答案-拓扑学基础

合集下载

基础拓扑学讲义 尤承业 答案

基础拓扑学讲义 尤承业 答案

基础拓扑学讲义1. 引言拓扑学是数学的一个分支,研究的是空间中的集合如何存在和连接的学科。

在拓扑学中,我们关注的是集合之间的关系,而不是集合的具体性质。

本讲义将介绍拓扑学的基础知识和常见概念。

2. 基本概念2.1 集合在拓扑学中,一个集合是指由元素组成的无序对象的集合。

示例:- 集合 A = {1, 2, 3, 4}- 集合 B = {a, b, c}2.2 拓扑空间拓扑空间是指一个集合论中的空间,其中具有一组满足特定条件的子集。

示例:- 欧几里得空间- 流形空间- 度量空间2.3 拓扑结构拓扑结构是指在拓扑空间中定义的一组特殊集合的集合,它满足特定的公理。

示例:- 开集- 闭集- 连通集- 紧集3. 拓扑学的基本性质3.1 连通性在拓扑学中,连通性是指一个拓扑空间中不存在将空间分为两个或更多部分的拓扑属性。

示例:- 实数集 R 是一个连通集- 平面上的一个圆形是一个连通集3.2 完备性在拓扑学中,完备性是指拓扑空间中的每个柯西序列都有一个收敛的极限。

示例:- 实数集 R 是一个完备的度量空间3.3 紧集在拓扑学中,一个集合被称为紧集,如果它的每个开覆盖都具有有限子覆盖。

示例:- 闭区间 [0, 1] 是一个紧集4. 拓扑学的应用拓扑学在各个领域都有广泛的应用,包括物理学、生物学、计算机科学等。

示例:- 电路板设计中的连接问题- 生物分子的空间构象研究- 网络拓扑结构的分析与优化5. 总结本讲义介绍了拓扑学的基本概念、拓扑结构和其应用。

拓扑学作为一门重要的数学学科,对于理解和描述空间的性质具有重要的作用。

希望通过本讲义的学习,能够对拓扑学有一个初步了解,并能够应用于实际问题中。

注意:本讲义只是拓扑学的入门讲义,如果想深入学习拓扑学,请参考相关的高级教材和论文。

《拓扑学》作业参考答案

《拓扑学》作业参考答案
R-拓扑T 以B 为基。 (2) a,b R, a b, (a, b) - k B ,
{(a,b) K | a,b R, a b}T ,而 (a,b) K | a,bR (a,b) | a,bR K
因此 R K T
=R k
11. 设A 是 Y 的任意一个开覆盖 (A T ),则A {Y '}是X 的一个开覆盖, 由 X 的紧致性知 {U1, ,Un} A {Y '}是X 的开覆盖, 从而{U1, ,Un} {Y '} A 是Y 的开覆盖,也是A 的有限子覆盖,故 Y 是紧致子集。
n
令U {U x1 , ,U x n }, V Vxi
i 1
则 A U, F V , U Y ,且U,V T
18. y A,则y x,由T2性知 U y , Vy T , U y Vy s, y.x U y, y Vy 又{Vy | y A}是A 的开覆盖,A 为紧改子集。
{Vy1 , ,Vyn } {Vy | y A}, s.t. {Vy1 , ,Vyn } A
VT1
(2)由T * 的定义知 ( X *,T *) 中的闭集为 P( X ) 中的有限集和任一含有 的集合。 对于任意 x X * ,及闭集 F, x F 。 ( a ) x , 则 F 必 为 P( X ) 中 有 限 集 , 因 此 X * F为T * 中 的 元 素 , F 亦 为 T * 中 元 素 , 故 X * F, F T * ( X * F ) F , x X * F, F F ( b ) x X ,则{x} 为 开 集 , 再 取 U {x}' X * {x}则U 亦 为 开 集 , 故 {x}, {x}' T , 使 得 x {x}, F X * {x}, {x} ( X * {x}) ,故 ( X *,T*) 是正则空间。

拓扑学考试题及答案

拓扑学考试题及答案

拓扑学考试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,开集的补集是:A. 闭集B. 既开又闭集C. 非开集D. 非闭集答案:A2. 以下哪个概念不是拓扑学中的基本元素?A. 开集B. 连续函数C. 极限点D. 线性方程答案:D3. 拓扑空间中,两个开集的交集仍然是:A. 开集B. 闭集C. 既开又闭集D. 非开集答案:A4. 拓扑空间中,一个集合是连通的,当且仅当它不能表示为两个非空不相交开集的并集。

以下哪个集合不是连通的?A. 一个区间B. 两个不相交的区间的并集C. 一个单点集D. 一个空集答案:B5. 拓扑空间中的紧致性意味着:A. 每个开覆盖都有有限子覆盖B. 每个闭覆盖都有有限子覆盖C. 每个开覆盖都有有限子覆盖或闭覆盖D. 每个闭覆盖都有有限子覆盖或开覆盖答案:B二、填空题(每题3分,共15分)1. 如果拓扑空间X中的每个点都有一个邻域,该邻域与X同胚,则称X是________。

答案:局部连通的2. 拓扑空间X中的点x称为________,如果X中包含x的每个开集也包含该序列的某个项。

答案:序列极限点3. 拓扑空间X中的点x称为________,如果对于x的每个邻域U,都存在一个点y≠x,使得y也在U中。

答案:凝聚点4. 如果拓扑空间X中的每个序列都有一个收敛的子序列,则称X是________。

答案:序列紧致的5. 拓扑空间X中的点x称为________,如果对于x的每个邻域U,都存在一个不包含x的开集V,使得V⊆U。

答案:孤立点三、简答题(每题10分,共20分)1. 描述拓扑空间中的紧性与序列紧致性之间的关系。

答案:在Hausdorff空间中,紧性等价于序列紧致性。

这意味着如果一个Hausdorff空间中的每个序列都有一个收敛的子序列,则该空间是紧的,反之亦然。

2. 解释什么是同胚映射,并给出一个例子。

答案:同胚映射是两个拓扑空间之间的双射函数,它既是连续的,其逆映射也是连续的。

马克阿姆斯特朗基础拓扑学答案

马克阿姆斯特朗基础拓扑学答案

马克阿姆斯特朗基础拓扑学答案马克阿姆斯特朗()是美国著名的物理学家、发明家。

他于1946年在哥伦比亚大学获得物理学博士学位,1953年开始在耶鲁大学教授物理学,1969年开始在美国斯坦福大学任教。

1971年至1977年担任美国国家科学院院士。

1985年获得美国艺术与科学院外籍院士。

他还是美国物理学会、国际数学会议和()等学术组织的成员。

一、拓扑学研究的主要内容是什么?拓扑学是研究一类不定的几何图形和空间形式之间的相互关系的一门学科。

它的基本思想是:对给定的几何图形或空间形式,可求出任意几何图形或空间形式上所对应着的有限个数。

拓扑学包括两个部分:一为线性拓扑学;二为几何拓扑学。

线性拓扑学指对于给定几何图形或空间形式在有限个数范围内,可求出任意几何图形或空间形式上所对应着的有限个数;几何拓扑学则是将不定几何图形、空间形式上所对应着的有限个数推广到有限个数范围内,并求得该有限个数对应着某个区间或领域内某一具体对象或事物中之最小个数或最大个数点所对应着的有限个数。

拓扑学通过对给定几何图形或空间形式上所对应着有限个数或最大个位数个点所对应着相应事物中之最小个数或最大个位数点所对应着有限个数或最大个位数点所对应着之最大个数点对应着相应事物中之最小个数点所在区域或领域所对应着之最小点所对应着的总个数(包括其个数大小和方向)来解决有限个数或最大个位数、局部个数和领域个数之间的关系。

拓扑学中一些特殊几何图形和空间形式所对应着一系列数学问题都属于拓扑学理论中所涉及到之问题。

二、对一条长波在时空中运动是什么性质?解析:由于运动波是波传播过程中产生的一种特殊的传播现象,因此,对于一条运动波波速必须满足如下条件:波穿过空间(或时间)必须有一个连续的运动状态,在该运动状态中,波向一个特定地方或一个方向(或几个方向)运动而不能出现位移叠加等现象。

否则该波将被视作一个静止波,其能量为0。

此外,运动波是一种波速传播过程中产生或传播方向相反的运动状态,因此传播波波速必须满足以下条件:一是运动波向该运动状态所处方向相切才能实现对波与波之间相互作用作用(波速与振幅方向)所产生频率变化速率相一致;二是波速与运动方向相切才能实现对波与波之间相互作用作用(波速与振幅方向相一致)所产生频率变化速率相一致。

试题集:拓扑学初步

试题集:拓扑学初步

1.在拓扑空间中,下列哪项不是开集的定义?o A. 开集是拓扑空间中的一个集合,它属于该空间的拓扑。

o B. 开集是所有点的邻域。

o C. 开集是所有点的闭包。

o D. 开集是包含在它自身的邻域内的集合。

参考答案: C. 开集是所有点的闭包。

解析: 开集的定义是它属于拓扑空间的拓扑,即它是一个邻域,包含在它自身的邻域内,但开集不是所有点的闭包,闭包是开集的补集的补集。

2.下列哪项不是拓扑空间的定义?o A. 一个集合和它的子集族,其中包含空集和全集。

o B. 任意多个开集的并集仍然是开集。

o C. 有限多个开集的交集仍然是开集。

o D. 任意多个闭集的并集仍然是闭集。

参考答案: D. 任意多个闭集的并集仍然是闭集。

解析: 拓扑空间的定义包括集合和它的子集族,其中包含空集和全集,任意多个开集的并集和有限多个开集的交集仍然是开集,但任意多个闭集的并集不一定是闭集。

3.在拓扑学中,下列哪项不是连续函数的定义?o A. 对于函数f的定义域中的任意开集,其像集也是开集。

o B. 对于函数f的值域中的任意开集,其原像集也是开集。

o C. 函数f在其定义域的每一点都是连续的。

o D. 函数f在其值域的每一点都是连续的。

参考答案: A. 对于函数f的定义域中的任意开集,其像集也是开集。

解析: 连续函数的定义是对于函数f的值域中的任意开集,其原像集也是开集,函数在其定义域的每一点都是连续的,但函数f的定义域中的开集的像集不一定是开集。

4.下列哪项不是紧致空间的定义?o A. 紧致空间中的任意开覆盖都有有限子覆盖。

o B. 紧致空间中的所有序列都有收敛子序列。

o C. 紧致空间中的所有连续函数都有界。

o D. 紧致空间中的所有连续函数都有最大值和最小值。

参考答案: B. 紧致空间中的所有序列都有收敛子序列。

解析: 紧致空间的定义是任意开覆盖都有有限子覆盖,所有连续函数都有界和最大最小值,但紧致空间中的所有序列不一定都有收敛子序列。

答案-拓扑学基础

答案-拓扑学基础

东 北 大 学 秦 皇 岛 分 校课程名称: 拓扑学基础 (答案) 试卷: A 考试形式:闭卷授课专业:数学与应用数学 考试日期: 2013年 7月 试卷:共 3 页一、填空题:(每空2分,共20分)1.设{1,2,3}X =,写出5个拓扑,使得每个拓扑中的所有集合按包含关系构成一个升链 平凡拓扑 ,{,,{3},{1,3}}X ∅,{,,{1}}X ∅, {,,{2}}X ∅,{,,{3}}X ∅。

(注:答案不唯一,正确即可)2. 汉字“东” 的连通分支的个数是 3 ,抛物线的连通分支的个数是 1 。

3.字母Y 的割点个数为 无穷 。

字母T 中指数为3的点个数为 1 。

4.叙述同胚映射的定义 拓扑空间之间的连续映射称为同胚映射,若它是一一对应且它的逆也是连续的 。

二、选择题:(每题2分,共8分) 1.下列说法中正确的是( B )A 连通空间一定是道路连通空间B 道路连通空间一定是连通空间C 道路连通空间一定局部道路连通D 以上说法都不对 2.下列说法正确的是( A )A 紧空间的闭子集紧致B 紧致空间未必局部紧致C 有限空间一定不紧致D 列紧空间是紧致空间 3.下列说法错误的是( A )A 离散空间都是1T 空间B 2T 空间中单点集是闭集C ¡赋予余有限拓扑不是2T 空间D 第二可数空间可分 4.下列不具可乘性的是( D )A 紧致性B 连通性C 道路连通性D 商映射三、计算题:(共16分)1.在¡上赋予余有限拓扑,记¤为有理数集合,[0,1]I =。

试求'¤和I 。

(4分) 答:'=ぁ,I =¡。

2.确定欧式平面上子集22{(,)|01}A x y x y =<+≤的内部、外部、边界和闭包。

(8分)答:内部,22{(,)|01}x y x y <+<; 外部,22{(,)|1}x y x y <+ 边界,22{(,)|1}x y x y +=; 闭包 A A =。

最新拓扑学基础试题及解答

最新拓扑学基础试题及解答

“拓扑学基础”试题及答案一、单项选择题(每小题2分,共20分)1、设{1,2,3}X =,则下列是X 的拓扑的是【 A 】A 、{,,{1}}X φB 、{,,{1,2},{2,3}}X φC 、{,,{2},{3}}X φD 、{,,{1},{2},{3}}X φ2、下列有关连续映射:f X Y →正确的是【 B 】A 、对X 中的任意开集U ,有()f U 是Y 中的一个开集B 、Y 中的任何一个闭集B ,有1()f B -是X 中的一个闭集C 、Y 中的任何一个子集A ,有11()()f A f A --⊂D 、若f 还是一一映射,则f 是一个同胚映射3、设X 和Y 是两个拓扑空间,A 是X 的一个子集,则下列错误的是【 C 】A 、若:f X Y →是连续的,则|:A f A X →也是连续的B 、若:f X Y →是一个同胚,则|:()A f A f A →也是一个同胚。

C 、:()f X f X →是一个连续映射,则:f X Y →不一定是一个连续映射D 、若X 可嵌入Y ,则X 的任何一个子空间也可嵌入Y4、设X 是一个拓扑空间,A X ⊂,则()A ∂=【 D 】A 、A A -'⋂B 、00A A ''⋃C 、0()A ∂D 、()X A ∂-5、下列有关连通性的命题正确的是【 C 】A 、若A 和B 是拓扑空间X 中的两个隔离子集,且X A B =⋃,则X 是不连通的。

B 、有理数集Q 作为实数空间子空间是一个连通空间C 、若12,Y Y 均为X 的连通子集,且12Y Y φ⋂≠,则12Y Y ⋃也是X 的一个连通子集D 、设Y 是X 的一个连通子集,Z X ⊂,若Y Z ⊂,则Z 也是X 的一个连通子集6、下列拓扑性质中,没有继承性的是【 D 】A 、1T 空间B 、2T 空间C 、3T 空间D 、4T 空间7、下列有关命题,正确的是【 B 】A 、若拓扑空间X 是连通的,则X 一定是局部连通的B 、若拓扑空间X 是道路连通的,则X 一定是连通的C 、若拓扑空间X 是局部连通的,则X 一定是道路连通的D 、若拓扑空间X 是连通的,则X 一定是道路连通的8、下列有关实数空间,不正确的是【 D 】A 、它满足第一可数性公理B 、它满足第二可数性公理C 、它的任何一个子空间都满足第二可数性公理D 、它的任何一个子空间都是连通的9、下列有关Lindel öff 空间的描述正确的是【 A 】A 、任何一个满足第二可数性公理的空间都是Linde öff 空间B 、任何一个Lindel öff 空间都是第二可数性空间C 、Lindel öff 空间的子空间还是Linde öff 空间D 、满足第一可数性公理的空间的每一个子空间都是Linde öff 空间10、设A 是度量空间(,X ρ)中的一个非空子集,则下列命题错误的是【 C 】A 、()x d A ∈当且仅当(,{})0x A x ρ-=B 、()x d A ∈当且仅当(,)0x A ρ=C 、对x A ∀∈,且有(,)B x A εφ⋂≠,则A 为X 中的一个开集D 、x A ∈当且仅当(,)0x A ρ=二、填空题(每空2分,共20分)请将答案写在横线上。

拓扑学基础试题及答案

拓扑学基础试题及答案

拓扑学基础试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,以下哪个概念不是基本的?A. 开集B. 闭集C. 连续函数D. 距离函数答案:D2. 以下哪个选项不是拓扑空间的性质?A. 空集和整个空间是开集B. 任意开集的并集是开集C. 有限个开集的交集是开集D. 任意集合的补集是闭集答案:D3. 在拓扑学中,两个拓扑空间之间的映射被称为?A. 同胚B. 连续映射C. 同伦D. 同调答案:B4. 拓扑空间中的邻域系统是指?A. 包含某点的所有开集的集合B. 包含某点的任意集合的集合C. 包含某点的有限个开集的交集D. 包含某点的任意开集答案:A5. 拓扑空间中的连通性是指?A. 空间不能被分割成两个不相交的非空开集B. 空间中的任意两点都可以通过连续路径相连C. 空间中的任意两点都可以通过直线相连D. 空间中的任意两点都可以通过曲线相连答案:A二、填空题(每题3分,共15分)1. 如果拓扑空间中任意两个不同的点都存在不相交的邻域,则称该空间为________。

答案:豪斯多夫空间2. 拓扑空间中的紧致性是指该空间的任意开覆盖都有________。

答案:有限子覆盖3. 拓扑空间中的连通空间是指不能表示为两个不相交的非空开集的并集的空间,这种性质也称为________。

答案:不可分割性4. 拓扑空间中的基是指由开集构成的集合,使得空间中的每一个开集都可以表示为基中集合的________。

答案:并集5. 拓扑空间中的同胚是指两个拓扑空间之间存在一个双射的连续映射,并且其逆映射也是连续的,这种映射也称为________。

答案:同胚映射三、简答题(每题10分,共20分)1. 请简述拓扑空间中闭集的定义。

答案:在拓扑空间中,如果一个集合的补集是开集,则称该集合为闭集。

2. 请解释什么是拓扑空间中的同伦等价。

答案:如果存在两个拓扑空间之间的连续映射,使得这两个映射的复合与各自空间上的恒等映射是同伦的,则称这两个空间是同伦等价的。

拓扑学基础答案

拓扑学基础答案

拓扑学基础(数学教育本科)试卷参考答案一、单项选择题1、C2、A3、B4、A5、A6、C7、D 8、A 9、B 10、D二、填空题11、满射 12、同胚 13、A 的补集A '是一个开集 14 、Y B 15、可分 16、一 17、x 和y 连通18、X ,)(x f 19、Y 中每一个开集U 的原象)(1U f -是X 中的一个开集三、名词解释题1、如果存在一个从集合X 到正整数集Z +的单射,则称集合X 是一个可数集。

2、设X 是一个集合,T 是X 的一个子集族,如果T 满足如下条件:(1)∈φ,X T ,(2)若A ,∈B T ,则∈B A T ,(3)若T ⊂1T ,则1A ∈∈ T T ,则称T 是X 的一个拓扑。

偶对(X ,T )是一个拓扑空间。

3、设X 和Y 是两个拓扑空间,如果f:X →Y 是一个一一映射,并且f 和f -1:Y →X 都是连续的,则称f 是一个同胚映射。

4、设X 是一个拓扑空间,如果对于任何x 、y ,存在X 中的一条从x 到y 的道路(或曲线),则称X 是一个道路连通空间。

5、一个拓扑空间如果在它的每一点处有一个可数邻域基,则称这个拓扑空间是一个A 1空间。

6、一个拓扑空间如果有一个可数基,则称这个拓扑空间是一个A 2空间。

7、设X 是一个拓扑空间,如果X 的每一个开覆盖都有一个可数子覆盖,则称拓扑空间X 是一个Lindel öff 空间。

8、设X 是一个拓扑空间,如果X 中的任何一个点和任何一个不包含这个点的闭集都各有一个开邻域,它们互不相交,则称拓朴空间X 是一个正则空间。

9、设X 是一个拓扑空间,如果X 的每一个开覆盖有一个有限子覆盖,则称拓扑空间X 是一个紧致空间。

10、设X 是一个拓扑空间,如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个可数紧致空间。

四、判断题1、√2、√3、×4、×5、√6、×7、√ 8、× 9、√ 10、× 11、√ 12、×五、解答与证明题1、解:(1)1T 不是X 的拓扑,这是因为∈},{b a 1T ,∈},{d b 1T ,但∈/=}{},{},{b d b b a 1T(2)2T 是X 的拓扑,满足拓扑的定义2、证∵()()()()A B A B d A B A B d A d B ==B A B d B A d A ==))(())((3、证:∵B B A A B A ⊂⊂ ,,故A B A ⊂ ,B B A ⊂∴B A B A ⊂5、设Y 是紧致空间X 中的一个闭子集,如果A 是Y 的一个覆盖,它由X 中的开集构成,则B =A {Y '}是X 的一个开覆盖,设1B 是2B 的一个有限子族并且覆盖X ,则1B }{Y '-便是A 的一个有限子族并且覆盖Y ,这说明Y 是X 的一个紧致子集。

拓扑考试题及答案

拓扑考试题及答案

拓扑考试题及答案一、选择题(每题5分,共20分)1. 拓扑空间中,以下哪个概念描述的是任意两个点之间都存在连续路径相连?A. 连通性B. 紧致性C. 完备性D. 可分性答案:A2. 在拓扑学中,闭集的定义是什么?A. 包含其所有极限点的集合B. 其补集是开集的集合C. 仅包含其自身点的集合D. 不包含任何极限点的集合答案:B3. 拓扑空间中的紧性与序列紧性之间有何关系?A. 紧性意味着序列紧性B. 序列紧性意味着紧性C. 两者之间没有必然联系D. 紧性等价于序列紧性答案:A4. 以下哪个性质不是拓扑空间的Hausdorff性质?A. 任意两个不同的点,都存在不相交的开集包含它们B. 任意两个不同的点,都存在包含它们的开集C. 任意两个不同的点,都存在不相交的邻域D. 任意两个不同的点,都存在不相交的开集包含它们答案:B二、填空题(每题5分,共20分)1. 拓扑空间中,如果任意两个开集的交集都是开集,则称该拓扑空间满足__________公理。

答案:任意交集2. 拓扑空间中,如果任意有限个开集的并集都是开集,则称该拓扑空间满足__________公理。

答案:有限并集3. 拓扑空间中,如果空集和整个空间都是开集,则称该拓扑空间满足__________公理。

答案:空集和全集4. 在拓扑空间中,如果一个集合的补集是开集,则称该集合为__________。

答案:闭集三、简答题(每题10分,共30分)1. 请简述拓扑空间中连续函数的定义。

答案:拓扑空间中连续函数是指,对于任意一个开集的原像也是开集的函数。

2. 描述拓扑空间中紧致性的定义。

答案:拓扑空间中紧致性的定义是,该空间的每一个开覆盖都有有限子覆盖。

3. 什么是拓扑空间中的分离公理,它有哪些级别?答案:分离公理是拓扑空间中描述点与点之间、点与集合之间、集合与集合之间分离程度的公理。

它包括T0、T1、T2(Hausdorff)、T3、T4(Normal)、T5(完全正则)和T6(完全正规)等级别。

基础拓扑学讲义答案第二章

基础拓扑学讲义答案第二章

基础拓扑学讲义答案第二章第二章基本拓扑学
1.什么是拓扑学?
拓扑学是一门研究空间结构的数学学科,它研究的是空间中的点、线、面和体的关系,以及它们之间的连接关系。

它是一门抽象的数学学科,它不关心物体的形状和大小,而是关注物体之间的关系。

2.拓扑学的基本概念有哪些?
(1)点:拓扑学中的点是一个抽象的概念,它可以表示一个物体的位置,也可以表示一个物体的属性。

(2)线:拓扑学中的线是一个抽象的概念,它表示两个点之间的连接关系。

(3)面:拓扑学中的面是一个抽象的概念,它表示一组点之间的连接关系。

(4)体:拓扑学中的体是一个抽象的概念,它表示一组面之
间的连接关系。

3.拓扑学的基本概念有哪些?
(1)连通性:拓扑学中的连通性是指一组点之间的连接关系,它表示一组点之间是否存在路径,以及路径的长度。

(2)闭合性:拓扑学中的闭合性是指一组点之间的连接关系,它表示一组点之间是否存在一个完整的回路,以及回路的长度。

(3)同构性:拓扑学中的同构性是指两个空间结构之间的关系,它表示两个空间结构之间是否存在一种可以将一个空间结构
变换成另一个空间结构的变换。

(4)等价性:拓扑学中的等价性是指两个空间结构之间的关系,它表示两个空间结构之间是否存在一种可以将一个空间结构
变换成另一个空间结构的变换,并且这种变换不会改变空间结构
的性质。

《基础拓扑学讲义》部分习题解答

《基础拓扑学讲义》部分习题解答

《基础拓扑学讲义》部分习题解答六1. 设(,)X Γ是空间,是任何一个不属于1T ∞X 的元素。

令*{}X X =∞∪和*{}*X Γ=Γ∪。

证明:(1)**(,X )Γ是一个拓扑空间。

(2)**(,X )Γ是一个空间但不是空间。

0T 1T 证明 (1)(略)(2)先证(,X ∗∗)Γ是空间:由于0T X 是空间,故也是空间,对1T 0T X ∗中的任意两个不相同的点,如果这两个点都不是,则有一个点有一个开邻域不包含另一个点;如果这两个点有一个是∞,则对另一点记为∞p (p ≠∞)而言,X 是包含点p 的一个开邻域,并且X ∞∉,所以是T 空间.(,X ∗∗Γ))0再说明(,X ∗∗Γ不是空间:由于1T {}X ∗∗Γ=Γ∪ ,故包含的开邻域只有一个,就是∞{}X X ∗=∪∞,因此对X 中一点p 而言,包含∞的开邻域一定包含p ,所以不是空间.(,X ∗∗Γ)1T 2.设和Γ Γ是集合X 上的两个拓扑,并且 Γ⊂Γ。

证明:如果拓扑空间(,)X Γ是一个或空间,则拓扑空间0T 1T (,)X Γ相应也是一个或空间。

0T 1T证明 (1)若是空间,则对(,)X Γ0T X 中任意两个不同的点,存在一个点的一个开邻域不包含另外一个点,又 Γ⊂Γ,故上述开邻域也是该点在拓扑空间 (,)X Γ下的一个开邻域,它同样不包含另一个点,得到 (,)X Γ也是空间.T (2)若(,)X Γ是空间,则对1T X 中任意两个不同的点x 与,分别各自存在一个开邻域不包含另外一点,又y Γ⊂Γ,这两个开邻域也是点x 与在拓扑空间y (,)X Γ下的开邻域,它们同样不包含另一个点,得到 (,)X Γ也是空间.1T 3.对中的区间进行同胚分类,问总共有几个类? 答:三个。

(1)[,;(2);(3)[,。

]a b (,)a b )a b注:如果对一维连通流形进行同胚分类则有四个,加上。

1S。

拓扑学复习题及答案

拓扑学复习题及答案

拓扑学复习题及答案1. 什么是拓扑空间?请给出拓扑空间的定义。

答:拓扑空间是一个集合X,连同一个子集的集合T(称为开集),满足以下三个条件:(1)空集和X本身都在T中;(2)T中任意有限个开集的交集仍然在T中;(3)T中任意开集的并集也在T中。

2. 什么是连续函数?请给出连续函数的定义。

答:在拓扑空间之间,如果对于每一个开集U⊆Y,其原像f^(-1)(U)是X中的开集,则称函数f: X→Y是连续的。

3. 什么是同胚映射?请解释同胚映射的概念。

答:同胚映射是两个拓扑空间之间的双射连续函数,并且其逆映射也是连续的。

如果存在这样的映射,我们称这两个拓扑空间是同胚的。

4. 什么是紧致性?请说明紧致性的定义。

答:在拓扑空间X中,如果每一个开覆盖都有有限子覆盖,那么称X是紧致的。

5. 什么是连通性?请解释连通性的概念。

答:如果一个拓扑空间不能被分成两个非空的不相交开集,那么称这个空间是连通的。

6. 什么是路径连通性?请给出路径连通性的定义。

答:如果对于拓扑空间X中的任意两点x, y,都存在一个连续函数f: [0, 1]→X,使得f(0)=x且f(1)=y,则称X是路径连通的。

7. 什么是同伦等价?请说明同伦等价的定义。

答:如果存在两个连续映射f: X→Y和g: Y→X,使得g∘f和f∘g分别与X和Y上的恒等映射同伦,则称X和Y是同伦等价的。

8. 什么是基本群?请解释基本群的概念。

答:对于拓扑空间X中的基点x0,基本群π1(X, x0)是由所有以x0为起点和终点的回路构成的集合,这些回路在同伦意义下是等价的,并且群的运算是回路的连接。

9. 什么是覆盖空间?请给出覆盖空间的定义。

答:拓扑空间p: E→B称为B的覆盖空间,如果对于B中的每一个点b,都存在一个开邻域U,使得p^(-1)(U)是E中开集的不相交并,每个开集都通过p同胚映射到U。

10. 什么是商空间?请说明商空间的概念。

答:如果对于拓扑空间X中的等价关系~,商空间X/~是由X中所有等价类构成的集合,并且X/~上的拓扑是由X到X/~的商映射诱导的,那么称X/~是X的一个商空间。

基础拓扑学第4章答案

基础拓扑学第4章答案

1《基础拓扑学讲义》部分习题解答四ex.1(P.43)称X 满足0T 公理,如果对X 中的任意两个不相同的点中必有一个点有一个开邻域不包含另一点。

试举出满足0T 公理但不满足1T 公理的拓扑空间的例子。

答:{,,}X a b c =,{,,{},{,},{,}}X a a b a c τ=∅,则X 满足0T 公理但不满足1T 公理。

ex.6(P.43)证明X 为Hausdorff 空间当且仅当}|),{()(X x x x X ∈=∆是乘积空间X X ×的闭集。

证:(必要性)要证)(X ∆为闭集,只要证它的余集是开集。

CX y x ))((),(∆∈∀,),(y x 为内点。

由C X y x ))((),(∆∈知,y x ≠,因X 为Hausdorff 空间知,存在x 的开邻域U ,y 的开邻域V ,使得Φ=V U ∩,于是CX V U y x ))((),(∆⊂×∈,所以),(y x 为内点,这就证明了)(X ∆为闭集。

(充分性)对,,x y X x y ∀∈≠,由()X ∆的定义知,(,)()x y X ∉∆,即(,)(())Cx y X ∈∆,由)(X ∆为闭集知:()C X ∆为开集,于是存在开集,U V 使得C X V U y x ))((),(∆⊂×∈,由(())CU V X ×⊂∆知,,U V 为,x y2的不相交的邻域,这就证明了X 为Hausdorff 空间。

空间。

ex.7(P.43)证明Hausdorff 空间的子空间也是Hausdorff 空间。

空间。

证:设X 是Hausdorff 空间,A 是X 的子空间。

,x y A ∀∈,则,x y X ∈。

因X 是Hausdorff 空间,故x ∃的邻域U ,y ∃的邻域V ,有U V =∅∩。

从而()()A U A V =∅∩∩∩,因A U ∩是x 在A 中的邻域,A V ∩是y 在A 中的邻域,所以A 是Hausdorff 空间。

基础拓扑学讲义1的习题答案

基础拓扑学讲义1的习题答案

基础拓扑学讲义1.1的习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN习题记S 是全体无理数的集合,在实数集R 上规定子集族{}1\A ,A S U U τ=⊂是E 的开集. (1)验证τ是R 上的拓扑;(2)验证(),R τ满足2T 公理,但不满足3T 公理; (3)验证(),R τ是满足1C 公理的可分空间;(4)证明τ在S 上诱导的子空间拓扑s τ是离散拓扑,从而(),s S τ是不可分的; (5)说明(),R τ不满足2C 公理。

证明:(1)○1,A U R R U A ττ=∅=⎫⎫⇒∅∈⇒∈⎬⎬=∅=∅⎭⎭所以R 和∅都含在τ中○2()U A U A λλλλλλλ∈Λ∈Λ∈Λ-=-()0000,,,x U A x U A x U x A x U x A x U A λλλλλλλλλλλλλλλλ∈Λ∈Λ∈Λ∈Λ∈Λ∀∈-⇔∃∈Λ∈-⇔∈∉⇔∈∉⇔∈-使U A λλλλτ∈Λ∈Λ-∈∴τ中任意多个成员的并集仍在τ中○3()()()()11221212\\\U A U A U U A A =()()()()11221122112212121212\\,,,,,\x U A U A x U A x U A x U x A x U x A x U U x A A x U U A A ∀∈⇔∈-∈-⇔∈∉∈∉⇔∈∉⇔∈()()1212\U U A A τ∈∴τ中两个成员的交集仍在τ中综上所述:τ是R 上的拓扑(2)任取一个有理数a ,则a 在(),R τ中存在一个开邻域11\U A这样我们就可以在1E 中找到一个与1U 不相交的开集2U ,令有理数2b U ∈ 则22\U A 为b 的一个开邻域 且()()1122\\U A U A =∅∴(),R τ满足2T 公理由题意可知S 是闭集,a S ∀∉有理数如果W 是S 的任意一个开邻域因为S 为全集,所以S 的开邻域W 总会与a 的开邻域相交 因此在(),R τ中,S 与a 不存在不想交的开邻域,故不满足3T 公理(3)x R ∀∈,做x 的一组可数邻域{}11,n U x x x Q n n ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 则{}n U 是x 的一个可数邻域 对x 的任一开邻域U ,U 为R 中开集(),\\x a b S U S ∈⊂当n 充分大,(),\\n U a b S U S ⊂⊂所以{}n U 是x 的一个可数邻域基 说明(),R τ满足1C 公理 显然Q R ⊂x R ∀∈,x 的任一开邻域\U S()\U S Q x QR Q≠∅⇒∈⇒⊂所以Q R =所以Q 是(),R τ的可数稠密子集,所以(),R τ是可分的 (4)设A S ⊂()\\R S A 是(),R τ的开集∴有()\\R S A S A =是(),S S τ的开集 ∴S 的每个子集都是(),S S τ的开集∴(),S S τ是离散拓扑空间,S 不可数 ∴从而(),S S τ是不可分的 (5)假如(),R τ满足2C 公理 2C 公理具有遗传性则(),S S τ也要满足2C 公理2C 空间是可分空间则(),S S τ是可分的与(),S S τ不可分矛盾了 ∴(),R τ不满足2C 公理设A 和B 都是拓扑空间X 的子集,并且A 是开集.证明A B A B ⊂. 证明:对x A B ∀∈,即x A ∈且x B ∈ 令U 是x 的任一开邻域 则UA 也是x 的开邻域因为x B ∈ 所以()U A B ≠∅ 即()UAB ≠∅所以x A B ∈,所以A B A B ⊂设12,,,n A A A 都是X 的闭集,并且1ni i X A ==.证明B X ⊂是X 的闭集⇔i BA 是()1,2,,i A i n =的闭集.证明:()⇒1,2,,i n ∀=有()Ci i i A BA B A -=(),i i i iC Cix A B A x A x BA xB x B x B A ∀∈-⇔∈∉⇔∉⇔∈⇔∈又B 是X 的闭集∴C B 是X 的开集 从而i B A 是i A 的开集 ∴i BA 是i A 的闭集()⇐因为i B A 是()1,2,,i A n 的闭集故1,2,,i n ∀=,存在X 的闭集i B ,使i ii BA B A =,而()()111111nn n n n ni ii i i i i i i i i i i B B A B A B A B X B ======⎛⎫⎛⎫⎛⎫=====⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以B 是X 的闭集(有限多个闭集的并还是闭集)设{}n x 是(),c R τ中的一个序列.证明:n x x →⇔存在正整数N ,使得当n N >,n x x =. 证明:()⇐显然的()⇒ 假设当n N >时,n x x =不成立那么可找到{}n x 的无穷子序列{}k n x ,{}()1,2,k n x x k =={}\k n R x 为x 的一个开邻域 因为lim n x x x →∞=对x 的开邻域{}\k n R x 会{},,\k n n K n K x R x ∃>∈ 与{}\k k n n x R x ∉矛盾所以存在正整数N ,使得当n N >,n x x =证明:A 是拓扑空间X 的稠密子集⇔X 的每个非空开集与A 相交非空. 证明:()⇒因为A 是X 的稠密子集 所以A X =故对x A ∀∈,x 的每个开邻域与A 都有交点 从而X 的每个非空开集与A 相交非空 ()⇐因为X 的每个非空开集与A 相交非空 故对x X ∀∈,X 的每个开邻域与A 都有交点 所以x A ∈,即X A ⊂ 又因为A X ⊂,所以A X =所以A 是X 的稠密子集若A 是X 的稠密子集,B 是A 的稠密子集,则B 也是X 的稠密子集. 证明:令U 是X 的任一非空开集 因为A 是X 的稠密子集 所以U A ≠∅从而UA 是A 的非空开集又因为B 是A 的稠密子集,则()U B U A B =≠∅所以B 也是X 的稠密子集设:f X Y →是映射,证明下列条件互相等价: (1)f 是连续映射;(2)对X 的任何子集A ,()()f A f A ⊂; (3)对Y 的任何子集B ,()()11f B f B --⊂. 证明:()()12→欲证()()f A f A ⊂即()y f A ∀∈,要有()y f A ∈ 设V 为y 的任一开邻域 因为f 是连续映射 所以()1f V -为x 开集 ()1f y A -∈,()()11f y f V --∈ 又因为()1f V A -≠∅所以()()1f f V A -≠∅即()()()()()()()11f f V A f f V f A V f A y f A --==⇒∈所以()()f A f A ⊂()()23→由(2)得,()()()()11f f B f f B B --⊂= 所以()()11f B f B --⊂()()31→B 是Y 的闭集,且()()()111f B f B f B ---⊂= 所以()1f B -是X 的闭集由定理可得,f是连续映射。

《拓朴学》题库及答案

《拓朴学》题库及答案

《拓扑学》题库及答案一、单项选择1.关于笛卡儿积,下面等式成立的是(A ))()()()(D B C A D C B A ⨯-⨯=-⨯- (B ))()()()(D C B A D B C A I I I ⨯=⨯⨯ (C ))()()()(D B C A D C B A ⨯⨯=⨯Y Y Y (D )D B C A ⨯⊆⨯当且仅当D C B A ⊆⊆,2.设Y X f →:是映射,)(,,X B A P ∈,)(,Y D C P ∈,则下面结论不成立的是: (A ))()()(111D f C f D C f ---=Y Y (B ))()()(111D f C f D C f---=I I(C ))()()(B f A f B A f Y Y = (D ))()()(B f A f B A f I I =3.在字典序拓扑空间++⨯Z Z 中,子集+⨯Z }2{是:(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,也非闭集4.设R R →2:d 为映射,(R 表示实数集合),R ∈∀y x ,,下面关于d 的定义中是R 的度量的是:(A )2(,)()d x y x y '=- (B )22),(y x y x d -=(C )||||),(y x y x d += (D )⎩⎨⎧=≠=yx yx y x d 01),(5.设)T ,(X 是平庸拓扑空间,b a X b a ≠∈,,,则交错序列Λb a b a ,,,在拓扑空间)T ,(X 中的收敛点集合是: (A )∅ (B )}{a (C )},{b a (D )X6.设}},{},{,,{},3,2,1{},,,{1b a a X Y c b a X ∅===T ,}}2{},3,2{},2,1{,,{2Y ∅=T ,}{b A =,}1{=B ,则在积空间Y X ⨯中B A ⨯等于(A ))}1,{(b (B ))}1,(),1,{(c b(C ))}2,(),1,{(b b (D ))}2,(),1,(),2,(),1,{(c c b b7.设},,,{d c b a X =,{,,{,,},{,,},{,}}x a b c b c d b c =∅T ,},,{d c a Y =,},{c a A =,则在子空间Y 中A 的内部等于:(A )∅ (B )}{a (C )}{c (D )},{c a8.拓扑空间的Lindel öff 性,可分性,紧致性,完全正则性中是有限可积性质的有: (A )1个 (B )2个 (C )3个 (D )4个 9.下列拓扑空间的蕴涵关系中,成立的有完全正则空间⇒正则空间,完全正则空间⇒正规空间,连通空间⇒局部连通空间, 度量空间⇒可分空间,度量空间⇒Lindel öff 空间(A )1个 (B )2个 (C )3个 (D )4个10.拓扑空间的可分性,紧致性,Lindel öff 性,连通性中在连续射下保持不变的性质有: (A )1个 (B )2个 (C )3个 (D )4个 11.设X X R ⨯⊆是一个等价关系,则R 不满足的条件是(A )R X ⊆∆)( (B )R ∩R -1=∅ (C )R R R ⊆ο (D )1-=R R12.设Y X f →:是映射,)(}|{X J A P ⊆∈αα,)(}|{Y r B r P ⊆Γ∈则下面等式中不成立的是 (A ))()(ααααA f A f JJ∈∈=Y Y (B ))()(ααααA f A f JJ∈∈=II(C ))()(11r r r r B f B f-Γ∈Γ∈-=Y Y (D ))()(11r r r r B f B f -Γ∈Γ∈-I I13.在字典序拓扑空间++⨯Z Z 中,子集+⨯Z }1{是:(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,亦非闭集14.设},,{c b a X =,}},{},{,,{b a a X ∅=T ,则在拓扑空间)T ,(X 中常值序列Λ,,a a 的 收敛点集合是 (A )}{a (B )},{c a (C )},{b a (D ) X15.设},,{c b a X =,}3,2,1{=Y ,}{},{},{,,{c b a X ∅=1T ,}}3,2{},2{},2,1{,,{Y ∅=2T ,}2,1{},,{==B b a A ,则在积空间Y X ⨯中,0)(B A ⨯等于:(A )∅ (B )}{)2,(),1,(a a (C )}{)2,(),1,(b b (D )}{)2,(),1,(),2,(),1,(b b a a16.设},,,{d c b a X =,}},{},,,{},,,{,,{d c d c a d c b X ∅=T ,}{},,,{c A d c a Y ==,则在子空间Y 中,A 的闭包等于(A )}{c (B )},{a c (C )},{b c (D )},,{c d a17.设)T ,(X 是拓扑空间,)T ,(X 是可度量空间是指存在X 的度量R →2:X d 使得由d 诱导的拓扑d T 满足: (A)T T ⊆d (B)d T T ⊆ (C)d T T = (D))(X P T d = 18.拓扑空间的可分性,Lindel öff 性, 正规性、完全正则性中是遗传性质的有 (A )1个 (B) 2个 (C) 3个 (D) 4个 19.下列拓扑空间的蕴涵关系中成立的有满足第二可数理空间⇒可分空间 度量空间⇒Lindel öff 空间 正规空间⇒完全正则空间 度量空间⇒满足第一可数公理空间 正规空间⇒正则空间 完全正则空间⇒正则空间 (A )1个 (B )2个 (C )3个 (D )4个20.设),(T X 是拓扑空间,则对X 中任意两个不相交闭集B A ,存在连续映射]1,0[:→X f 使得}0{)(⊆A f ,}1{)(⊆B f 当且仅当),(T X 是:(A )正则空间 (B )完全正则空间 (C )正规空间 (D )4T 空间 21.设X 是全集,,()A B X ∈P ,A B ⊆则当且仅当(A )∅='B A I (B )∅='B A I (C )A B A =Y (D )B B A =I 22.设Y X f →:是映射,,()A B y ∈P ,则下面结论不成立的是(A ))()()(111B f A f B A f ---=Y Y (B )111()()()f A B f A f B ---=I I (C ))()()(111B f A fB A f----=- (D )()B B f f =-)(123.在字典序拓扑空间+⨯Z }2,1{中,子集+⨯Z }2{是(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,亦非闭集 24.定义度量R R R →⨯22:d ,),(21x x x =∀,221),(R ∈=y y y ,}{|||,|m ax ),(2211y x y x y x d --=,则度量空间(d ,2R )中的单位球是(A (B )(C (D )25.设)T ,(X 是离散拓扑空间,b a X b a ≠∈,,, 则在)T ,(X 中交错序列Λb a b a ,,,的收敛点集合是 (A )∅ (B) }{a (C) },{b a (D)X26.设},,,,{d c b a X =}},{},,,{},,,{,,{c b d c b c b a X T ∅=,},,{c b a Y =,}{b A =,则在子空间Y 中A 的闭包等于(A )}{b (B )},{b a (C )},{c b (D )},,{c b a27.设}3,2,1{},,,{==Y c b a X ,}{,,{,},{},{,}X a b b b c =∅1T ,}{}2,1{},1{,,2Y ∅=T ,},{c b A =,}3,1{=B 则在积空间Y X ⨯中()o A B ⨯等于(A )∅ (B )}{)2,(),1,(b b (C )}{)1,(),1,(c b (D )}{(,1),(,2),(,1),(,2)b b c c28.拓扑空间的连通性、紧致性、可分性、完全正则性,Lindel öff 性,满足第二可数公理性中是可遗传性质的有(A )1个 (B )2个 (C )3个 (D )4个 29.下列拓扑空间之间的蕴涵关系中成立的有:满足第二可数合理空间⇒可分空间, 度量空间⇒满足第一可数公理空间 完全正则空间⇒正则空间, 紧致空间⇒Lindel öff 空间 (A )1个 (B )2个 (C )3个 (D )4个}0{)(⊆A f ,}1{)(⊆B f 当且仅当),(T X 是:(A )正则空间 (B )完全正则空间 (C )正规空间 (D )4T 空间 31.设f Y X f ,⨯⊆是映射,则f 满足的条件是 (A )X Y f =-)(1;如果f y x y x ∈),(),,(21,则21y y =(B )X Y f=-)(1;如果f y x y x ∈),(),,(21,则21x x =(C )Y X f =)(;如果f y x y x ∈),(),,(21,则21y y = (D )Y X f =)(;如果f y x y x ∈),(),,(21,则21x x =32.设,,(),,(),R X Y A B Y C D X ⊆⨯∈∈P P 则下面等式成立的是 (A ))()()(111B R A R B A R---=Y Y (B ))()()(111B R A R B A R ---=I I(C ))()()(D R C R D C R I I = (D ))()()(D R C R D C R -=- 33.在字典序拓扑空间+⨯Z }2,1{中,子集+⨯Z }2{是(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,亦非闭集 34.设),(d X 是度量空间,d T 是X 的由d 诱导的拓扑,dU ∈T ,则下列关于U 的结论不正确的是(A )存在0,>∈εX x 使得),(εx B U =(B )+∈∃∈∀Z n U x ,使得U nx B ⊆)1,((C )0,>∃∈∀εU x 使得U x B ⊆),(ε(D )存在}0,|),({>∈⊆εεX x x B U B 使得U U =U B35.设},,,{c b a X =}{},{},{,,{b a a X ∅=T ,则在拓扑空间),(T X 中常值序列,,,a a a …的收敛点集合是 (A )}{a (B )},{c a (C )},{b a (D )X36.设},,,{c b a X =}},{},,,{},,,{,,{c b d c b c b a X ∅=T ,},,,{d c a Y =},{c a A =,则在子空间Y 中A 的内部是(A )∅ (B )}{a (C )}{c (D )},{c a37.设},,,{c b a X =},3,2,1{=Y }},{},{,,{b a a X ∅=1T ,}}3,2{},2{},2,1{,,{2Y ∅=T ,}1{},{==B b A ,则在积空间Y X ⨯中,B A ⨯等于(A ))}1,{(b (B ))}1,(),1,{(c b(C ))}2,(),1,{(b b (D ))}2,(),1,(),2,(),1,{(c c b b38.拓扑空间的可分性,Lindel öff 性,紧致性,正规性,连通性中是有限可积的性质有: (A )1个 (B )2个 (C )3个 (D )4个 39.下列拓扑空间之间的蕴涵关系中成立的有正规空间⇒正则空间 完全正则空间⇒正则空间 局部连通空间⇒连通空间 满足第二可数公理空间⇒可分空间 度量空间⇒满足第一可数公理空间 度量空间⇒可分空间}1{)(,0)(⊆=A f x f 当且仅当),(T X 是(A )1T 空间 (B )正规空间 (C )完全正则空间 (D )4T 空间二.证明题1.设Y X ,是两个拓扑空间,Y X f →:是映射,证明若f 是连续映射,则)(Y B Ρ∈∀,11()(())o o fB f B --⊆。

拓扑学的基础概念

拓扑学的基础概念

拓扑学的基础概念
当然,请看以下的试题:
选择题:
1. 拓扑学的基础概念主要研究的是:
A. 几何形状
B. 连通性和区域性
C. 点的坐标
D. 函数的性质
2.
拓扑学中的一个基本概念是拓扑空间,它由哪些元素构成?
A. 点和直线
B. 集合和其上的拓扑结构
C. 数字和字母
D. 曲线和曲面
3. 以下哪个不是拓扑空间的例子?
A. 实数集R
B. 二维欧氏空间R^2
C. 三维坐标空间R^3
D. 整数集Z
4.
拓扑学中用来研究拓扑空间之间映射连续性的基本工具是:
A. 求导
B. 极限
C. 开集与闭集
D. 函数
5. 拓扑学中的“连通性”是指:
A. 空间可以被分成两个不相交的部分
B. 空间中的任意两点之间存在路径
C. 空间中的点密集分布
D. 空间中没有孤立的点
填空题:
6.
拓扑学研究的对象主要是________和它们之间的________关系。

7.
一个拓扑空间的基本构成要素包括________和其上的________。

8. 拓扑学中研究连续性的工具是________和________。

9.
一个连通的拓扑空间是指整个空间________被分割成不相交的部分。

10.
拓扑学的基础概念是________,它是指一个集合和该集合上的一组________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东 北 大 学 秦 皇 岛 分 校
课程名称: 拓扑学基础 (答案) 试卷: A 考试形式:闭

授课专业:数学与应用数学 考试日期: 2013年 7月 试卷:共 3 页
一、填空题:(每空2分,共20分)
1.设{1,2,3}X =,写出5个拓扑,使得每个拓扑中的所有集合按包含关系构成一个升链 平凡拓扑 ,{,,{3},{1,3}}X ∅,{,,{1}}X ∅, {,,{2}}X ∅,
{,,{3}}X ∅。

(注:答案不唯一,正确即可)
2. 汉字“东” 的连通分支的个数是 3 ,抛物线的连通分支的个数是 1 。

3.字母Y 的割点个数为 无穷 。

字母T 中指数为3的点个数为 1 。

4.叙述同胚映射的定义 拓扑空间之间的连续映射称为同胚映射,若它是一一










的 。

二、选择题:(每题2分,共8分) 1.下列说法中正确的是( B )
A 连通空间一定是道路连通空间
B 道路连通空间一定是连通空间
C 道路连通空间一定局部道路连通
D 以上说法都不对 2.下列说法正确的是( A )
A 紧空间的闭子集紧致
B 紧致空间未必局部紧致
C 有限空间一定不紧致
D 列紧空间是紧致空间 3.下列说法错误的是( A )
A 离散空间都是1T 空间
B 2T 空间中单点集是闭集
C ¡赋予余有限拓扑不是2T 空间
D 第二可数空间可分 4.下列不具可乘性的是( D )
A 紧致性
B 连通性
C 道路连通性
D 商映射
三、计算题:(共16分)
1.在¡上赋予余有限拓扑,记¤为有理数集合,[0,1]I =。

试求'¤和I 。

(4分) 答:'=
ぁ,I =¡。

2.确定欧式平面上子集22{(,)|01}A x y x y =<+≤的内部、外部、边界和闭包。

(8分)
答:内部,22{(,)|01}x y x y <+<; 外部,22{(,)|1}x y x y <+ 边界,22{(,)|1}x y x y +=; 闭包 A A =。

3.在¡上赋予欧式拓扑。

(4分)
(1)计算道路2t α=与1t β=+的乘积αβ在1
3
处的值。

答:αβ在13处的值是4
9。



线


线
内 不



学 号
姓 名
班 级
(2)计算道路3t α=与1β=的乘积αβ在2
3
处的值。

答:αβ在2
3
处的值是1。

四、问答题:(每题10分,共30分)
1. 叙述拓扑空间的定义并举例说明任意多个开集的交未必是开集。

(10分) 答:集合X 上的一个拓扑T 是由X 的子集构成的子集族,即
{|,}T A A X I ααα=⊂∈,其中I 是一个指标集。

它们满足三个条件:
1. 集合X 与空集在T 中。

2. T 中任意多个集合的并集在T 中。

3.
T 中有限多个集合的交集在T 中。

定义了拓扑的集合称为拓扑空间。

(7
分)
注:例子不唯一,正确即可。

2. 叙述0T 空间、1T 空间的定义。

设{0,1,2,3,4}X =,{,,{1}}T X =∅,试定义一个等价关系:使得商空间X :
是0T 空间但不是1T 空间。

(10
分)
答:设X 是拓扑空间,若对任两点存在其中一点的开邻域不包含另外一点,
则称其为0T 空间; (3分)
设X 是拓扑空间,若对任两点存在每点的开邻域不包含另外一点,则称其为1T 空间。

(6分) 举例4分。

注:例子不唯一,正确即可。

3. 谈谈你对拓扑学的内容方法的认识。

(10分)
注:无唯一标准答案。

五、证明题:(共26分) 1. 叙述并证明开集判定定理。

(7分)


线


线
内 不



学 号
姓 名
班 级
定理 W 是开集当且仅当它是它的每个点的邻域。

(3分)
证明:“⇒”由邻域的定义,这是显然的。

“⇐”x W ∀∈,因为W 是x 的邻域,由邻域的定义,
存在开集x O W ⊂,使得x x O ∈。

所以{}x W x W x W x O W ∈∈=⊂⊂U U 。

所以x W x W O ∈=U
因为开集的任意并集是开集,所以W 是开集。

(7分)
2. 叙述并证明连续映射的粘接引理。

(7分)
答:粘接引理 设12{,,,}n A A A L 是拓扑空间X 的一个有限闭覆盖,若:f X Y
→在每个i A 上的限制都连续,则f 是连续映射。

(3分)
证明:只要验证Y 的每个闭集的原像是闭集。

设B 是Y 的闭集,记
i
A f 是f 在i A 上的限制。


111
11()(())()i n n i i i A f B f B A f B ---====U I U 。


i
A f 连续,1()i A f
B -是i A 中的闭集,又i A 是X 的闭集,所以1
()i
A f
B -是X 中的闭集。

所以1()f B -作为有限个闭集的并也是闭集。

(7分)
3. 设A 是2T 空间X 的紧致子集。

证明X A
也是2T 空间。

(7分)
证明:设1x ,2x 是X
A
中不同于A 的两点。

不妨将其在X 中在投影映射下的原像仍记
为1x ,2x 。

因X 是2T 空间,故存在各自的开邻域不相交。

记为1O 和2O 。

又因A 是
2T 空间X 的紧子集,所以A 是闭集,c A 是开集。

从而1c A O ⋂与2c A O ⋂也为1x ,2
x 的不相交的开邻域,且在投影映射下不变,从而也是1x ,2x 的在X A
中的不相交
的开邻域。

(3分)
任取c A 中元素x ,对于任意的A 中元素a ,由X 是Hausdorff 空间,分别存在x
与a 的不相交的开邻域a U 与a V 。

显然{|}a V a A ∈是A 的开覆盖。

由A 的紧致性,存在有限的子覆盖12
{,,}n a a a V V V L 。

记1
i n a i U U ==⋂,1
i n
a i V V ==⋃,则U 是x 的开邻域,A V ⊂,且U V ⋂=∅。

易知U 在投影映射下不变,仍为X A
中的开集,V 在投影映射下的像'V 为X A
中包含点A 的开集,且'U V ⋂=∅。

所以X A
也是2T 空间。

(7分)
4.设X =¢,在X 上取余可数拓扑。

在商空间n ¢上定义“+”为a b a b +=+。

证明“+”是连续映射。

(5分)
证明:由商空间的定义可知n ¢上的拓扑为离散拓扑。

(2分) 从而由乘积空间的定义,n n

ⅱ中的拓扑也为离散拓扑。

(3分)


线


线
学 号
姓 名
班 级
要证明“+”是连续映射,只需验证i (01i n ≤<-)在n n
⨯ⅱ中原
像是开集。

而这由n n

ⅱ是离散空间知是显然的。

(5分)。

相关文档
最新文档