可吸入颗粒物的去除技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可吸入颗粒物控制技术研究热点与趋势

更新时间:2008-12-25 11:03来源:环境污染与防治作者:阅读:325网友评论0条

摘要:综述了可吸入颗粒物的常规除尘技术和细颗粒凝并技术、联合脱除技术、电联合处理技术等新的控制技术。通过对可吸入颗粒物控制技术的研究现状分析,指出常规除尘技术和这些新的控制技术的应用局限性,在综合分析有关文献的基础上,提出利用纺织品滤料纤维改形(改性)后得到高效低阻的异型纤维材料来脱除可吸入颗粒物的新思路。

可吸入颗粒物指悬浮在空气中,空气动力学当量直径≤10μm的颗粒物(PM2.5)。可吸入颗粒物污染已成为大气环境污染的突出问题,并日益引起人们高度重视。可吸入颗粒受到的主要作用一般是气体扩散和湍流扩散,由于它质量微小且对气流跟随性极好,故在常规除尘设备中,几乎总是跟随气流一起运动,难于从气流中分离出来。此外由于可吸入颗粒粒径小、比表面积大,因而其吸附性很强,容易成为空气中各种有毒物质的载体,特别是容易吸附多环芳烃、多环苯类和重金属及微量元素等,是多种污染物(如重金属、酸性氧化物、有害有机物等)的载体和催化剂,有时能成为多种污染物的集合体[1,2]。

因此,研究可吸入颗粒物的控制技术具有重要的意义。目前颗粒污染物控制技术的重点是如何提高细微颗粒物的分级效率,解决问题的思路有二:一是促使小颗粒变大颗粒;二是创造条件提高小颗粒的动力学捕集作用。小颗粒变大颗粒可以通过凝并也可以通过凝结作用,且在国外蒸汽凝结在冶金行业已有成功应用的案例。本文旨在对脱除可吸入颗粒物的控制技术做一定的归纳总结,以方便相关领域的科研工作。

1控制技术的研究热点与趋势

1.1常规除尘技术

目前工业上应用的除尘方法有干法和湿法两大类,传统的湿式除尘设备主要有水膜、泡沫、冲激、水浴等除尘器。湿法除尘存在物料难以回收、易造成污染转移以及高温环境下会造成能量浪费等缺点;干法除尘设备主要有旋风除尘器、布袋除尘器、电除尘器和颗粒层除尘器等。电除尘器对颗粒的比电阻要求严格;旋风除尘器处理粗粉尘颗粒效果较好,而对于微米级和亚微米级粒子其分离能力很低;多孔陶瓷高温除尘过滤器的除尘效率高,可达99 %以上,能除去粒径5μm以上的尘粒,但清灰比较困难;而移动颗粒层过滤除尘技术被认为是继陶瓷过滤器之后最具发展前途的高温除尘技术之一,但在高温下运行时,床层容易堵塞[3]。

为了弥补传统的控制技术在脱除超细颗粒物时的不足,细颗粒凝并技术、联合脱除技术、电催化氧化联合处理技术等新控制技术将成为未来发展的趋势,本文对这些技术的国内外研究现状进行了综述。

1.2新控制技术

1.2.1细颗粒凝并技术

从控制角度来看,清除可吸入颗粒可以通过内场力或外场力作用来使其发生凝并或团聚,其结果是使粒子的数目减少、粒子的有效直径增大,它易于被常规的分离设备分离,从而提高整体的清除效率。超细颗粒物凝并技术主要有声波凝并、电凝并、热凝并、化学凝并、磁凝并、光凝并和湍流边界层凝并等[3-7]。

声波凝并通过外加声波的作用使细颗粒发生碰撞团聚长大,团聚后产生的细颗粒团聚物的平均粒径大,从而通过常规的除尘设备将其清除,达到控制细颗粒排放的目的。通过声波团聚的方法控制超细颗粒物有较好的可行性和实际效果。但由于声波凝并问题本身的复杂性和超细颗粒物测试手段的局限性,目前还没有形成一个完整的体系,使得声波团聚超细颗粒物技术仍然处在实验探索和理论研究阶段。同时姚刚[6]指出,由于产生几十甚至几百千赫的声波,可能消耗大量能源,且产生很大的噪音等负面效果。

化学凝并是使用固体吸附剂捕获超细颗粒物的除尘方法,主要是通过物理吸附和化学反应相结合的机理来实现的。温绍国等[8]通过实验表明,凝聚剂存在下的凝聚是小粒径胶粒先凝并成较大的胶粒, 同时大粒径的胶粒凝并成更大的胶粒。张军营等[9]指出,在炉膛中加入固态吸附剂,可以使细小颗粒团聚形成较大颗粒,同时也可以抑制成核,吸收痕量金属元素,目前化学凝并主要采用硅土、矾土、石灰石等作为吸附剂,但在脱除0~5μm的可吸入颗粒物的同时也产生了其他的重金属颗粒污染物。

热凝并是指超细颗粒物在没有外力、温度较高的环境下产生明显的成核和凝并的现象。按经典的热团聚方程计算,团聚所用的时间约要9 h以上。由于热团聚过程缓慢, 因而难以在工业中得到应用。

电凝并[10]是通过增强微细颗粒的荷电能力,促进微细颗粒以电泳方式到达飞灰颗粒的表面,从而增强颗粒间的凝并效应。GAUNT等[11]指出,荷电水雾来捕集湿度较大的微细粉尘是一种较好的方法。荷电水雾振弦除尘技术是将液滴荷电技术与振弦除尘技术相结合,以求得对微细粉尘的高效捕集,而且能耗低、结构简单,是一种新型高效除尘技术[12]。用电凝并除尘器收集亚微米级粉尘的研究在理论和实验方面都取得了突破性进展[13]。虽然采用电团聚技术能够使电除尘器除去超细颗粒物的效率大为提高。但除尘极板捕捉的颗粒累计一定数量后, 效率大大降低, 从而限制了电凝并技术在工程中的应用。

磁凝并技术利用磁力脱除磁性颗粒物,而对无明显磁性的颗粒物,则通过磁化或者添加磁性颗粒物,利用磁性与非磁性颗粒物在磁场中运动的明显差异,增大颗粒物的碰撞与结合的几率,以便得到尺寸更大的颗粒团,从而便于进一步脱除超细颗粒物[14]。谭言毅等[15]运用单丝模型分析了高梯度磁分离器的粒子捕集机理。LUA等[16]在基于单丝模型的磁力除尘技术相关研究中,单丝模型没有考虑丝与丝之间的作用以及吸附在丝上粒子之间的作用,蓝惠霞[17]认为,在单丝模型中顺磁性材料的磁化系数为常数。磁力除尘技术不能大规模工业应用的主要原因是对弱磁性颗粒的收集及收集表面的清除还存在问题。

湍流凝并是指超细颗粒物在湍流射流中有明显的成核和凝聚现象,而且成核和凝聚的颗粒将进一步长大。边界层凝并是由于横向速度实用梯度引起的碰撞而导致的梯度凝并。在湍流流动中,同时存在热凝并、梯度凝并和湍流凝并,并且随着超细颗粒物直径的增大,此三种凝并作用依次增强。湍流脉动速度会促使颗粒碰撞并发生凝并,在湍流流动的边界层内,对于颗粒直径较小的微粒,由于横向速度梯度引起的凝并效果也非常明显。湍流团聚和梯度团聚在高温下或雷诺数较大时效果才比较明显,因此, 这类团聚技术有一定的局限性。

光凝并是指应用光辐射的原理促进颗粒物凝并。光凝并一般遵循如下过程:入射电子束→等离子体膨胀→等离子体云膨胀→成核→冷凝膨胀长大→凝结+不规则片形状→凝并→凝胶化。虽然通过改变激光传播的折射角、光的强度等多种参数可以促使超细颗粒发生团聚,但其成本相当大,目前还不可能大规模利用。

1.2.2联合脱除技术

为了满足新的环保标准要求,有些电厂利用布袋除尘器对静电除尘器进行了改造,运用联合除尘技术的思想,研发了电袋复合式除尘器、静电增强颗粒层除尘器等新型设备。静电布袋复合式除尘器先利用静电除尘器将粒径在10 μm以上的粉尘除去,再利用布袋除尘器滤料自身固有以及附着在滤料表面的粉尘层的过滤特性,截留烟气中具有一定颗粒度的粉尘。联合除尘中静电布袋复合式除尘器是对粗细粉尘皆有效捕集的除尘设备[18]。静电增强颗粒层除尘器是将静电与颗粒层除尘器两者结合起来,其中粉尘和颗粒层都带电的结合方式对颗粒脱除作用最明显[5]。虽然联合脱除技术效果较好,但存在清灰难题。

1.2.3电催化氧化联合处理技术

美国First-Energy公司和Powers-pan公司联合研制的电催化氧化联合处理过程(Eco Process)一种同时脱除NOx、SO2、细颗粒物和痕量元素的先进技术。烟气首先经过传统的干静电除

相关文档
最新文档