高中数学 第三章 推理与证明 归纳推理教案 北师大版选修1-2
高中数学北师大版选修1-2第三章《归纳推理》word学案
3.1.1 归纳推理学习目标1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.学习过程一、课前准备在日常生活中我们常常遇到这样的现象:(1)看到天空乌云密布,燕子低飞,蚂蚁搬家,推断天要下雨;(2)八月十五云遮月,来年正月十五雪打灯.以上例子可以得出推理是的思维过程.二、新课导学※ 学习探究探究任务:归纳推理问题1:哥德巴赫猜想:观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜想: .问题2:由铜、铁、铝、金等金属能导电,归纳出 .新知:归纳推理就是由某些事物的 ,推出该类事物的的推理,或者由的推理.简言之,归纳推理是由的推理.※ 典型例题例1 观察下列等式:1+3=4=22,1+3+5=9=23,1+3+5+7=16=24,1+3+5+7+9=25=25,……你能猜想到一个怎样的结论?变式:观察下列等式:1=11+8=9,1+8+27=36,1+8+27+64=100,……你能猜想到一个怎样的结论?例2已知数列{}n a 的第一项11a =,且n n n a a a +=+11(1,2,3.)n =,试归纳出这个数列的通项公式.变式:在数列{n a }中,11()2n n n a a a =+(2n ≥),试猜想这个数列的通项公式.※ 动手试试练1..练2. 在数列{n a }中,11a =,122n n na a a +=+(*n N ∈),试猜想这个数列的通项公式.三、总结提升※ 学习小结1.归纳推理的定义.2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想)※ 知识拓展1.费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,提出猜想:对所有的自然数n ,任何形如221n n F =+的数都是素数. 后来瑞士数学家欧拉发现5252142949672976416700417F =+==⨯不是素数,推翻费马猜想.2.四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.下列关于归纳推理的说法错误的是( )A.归纳推理是由一般到一般的一种推理过程B.归纳推理是一种由特殊到一般的推理过程C.归纳推理得出的结论具有或然性,不一定正确D.归纳推理具有由具体到抽象的认识功能2.若2()41,f n n n n N =++∈,下列说法中正确的是( ).A.()f n 可以为偶数B. ()f n 一定为奇数C. ()f n 一定为质数D. ()f n 必为合数3.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ). A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+ 4.111()1()23f n n N n +=+++⋅⋅⋅+∈,经计算得357(2),(4)2,(8),(16)3,(32)222f f f f f =>>>>猜测当2n ≥时,有__________________________.5. 从22211,2343,345675=++=++++=中得出的一般性结论是_____________ .课后作业1. 对于任意正整数n ,猜想(21)n -与2(1)n +的大小关系.2. 已知数列{n a }的前n 项和n S ,123a =-,满足12(2)n n n S a n S ++=≥,计算1234,,,,S S S S 并猜想n S 的表达式.。
高中数学复习课二推理与证明教案含解析北师大版选修1_2
复习课(二) 推理与证明[对应学生用书P43]其中归纳推理出现的频率较高,重点考查归纳、猜想、探究、类比等创新能力.[考点精要]1.归纳推理的特点及一般步骤2.类比推理的特点及一般步骤[典例] (1)在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.(2)观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, ……,据此规律,第n 个等式可为_________________________________. [解析] (1)正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127. (2)等式的左边的通项为12n -1-12n ,前n 项和为1-12+13-14+…+12n -1-12n ;右边的每个式子的第一项为1n +1,共有n 项,故为1n +1+1n +2+…+1n +n. [答案] (1)127 (2)1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n[类题通法](1)用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明.(2)进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.[题组训练]1.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数.则f (4)=________,f (n )=________.解析:因为f (1)=1,f (2)=7=1+6,f (3)=19=1+6+12,所以f (4)=1+6+12+18=37,所以f (n )=1+6+12+18+…+6(n -1)=3n 2-3n +1.答案:37 3n 2-3n +12.若数列{a n }为等差数列,S n 为其前n 项和,则有性质“若S m =S n (m ,n ∈N *且m ≠n ),则S m -n =0.”类比上述性质,相应地,当数列{b n }为等比数列时,写出一个正确的性质:________________________________________________________________________________________________________________________________________________. 答案:数列{b n }为等比数列,T m 表示其前m 项的积,若T m =T n ,(m ,n ∈N *,m ≠n ),则T m -n =1(1)获得解题思路以及用综合法有条理地表达证明过程.(2)理解综合法与分析法的概念及区别,掌握两种方法的特点,体会两种方法的相辅相成、辩证统一的关系,以便熟练运用两种方法解题.[考点精要](1)综合法:是从已知条件推导出结论的证明方法;综合法又叫做顺推证法或由因导果法.(2)分析法:是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“只需证……”等分析到一个明显成立的结论P ,再说明所要证明的数学问题成立.[典例] 设a >0,b >0,a +b =1, 求证:1a +1b +1ab≥8.[证明] 法一:综合法 因为a >0,b >0,a +b =1,所以1=a +b ≥2ab ,ab ≤12,ab ≤14,所以1ab≥4,又1a +1b=(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥4,所以1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).法二:分析法因为a >0,b >0,a +b =1,要证1a +1b +1ab≥8.只要证⎝ ⎛⎭⎪⎫1a +1b +a +b ab≥8, 只要证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8,即证1a +1b≥4.也就是证a +b a +a +bb≥4. 即证b a +a b≥2,由基本不等式可知,当a >0,b >0时,b a +a b≥2成立, 所以原不等式成立.[类题通法]综合法和分析法的特点(1)综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题的常用的方法,综合法是由因导果的思维方式,而分析法的思路恰恰相反,它是执果索因的思维方式.(2)分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条理清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.[题组训练]1.若a >b >c >d >0且a +d =b +c , 求证:d +a <b +c . 证明:要证d +a <b +c , 只需证(d +a )2<(b +c )2, 即a +d +2ad <b +c +2bc , 因a +d =b +c ,只需证ad <bc ,即ad<bc,设a+d=b+c=t,则ad-bc=(t-d)d-(t-c)c=(c-d)(c+d-t)<0,故ad<bc成立,从而d+a<b+c成立.2.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R有f(a+b)=f(a)·f(b).(1)证明:f(0)=1;(2)证明:对任意的x∈R,恒有f(x)>0.证明:(1)令a=b=0,得f(0)=f(0)·f(0),又f(0)≠0,所以f(0)=1.(2)由已知当x>0时,f(x)>1,由(1)得f(0)=1,故当x≥0时,f(x)>0成立.当x<0时,-x>0,所以f(-x)>1,而f(x-x)=f(x)f(-x),所以f(x)=1f -x,可得0<f(x)<1.综上,对任意的x∈R,恒有f(x)>0成立.(1)问.(2)反证法是间接证明的一种基本方法,使用反证法进行证明的关键是在正确的推理下得出矛盾.[考点精要]1.使用反证法应注意的问题:利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.2.一般以下题型用反证法:(1)当“结论”的反面比“结论”本身更简单、更具体、更明确;(2)否定性命题、唯一性命题,存在性命题、“至多”“至少”型命题;(3)有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明比较困难,往往用反证法.[典例] (1)否定:“自然数a,b,c中恰有一个偶数”时正确的反设为( )A.a,b,c都是偶数B .a ,b ,c 都是奇数C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数(2)已知:ac ≥2(b +d ).求证:方程x 2+ax +b =0与方程x 2+cx +d =0中至少有一个方程有实数根.[解析] (1)自然数a ,b ,c 的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a ,b ,c 中恰有一个偶数”时正确的反设为“a ,b ,c 中都是奇数或至少有两个偶数.”答案:D(2)证明:假设两方程都没有实数根.则Δ1=a 2-4b <0与Δ2=c 2-4d <0,有a 2+c 2<4(b +d ),而a 2+c 2≥2ac ,从而有4(b +d )>2ac ,即ac <2(b +d ), 与已知矛盾,故原命题成立. [类题通法]反证法是利用原命题的否命题不成立则原命题一定成立来进行证明的,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.[题组训练]1.已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1.证明:假设a ,b ,c 均小于1,即a <1,b <1,c <1, 则有a +b +c <3,而a +b +c =2x 2-2x +12+3=2⎝ ⎛⎭⎪⎫x -122+3≥3,两者矛盾,所以假设不成立, 故a ,b ,c 至少有一个不小于1.2.设二次函数f (x )=ax 2+bx +c (a ≠0)中的a ,b ,c 都为整数,已知f (0),f (1)均为奇数,求证:方程f (x )=0无整数根.证明:假设方程f (x )=0有一个整数根k , 则ak 2+bk +c =0,∵f (0)=c ,f (1)=a +b +c 都为奇数, ∴a +b 必为偶数,ak 2+bk 为奇数. 当k 为偶数时,令k =2n (n ∈Z),则ak 2+bk =4n 2a +2nb =2n (2na +b )必为偶数, 与ak 2+bk 为奇数矛盾;当k 为奇数时,令k =2n +1(n ∈Z),则ak 2+bk =(2n +1)·(2na +a +b )为一奇数与一偶数乘积,必为偶数,也与ak 2+bk 为奇数矛盾.综上可知方程f (x )=0无整数根.1.用演绎推理证明函数y =x 3是增函数时的大前提是( ) A .增函数的定义B .函数y =x 3满足增函数的定义 C .若x 1<x 2,则f (x 1)<f (x 2) D .若x 1>x 2,则f (x 1)>f (x 2)解析:选A 根据演绎推理的特点知,演绎推理是一种由一般到特殊的推理,所以函数y =x 3是增函数的大前提应是增函数的定义.2.数列{a n }中,已知a 1=1,当n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .a n =3n -2B .a n =n 2C .a n =3n -1D .a n =4n -3解析:选B 求得a 2=4,a 3=9,a 4=16,猜想a n =n 2.3.在平面直角坐标系内,方程x a +yb=1表示在x ,y 轴上的截距分别为a ,b 的直线,拓展到空间直角坐标系内,在x ,y ,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c =1B.x ab +y bc +zca=1C.xy ab +yz bc +zxca=1 D .ax +by +cz =1解析:选A 类比到空间应选A.另外也可将点(a,0,0)代入验证.4.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根解析:选A 至少有一个实根的否定是没有实根,故要做的假设是“方程x 3+ax +b =0没有实根”.5.来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起.他们除懂本国语言外,每人还会说其他三国语言中的一种.有一种语言是三个人会说的,但没有一种语言四人都懂,现知道:①甲是日本人,丁不会说日语,但他俩能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③乙、丙、丁交谈时,不能只用一种语言;④乙不会说英语,当甲与丙交谈时,他能做翻译.针对他们懂的语言,正确的推理是( )A .甲日德、乙法德、丙英法、丁英德B .甲日英、乙日德、丙德法、丁日英C .甲日德、乙法德、丙英德、丁英德D .甲日法、乙英德、丙法德、丁法英解析:选A 分析题目和选项,由①知,丁不会说日语,排除B 选项;由②知,没有人既会日语又会法语,排除D 选项;由③知乙、丙、丁不会同一种语言,排除C 选项,故选A.6.已知结论:“在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等”,则AO OM=( )A .1B .2C .3D .4解析:选C 如图,设正四面体的棱长为1,则易知其高AM =63,此时易知点O 即为正四面体内切球的球心,设其半径为r ,利用等积法有4×13×34r =13×34×63⇒r =612,故AO =AM -MO =63-612=64,故AO ∶OM =64∶612=3.7.观察下图,可推断出“x ”处应该填的数字是________.解析:由前两个图形发现:中间数等于四周四个数的平方和,所以“x ”处应填的数字是32+52+72+102=183.答案:1838.如图,圆环可以看作线段AB 绕圆心O 旋转一周所形成的平面图形,又圆环的面积S =π(R 2-r 2)=(R -r )×2π×R +r2.所以圆环的面积等于以线段AB =R -r 为宽,以AB 中点绕圆心O 旋转一周所形成的圆的周长2π×R +r2为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:在平面直角坐标系xOy 中,若将平面区域M ={(x ,y )|(x -d )2+y 2≤r 2}(其中0<r <d )绕y 轴旋转一周,则所形成的旋转体的体积是________.解析:平面区域M 的面积为πr 2,由类比知识可知:平面区域M 绕y 轴旋转一周得到的旋转体的体积等于以半径为r 的圆为底面,以圆心为O 、半径为d 的圆的周长2πd 为高的圆柱的体积,所以旋转体的体积V =πr 2×2πd =2π2r 2d .答案:2π2r 2d9.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是 .解析:分别观察正方体的个数为:1,1+5,1+5+9,…归纳可知,第n 个叠放图形中共有n 层,构成了以1为首项,以4为公差的等差数列, 所以S n =n +[n (n -1)×4]÷2=2n 2-n , 所以S 7=2×72-7=91. 答案:9110.已知|x |≤1,|y |≤1,用分析法证明:|x +y |≤|1+xy |. 证明:要证|x +y |≤|1+xy |, 即证(x +y )2≤(1+xy )2, 即证x 2+y 2≤1+x 2y 2, 即证(x 2-1)(1-y 2)≤0,因为|x |≤1,|y |≤1, 所以x 2-1≤0,1-y 2≥0,所以(x 2-1)(1-y 2)≤0,不等式得证.11.已知:sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32.通过观察上述两等式的规律,请你写出一般性的命题:__________________________=32,(*) 并给出(*)式的证明. 解:一般形式:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明如下:左边=12(1-cos 2α)+12[1-cos(2α+120°)]+12[1-cos(2α+240°)]=32-12[cos 2α+cos(2α+120°)+cos(2α+240°)] =32-12[cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2αcos 240°-sin 2αsin 240°]=32-12cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α=32=右边. ∴原式得证.12.设函数f (x )=e xln x +2ex -1x,证明:f (x )>1.证明:由题意知f (x )>1等价于x ln x >x e -x-2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e,则h ′(x )=e -x(1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0. 故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e .综上,当x >0时,g (x )>h (x ),即f (x )>1.。
北师大版数学第三章 推理与证明 3.1 归纳与类比 教学案 选修1-2
高中数学 第三章 推理与证明 3.1 归纳与类比 教学案 选修1-2一、情景创设1.西汉时期的马王堆女尸,距今已将近2200年,是根据同位素的半衰期的推测的。
2.哥德巴赫,德国数学家。
1742年6月7日,他在写给著名数学家欧拉的一封信中, 提出了两个大胆的猜想:(1)任何不小于6的偶数,都是两个奇质数之和:(2)任何不小于9的奇数,都是3个奇质数之和.这就是数学史上著名的“哥德巴赫猜想”.(3)蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海归是用肺呼吸的,蜥蜴是用肺呼吸的,蛇、鳄鱼、海归、蜥蜴都是爬行动物,所以,所有的爬行动物都是用肺呼吸的.(4)教师从口袋里第一次拿出一块糖,第二次又拿出一块糖,第三次又拿出一块糖,第四次…….二、建构数学归纳推理:归纳推理的一般模式:三、数学应用例1.三角形的内角和是1800,凸四边形的内角和是3600,凸五边形的内角和是5400,请猜想:凸n 边形的内角和是练习.⋅⋅⋅++<++<++<,333232,232232,131232由此我们猜想:<a b =-+⋅⋅⋅+++=+++=++=+=)12(53147531353123112.12222n ,猜想,,,例 并证明你的结论.练习.数一数图中的凸多面体的面数F 、顶点数V 和棱数E,然后用归纳法推理得出它们之间的关系为 .四、小结归纳推理的几个特点:归纳推理的一般步骤:五、课堂检测1.观察直线上的几个点,发现两个点可以确定1条线段,三个点可以确定3条线段,四个点可以确定6条线段,五个点可以确定10条线段,由此可以归纳出什么规律?2.观察下列数的特点:1,2,2,3,3,3,4,4,4,4,… 中,第100项是 .3.依次有下列等式:222576543,3432,11=++++=++=,按此规律下去,第8个等式为 .六、课后作业书本P 29 2,3,5高中数学教学案第二章 推理与证明第2课时 类比推理一、情景创设1.据传,春秋时代鲁国的公输班受到路边的齿形草能割破行人的腿的启发,发明了锯子. 他的思维过程为:齿形草能割破行人的腿,“锯子”能“锯”开木材,它们功能上是类似的.因此,它们形状上也应该类似,“锯子”应该是齿形的.2.仿照鱼类的外型和它们在水中沉浮的原理,发明了潜水艇.3.利用平面几何的本定理类比得到立体几何中的基本定理.二、建构数学类比推理:类比推理的一般模式:三.应用数学例1.(1)试根据等式的性质猜想不等式的性质.(2)类比实数中的加法与乘法,他们有哪些类似的性质?练习.试将平面上的圆与空间中的球进行类比。
高中数学(选修1—2)《归纳推理》教学设计
l 5 13 17
3
ll 1 95 9 2l 7 23 31
29
27
2 5
3 通 过 本 节 学 习 , 学 生 养 成 主 动 运 用 归 纳 推 理 思 维 的 . 使
意识 和 习惯 。
4 激 发 学 生 学 习 数 学 的 浓 厚 兴 趣 和 应 用 数 学 的 良好 品 . 质 , 步 形 成 发 现 新 知识 , 决 新 问 题 的 能力 。 逐 解
理能力。
质 , 利导 人本 节 新 课 。 顺 ( ) 二 引导 学生分析 总结 归纳思维解决数 学 问题 的方法步骤 。 1指 导 学 生 阅 读 课 本 例 题 : 1 哥 德 巴 赫 猜 想 ;2) 拉 公 . () ( 欧 式 ;3 数 列 通 项 公式 。 () 通 过 以 上 三 个 实 例 的 学 习 理 解 ,使 学 生 对 归 纳 推 理 有 一 个 初 步 的感 性认 识 。 2组 织 学 生 分 组 讨 论 : 励 学 生积 极 思 考 , 胆 发 表 自 己 . 鼓 大 的看 法 与 见 解 .结 合 教 材 内容 初 步 得 出归 纳 推 理 解 决 实 际 问 题 的“ 观察 规 律 一 猜 想 结 果一 检 验 论证 ” 方 法 步骤 。 的 3教 师 总结 归 纳 推 理 概 念 。 . 归 纳 推 理 是 根 据 一 类 事 物 中部 分 事 物 具 有 某 种 属 性 。 推 断 该 类 事 物 中所 有 事 物 都 具 有 这 种 属 性 的 一 种 推 理 形 式 。 它 是 由局 部 到 整 体 、 别 到 一 般 的 一 种思 维 方 式 。 个 ( ) 识 应 用 . 题 训 练 三 知 解 例 3将 正 奇 数 按 下 面 表 格 中 的 数 字 呈 现 的规 律填 入 各 方 . 格 中, 则数 字 5 位 于 第 几 行 第 几 列 ? 5
高中数学第三章推理与证明1.1.2类比推理教案含解析北师大版选修1_2
1.2 类比推理类比推理三角形有下面两个性质:(1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底乘积的12.问题1:你能由三角形的这两个性质推测空间四面体的性质吗?试写出来. 提示:(1)四面体任意三个面的面积之和大于第四个面的面积; (2)四面体的体积等于底面积与高乘积的13.问题2:由三角形的性质推测四面体的性质体现了什么?提示:由一类事物的特征推断另一类事物的类似特征,即由特殊到特殊.定义特征由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.合情推理合情推理的含义(1)合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)归纳推理和类比推理是最常见的合情推理.1.类比推理是从人们已经掌握了的事物特征,推测正在被研究中的事物的特征.所以类比推理的结果具有猜测性,不一定可靠;2.类比推理以旧的知识作为基础,推测新的结果,具有发现功能.平面图形与空间几何体的类比[例1] (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦长相等; (3)圆的周长C =πd (d 是直径); (4)圆的面积S =πr 2.[思路点拨] 先找出相似的性质再类比,一般是点类比线、线类比面、面积类比体积. [精解详析] 圆与球有下列相似的性质:(1)圆是平面上到一定点的距离等于定长的所有点构成的集合;球面是空间中到一定点的距离等于定长的所有点构成的集合.(2)圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图形.通过与圆的有关性质类比,可以推测球的有关性质.圆球圆心与弦(非直径)中点的连线垂直于弦 球心与截面(不经过球心的小圆面)圆心的连线垂直于截面与圆心距离相等的两条弦长相等与球心距离相等的两个截面的面积相等圆的周长C =πd 球的表面积S =πd 2圆的面积S =πr 2球的体积V =43πr 3[一点通] 解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下:平面图形 立体图形 点 点、线 直线 直线、平面 边长 棱长、面积面积 体积 三角形 四面体 线线角 面面角 平行四边形平行六面体圆球1.下面类比结论错误的是( )A .由“若△ABC 一边长为a ,此边上的高为h ,则此三角形的面积S =12ah ”类比得出“若一个扇形的弧长为l ,半径为R ,则此扇形的面积S =12lR ”B .由“平行于同一条直线的两条直线平行”类比得出“平行于同一个平面的两个平面平行”C .由“在同一平面内,垂直于同一条直线的两条直线平行”类比得出“在空间中,垂直于同一个平面的两个平面平行”D .由“三角形的两边之和大于第三边”类比得出“凸四边形的三边之和大于第四边” 解析:选C 只有C 中结论错误,因为两个平面还有可能相交.2.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P ABC 中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ.定义、定理与性质的类比[例2][精解详析] ①两实数相加后,结果是一个实数,两向量相加后,结果仍是向量; ②从运算律的角度考虑,它们都满足交换律和结合律, 即:a +b =b +a ,a +b =b +a ,(a +b )+c =a +(b +c ),(a +b )+c =a +(b +c ); ③从逆运算的角度考虑,二者都有逆运算,即减法运算, 即a +x =0与a +x =0都有唯一解,x =-a 与x =-a ;④在实数加法中,任意实数与0相加都不改变大小,即a +0=a .在向量加法中,任意向量与零向量相加,既不改变该向量的大小,也不改变该向量的方向,即a +0=a .[一点通] 运用类比推理常常先要寻找合适的类比对象,本例中实数加法的对象为实数,向量加法的对象为向量,且都满足交换律与结合律,都存在逆运算,而且实数0与零向量0分别在实数加法和向量加法中占有特殊的地位.因此我们可以从这四个方面进行类比.3.试根据等式的性质猜想不等式的性质并填写下表.等式不等式a =b ⇒a +c =b+c① a =b ⇒ac =bc ② a =b ⇒a 2=b 2③答案:①a >b ⇒a +c >③a >b >0⇒a 2>b 2(说明:“>”也可改为“<”)4.已知等差数列{a n }的公差为d ,a m ,a n 是{a n }的任意两项(n ≠m ),则d =a n -a mn -m,类比上述性质,已知等比数列{b n }的公比为q ,b n ,b m 是{b n }的任意两项(n ≠m ),则q =________.解析:∵a n =a m qn -m,∴q =⎝ ⎛⎭⎪⎫a n a m 1n -m.答案:⎝ ⎛⎭⎪⎫a n a m 1n -m1.类比推理先要寻找合适的类比对象,如果类比的两类对象的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠.2.归纳推理与类比推理都是合情推理.归纳推理是从特殊过渡到一般的思想方法,类比推理是由此及彼和由彼及此的联想方法,归纳和类比离不开观察、分析、对比、联想,许多数学知识都是通过归纳与类比发现的.1.下列哪个平面图形与空间图形中的平行六面体作为类比对象较合适( ) A .三角形 B .梯形 C .平行四边形D .矩形解析:选C 从构成几何图形的几何元素的数目、位置关系、度量等方面考虑,用平行四边形作为平行六面体的类比对象较为合适.2.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体P ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4解析:选C 设内切球的球心为O ,所以可将四面体P ABC 分为四个小的三棱锥,即O ABC ,O PAB ,O PAC ,O PBC ,而四个小三棱锥的底面积分别是四面体P ABC 的四个面的面积,高是内切球的半径,所以V =13S 1r +13S 2r +13S 3r +13S 4r =13(S 1+S 2+S 3+S 4)r ,∴r =3VS 1+S 2+S 3+S 4.3.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 类比等比数列{b n }中b 1b 2b 3…b 9=b 95,可得在等差数列{a n }中a 1+a 2+…+a 9=9a 5=9×2.4.类比三角形中的性质: ①两边之和大于第三边; ②中位线长等于底边长的一半; ③三内角平分线交于一点. 可得四面体的对应性质:①任意三个面的面积之和大于第四个面的面积;②过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14;③四面体的六个二面角的平分面交于一点. 其中类比推理方法正确的有( ) A .① B .①② C .①②③D .都不对解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.5.在△ABC 中,D 为BC 的中点,则AD ―→=12()AB ―→+AC ―→ ,将命题类比到四面体中去,得到一个命题为:______________________________________..解析:平面中线段的中点类比到空间为四面体中面的重心,顶点与中点的连线类比顶点和重心的连线.答案:在四面体A BCD 中,G 是△BCD 的重心,则AG ―→=13()AB ―→+AC ―→+AD ―→ 6.运用下面的原理解决一些相关图形的面积问题:如果与一条固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k ,那么甲的面积是乙的面积的k 倍.你可以从给出的简单图形①②中体会这个原理.现在图③中的两个曲线方程分别是x 2a 2+y 2b2=1(a >b>0)与x 2+y 2=a 2,运用上面的原理,图③中椭圆的面积为__________.解析:由于椭圆与圆截y 轴所得线段之比为b a, 即k =b a,所以椭圆面积S =πa 2·b a=πab . 答案:πab7.在Rt △ABC 中,若∠C =90°,则cos 2A +cos 2B =1,在空间中,给出四面体性质的猜想.解:如图,在Rt △ABC 中,cos 2A +cos 2B =⎝ ⎛⎭⎪⎫b c 2+⎝ ⎛⎭⎪⎫a c 2=a 2+b2c 2=1.于是把结论类比到四面体P A ′B ′C ′中,我们猜想,三棱锥P A ′B ′C ′中,若三个侧面PA ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.8.在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.(1)写出相应的结论,判断该结论是否正确,并加以证明; (2)写出该结论一个更为一般的情形(不必证明).解:(1)在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下:∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20) =10d +10d +…+10d =100d =300,10个同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300. (2)在公差为d 的等差数列{a n }中, 若S n 是{a n }的前n 项和, 则对于任意k ∈N +, 数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 也成等差数列,且公差为k 2d .9.先阅读下列不等式的证法,再解决后面的问题:已知a 1,a 2∈R ,a 1+a 2=1,求证a 21+a 22≥12.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2, 则f (x )=2x 2-2(a 1+a 2)x +a 21+a 22=2x 2-2x +a 21+a 22. 因为对一切x ∈R ,恒有f (x )≥0,所以Δ=4-8(a 21+a 22)≤0,所以a 21+a 22≥12.(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1,请写出上述结论的推广式; (2)类比上述证法,对你推广的结论加以证明. 解:(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1, 求证:a 21+a 22+…+a 2n ≥1n.(2)证明:构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2,则f (x )=nx 2-2(a 1+a 2+…+a n )x +a 21+a 22+…+a 2n =nx 2-2x +a 21+a 22+…+a 2n . 因为对一切x ∈R ,恒有f (x )≥0, 所以Δ=4-4n (a 21+a 22+…+a 2n )≤0.。
高中数学选修1-2第三章 推理与证明1_归纳与类比1_2类比推理-精选学习文档
1.2 类比推理一、教学目标1.知识与技能:(1)结合已学过的数学实例,了解类比推理的含义;(2)能利用类比进行简单的推理;(3)体会并认识类比推理在数学发现和生活中的作用。
2.方法与过程:递进的了解、体会类比推理的思维过程;体验类比法在探究活动中:类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
3.情感态度与价值观:体会类比法在数学发现中的基本作用:即通过类比,发现新问题、新结论;通过类比,发现解决问题的新方法。
培养分析问题的能力、学会解决问题的方法;增强探索问题的信心、收获论证成功的喜悦;体验数学发现的乐趣、领略数学方法的魅力!同时培养学生学数学、用数学,完善数学的正确数学意识。
二、教学重点:了解类比推理的含义,能利用类比进行简单的推理。
教学难点:培养学生“发现—猜想—证明”的推理能力。
三、教学方法:探析归纳,讲练结合四、教学过程(一)复习:归纳推理的概念:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都具有这种属性。
我们将这种推理方式称为归纳推理。
注意:利用归纳推理得出的结论不一定是正确的。
1.归纳推理的要点:由部分到整体、由个别到一般;2.典型例子方法归纳。
(二)引入新课:据科学史上的记载,光波概念的提出者,荷兰物理学家、数学家赫尔斯坦•惠更斯曾将光和声这两类现象进行比较,发现它们具有一系列相同的性质:如直线传播、有反射和干扰等。
又已知声是由一种周期运动所引起的、呈波动的状态,由此,惠更斯作出推理,光也可能有呈波动状态的属性,从而提出了光波这一科学概念。
惠更斯在这里运用的推理就是类比推理。
(三)例题探析例1:已知:“正三角形内一点到三边的距离之和是一个定值”,将空间与平面进行类比,空间中什么样的图形可以对应三角形?在对应图形中有与上述定理相应的结论吗?解:将空间与平面类比,正三角形对应正四面体,三角形的边对应四面体的面。
得到猜测:正四面体内一点到四个面距离之和是一个定值。
2019_2020学年高中数学第3章推理与证明11.2类比推理学案北师大版选修1_2
1.2 类比推理学 习目 标核 心 素 养1.通过具体实例理解类比推理的意义.(重点) 2.会用类比推理对具体问题作出判断.(难点) 1.通过类比推理的意义的学习,体现了数学抽象的核心素养.2.通过应用类比推理对具体问题判断的学习,体现了逻辑推理的核心素养.1.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理. 2.合情推理合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.思考:合情推理的结果为什么不一定正确?[提示] 合情推理是由特殊到一般的推理,简单地说就是直接看出来的,没有通过证明,只归纳了一部分,属于不完全归纳,所以不一定正确.1.下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类比推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类比推出“a +bc =a c +bc(c ≠0)” D .“(ab )n=a n b n”类比推出“(a +b )n=a n+b n” C [由实数运算的知识易得C 项正确.] 2.下列推理是合情推理的是( ) (1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;(3)a ≥b ,b ≥c ,则a ≥c ;(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n边形内角和是(n -2)×180°.A .(1)(2)B .(1)(3)(4)C .(1)(2)(4)D .(2)(4)C [(1)为类比推理,(2)(4)为归纳推理,(3)不是合情推理,故选C.]3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.①②③ [正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.]类比推理在数列中的应用【例1】 在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100.类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.试写出相应的结论,判断该结论是否正确,并加以证明.思路点拨:结合已知等比数列的特征可类比等差数列每隔10项和的有关性质. [解] 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的. 证明如下:∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20) ==100d =300,同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300.1.本例是由等比类比等差,你能由等差类比出等比结论吗?完成下题:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n (T n ≠0),则T 4,______,______,T 16T 12成等比数列. T 8T 4 T 12T 8[等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.] 2.在本例条件不变的情况下,你能写出一个更为一般的结论吗?(不用论证)[解] 对于任意k ∈N +,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d .1.在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.1.在等差数列{a n }中,如果m ,n ,p ,r ∈N +,且m +n +p =3r ,那么必有a m +a n +a p =3a r ,类比该结论,写出在等比数列{b n }中类似的结论,并用数列知识加以证明.[解] 类似结论如下:在等比数列{b n }中,如果m ,n ,p ,r ∈N +,且m +n +p =3r ,那么必有b m b n b p =b 3r .证明如下:设等比数列{b n }的公比为q ,则b m =b 1q m -1,b n =b 1q n -1,b p =b 1qp -1,b r =b 1qr -1,于是b m b n b p =b 1qm -1·b 1qn -1·b 1qp -1=b 31qm +n +p -3=b 31q3r -3=(b 1qr -1)3=b 3r ,故结论成立.类比推理在几何中的应用【例2】 如图所示,在平面上,设h a ,h b ,h c 分别是△ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c=1.证明此结论,通过类比写出在空间中的类似结论,并加以证明.思路点拨:三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.[解]p a h a =12BC ·p a12BC ·h a =S △PBCS △ABC,同理,p b h b =S △PAC S △ABC ,p c h c =S △PABS △ABC.∵S △PBC +S △PAC +S △PAB =S △ABC , ∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PABS △ABC=1.类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明:p a h a =13S △BCD ·p a13S △BCD ·h a =V P BCDV A BCD,同理,p b h b =V P ACD V A BCD ,p c h c =V P ABD V A BCD ,p d h d =V P ABCV A BCD.∵V P BCD +V P ACD +V P ABD +V P ABC =V A BCD , ∴p a h a +p b h b +p c h c +p d h d=V P BCD +V P ACD +V P ABD +V P ABCV A BCD=1.1.在本例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b ·cosC +c ·cos B 可类比四面体的什么性质?[解] 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.2.在本例中,若r 为三角形的内切圆半径,则S △=12(a +b +c )r ,请类比出四面体的有关相似性质.[解] 四面体的体积为V =13(S 1+S 2+S 3+S 4)r (r 为四面体内切球的半径,S 1,S 2,S 3,S 4为四面体的四个面的面积.1.平面图形与空间图形类比 平面图形 点 线 边长 面积 线线角 三角形 空间图形线面面积体积二面角四面体(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论. 类比推理在其他问题中的应用[探究问题]1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?[提示] 类比推理.2.已知以下过程可以求1+2+3+…+n 的和.因为(n +1)2-n 2=2n +1,n 2-(n -1)2=2(n -1)+1,……22-12=2×1+1,有(n +1)2-1=2(1+2+…+n )+n , 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比以上过程试求12+22+32+…+n 2的和. [提示] 因为(n +1)3-n 3=3n 2+3n +1,n 3-(n -1)3=3(n -1)2+3(n -1)+1,……23-13=3×12+3×1+1,有(n +1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n )+n , 所以12+22+…+n 2=13⎝ ⎛⎭⎪⎫n 3+3n 2+3n -3n 2+5n 2=2n 3+3n 2+n 6=n (n +1)(2n +1)6.【例3】 已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x 2a 2-y 2b2=1(a >0,b >0)具有类似特征的性质,并加以证明.思路点拨:双曲线与椭圆类比→椭圆中的结论→双曲线中的相应结论→理论证明[解] 类似性质:若M ,N 为双曲线x 2a 2-y 2b2=1(a >0,b >0)上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n ),(x ,y ),则N (-m ,-n ).因为点M (m ,n )是双曲线上的点, 所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2,则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.2.我们知道: 12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,将以上各式的左右两边分别相加,整理得n 2=2×[1+2+3+…+(n -1)]+n , 所以1+2+3+…+(n -1)=n (n -1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解] 已知: 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1,……n 3=(n -1)3+3(n -1)2+3(n -1)+1,将以上各式的左右两边分别相加,得(13+23+…+n 3)=[13+23+…+(n -1)3]+3[12+22+…+(n -1)2]+3[1+2+…+(n -1)]+n ,整理得n 3=3(12+22+…+n 2)-3n 2+3[1+2+…+(n -1)]+n , 将1+2+3+…+(n -1)=n (n -1)2代入整理可得12+22+…+n 2=2n 3+3n 2+n 6,即12+22+…+n 2=n (2n +1)(n +1)6.1.类比推理的特点(1)类比推理是从人们已经掌握的事物的特征,推测被研究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.(2)类比推理以旧的知识作基础,推测新的结果,具有发现的功能,因此类比在数学发现中具有重要作用,但必须明确,类比并不等于论证.2.类比推理与归纳推理的比较归纳推理 类比类推相同点 根据已有的事实,经过观察、分析、比较、联想,提出猜想,都属于归纳推理不同点特点 由部分到整体,由个别到一般 由特殊到特殊推理 过程从一类事物中的部分事物具有的属性,猜测该类事物都具有这种属性两类对象具有类似的特征,根据其中一类对象的特征猜测另一类对象具有相应的类似特征1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误B [根据合情推理可知,合情推理必须有前提有结论.]2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( )A.r 22 B.l 22 C.lr2D .无法确定C [扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2.] 3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.1∶8 [由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.]4.在计算“1×2+2×3+…+n (n +1)”时,有如下方法:先改写第k 项:k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),……n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)],相加得1×2+2×3+…+n (n +1)=13n (n +1)(n +2).类比上述方法,请你计算“1×3+2×4+…+n (n +2)”,将其结果写成关于n 的一次因式的积的形式.[解] 1×3=16×(1×2×9-0×1×7),2×4=16×(2×3×11-1×2×9),3×5=16×(3×4×13-2×3×11),……n (n +2)=16[n (n +1)(2n +7)-(n -1)n (2n +5)],各式相加,得1×3+2×4+3×5+…+n (n +2)=16n (n +1)(2n +7).。
高中数学北师大版选修1-2第三章《推理与证明》(章末小结)精品学案
第三章章末小结问题1:推理一般包括合情推理和演绎推理,它们都是日常学习和生活中经常应用的思维方法,合情推理包括归纳推理和类比推理,具有猜测和发现新结论、探索和提供解决问题的思路和方向的作用;演绎推理则具有证明结论,整理和构建知识体系的作用,是公理体系中的基本推理方法.问题2:三段论是演绎推理的主要形式,三段论的公式包括三个判断:第一个判断是大前提,它提供了一个一般性的原理;第二个判断是小前提,它指出了一种特殊情况,这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断——结论.问题3:分析法和综合法是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式;反证法是间接证明的一种基本方法,也是解决某些“疑难”问题的有力工具.问题4:解答证明题时,要注意是采用直接证明还是间接证明.直接证明时,综合法和分析法往往可以结合起来使用.综合法的使用是“由因索果”,分析法证明问题是“执果索因”,它们是两种思路截然相反的证明方法,分析法便于寻找解题思路,而综合法便于叙述,因此往往联合使用.分析法要注意叙述的形式:要证A,只要证明B,B应是A成立的充分条件.题型1:与数列结合的推理问题在数列{a n}中,a1=1,a n+1=,n∈N+,猜想这个数列的通项公式是什么?这个猜想正确吗?说明理由.【方法指导】先写出数列的前几项,寻找项与项数之间的关系,再作出猜想,最后证明.【解析】在数列{a n}中,a1=1,a2==,a3===,a4==,…,所以猜想{a n}的通项公式a n=.这个猜想是正确的.证明如下:因为a1=1,a n+1=,所以==+,即-=,所以数列{}是以=1为首项,为公差的等差数列,所以=1+(n-1)=n+,所以数列{a n}的通项公式a n=.【小结】归纳推理的常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性),本题是根据数列的前几项,猜测数列的通项公式,属于第一类型;这种猜测不一定正确,需进一步证明.题型2:与立体几何结合的推理问题在△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆半径r=,把上面的结论推广到空间,写出相类似的结论.【方法指导】【解析】取空间中有三条侧棱两两垂直的四面体A-BCD,且AB=a,AC=b,AD=c,可以将四面体补成一个长方体,则对角线长即为外接球的直径,即2R=,即R=,则此三棱锥的外接球的半径R=.【小结】此题考查的是平面到空间的类比推广.解答这类题目不能只满足结论形式上的相似,还必须是真命题,结论的推导还是要从平面结论下手,一般在推导空间的结论时要用到平面的结论,或利用类似平面结论推导的方法,如等面积类比等体积,直线类比平面,等等.题型3:与三角结合的证明问题证明:=-.【方法指导】要证明=成立,可证AD=BC,因此在证明本题时,可以先将右侧进行通分,然后证明其对应的“AD=BC”成立.【解析】(法一)分析法要证原式成立,即证=成立;(1)当cos α=sin α时,上式显然成立,故原式成立;(2)当cos α≠sin α时,即证2(1+sin α)(1+cos α)=(1+sin α+cos α)2,即证2+2sin α+2cos α+2sin αcos α=1+sin2α+cos2α+2sin α+2cos α+2sin αcos α,即证1=sin2α+cos2α成立,显然成立,故原式成立.(法二)综合法∵1=sin2α+cos2α,∴2+2sin α+2cos α+2sin αcos α=1+sin2α+cos2α+2sin α+2cos α+2sin αcos α,∴2(1+sin α)(1+cos α)=(1+sin α+cos α)2,∴=,故原式成立.【小结】方法一用了分析法,思路清晰、简洁;方法二利用的是综合法,它建立在方法一的基础上,描述简洁.题型4:用反证法证明问题用反证法证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.【方法指导】【解析】假设方程f(x)=0在区间[a,b]上至少有两个根,设α,β为其中的两个实根,因为α≠β,不妨设α>β,又因为函数f(x)在区间[a,b]上是增函数,所以f(α)>f(β).这与假设f(α)=f(β)=0矛盾,所以方程f(x)=0在区间[a,b]上至多只有一个实数根.【小结】(1)当遇到否定性、唯一性、无限性、至多、至少等类型问题时,常用反证法.(2)用反证法证明的步骤:①否定结论⇒A⇒B⇒C.②而C不合理③因此结论成立.1.(2012年·全国卷)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为().A.8B.6C.4D.3【解析】结合已知中的点E,F的位置,进行推理可知在反射的过程中,直线是平行的,那么利用平行关系,作图(如下),可以得到回到E点时,需要碰撞6次即可.【答案】B2.(2013年·湖北卷)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…第n个三角形数为=n2+n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k 边形数中第n个数的表达式:三角形数N(n,3)=n2+n,正方形数N(n,4)=n2,五边形数N(n,5)=n2-n,六边形数N(n,6)=2n2-n,……可以推测N(n,k)的表达式,由此计算N(10,24)=.【解析】首先将三、四、五、六边形数中第n个数的表达式分别通分,化成分母统一为2的形式如下:三角形数:N(n,3)=n2+n==,正方形数:N(n,4)=n2=,五边形数:N(n,5)=-n=,六边形数:N(n,6)=2n2-n=,……根据以上规律总结,推测:N(n,k)=.故N(10,24)==1000.【答案】1000一、选择题1.下面几种推理是合情推理的是().①由正三角形的性质类比出正三棱锥的有关性质;②由正方形、矩形的内角和是360°,归纳出所有四边形的内角和都是360°;③三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n边形内角和是(n-2)·180°;④小李某次数学模块考试成绩是90分,由此推出小李的全班同学这次数学模块考试的成绩都是90分.A.①②B.①②③C.①②④D.②③④【解析】本题主要考查对合情推理(归纳推、类比推理)的判断.①是类比推理,②③是归纳推理,故选B.【答案】B2.下图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照引规律闪烁,下一个呈现出来的图形是().【解析】本题考查学生对图形变化规律的归纳,由图可知该五角星对角上亮的两盏花灯依次按逆时针方向亮一盏,故下一个呈现出来的图形是A中所示的图形,故选A.【答案】A3.在证明命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的过程:“cos4θ-sin4θ=(cos2θ+sin2θ)(cos2θ-sin2θ)=cos2θ-sin2θ=cos 2θ”中应用了().A.分析法B.综合法C.分析法和综合法D.间接证法【答案】B4.已知a,b,c∈R,a+b+c=0,abc>0,T=++,则().A.T>0B.T<0C.T=0D.无法判断T的正负【解析】∵a+b+c=0,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac=0,即2ab+2bc+2ac=-(a2+b2+c2)<0,∵abc>0,∴上述不等式两边同乘以,得T=++=-<0,故选B.【答案】B5.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足.”所以,名不正,则民无所措手足.上述推理用的是().A.类比推理B.归纳推理C.演绎推理D.一次三段论【解析】本题考查应用三段论解决问题.对于复杂的论证,总是采用一连串的三段论,把前一个三段论的结论作为下一个三段论的前提.本题是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式,故选C.【答案】C6.若f(n)=1+++…+(n∈N+),则当n=2时,f(n)=().A.1+B.C.1++++D.以上答案均不对【解析】当n=2时,2n+1=5,所以加到.【答案】C7.某纺织厂的一个车间有技术工人m(m∈N+)名,编号分别为1、2、3、…、m,有n(n∈N+)台织布机,编号分别为1、2、3、…、n,定义记号a ij:若第i名工人操作了第j号织布机,规定a ij=1,否则a ij=0.则等式a41+a42+a43+…+a4n=3的实际意义是().A.第4名工人操作了3台织布机B.第4名工人操作了n台织布机C.第3名工人操作了4台织布机D.第3名工人操作了n台织布机【解析】本题考查学生阅读理解,归纳推理的能力.根据即时定义,a41+a42+a43+…+a4n=3中的第一下标4表示第4名工人进行操作,第二下标1、2、…、n表示第1号织布机、第2号织布机、…、第n号织布机,根据规定可知这名工人操作了3台织布机,故选A.【答案】A8.若函数y=f(x)的定义域为D,若对任意的x1,x2∈D都有|f(x1)-f(x2)|<1,则称函数y=f(x)为“Storm”函数.那么下列函数是“Storm”函数的是().A.f(x)=x2(x∈[-1,2])B.f(x)=x3(x∈[0,1])C.f(x)=-2x+1(x∈[-1,0])D.f(x)=(x∈[1,3])【解析】根据定义知|f(x1)-f(x2)|小于等于函数f(x)的最大值与最小值之差的绝对值,故若判断一个函数是否是“Storm”函数,只需看这个函数的最值之差的绝对值是否小于1即可.在D选项中,因为f(x)=在x∈[1,3]上是减函数,所以m=f(3)=,M=f(1)=1,所以|M-m|=|1-|=<1,所以该函数是“Storm”函数.【答案】D9.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,如图(2);如此继续下去,则截止到第n个图共挖去小正方形().A.(8n-1)个B.(8n+1)个C.(8n-1)个D.(8n+1)个【解析】本题主要考查通过观察进行归纳,并猜想出结论的过程.第1个图挖去1个,截止到第2个图共挖去(1+8)个,截止到第3个图共挖去(1+8+82)个,…,截止到第n个图共挖去1+8+82+…+8n-1=个,故选C.【答案】C10.把数列{2n+1}依次按第一个括号中有一个数,第二个括号中有两个数,第三个括号中有三个数,第四个括号中有四个数,第五个括号中有一个数,…,循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…则第104个括号内各数之和为().A.2036B.2048C.2060D.2072【解析】从第1个括号到第104个括号,总共有26个循环,每个循环共有1+2+3+4=10个数字,∴从第一个括号到第104个括号共有260个数字,第104个括号内各数之和为(2×257+1)+(2×258+1)+(2×259+1)+(2×260+1)=2072.【答案】D二、填空题11.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的大前提为.【解析】由演绎推理三段论可得.【答案】一切奇数都不能被2整除12.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出空间中下列结论:①垂直于同一条直线的两条直线互相平行,②垂直于同一个平面的两个平面互相平行,③垂直于同一条直线的两个平面互相平行,④垂直于同一个平面的两条直线互相平行.其中正确的结论的序号是.【解析】本题主要考查用类比推理判断空间中直线与平面的位置关系.因为垂直于同一条直线的两条直线可能平行、相交、异面,故①不正确,应排除A、D;因为垂直于同一个平面的两个平面可能平行或相交,故②不正确,应排除B,易知③④均正确.【答案】③④13.已知f(n)=1+++…+(n∈N+),计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,由此推测:当n≥2时,有.【答案】f(2n)>14.若<<0,则下列四个结论:①|a|>|b|,②a+b<ab,③+>2,④<2a-b.其中正确的是.【解析】∵<<0,∴b<a<0,∴-b>-a>0,∴|b|>|a|,故①错误.∵b<a<0,显然②正确.又∵>0,>0,且≠,∴③正确.又∵-(2a-b)=-2a+b==<0,∴<2a-b,∴④正确.【答案】②③④15.设O是△ABC内一点,△ABC三边上的高分别为h A,h B,h C,O到三边的距离依次为l a,l b,l c,则++=1,类比到空间,O是四面体ABCD内一点,四顶点到对面的距离分别为h A,h B,h C,h D,O 到这四个面的距离依次为l a,l b,l c,l d,则有.【答案】+++=1三、解答题16.有10只猴子共分了56个香蕉,每只猴子至少分到1个香蕉,最多分到10个香蕉,试证:至少有两只猴子分到同样多的香蕉.【解析】假设10只猴子分到的香蕉都不一样多,∵每只猴子最少分到一个香蕉,至多分到10个香蕉,∴只能是分别分到1,2,3,…,10个香蕉.共分了1+2+3+…+10=55(个),这与共分了56个香蕉相矛盾,故至少有两只猴子分得同样多的香蕉.17.已知函数f(x)=a x+(a>1).(1)求证:函数f(x)在(-1,+∞)上为增函数;(2)用反证法证明:方程f(x)=0没有负数根.【解析】(1)任取-1<x1<x2,则f(x1)-f(x2)=+-(+)=(-1)+=(-1)+,∵-1<x1<x2,∴x1-x2<0.又a>1,∴<1,且>0,x1+1>0,x2+1>0,∴(-1)+<0,即f(x1)<f(x2),∴函数f(x)在(-1,+∞)上为增函数.(2)设存在x0<0(x0≠-1)满足f(x0)=0,则=-,且0<<1,∴0<<1,解得<x0<2.与假设x0<0矛盾,故方程f(x)=0没有负数根.18.已知a,b,c是全不相等的正实数,求证:++>3.【解析】∵a,b,c全不相等,∴与,与,与全不相等,∴+>2,+>2,+>2.三式相加得+++++>6,∴(+-1)+(+-1)+(+-1)>3,即++>3.19.如图,已知P A⊥矩形ABCD所在平面,M,N分别是AB,PC的中点.求证:(1)MN∥平面P AD,(2)MN⊥CD.【解析】(1)取PD的中点E,连接AE,NE.∵N,E分别为PC,PD的中点,∴EN为△PCD的中位线,∴EN CD,AM=AB,又四边形ABCD为矩形,∴CD∥AB,且CD=AB.∴EN∥AM,且EN=AM.∴四边形AENM为平行四边形,∴MN∥AE,又MN⊄平面P AD,AE⊂平面P AD,∴MN∥平面P AD.(2)P A⊥矩形ABCD所在平面,∴CD⊥P A,又CD⊥AD,P A∩AD=A,∴CD⊥平面P AD,又AE⊂平面P AD,∴AE⊥CD.又∵MN∥AE,∴MN⊥CD.20.已知:sin230°+sin290°+sin2150°=,sin25°+sin265°+sin2125°=.通过观察上述两等式的规律,请你写出一般性的命题:=(*)并给出(*)式的证明.【解析】一般性命题:sin2α+sin2(α+60°)+sin2(α+120°)=.下面证明此命题:左边=++=-[cos 2α+cos(2α+120°)+cos(2α+240°)]=-(cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2α·cos 240°-sin 2αsin 240°)=-(cos 2α-cos 2α-sin 2α-cos 2α+sin 2α)==右边.即命题得证.21.在数列{a n}中,a1=1,a2=1,a n+1=λa n+a n-1.(1)若λ=-,b n=a n+1-αa n,数列{b n}是公比为β的等比数列,求α和β的值.(2)若λ=1,基于事实:如果d是a和b的公约数,那么d一定是a-b的约数.研讨是否存在正整数k和n,使得ka n+2+a n与ka n+3+a n+1有大于1的公约数.如果存在,求出k和n;如果不存在,请说明理由.【解析】(1)∵{b n}是公比的β的等比数列,∴b n=βb n-1,∴a n+1-αa n=β(a n-αa n-1),即a n+1=(α+β)a n-αβa n-1.又a n+1=-a n+a n-1,∴∴α、β是方程x2+x-1=0的两根.∴或(2)假设存在正整数k,n,使得ka n+2+a n与ka n+3+a n+1有大于1的公约数d,则d也是(ka n+3+a n+1)-(ka n+2+a n),即k(a n+3-a n+2)+(a n+1-a n)的约数.依题设a n+3-a n+2=a n+1,a n+1-a n=a n-1,∴d是ka n+1+a n-1的约数,从而d是ka n+2+a n与ka n+1+a n-1的公约数.同理可得d是ka n+a n-2的约数,依此类推,d是ka4+a2与ka3+a1的约数.∵a1=1,a2=1,∴a3=2,a4=3.于是ka4+a2=3k+1,ka3+a1=2k+1.又∵(3k+1)-(2k+1)=k,∴d是k和2k+1的约数,∴d是(2k+1)-k,即(k+1)的约数.从而d是(k+1)-k即1的约数,这与d>1矛盾.故不存在k,n,使ka n+2+a n与ka n+3+a n+1有大于1的公约数.。
北师版数学高二选修1-2课件 归纳与类比
an=a1qn-1
性质 若m+n=p+q,则am+an=ap+aq 若m+n=p+q,则am·an=ap·aq
跟踪训练3 若数列{an}(n∈N+)是等差数列,则有数列bn=a1+a2+n …+an (n∈N+)也是等差数列;类比上述性质,相应地:若数列{cn}是等比数列, 且cn>0,则有数列dn=_n_c_1_c_2c_3_…_c_n_(n∈N+)也是等比数列.
解答
(1)类比推理的一般步骤
反思与感悟
(2)中学阶段常见的类比知识点:等差数列与等比数列,空间与平面,圆与 球等等,比如平面几何的相关结论类比到立体几何的相关类比点如下:
平面图形 点
直线 边长 面积 三角形 线线角
空间图形 直线 平面 面积 体积 四面体 面面角
跟踪训练4 如图,在长方形ABCD中,对角线AC与两邻边所成的角分别 为α,β,cos2α+cos2β=1,则在立体几何中,给出类比猜想并证明.
答案
梳理
(1)定义:由两类不同对象具有某些 类似 的特征在此基础上,根据一类对 象的其他特征,推断 另一类对象 也具有类似的其他特征的推理称为类比 推理(简称类化). (2)特征:由特殊 到 特殊 的推理.
知识点三 合情推理
思考1
归纳推理与类比推理有何区别与联系? 答案 区别:归纳推理是由特殊到一般的推理,而类比推理是 由特殊到特殊的推理. 联系:在前提为真时,归纳推理与类比推理的结论都可真可假.
C.n2
D.n
解析 答案
反思与感悟
图形中归纳推理的特点及思路 (1)从图形的数量变化规律入手,找到数值变化与数量的关系. (2)从图形结构变化规律入手,找到图形的结构每发生一次变化后,与上 一次比较,数值发生了怎样的变化.
北师大版选修1-2高中数学第三章推理与证明 反证法名师点拨课件
即假设结论的反面成立; (2)归谬:从假设出发,经过推理论证, 得出矛盾,这是反证法的核心,在推理 论证的过程中要有意识地制造矛盾和发 现矛盾.
用反证法证明问题时一般叙述过程是: ①否定结论⇒A⇒B⇒C; 与课本公理抵触 与已学定理不相容 与本题题设冲突 ②而 C 不合理 与临时假定违背 自相矛盾 与事实矛盾 ③因为结论不能与事实矛盾,故结论成立.
1.反证法的原理
反证法的原理是“否定之否定等于肯
定”. 反证法的主要依据是逻辑中的排中 律.排中律的一般表现形式是:或者是 A,或者是非A,即在同一讨论过程中, A和非A有一个且仅有一个是对的.不能 有第三种情形出现.
2.反证法证题的一般步骤 (1)假设:假设所要证明的结论不成立,
【错解】 证明:假设方程 x2-2x+5-p2=0 有实根, 由已知实数 p 满足不等式(2p+1)(p+2)<0,
◎已知实数p满足不等式(2p+1)(p+2)<0, 1 2 2 2 2 解得- 2< p < - ,而关于 x 的方程 x - 2 x + 5 - p = 0的 用反证法证明:关于 x 的方程 x - 2 x + 5 - p 2 =0无实根. 根的判别式 Δ=4(p2-4).
反证法可以证明的命题范围相当广
泛.如:唯一性问题,无限性问题,肯 定性问题,否定性问题,存在性问题, 不等式问题,等式问题,函数问题,整 除问题,几何问题等.常见的基本题型 是: (1)一些基本定理; (2)“否定性”命题; (3)“唯一性”命题; (4)“必然性”命题; (种不同
情况,需对各种不同情况一一导出矛盾, 加以否定,才能使原判断得到充分肯 定. 2.有些待证命题的相反判断虽然只有一 种情况,但在证明过程中有必要进行分 类,首先要求分类必须详尽无遗漏,并 且就各类一一导出矛盾.
高中数学第三章推理与证明1.2类比推理课件北师大版选修1_2
1 2 34 5
解析 答案
2.下面使用类比推理,得出的结论正确的是 A.若“a·3=b·3,则a=b”类比出“若a·0=b·0,则a=b” B.“若(a+b)c=ac+bc”类比出“(a·b)c=ac·bc”
√C.“若(a+b)c=ac+bc”类比出“a+c b=ac+bc(c≠0)”
D.“(ab)n=anbn”类比出“(a+b)n=an+bn”
解析 显然A,B,D不正确,只有C正确.
1 2 34 5
解析 答案
3.根据“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体 的内切球切于四面体 A.各正三角形内一点 B.各正三角形的某高线上的点
√C.各正三角形的中心
D.各正三角形外的某点
解析 正四面体的四个面都是正三角形,其内切球与正四面体的四个 面相切于各正三角形的中心.
梳理 合情推理的定义及分类 定义:根据实验和实践的结果、个人的经验和 直觉 、已有的事实 和正 确的结论(定义、公理、定理等),推测出某些结果的推理方式. 分类:常见的合情推理有 归纳 推理与 类比 推理.
[思考辨析 判断正误] 1.由平面三角形的性质推测四面体的性质是类比推理.( √ ) 2.类比推理是从特殊到特殊的推理.( √ ) 3.合乎情理的推理一定是正确的.( × )
则 b2=ac,即 c2-a2=ac,可得 e2-e=1,又由 e>1,则 e=
5+1 2.
解析 答案
达标检测
1.下列平面图形中,与空间的平行六面体作为类比对象较合适的是
A.三角形
√C.平行四边形
B.梯形 D.矩形
解析 因为平行六面体相对的两个面互相平行,类比平面图形,则相 对的两条边互相平行,故选C.
③由“平面内,垂直于同一直线的两直线相互平行”,类比得到“空
【精编】北师大版高中数学选修1-2课件第3章推理与证明本章整合-精心整理
如:������������△△������������������������12������������12
=
������������1 ������������2
·��������������������������1������1 ������△������������2������2
证明:不妨设直线 a 与平面 α 相交,假设直线 b 不与平面 α 相交,则 b⫋α 或 b∥平面 α.
①若 b⫋α,由 a∥b,a⊈α,得 a∥α 或 a⫋α,这与“a 与平面 α 相交”矛盾. ②若 b∥α,则平面 α 内有直线 b',使 b'∥b. 而 a∥b,故 a∥b',因为 a⊈α,所以 a∥α,这与“a 与平面 α 相交”矛盾. 综上所述,假设不成立,则直线 b 与平面 α 只能相交.
只需证(2cos α-1)2≥0.上式显然成立. 所以原不等式成立,即 2sin 2α≤1s-cino���s���������.
专题一
专题二
专题三
专题四
专题四 反证法
1.反证法是间接证明的一种基本方法,它不是直接证明结论,而是先否 定结论,在否定结论的基础上,运用正确的推理,导出矛盾,从而肯定结论的 真实性.在证明一些否定性命题、唯一性命题或含有“至多”、“至少”等字 句的命题时,正面证明较难,可考虑反证法,即“正难则反”.
·������������������������12
专题一
专题二
专题三
专题四
专题三 综合法与分析法
综合法和分析法是两种思路截然相反的证明方法,分析法既可用于寻 找解题思路,也可以是完整的证明过程.分析法与综合法相互转换、相互渗 透,充分利用这一辩证关系,在解题中综合法与分析法联合运用,转换解题思 路,增加解题途径.
高中数学 第三章 推理与证明 高考中的类比推理拓展资料素材 北师大版选修1-2
高考中的类比推理大数学家波利亚说过:“类比是某种类型的相似性,是一种更确定的和更概念性的相似。
”应用类比的关键就在于如何把关于对象在某些方面一致性说清楚。
类比是提出新问题和作出新发现的一个重要源泉,是一种较高层次的信息迁移。
例1、(2006湖北)半径为r 的圆的面积2)(r r S ⋅=π,周长r r C ⋅=π2)(,若将r 看作),0(+∞上的变量,则r r ⋅=⋅ππ2)'(2, ①,①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数。
对于半径为R 的球,若将R 看作看作),0(+∞上的变量,请你写出类似于①的式子:_________________,②,②式可用语言叙述为___________.解:由提供的形式找出球的两个常用量体积、表面积公式,类似写出恰好成立,,34)(3R R V π=24)(R r S π=. 答案:①)'34(3R π.42R π= ②球的体积函数的导数等于球的表面积函数。
点评:主要考查类比意识考查学生分散思维,注意将圆的面积与周长与球的体积与表面积进行类比例2.(2000年上海高考第12题)在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+……+a n =a 1+a 2+……+a 19-n (n <19,n ∈N *)成立。
类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式 成立。
分析:这是由一类事物(等差数列)到与其相似的一类事物(等比数列)间的类比。
在等差数列{a n }前19项中,其中间一项a 10=0,则a 1+a 19= a 2+a 18=……= a n +a 20-n = a n +1+a 19-n =2a 10=0,所以a 1+a 2+……+a n +……+a 19=0,即a 1+a 2+……+a n =-a 19-a 18-…-a n +1,又∵a 1=-a 19, a 2=-a 18,…,a 19-n =-a n +1,∴ a 1+a 2+……+a n =-a 19-a 18-…-a n +1= a 1+a 2+…+a 19-n 。
高中数学 第三章 推理与证明 归纳推理教案 北师大版选修1-2
3.1归纳与类比归纳推理教材依据“归纳推理”是北京师范大学出版社出版的普通中学课程标准实验教科书数学(选修1-2)第三章第一节的内容。
教学目标:1.知识与技能目标:理解归纳推理的原理,并能运用解决一些简单的问题。
2.过程与方法目标:通过自主、合作与探究实现“一切以学生为中心”的理念。
3.情感、态度与价值观:感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
教学重点:归纳推理的原理教学难点:归纳推理的具体应用。
教法学法:自主、合作探究教学教学准备:多媒体电脑、课件、空间多面体模型等教学过程:1.创设情景:1.情景㈠:苹果落地的故事,正是基于这个发现,牛顿大胆地猜想,然后小心求证,终于发现了伟大的“万有引力定理”思考:整个过程对你有什么启发?教师:“科学离不开生活,离不开观察,也离不开猜想和证明”。
2.情景㈡:陈景润和他在“歌德巴赫猜想”证明中的伟大成就:任何一个大于4的偶数都可以写成两个奇素数之和。
如:6=3+3,8=3+5,10=5+5, 12=5+7,14=7+7, 16=5+11,…,1000=29+971,1002=139+863,……2.探求研究:探究1.学生根据自备的多面体进行观察,统计多面体的面数、顶点数和棱数;(学生实验与教师课件演示结合)探究2.观察、猜想它们之间是否有稳定的数量关系?探究3.整理所得结论,并尝试证明;若得证,则改写成定理,否则修改猜想,进一步尝试证明。
教师指导,合作交流,归纳:22V V V =棱柱棱台棱锥=-,32E E E =棱柱棱台棱锥=,1F F F 棱柱棱台棱锥==+,F+V-E=2等等,其中“F+V -E=2”为“欧拉公式”。
3.概念讲解结合情景问题和探究过程所得,教师引导学生完成归纳推理的概念及分析。
定义:根据一类事物的部分事物具有某种属性,推断该类事物的每一个都具有这种属性的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).说明:⑴归纳推理的作用:发现新事实,获得新结论;(2)归纳推理的一般步骤:试验、观察→概括、推广→猜测一般性结论→证明;⑶归纳推理的结论不一定成立。
高中数学北师大版选修1-2教案-1.1归纳推理
教学准备1. 教学目标1.知识与技能:(1)结合已学过的数学实例,了解归纳推理的含义;(2)能利用归纳进行简单的推理;(3)体会并认识归纳推理在数学发现中的作用.2.方法与过程:归纳推理是从特殊到一般的一种推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
3.情感态度与价值观:通过本节学习正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析事物、发现事物之间的质的联系的良好品质,善于发现问题,探求新知识。
2. 教学重点/难点教学重点:了解归纳推理的含义,能利用归纳进行简单的推理。
教学难点:培养学生“发现—猜想—证明”的归纳推理能力。
3. 教学用具4. 标签教学过程(一)、引入新课归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。
归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。
也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。
拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。
由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。
”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。
这里就有着归纳推理的运用。
从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理(二)、哥德巴赫猜想(见课件)(三)、例题探析例1、在一个凸多面体中,试通过归纳猜想其顶点数、棱数、面数满足的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1归纳与类比
归纳推理
教材依据
“归纳推理”是北京师范大学出版社出版的普通中学课程标准实验教科书数学(选修1-2)第三章第一节的内容。
教学目标:
1.知识与技能目标:理解归纳推理的原理,并能运用解决一些简单的问题。
2.过程与方法目标:通过自主、合作与探究实现“一切以学生为中心”的理念。
3.情感、态度与价值观:感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
教学重点:归纳推理的原理
教学难点:归纳推理的具体应用。
教法学法:自主、合作探究教学
教学准备:多媒体电脑、课件、空间多面体模型等
教学过程:
1.创设情景:
1.情景㈠:苹果落地的故事,正是基于这个发现,牛顿大胆地猜想,然后小心求证,终于发现了伟大的“万有引力定理”
思考:整个过程对你有什么启发?
教师:“科学离不开生活,离不开观察,也离不开猜想和证明”。
2.情景㈡:陈景润和他在“歌德巴赫猜想”证明中的伟大成就:任何一个大于4的偶数都可以写成两个奇素数之和。
如:6=3+3,8=3+5,10=5+5, 12=5+7,14=7+7, 16=5+11,…,1000=29+971,1002=139+863,……
2.探求研究:
探究1.学生根据自备的多面体进行观察,统计多面体的面数、顶点数和棱数;(学生实验与教师课件演示结合)
探究2.观察、猜想它们之间是否有稳定的数量关系?
探究3.整理所得结论,并尝试证明;若得证,则改写成定理,否则修改猜想,进一步尝试证明。
教师指导,合作交流,归纳:
22V V V =棱柱棱台棱锥=-,3
2
E E E =
棱柱棱台棱锥=,1F F F 棱柱棱台棱锥==+,F+V-E=2等等,其中
“F+V -E=2”为“欧拉公式”。
3.概念讲解
结合情景问题和探究过程所得,教师引导学生完成归纳推理的概念及分析。
定义:根据一类事物的部分事物具有某种属性,推断该类事物的每一个都具有这种属性的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).
说明:⑴归纳推理的作用:发现新事实,获得新结论;(2)归纳推理的一般步骤:试验、观察→概括、推广→猜测一般性结论→证明;⑶归纳推理的结论不一定成立。
4.例题解析
例1:在数列{}n a 中,()*1121,,2
n
n n a a a n N a +==∈+猜想这个数列的通项公式? 解析:先由学生计算:234521222
,,,32456
a a a a ===== 归纳:*2
()1
n a n N n =
∈+ 说明(学生完成):⑴有整数和分数时,往往将整数化为分数;⑵当分子分母都在变化时,往往统一分子(或分母),再寻找另一部分的变化规律.
例2、(拓展)问:如果面积是一定的,什么样的平面图形周长最小?试猜测结论。
教师:设定任务一:常见多边形面积一定时,计算其周长; 任务二:归纳、猜想一般性结论。
推广 观察
归纳
计算 猜想 5.分层练习:
1.由“铜、铁、铝、金等金属能导电”,你能归纳出什么结论? 2.观察下列式子,归纳结论:
32111==,332129(12)+==+,333212336(123)++==++
333321234100(1234)+++==+++………………
问:3
3
3
3123?n +++
+=
3.右图中5个图形及相应点的个数 的变化规律,试猜测第n 个图形中有 点;
4.已知数列{}n a 中,*111,()1n
n n
a a a n N a +==∈+且,试归纳这个数列的通项公式。
答案:1.金属导电;2.3
3
3
32123(123)n n +++
+=+++⋅⋅⋅+;
3.2
1n n -- ; 4.*1
()n a n N n
=∈. 6.课时小结(师生共同) 1什么是归纳推理?
2归纳推理的一般步骤:试验、观察→概括、推广→猜测一般性结论→证明。
布置作业: (补充):
{}1.n n n n n n a n S a S na a =-已知的前项和与满足:,试归纳出其通项公式
拓展延伸:
1.工匠鲁班类比带齿的草叶和蝗虫的牙齿,发明了锯;
2.科学家对火星进行研究,发现火星与地球有许多类似的特征:
⑴火星也绕太阳运行,绕轴自转的行星; ⑵有大气层,在一年中也有季节变更; ⑶火星上大部分时间的温度适合地球上某些已知生物的生存等等; 科学家猜想;火星上也可能有生命存在。
说明:以上两练习使用的是类比推理。
目的是知识上承上启下,把本节知识延伸,既拓宽了学生视野,也为下一节“类比推理”的教学作了铺垫。
教后反思:
⑴要实现数学新知识的建构学习,教师要创设适当的情境,情境应符合实际.包括生活场景的实际,数学教学内容的实际,学生知识状况的实际,学生思维发展的实
际等等。
⑵学生通过“经历”,“体会”,“感受”,最后形成概念的过程学习,充分体现了以学生为本的现代教育观;同时练习和作业的分层设计尽量满足多样化的学习需求做到因材施教,促进全体的参与。
附:板书设计。