enough sleep at night4. has so far collected enough of them5. have strong enough arms6. have just enough money to live on Comprehensive ExerciseI.1. 1) stumbled into 2) not know the first thing about 3) mechanical 4) when it comes to5) hybrid 6) gritted her teeth 7) premise 8) at a disadvantage 9) panic10) cultural11) flexible 12) imply2. 1) chair 2) force 3) secrets 4) painstaking 5) recognized 6) steered7) essentially8) observation 9) women 10) tutor 11) inspired 12) unlessII. Translation1. 1) He is a man of few words, but whenit comes to playing a computer games,he is far too clever for hisclassmates.2) Children who don’t know any bettermay think these animals are prettycute and start playing with them.3) There is no way to obtain a loan,so to buy the new equipment, I willjust have to grit my teeth and sellmy hybrid car.4) The hunter would not have fired theshots if he hadn’t seen a herd ofelephants coming towards hiscampsite.5) I find it ironic that Tom has aselective memory --- he does notseem to remember painfulexperiences in the past,particularly those of his owndoing.2. Nancy Hopkins is a biologyprofessor at MIT. She craves knowledge and works hard. However, as a scientist, she could not help noticing all kinds of indications of gender inequality on campus. Men and women professors did the same work, but when it came to promotion the administrators were ratherselective. It was ironic that afterso much cultural progress, womenwere still at a disadvantage ininstitutions of higher education.When her request for more lab spacewas refused, she knew she had tofight. So she gritted her teeth andcomplained to the President. Thefight ended in victory and Nancy wasconverted into a gender-equalityadvocate.★ Text BComprehension Check: b a d b d c aLanguage Practice1. b d a e g c f h2.1) crisis 2) weighed down 3) supportive 4) takes all the credit5) pleaded6) in control of 7) party 8) expense 9) lives for 10) semester11) at every opportunity 12) stir。

伍德里奇计量经济学导论第5版笔记和课后习题详解

伍德里奇计量经济学导论第5版笔记和课后习题详解

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解目录第1章计量经济学的性质与经济数据1.1复习笔记1.2课后习题详解第一篇横截面数据的回归分析第2章简单回归模型2.1复习笔记2.2课后习题详解第3章多元回归分析:估计3.1复习笔记3.2课后习题详解第4章多元回归分析:推断4.1复习笔记4.2课后习题详解第5章多元回归分析:OLS的渐近性5.1复习笔记5.2课后习题详解第6章多元回归分析:深入专题6.1复习笔记6.2课后习题详解第7章含有定性信息的多元回归分析:二值(或虚拟)变量7.1复习笔记7.2课后习题详解第8章异方差性8.1复习笔记8.2课后习题详解第9章模型设定和数据问题的深入探讨9.1复习笔记9.2课后习题详解第二篇时间序列数据的回归分析第10章时间序列数据的基本回归分析10.1复习笔记10.2课后习题详解第11章OLS用于时间序列数据的其他问题11.1复习笔记11.2课后习题详解第12章时间序列回归中的序列相关和异方差性12.1复习笔记12.2课后习题详解第三篇高级专题讨论第13章跨时横截面的混合:简单面板数据方法13.1复习笔记13.2课后习题详解第14章高级的面板数据方法14.2课后习题详解第15章工具变量估计与两阶段最小二乘法15.1复习笔记15.2课后习题详解第16章联立方程模型16.1复习笔记16.2课后习题详解第17章限值因变量模型和样本选择纠正17.1复习笔记17.2课后习题详解第18章时间序列高级专题18.1复习笔记18.2课后习题详解第19章一个经验项目的实施19.2课后习题详解本书是伍德里奇《计量经济学导论》(第5版)教材的学习辅导书,主要包括以下内容:(1)整理名校笔记,浓缩内容精华。

每章的复习笔记以伍德里奇所著的《计量经济学导论》(第5版)为主,并结合国内外其他计量经济学经典教材对各章的重难点进行了整理,因此,本书的内容几乎浓缩了经典教材的知识精华。

(2)解析课后习题,提供详尽答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

evaluate the sum in this case we compute in two ways the the coefficient of xn in (1−x2)n. (i)
By the binomial theorem this coefficient is (−1)m
2m m
.
(ii) Observe (1 − x2) = (1 + x)(1 − x).
5
Now set x = 1 to get Therefore
(−1)n n =
n (−1)n−k 1 .
n+1
k
k+1
k=0
1
n
=
n (−1)k 1 .
n+1
k
k+1
k=0
19. One readily checks
m 2
+
m
= m(m − 1) + m = m2.
2
1
Therefore
n
n
k2 =
not contain 1 or 2 or 3. Note that {Si}4i=1 partition S so |S| =
4 i=1
|Si|.
We
have
n
n−1
n−2
n−3
n−3
|S| =
, k
|S1| =
, k−1
|S2| =
, k−1
|S3| =
, k−1
|S4| =
. k
The result follows.
We have
n P (n, k) nP (n − 1, k − 1)
=
=
.
k
k!
k!
n − 1 P (n − 1, k − 1) kP (n − 1, k − 1)
=
=
.
k−1
(k − 1)!
k!
n − 1 P (n − 1, k) (n − k)P (n − 1, k − 1)
=
=
.
k
k!
k!
The result follows.
k
k=0
4
Take the derivative with respect to x and obtain
n
−n(1 − x)n−1 =
n (−1)kkxk−1.
k
k=0
Now set x = 1 to get
n
0=
n (−1)kk.
k
k=0
The result follows.
16. For a variable x consider
n
n
n
n
+3
+3
+
.
k
k−1
k−2
k−3
14. Given a real number r and integer k such that r = k. We show
r
r r−1
=
.
k r−k k
First assume that k ≤ −1. Then each side is 0. Next assume that k = 0. Then each side is 1. Next assume that k ≥ 1. Observe
1
3. Let Z denote the set of integers. For nonnegative n ∈ Z define F (n) =
k∈Z
n−k k
.
The sum is well defined since finitely many summands are nonzero. We have F (0) = 1 and
10. Given integers 1 ≤ k ≤ n we show
n
n−1
k =n
.
k
k−1
Let S denote the set of ordered pairs (x, y) such that x is a k-subset of {1, 2, . . . , n} and y
is an element of x. We compute |S| in two ways. (i) To obtain an element (x, y) of S there
n−k−1
=
+
k
k−1
k∈Z
k∈Z
n−k−1
n−h−2
=
+
k
h
k∈Z
h∈Z
= F (n − 1) + F (n − 2).
Thus F (n) is the nth Fibonacci number.
4. We have
(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5
F (1) = 1. We show F (n) = F (n − 1) + F (n − 2) for n ≥ 2. Let n be given. Using Pascal’s
formula and a change of variables k = h + 1,
n−k F (n) =
k
k∈Z
n−k−1
of
x8y9
is
0
since
8 + 9 = 18.
7. Using the binomial theorem,
n
3n = (1 + 2)n =
n 2k.
k
k=0
Similarly, for any real number r,
n
(1 + r)n =
n rk.
k
k=0
8. Using the binomial theorem,
n
(−1)k
n
2
= (−1)m
2m
.
k
m
k=0
13. We show that the given sum is equal to
n+3 .
k
The above binomial coefficient is in row n + 3 of Pascal’s triangle. Using Pascal’s formula, write the above binomial coefficient as a sum of two binomial coeffients in row n + 2 of Pascal’s triangle. Write each of these as a sum of two binomial coeffients in row n + 1 of Pascal’s triangle. Write each of these as a sum of two binomial coeffients in row n of Pascal’s triangle. The resulting sum is
and (x + y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.
5. We have
7
(2x − y)7 =
7 27−k(−1)kx7−kyk.
k
k=0
6.
The coefficient
of
x5y13
is
35(−2)13
18 5
.
The
coefficient
contain 1. Let S2 consist of the elements in S that contain 2 but not 1. Let S3 consist of
the elements in S that contain 3 but not 1 or 2. Let S4 consist of the elements in S that do
+6
+
4
3
2
(n + 1)2n2 =
4
n+1 2
=
.
2
6
21. Given a real number r and an integer k. We show
=
.

n+1
k k+1
k=0
Now set x = 1 to get
2n+1 − 1 n n 1
=
.
n+1
k k+1
k=0
17. Routine.
18. For a variable x consider
n
(x − 1)n =
k=0
n (−1)n−kxk. k
Integrate with respect to x and obtain
Math 475
Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 5
1. For an integer k and a real number n, we show
2. Pascal’s triangle begins 1
11 121 1 3 31 14641 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 1 10 45 120 210 252 210 120 45 10 1 ···
相关文档
最新文档