考研数学知识点复习:多元函数积分学大纲考点

合集下载

多元函数积分知识点总结

多元函数积分知识点总结

多元函数积分知识点总结1. 多元函数的概念多元函数是指至少含有两个自变量的函数,它是自变量的多项式和、积、商或者反函数的复合函数。

多元函数的自变量可以是实数,也可以是复数。

例如,z=f(x,y)表示一个含有两个自变量的函数,其中x和y称为自变量,z称为因变量。

多元函数的图形通常是在三维坐标系中表示的,它描述了自变量之间的关系和对因变量的影响。

2. 多元函数的积分多元函数的积分是对多元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的所有微小部分进行求和。

多元函数的积分具有广泛的应用,例如在物理学、工程学、经济学等领域中都有重要应用。

多元函数的积分包括二重积分和三重积分两种重要形式。

3. 二重积分二重积分是对二元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的面积进行求和。

二重积分的计算通常涉及到对区域进行分割、确定积分范围、选择合适的坐标系等步骤。

二重积分的求解可以利用极坐标、直角坐标等不同坐标系进行计算,根据具体问题的情况选择合适的坐标系可以简化计算过程。

4. 三重积分三重积分是对三元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的体积进行求和。

三重积分的计算通常涉及到对区域进行分割、确定积分范围、选择合适的坐标系等步骤。

三重积分的求解可以利用柱面坐标、球面坐标等不同坐标系进行计算,根据具体问题的情况选择合适的坐标系可以简化计算过程。

5. 多元函数的积分性质多元函数的积分具有一些重要的性质,包括线性性质、可加性、区域可加性等。

其中线性性质指的是积分运算满足线性运算规律,可加性指的是积分在不同区域的和等于对整个区域的积分,区域可加性指的是积分在求和区域上的分割等价性。

这些性质在多元函数积分的计算中起着重要的作用,可以帮助简化计算过程和求得精确解。

6. 多元函数的变限积分多元函数的变限积分是对多元函数在变化区域上的积分运算,它可以表示为对函数在变限区域上的所有微小部分进行求和。

多元函数微积分知识点

多元函数微积分知识点

多元函数微积分知识点多元函数微积分是微积分学中的一个重要分支,主要研究有多个自变量的函数的导数、偏导数、微分、积分等问题。

它是单变量函数微积分的拓展与推广,涉及涉及多元函数的极限、连续性、可微性、可导性、偏导数与全微分、多元复合函数的求导、隐函数的求导、多重积分等内容。

本文将从多元函数的定义与性质、偏导数与全微分、多元复合函数的求导、隐函数的求导、多重积分等几个方面介绍多元函数微积分的知识点。

1.多元函数的定义与性质多元函数是指有多个自变量的函数,一般形式为f(x1, x2, ..., xn),其中x1, x2, ..., xn是自变量,f是因变量。

多元函数的定义域是自变量可能取值的集合。

在多元函数中,可以分别将每个自变量视为其他自变量的常数,对应单变量函数的概念。

多元函数的性质包括定义域、值域、可视化、极值等。

2.偏导数与全微分偏导数是多元函数在其中一变量上的导数,其他变量视为常数。

偏导数的计算与单变量函数的导数计算类似,可以通过极限或者求偏导数的定义计算。

全微分是多元函数在特定点的一个线性逼近,可以用于计算函数值的近似值。

全微分的表示为df = (∂f/∂x1)dx1 + (∂f/∂x2)dx2 + ... + (∂f/∂xn)dxn,其中∂f/∂xi表示对变量xi的偏导数。

3.多元复合函数的求导多元复合函数是指多个函数通过复合而成的函数,其中一个函数的导数是另一个函数的自变量。

类似于链式法则,多元复合函数的求导需要使用偏导数和全导数的概念。

对于函数z = f(g(x, y)),链式法则可以表示为dz = (∂z/∂x)dx + (∂z/∂y)dy = (∂f/∂g)(dg/dx)dx +(∂f/∂g)(dg/dy)dy。

4.隐函数的求导5.多重积分多重积分是多元函数的积分形式,与单变量函数的定积分类似。

多重积分有二重积分、三重积分等,分别对应二元函数、三元函数等的积分。

多重积分可以用于计算函数在区域内的面积、体积等。

考研数学高数9多元函数积分学

考研数学高数9多元函数积分学

第九讲:多元函数积分学1. 定义设()f x y ,是定义在有界闭区域D 上的有界函数,如果对任意分割D 为n 个小区域12n σσσ∆∆∆,,,,对小区域()12k k n σ∆=,,上任意取一点()k k ξη,都有()01lim nk k k d k f ξησ→=∆∑,存在,(其中k σ∆又表示为小区域k σ∆的面积,k d 为小区域k σ∆的直径,而1max k k nd d ≤≤=),则称这个极限值为()f x y ,在区域D 上的二重积分,记以()Df x y d σ⎰⎰,这时就称()f x y ,在D 上可积,如果()f x y ,在D 上是有限片上的连续函数,则()f x y ,在D 上是可积的。

2. 几何意义当()f x y ,为闭区域D 上的连续函数,且()0f x y ≥,,则二重积分()Df x y d σ⎰⎰,表示以曲面()z f x y =,为顶,侧面以D 的边界曲线为准线,母线平行于z 轴的曲顶柱体的体积。

当封闭曲面S 它在xy 平面上的投影区域为D ,上半曲面方程为()2z f x y =,,下半曲面方程为()1z f x y =,,则封闭曲面S 围成空间区域的体积为()()21Df x y f x y d σ-⎡⎤⎣⎦⎰⎰,, 3. 基本性质 (1)()()() DDkf x y d k f x y d k σσ=⎰⎰⎰⎰,,为常数(2)()()()()DDDf x yg x y d f x y d g x y d σσσ±=±⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰,,,, (3)()()()12DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰,,,其中12D D D =。

除公共边界外,1D 与2D 不重叠。

(4)若()()()f x y g x y x y D ≤∈,,,,,则()()DDf x y dg x y d σσ≤⎰⎰⎰⎰,,(5)若()()m f x y M x y D ≤≤∈,,,,则 ()DmS f x y d MS σ≤≤⎰⎰,其中S 为区域D 的面积 (6)()()DDf x y d f x y d σσ≤⎰⎰⎰⎰,,(7)积分中值定理,设(),f x y 在有界闭区域D 上连续,S 为D 的面积,则存在(),D ξη∈,使得()()Df x y d f S σξη=⎰⎰,,我们也把()1Df x y d S σ⎰⎰,称为()f x y ,在D 上的积分平均值。

04高数——多元函数积分学知识点速记

04高数——多元函数积分学知识点速记

多元函数积分学1、不定积分1)原函数定义定义在某区间I 上的函数()f x ,若对I 的一切x ,均有()()F x f x '=,则称()F x 为()f x 在区间I 上的原函数。

若函数()f x 存在原函数,则()f x 就有无穷多个原函数,可表示为()F x C +。

2)不定积分定义函数()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰。

若()F x 是()f x 的一个原函数,则()()d f x x F x C =+⎰(C 为任意常数)3)不定积分计算:①第一类换元积分法:设()f u 具有原函数()F u ,而()u x ϕ=可导,则有()()()()d d f x x x f u u F x C ϕϕϕ'==+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰②第二类换元积分法:设()x t ϕ=在区间[],αβ上单调可导,且()0t ϕ'≠,又设()()f t t ϕϕ'⎡⎤⎣⎦具有原函数()F t ,则有()()()()()1d d f x x f t t t F t c F x Cϕϕϕ-'⎡⎤==+=+⎡⎤⎣⎦⎣⎦⎰⎰式中,()1x ϕ-为()x t ϕ=的反函数。

高 数多元函数积分学知识点速记③分部积分法:设()u x ,()v x 可微,且()() d v x u x ⎰存在,由公式()d d d uv u v v u =+得到分部积分公式d d u v uv v u=-⎰⎰2、定积分1)两点规定:①当a b =时,()d 0b a f x x =⎰;②当a b >时,()()d d b a a b f x x f x x =-⎰⎰2)积分上限函数及其导数①()d xa f x x ⎰为积分上限函数,记作()()d x ax f x x Φ=⎰,经常写成如下形式()()()d xa f t t a x xb Φ=≤≤⎰②积分上限函数的导数()()()d x a x f t t f x '⎡⎤'Φ==⎢⎥⎣⎦⎰()a xb ≤≤③()()()()()()()d g x h x f t t f g x g x f h x h x '⎡⎤''==⋅-⋅⎡⎤⎡⎤⎣⎦⎣⎦⎢⎥⎣⎦⎰3、定积分的应用旋转体的体积:设由曲线()y f x =,直线x a =,x b =以及x 轴围成的平面图形,绕x 轴旋转一周而生成的旋转体的体积,则()2πd b x aV f x x =⎡⎤⎣⎦⎰平行截面面积为已知的立体的体积:设立体由曲面S ,以及平面x a =、x b =所围成,且对于[],a b 上任一点x 作垂直截面,截得的面积()A A x =为x 的连续函数,则()d bc V A x x =⎰4、二重积分1)二元函数(),f x y 在闭区域D 上的二重积分,记作(),d D f x y σ⎰⎰2)(),d f x y σ⎰⎰表示以曲面(),z f x y =为顶,以区域D 为底,以D 的边D界为准线,母线平行于 Oz 轴的柱面围成的曲顶柱体的体积。

多元微积分知识点总结

多元微积分知识点总结

一、多元函数的微分学二元函数的定义设有两个独立的变量*与y在其给定的变域中D中,任取一组数值时,第三个变量z就以*一确定的法则有唯一确定的值与其对应,那末变量z称为变量*与y的二元函数。

记作:z=f(*,y). 其中*与y称为自变量,函数z也叫做因变量,自变量*与y的变域D称为函数的定义域。

关于二元函数的定义域的问题我们知道一元函数的定义域一般来说是一个或几个区间.二元函数的定义域通常是由平面上一条或几段光滑曲线所围成的连通的局部平面.这样的局部在平面称为区域.围成区域的曲线称为区域的边界,边界上的点称为边界点,包括边界在的区域称为闭域,不包括边界在的区域称为开域。

如果一个区域D(开域或闭域)中任意两点之间的距离都不超过*一常数M,则称D为有界区域;否则称D为无界区域。

常见的区域有矩形域和圆形域。

如以以下图所示:例题:求的定义域.解答:该函数的定义域为:*≥,y≥0.二元函数的几何表示把自变量*、y及因变量z当作空间点的直角坐标,先在*Oy平面作出函数z=f(*,y)的定义域D;再过D域中得任一点M(*,y)作垂直于*Oy平面的有向线段MP,使其值为与(*,y)对应的函数值z;当M点在D中变动时,对应的P点的轨迹就是函数z=f(*,y)的几何图形.它通常是一曲面,其定义域D就是此曲面在*Oy平面上的投影。

二元函数的极限及其连续性在一元函数中,我们曾学习过当自变量趋向于有限值时函数的极限。

对于二元函数z=f(*,y)我们同样可以学习当自变量*与y 趋向于有限值ξ与η时,函数z的变化状态。

在平面*Oy上,(*,y)趋向(ξ,η)的方式可以时多种多样的,因此二元函数的情况要比一元函数复杂得多。

如果当点(*,y)以任意方式趋向点(ξ,η)时,f(*,y)总是趋向于一个确定的常数A,那末就称A是二元函数f(*,y)当(*,y)→(ξ,η)时的极限。

这种极限通常称为二重极限。

下面我们用ε-δ语言给出二重极限的严格定义:二重极限的定义如果定义于(ξ,η)的*一去心邻域的一个二元函数f(*,y)跟一个确定的常数A有如下关系:对于任意给定的正数ε,无论怎样小,相应的必有另一个正数δ,但凡满足的一切(*,y)都使不等式成立,那末常数A称为函数f(*,y)当(*,y)→(ξ,η)时的二重极限。

微积分——多元函数及二重积分知识点

微积分——多元函数及二重积分知识点

微积分——多元函数及二重积分知识点
一、多元函数
多元函数是指变量、个数多于一个的函数。

常见的函数可以分为二元、三元函数。

1、二元函数
二元函数是指变量、个数为两个的函数,常见的二元函数有:二次函数、双曲线函数等。

(1)二次函数
二次函数是指用一元二次方程记录的函数,一般格式为:y=ax²+bx+c,其中a≠0,则二次函数是一个关于x的二次多项式函数,当a>0时,它
的图像呈现出U形;当a<0时,它的图像呈现出锥形。

(2)双曲线函数
双曲线的定义式有很多种,常见的有标准双曲线、变形双曲线等,它
们的共同特点是,双曲线的图像都是上下对称的,它们的定义式具有一定
的对称性。

2、三元函数
三元函数是指变量、个数为三的函数,一般格式为:z=f(x,y),它
们也有很多类型,比如极坐标函数、椭圆函数、正弦函数、余弦函数等。

(1)极坐标函数
指的是用极坐标表示的只有一个变量的函数,通常表示为r=f(θ),其中r代表半径,θ代表角度,则r随着θ的变化而变化,极坐标函数
的图像一般是一个圆或者椭圆。

(2)椭圆函数
椭圆函数是指以椭圆为图形的函数,一般表示为:
(x-x0)²/a²+(y-y0)²/b²=1,其中a是x轴的长半轴,b是y轴的
长半轴,x0、y0是椭圆圆心坐标。

考研数学一二三大纲考查知识点比较(高数部分)

考研数学一二三大纲考查知识点比较(高数部分)

考研数学⼀⼆三⼤纲考查知识点⽐较(⾼数部分)考研数学⼀⼆三⼤纲考查知识点⽐较(⾼数部分)来源:⽂都教育由于考研数学分为数学⼀⼆三,很多考⽣虽然知道⾃⼰考的是数学⼏,但对于考试考查的知识点还是模糊不清,对于有些知识点不知道到底考不考,这样就导致有可能考的知识点会漏掉,不考的某些知识点⼜浪费时间去学习,这对于复习来说是⾮常不利的。

因此下⾯就为⼤家罗列分析下数学⼀⼆三考查知识点的异同,以提⾼复习效率。

⾼等数学部分第⼀部分:函数、极限、连续,这部分数学⼀⼆三没有任何差别,考查的知识点为:函数的概念及表⽰法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建⽴数列极限与函数极限的定义及其性质函数的左极限和右极限⽆穷⼩量和⽆穷⼤量的概念及其关系⽆穷⼩量的性质及⽆穷⼩量的⽐较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin lim 1x x x →=,1lim 1xx e x →∞??+=函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质。

第⼆部分:⼀元函数微分学,这部分数⼀和数⼆是相同的,考查的知识点为:导数和微分的概念导数的⼏何意义和物理意义函数的可导性与连续性之间的关系平⾯曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数⽅程所确定的函数的微分法⾼阶导数⼀阶微分形式的不变性微分中值定理洛必达法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最⼤值与最⼩值弧微分曲率的概念曲率圆与曲率半径。

数三是在以上的基础上不考这些:参数⽅程所确定的函数的微分法弧微分曲率的概念曲率圆与曲率半径。

第三部分:⼀元函数积分学,这部分同样数⼀数⼆是相同的,数三少某些点。

数⼀数⼆考查的知识点为:原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数⽜顿-莱布尼兹公式不定积分和定积分的换元积分法与分部积分法有理函数、三⾓函数的有理式和简单⽆理函数的积分反常积分定积分的应⽤。

考研数学多元函数微分学的应用知识点总结

考研数学多元函数微分学的应用知识点总结

考研数学高数知识点总结多元函数微分学的应用一、无条件极值1、基本概念设是二元函数的定义域,是的内点,若存在的邻域,使得对任意异于的点均有(或),则称函数在点处取得极大值(或极小值),点称为函数的极大值点(或极小值点),极大值点与极小值点统称为极值点.2、常用公式、定理(1)极值的必要条件:定理:设函数在点具有偏导数,且在该点能够取到极值,则有.(2)极值的充分条件:定理:设函数在点的某邻域内具有连续的一阶及二阶偏导数,又设.令(1)若,则函数在点具有极值.当时取得极小值;当时取得极大值.(2)若,则函数在点不能取到极值.(3)若,则函数在点可能有极值,也可能没有极D (,)z f x y =()000,P x y D 0P 0()U P 0P ()0,()x y U P ∈()00,(,)f x y f x y <()00,(,)f x y f x y >(,)z f x y =0P 0P (,)z f x y =(,)z f x y =00(,)x y 0000(,)0,(,)0x y f x y f x y ''==(,)z f x y =00(,)x y 0000(,)0,(,)0x y f x y f x y ''==000000(,),(,),(,)xx xy yy f x y A f x y B f x y C ,''''''===20AC B ->(,)z f x y =00(,)x y 0A >0A <20AC B -<(,)z f x y =00(,)x y 20AC B -=(,)z f x y =00(,)x y值.【例1】:设可微函数在点取得极小值,则下列结论中正确的是().在处的导数等于0在处的导数大于0在处的导数小于0在处的导数不一定存在答案:【例2】:设函数的全微分为,则点不是的连续点;不是的极值点是的极大值点;的极小值点答案:【例3】:计算下列函数的极值(1);(2)答案:(1)8 极大值;(2)极小值.【例4】:求二元函数的极值.答案:极小值. 【例5】:设函数,证明:函数有无穷多个极大值点,而无极小值点.(,)u f x y =00(,)x y ()A 0(,)f x y 0y y =()B 0(,)f x y 0y y =()C 0(,)f x y 0y y =()D 0(,)f x y 0y y =().A (,)z f x y =dz xdx ydy =+(0,0).()A (,)z f x y =()B (,)z f x y =()C (,)z f x y =()D (,)z f x y =().D 22(,)4()f x y x y x y =---222(,)(2).x f x y e x y y =++1515e ()22(,)2ln f x y x y y y =++1e-()1cos y y z e x ye =+-(,)z f x y =。

多元函数微积分知识点

多元函数微积分知识点

多元函数微积分知识点
1.多元函数的极限:多元函数的极限是在多个自变量趋于一些点时函
数的极限。

多元函数的极限可以通过分量法、夹逼法等方法计算。

2.多元函数的连续性:多元函数的连续性是指函数在定义域内的任意
一点上都存在极限并与函数值相等。

可以利用多元函数的分量函数连续来
判断多元函数的连续性。

3.多元函数的偏导数:多元函数的偏导数是指多元函数对自变量的偏
导数。

求多元函数的偏导数时,只对一个自变量求导,把其他自变量视为
常数。

4.多元函数的全微分:多元函数的全微分是指函数在特定点的微分。

全微分可以理解为函数在该点的线性逼近。

5.多元函数的方向导数:方向导数是指多元函数在其中一点沿着给定
方向的变化速率。

方向导数的计算可以通过梯度来进行。

6.多元函数的梯度:梯度是多元函数在其中一点的导数,其方向与函
数在该点取得最大值的方向相同,数值上等于方向导数的最大值。

7.多元函数的积分:多元函数的积分是指对多元函数进行求和或求定
积分。

与一元函数积分类似,多元函数积分需要确定积分区域和积分方法。

8.曲线积分:曲线积分是指沿着曲线进行的积分,曲线积分可以对向
量场和标量场进行。

9.曲面积分:曲面积分是指对曲面上的函数进行积分。

曲面积分可以
对向量场和标量场进行。

10.格林定理:格林定理是指曲线与曲面积分之间的关系,即把曲面积分转化为曲线积分的定理。

11.斯托克斯定理:斯托克斯定理是格林定理的推广,是把曲线积分转化为曲面积分的定理。

考研数学(二)考试大纲解析(多元函数微积分学)【圣才出品】

考研数学(二)考试大纲解析(多元函数微积分学)【圣才出品】

2y s2

2z x2

x s
2


2
2z xy
x s

y s

2z y2

y s
2

z x

2x s2

z y
2y s2
2z t 2

2z x2

x t
2


2
2z xy
x t
z z x z y s x s y s z z x z y t x t y t
(2)二阶偏导数
多元复合函 数一阶、二
阶偏导数
2z s2

s

z x

x s

z x

s

x s


s
设二元函数 f 在有界闭区域 D R2 上连续,若 P1 , P2 为 D 中任意两点,且
f (P1) < f (P2 ) ,则对 任何满 足不 等式 f (P1) < u < f (P2 ) 的实数 u ,必存 在点
P0 D ,使得 f (P0 ) = u .
1/9
圣才电子书 十万种考研考证电子书、题库视频学习平台
x1, x2, , xn 称为自变量, u 称为因变量.当 n≥2 时,n 元函数就称为多元函数.
偏导数 全微分
z=f(x,y)定义在
D
上, (x0, y0) D ,若 lim x0
f
(x0 x,
y0) x
f
(x0, y0)
存在,则称此极限为 z=f(x,y)在点 (x0, y0) 处对 x 的偏导数,记作

考研数学二必背公式及知识点

考研数学二必背公式及知识点

考研数学二必背公式及知识点考研数学二对于很多考生来说是具有一定挑战性的科目,其中掌握必背的公式和知识点是取得好成绩的关键。

下面就为大家详细梳理一下考研数学二中那些必须牢记的公式和重要知识点。

一、函数、极限、连续1、函数的性质奇偶性:若 f(x) = f(x),则函数 f(x) 为偶函数;若 f(x) = f(x),则函数 f(x) 为奇函数。

周期性:若存在非零常数 T,使得对于任意 x,都有 f(x + T) =f(x),则函数 f(x) 为周期函数,T 为其周期。

2、极限的计算四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x)= A ± B;lim f(x) × g(x) = A × B;lim f(x) / g(x) = A / B (B ≠ 0)。

两个重要极限:lim (1 + 1/x)^x = e (x → ∞);lim sin x / x= 1 (x → 0)。

3、连续的定义函数 f(x) 在点 x₀处连续,当且仅当 lim f(x) = f(x₀) (x → x₀)。

二、一元函数微分学1、导数的定义函数 y = f(x) 在点 x₀处的导数 f'(x₀) = lim f(x₀+Δx) f(x₀) /Δx (Δx → 0)。

2、基本导数公式(x^n)'= nx^(n 1)(sin x)'= cos x(cos x)'= sin x(e^x)'= e^x(ln x)'= 1 / x3、导数的四则运算f(x) ± g(x)'= f'(x) ± g'(x)f(x) × g(x)'= f'(x)g(x) + f(x)g'(x)f(x) / g(x)'= f'(x)g(x) f(x)g'(x) / g(x)²(g(x) ≠ 0)4、复合函数求导法则若 y = f(u),u = g(x),则 dy/dx = dy/du × du/dx5、微分的定义dy = f'(x)dx6、罗尔定理、拉格朗日中值定理、柯西中值定理罗尔定理:若函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,且 f(a) = f(b),则在(a, b) 内至少存在一点ξ,使得 f'(ξ) =0。

多元函数微积分知识点

多元函数微积分知识点

多元函数微积分知识点一、向量值函数向量值函数是指函数的取值为向量的函数,常用符号表示为r(t)或F(t)。

向量值函数的微分即为向量的微分。

二、多元函数的连续性与可微性多元函数在点(x0,y0)连续的充分必要条件是其分量函数在(x0,y0)连续;多元函数在点(x0,y0)可微的充分必要条件是其分量函数在(x0,y0)可微。

三、多元函数的偏导数多元函数f(x,y)对x的偏导数记为∂f/∂x,对y的偏导数记为∂f/∂y。

偏导数可以通过限制一个变量,将多元函数转化为一元函数进行求导。

四、多元函数的微分与高阶导数对于多元函数f(x, y),其微分为df = (∂f/∂x)dx + (∂f/∂y)dy。

高阶偏导数的计算可以通过多次对一个变量进行偏导来得到。

五、多元函数的极值与最值多元函数的极值包括极大值与极小值,可以通过偏导数的方法求得。

为了确定是极大值或极小值,还需要进行二阶偏导数的判别。

六、多元函数的不定积分多元函数的不定积分即求解原函数,其中一个变量看作常数即可。

不定积分具有可加性,也可以用变量代换等方法来简化计算。

七、多元函数的定积分多元函数的定积分是指对多元函数在一个区域上的积分。

定积分的计算需要根据具体的区域进行定积分化简。

八、偏导数的几何意义与方向导数偏导数的几何意义是函数在其中一点上沿各个坐标轴方向的切线的斜率。

方向导数是函数在其中一点沿其中一方向的变化率。

九、梯度与梯度的性质多元函数的梯度是一个向量,表示的是函数在其中一点上沿着变化最快的方向。

梯度具有线性和方向导数的性质。

十、拉格朗日乘数法拉格朗日乘数法是一种用于求解带有约束条件的极值问题的方法。

通过引入拉格朗日乘子,将问题转化为无约束条件的极值问题。

综上所述,多元函数微积分是研究多变量函数的微积分学科,其知识点包括向量值函数、多元函数的连续性与可微性、多元函数的偏导数、多元函数的微分与高阶导数、多元函数的极值与最值、多元函数的不定积分、多元函数的定积分等。

考研数学习题课讲义--4 多元函数微积分学

考研数学习题课讲义--4 多元函数微积分学

2 x uv f f 4 , 练习 设对任意的 x 和 y, 有 用变量代换 将 f (x, y)变 2 2 1 x y y 2 (u v )
2
g g 2 2 换成 g(u, v), 试求满足 a b u v 中的常数 a 和 b. u v
2
2
3
例 11 设
x u 2 v z y u vz
,求
u v u , , . x x z
练习: 1. 设函数 z = z(x, y)由方程 z e
2 x 3 z
2 y 确定, 则 3
z z ____ . x y
2. 设 z = z(x, y) 是由方程 x2 + y2 z = (x + y + z) 所确定的函数, 其中 有二阶导数 且
x2 y4
, 则函数在原点偏导数存在的情况是 ______ .
(A) fx(0, 0) 存在, fy(0, 0) 存在 (B) fx(0, 0) 存在, fy(0, 0) 不存在 (C) fx(0, 0) 不存在, fy(0, 0) 存在 (D) fx(0, 0) 不存在, fy(0, 0) 不存在
.
2
例 7 设 ������ = ������ (������ 2 + ������ 2 , ), 其中 f (u, v) 具有连续的二阶偏导数, 求 . ������ ������������������������
������
����Байду номын сангаас� 2 ������
例 8 设 ������ = ������(������������ + ������������) + ������(������ 2 ������, ������������ 2 ), 其中 f, g 都具有连续的二阶偏导数, 求

多元函数知识点总结考研

多元函数知识点总结考研

多元函数知识点总结考研1. 多元函数的概念多元函数通常表示为f(x1, x2, ..., xn),其中x1, x2, ..., xn是自变量,而f是因变量。

多元函数有多个自变量,而且每个自变量可以取不同的数值,因此它的取值不再是唯一确定的,而是由多个自变量的取值共同决定的。

在多元函数中,自变量的取值空间可以是一维、二维、三维甚至更高维的空间,因此多元函数的图像往往是一个多维空间中的曲面。

2. 多元函数的性质与一元函数不同,多元函数的性质更加复杂,由于有多个自变量,因此需要考虑多个方面的性质。

常见的多元函数的性质包括:(1) 定义域和值域:多元函数的定义域是自变量的取值范围,而值域是因变量的取值范围。

在处理多元函数时,需要特别注意定义域的限制条件,以免出现无定义的情况。

(2) 连续性和可导性:多元函数的连续性和可导性是关于函数导数的性质,需要通过极限的方法来进行分析和判断。

特别是在多维空间中,函数的导数更加复杂,需要用到偏导数、方向导数等概念。

(3) 偏导数和全微分:偏导数是多元函数在某一方向上的导数,而全微分则是对所有自变量的导数的线性组合。

偏导数和全微分是多元函数的重要概念,它们可以帮助我们对多元函数的性质进行更详细的分析。

3. 多元函数的求导对多元函数进行求导是微积分学科中的重要内容,它可以帮助我们研究函数的增减性、极值、拐点等性质。

与一元函数不同,多元函数的求导需要考虑多个自变量的变化对因变量的影响,因此在求导的过程中需要使用偏导数的概念。

对于一个多元函数f(x1, x2, ..., xn),其偏导数表示为∂f/∂xi,表示在第i个自变量上的导数。

而多元函数的全微分df可以表示为df = ∂f/∂x1 dx1 + ∂f/∂x2 dx2 + ... + ∂f/∂xn dxn,这里dx1, dx2, ..., dxn是自变量的微小变化量。

在求多元函数的极值时,需要利用多元函数的偏导数来进行分析,可以通过偏导数为零的条件来求得函数的驻点,再利用二次导数的信息来确定驻点的性质。

2016考研数学:多元函数积分中的知识点

2016考研数学:多元函数积分中的知识点

2016考研数学:多元函数积分中的知识点多元函数积分学包括二重积分、三重积分、曲线积分和曲面积分,一直以来多元函数积分学积分都是考研高等数学的重点,尤其是对数一、数三而言,更是重中之重,每年都至少会考一道大题,选择填空的题目也是以各种各样的形式出现,所以对于多元函数积分学的知识点必须引起各位考生的重视。

2016考研数学复习指导:多元函数积分学" />有很多同学认为多元函数积分学比较难,事实上如果大家感觉到难的话,只能说你在上册数上欠的账太多了。

多元函数积分学的知识往往是起点比较高,但是落点比较低,只要你学好了一元函数积分学,那么多元函数积分学的知识只是手到擒来的事情。

下面我就带着大家来看一下多元函数积分学的知识。

二重积分是三重积分的基础,是基于单积分发展起来的,它的几何意义就是求一个空间立体图形的体积。

在建立了二重积分概念以后,三重积分是其自然的推广,没有本质折差别。

在计算上看来,二重积分与三重积分都是最终化为定积分来计算的,但三重积分不论是采用"先二后一"还是"先一后二",都要通过二重积分的计算,所以二重积分在多元函数积分学中有重要的作用,深入理解二重积分的概念,熟练掌握二重积分的计算方法,是学好多元函数积分学的关键。

三重积分是二重积分的进一步延拓,它的物理意义就是求一个空间立体图形的质量。

对三重积分来说,计算的基本思路是转化为定积分,但计算的繁简取决于坐标系的选择,而坐标系的选择取决于积分区域的形状。

一般来说,当积分区域是柱体、锥体或由柱面、锥面、旋转面与其他曲面所围成的空间立体时,宜利用柱面坐标变换计算;当积分区域是球体、锥体或球本省的一部分时,宜利用球面坐标变换计算;当积分区域是长方体、四面体或任意形体时,宜利用直角坐标计算。

曲线积分分为第一类曲线积分和第二类曲线积分,它的物理意义分别是平面曲线或者空间曲线的质量和变力做功。

曲面积分也分为第一类曲面积分和第二类曲面积分,它的物理意义分别是空间曲面的质量和通过曲面的流量。

多元函数微积分知识点

多元函数微积分知识点

多元函数微积分知识点多元函数微积分是微积分的一个重要分支,它主要研究含有多个变量的函数的微分、积分和相关性质。

相比于一元函数微积分,多元函数微积分具有更高的复杂性和更丰富的应用领域。

以下是多元函数微积分的一些重要的知识点:1.多元函数的极限:多元函数的极限定义与一元函数相似,但需要考虑多个变量同时趋于一些点或正负无穷的情况。

可以使用极限运算定理、夹逼定理等方法求解多元函数的极限。

2.多元函数的连续性:多元函数的连续性与一元函数的连续性类似,也可以使用极限的性质证明多元函数的连续性。

此外,也有类似于一元函数的极限运算定理和连续函数的性质定理适用于多元函数。

3.多元函数的偏导数:多元函数的偏导数描述了函数在一些变量方向上的变化率。

对于二元函数,可以求出两个变量的偏导数;对于三元函数及以上的函数,可以求出每个变量的偏导数。

求偏导数时,将其他变量当作常数对待。

4.多元函数的全微分:多元函数的全微分也称为多元函数的导数。

通过偏导数可求得多元函数在特定点的各个方向的变化率,进而求得多元函数在特定点的全微分。

5.多元函数的方向导数:多元函数的方向导数描述了函数在一些给定方向上的变化率。

通过求解偏导数和方向向量的点积,可以求得多元函数在一些方向上的方向导数。

6.多元函数的梯度:多元函数的梯度是一个向量,它的方向指向函数在特定点变化最快的方向,大小表示这个变化的速率。

梯度的方向与等高线垂直。

7.多元函数的二阶偏导数:对于多元函数,可以求出其各个变量的一阶偏导数,进一步可以求出相应的二阶偏导数。

二阶偏导数刻画了多元函数在一些变量方向上的变化率的变化率,即函数的曲率。

8.多元函数的泰勒展开:多元函数的泰勒展开是将一个多元函数近似表示为以一些点为中心的多项式的形式。

泰勒展开可以用于函数求值的近似计算和函数性质的分析。

9.多元函数的极值与最值:类似于一元函数,多元函数也有极值和最值的概念。

可以通过求解偏导数和二阶偏导数来判断函数的极值和最值,并应用拉格朗日乘数法等方法求解约束条件下的最值问题。

4考研数学大纲知识点解析(第四章多元函数的微分学-数一

4考研数学大纲知识点解析(第四章多元函数的微分学-数一

满足 .
.则
【解析】由题设
可知,当
时,有

,从而有
由二元函数全微分的定义, 有
在点
处可微,且
. ,
. ,故
【全微分存在的必要条件和充分条件】 【极限,连续,偏导数,可微分之间的关系】 一元函数:
二元函数:
【例题】(02 年,数学一)考虑二元函数
的下面 条性质:

在点
处连续. ②
在点
处的两个偏导数连续,
确.
选项(C),(D)取 不存在,故排除(C),(D).
,显然
在点
处可微,但
【综合题】设

点处( ).
(A)不连续. (B)偏导函数不存在. (C)不可微. (D)可微.
【解析】(1)


点连续.
(2)
同理
(3)
从而
不存在.

点不可微. 故选(C).
【综合题】设
则在
(A)偏导不存在. (B)偏导函数连续. (C)可微. (D)不可微.
第四章 多元函数的微分学 【多元函数的概念】 【二元函数的定义】
类似的可以定义三元函数 【二元函数的几何意义】 二元函数
. 一般表示空间直角坐标系下的一个空间曲面.
【二元函数极限的概念】
【注】二元函数极限存在,是指 以所有路径趋于
时,对应的函数值趋于相同
的一个常数.如果 沿着两条不同路径趋于
时,对应的函数值趋于不同的值,

有连续的一阶偏导数,又函数

分别由下列两式确定

求.


【解析】

两边对 求导,得

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学知识点复习:多元函数积分学
大纲考点
在研究生入学考试中,高等数学是数一、数二、数三考试的公共内容。

数一、数三均占56%(总分150分),考察4个选择题(每题4分,共16分)、4个填空题(每题4分,共16分)、5个解答题(总分50分)。

数二不考概率论,高数占78%,考察6个选择题(每题4分,共24分)、4个填空题(每题5分,共20分)、7个解答题(总分72分)。

由高数所占比例易知,高数是考研[微博]数学的重头戏,因此一直流传着“得高数者得数学。

”高等数学包含函数、极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、常微分方程和无穷级数等六个模块,在梳理分析函数、极限与连续、一元函数微分学、一元函数积分学、多元函数微分学的基础上,继续梳理多元函数积分学,希望对学员有所帮助。

多元函数积分学,数一、数二、数三区别比较大,数二、数三只要求掌握二重积分,数一学员要求掌握二重积分、三重积分、曲线积分和曲面积分。

我们分开介绍。

一、XX考研高等数学大纲“多元函数积分学”(数一考生)
1、考试内容
(1)二重积分与三重积分的概念、性质、计算和应用;
(2)两类曲线积分的概念、性质及计算;(3)两类曲线积分的关系;(4)格林(Green)公式;(5)平面曲线积分与路径无关的条件;(6)二元函数全微分的原函数;(7)两类曲面积分的概念、性质及计算;(8)两类曲面积分的关系;(9)高斯(Gauss)公式;(10)斯托克斯(Stokes)公式;(11)散度、旋度的概念及计算;(12)曲线积分和曲面积分的应用
2、考试要求
(1)理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理;(2)掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标);(3)理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;(4)掌握计算两类曲线积分的方法;(5)掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数;(6)了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的
方法,并会用斯托克斯公式计算曲线积分;(7)了解散度与旋度的概念,并会计算;(8)会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等)。

3、常考题型
(1)二重积分的定义与基本性质;(2)改变积分次序;(3)直角坐标系、极坐标系下计算二重积分;(4)二重积分的相关证明;(5)直角坐标系、柱坐标、球坐标系计算三重积分;
(6)两类曲线积分的关系与计算;(7)格林公式;(8)两类曲面积分的关系与计算;(9)高斯公式;(10)斯托克斯公式
二、XX考研高等数学大纲“多元函数积分学”(数二、数三考生)
1、考试内容
二重积分的概念。

基本性质和计算无界区域上简单的反常二重积分
2、考试要求
(1)了解二重积分的概念与基本性质;(2)掌握二重积分的计算方法(直角坐标。

极坐标);(3)了解无界区域上较简单的反常二重积分并会计算。

3、常考题型
(1)二重积分的定义与基本性质;(2)改变积分次序;(3)计算二重积分(直角坐标系和极坐标系);(4)二重积分的证明
以上是老师针对多元函数积分学这一模块,围绕大纲考点、常考题型进行的梳理分析,希望考生对这部分内容要熟练掌握。

相关文档
最新文档