南通市2014年中考数学试卷word版

合集下载

江苏省南通市中考数学真题试卷(解析卷)

江苏省南通市中考数学真题试卷(解析卷)

江苏省南通市2014年初中毕业生学业考试试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(2014•南通)﹣4的相反数()A.4 B.﹣4 C.14D.﹣142.(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60°D.50°【考点】平行线的性质,邻补角的定义。

【解答】如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选B。

【答案】B【点评】本题考查了平行线的性质定理,邻补角的定义。

解决本题的关键是先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等。

3.(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱【考点】由三视图判断几何体【解答】俯视图为圆的几何体为球,圆锥,圆柱,再根据左视图与主视图,可知此几何体为圆柱.故选A。

【答案】A【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形。

4.(2014•南通)若121x在实数范围内有意义,则x的取值范围是()A.x≥12B.x≥﹣12C.x>12D.x≠12【考点】分式有意义的条件,二次根式有意义的条件。

【解答】由题意得,2x﹣1>0,解得x>12。

故选C。

【答案】C【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数。

5.(2014•南通)点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)6.(2014•南通)化简211x xx x+--的结果是()A.x+1 B.x﹣1 C.﹣x D. x 【考点】分式的加减法【解答】()2221111111x xx x x x x xxx x x x x x--+=-===------,故选D。

江苏省南通市中考数学试卷

江苏省南通市中考数学试卷

2014年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)3.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱6.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x 8.(3分)若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1B.a>1 C.a≤﹣1 D.a<﹣1 9.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12﹣6 D.6﹣6 10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.πr214.(3分)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线_________.15.(3分)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=_________cm.17.(3分)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_________°.18.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于_________.三、解答题(本大题共10小题,共96分)19.计算:(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.21.(8分)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P 在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?23.盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=_________,y=_________;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?24.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.25.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为_________cm,匀速注水的水流速度为_________cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.26.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.27.如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.28.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.。

江苏省南通市2014年中考数学试题(,含解析)

江苏省南通市2014年中考数学试题(,含解析)

九年级数学寒假作业(1)编制:丁丽云一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:13.已知一个几何体的三视图如图所示,则该几何体是()的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4) C.(,)、(﹣,4)D.(,)、(﹣,4)6.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点.12﹣6 ﹣7.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则.D8.已知反比例函数的图象经过点A(﹣2,3),则当x=﹣3时,y=.9.如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.10.如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=.11.已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线.2的取值范围是.13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.15.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).16.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=.17.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.18.如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.19.如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?20.盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=,y=;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?21.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.22.某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.23.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)24.已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?25.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE 表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?26.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.27.如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.28.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.九年级数学寒假作业(1)答案1、C.2 、C.3、A.4、B.5、B.6、D.7、C.8、2 .9、72°.10、9.11、x=﹣1. 12、0<x<4.13、2 .14、6. 15、A .16、60°.17、﹣12.18、y=﹣,B点坐标为(1,﹣2);x<﹣1或0<x<1时,﹣2x>.19、过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.20、2,3;∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P(小王胜)==,P (小林胜)==.21、(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.22、2.6(1+x)2;百分率为10%.23、梯子的长是8米.24、(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.25、15,0.1;(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.25、(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.27、(1)证明:∵四边形ABCD是矩形,∴∠A=∠MDF=90°,∵M为边AD中点,∴MA=MD∴△MAE≌△MDF(ASA),∴EM=FM,又∵MG⊥EM,∴EG=FG,∴△EFG是等腰三角形;(2)解:如图1,∵AB=3,AD=4,AE=1,AM=a∴BE=AB﹣AE=3﹣1=2,BC=AD=4,∴EM2=AE2+AM2,EC2=BE2+BC2,∴EM2=1+a2,EC2=4+16=20,∵CM2=EC2﹣EM2,∴CM2=20﹣1﹣a2=19﹣a2,∴CM=.∵AB∥CD,∴∠AEM=∠MFD,又∵∠MCD+∠MFD=90°,∠AME+∠AEM=90°,∴∠AME=∠MCD∵∠MAE=∠CDM=90°,∴△MAE∽△CDM,∴=,即=,解得a=1或3,代入CM=.得CM=3或.(3)解:如图2,作MN⊥BC,交BC于点N,∵AB=3,AD=4,AE=1,AM=a∴EM==,MD=AD﹣AM=4﹣a,∵∠A=∠MDF=90°,∠AME=∠DMF,∴△MAE∽△MDF ∴=,∴=,∴FM=,∴EF=EM+FM=+=,∵AD∥BC,∴∠MGN=∠DMG,∵∠AME+∠AEM=90°,∠AME+∠DMG=90°,∴∠AME=∠DMG,∴∠MGN=∠AME,∵∠MNG=∠MAE=90°,∴△MNG∽△MAE∴=,∴=,∴MG=,∴S=EF•MG=××=+6,即S=+6,当a=时,S有最小整数值,S=1+6=7.28、(1)由抛物线y=﹣x2+2x+3可知,C(0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4。

南通市2014年数学A卷(终稿命题组提供)

南通市2014年数学A卷(终稿命题组提供)

南通市2014年初中毕业、升学考试试卷数 学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题..卡相应位置.....上) 1. -4的相反数是A .4B .-4C .14 D .-142.如图,∠1=40°,如果CD ∥BE ,那么∠B 的度数为A .160°B .140°C .60°D .50°3. 已知一个几何体的三视图如图所示,则该几何体是A .圆柱B .圆锥C .球D .棱柱 4. x 的取值范围是A .x ≥12 B .x ≥―12 C .x >12 D .x ≠125. 点P (2,―5)关于x 轴对称的点的坐标为A .(―2,5)B .(2,5)C .(―2,―5) D .(2,―5)ACD BE1(第2题)(第3题)6. 化简211x xx x+--的结果是 A .x +1 B .x -1 C .-x D .x 7. 已知一次函数y=kx -1,若y 随x 的增大而增大,则它的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 8. 若关于x 的一元一次不等式组10,0x x a -<⎧⎨->⎩无解,则a 的取值范围是A .a ≥1B .a >1C .a ≤-1D .a <-19. 如图,△ABC 中,AB =AC =18,BC =12.正方形DEFG 的顶点E ,F 在△ABC 内,顶点D ,G 分别在AB ,AC 上,AD =AG ,DG =6.则点F 到BC 的距离为 A .1 B .2C .6 D .610.如图,一个半径为r 的圆形纸片在边长为a (a >)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“接触不到的部分”的面积是 A .3πr 2Br 2C .π)r 2D .πr 2二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 11.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 ▲ 吨. 12.因式分解a 3b -ab = ▲ .13.若关于x 的方程x 2-6x +m =0有两个相等的实数根,则实数m = ▲ .·(第10题)ABDGEF(第9题)14.已知抛物线y=ax 2+bx +c 与x 轴的公共点是(-4,0),(2,0),则这条抛物线的对称轴是直线▲ .15.如图,四边形ABCD 中,AB ∥DC ,∠B =90°,连接AC ,∠DAC =∠BAC .若BC =4cm ,AD =5cm ,则AB = ▲ cm .16.在如图所示(A ,B ,C 三个区域)的图形中随机地撒一把豆子,豆子落在 ▲ 区域的可能性最大(填A 或B 或C ).17.如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD= ▲ 度.18.已知实数m ,n 满足m -n 2=1,则代数式m 2+2n 2+4m -1的最小值等于 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)计算:(1) (-2)2+)0(12)-1; (2) [x (x 2y 2-xy )-y (x 2-x 3y )]÷x 2y .20.(本小题满分8分)如图,正比例函数y =-2x 与反比例函数y =kx的图象相交于A (m ,2),B 两点. (1)求反比例函数的表达式及点B 的坐标; (2)结合图象直接写出当-2x >kx时,x 的取值范围.(第16题)(第20题)ABCD(第15题)(第17题)·O ABCD如图,海中有一灯塔P ,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A 处测得灯塔P 在北偏东60°方向上,航行40分钟到达B 处,测得灯塔P 在北偏东30°方向上,如果海轮不改变航线继续向东航行,有没有触礁的危险?22.(本小题满分9分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A :0.5≤x <1,B :1≤x <1.5,C :1.5≤x <2,D :2≤x <2.5,E :2.5≤x <3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是 ▲ ; (2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.P北东(第21题)60° 30° (第22题)DE A BC40%盒中有x 个黑球和y 个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是25;若往盒中再放进1个黑球,这时取得黑球的概率变为12. (1)填空:x = ▲ ,y = ▲ ;(2)小王和小林利用x 个黑球和y 个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王获胜,若颜色不同则小林获胜,求两个人获胜的概率各是多少?24.(本小题满分8分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .点M 在⊙O 上,MD 恰好经过圆心O ,连接MB . (1)若CD =16,BE =4,求⊙O 的直径; (2)若∠M =∠D ,求∠D 的度数.25.(本小题满分9分)如图①,底面积为30cm 2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”.现向容器内匀速注水,注满为止.在注水过程中,水面高度h (cm)与注水时间t (s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为 ▲ cm ,匀速注水的水流速度为 ▲ cm 3/s ;(2)若“几何体”的下方圆柱的底面积为15cm 2,求“几何体”上方圆柱的高和底面积.(第25题)h图②图①ABCDMO .E(第24题)如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,连接EB ,GD . (1)求证EB =GD ;(2)若∠DAB =60°,AB =2,AGGD 的长.27.(本小题满分13分)如图,矩形ABCD 中,AB =3,AD =4,E 为AB 上一点,AE =1.M 为射线AD 上一动点,AM =a (a 为大于0的常数).直线EM 与直线CD 交于点F ,过点M 作MG ⊥EM ,交直线BC 于点G . (1)若M 为边AD 的中点,求证△EFG 是等腰三角形; (2)若点G 与点C 重合,求线段MG 的长;(3)请用含a 的代数式表示△EFG 的面积S ,并指出S 的最小整数值.28.(本小题满分13分)如图,抛物线y =-x 2+2x +3与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,抛物线的对称轴DF 与BC 相交于点E ,与x 轴相交于点F . (1)求线段DE 的长;(2)设过点E 的直线与抛物线相交于点M (x 1,y 1),N (x 2,y 2),试判断当|x 1-x 2|的值最小时,直线MN 与x 轴的位置关系,并说明理由; (3)设点P 为x 轴上一点,∠DAO +∠DPO =∠当tan ∠α=4时,求点P 的坐标.(第27题)A BDCEMF(第26题)ABDEFG。

江苏省南通市通州区2014届中考数学一模试题

江苏省南通市通州区2014届中考数学一模试题

1 / 14某某省某某市通州区2014届中考数学一模试题有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位......置.上. 1.如果向北走2km 记作+2km ,那么向南走3km 记作 A .-3kmB .+3kmC .-1kmD .+5km 2.下列计算中正确的是A .2352a a a +=B .236a a a ⋅=C .235a a a ⋅=D .329()a a =3.2013年,某某市公共财政预算收入完成约486亿元,将“486亿”用科学记数法表示为 A .4.86×102B .6×108C .4.86×109D .4.86×10104.如果一个三角形的两边长分别为2和5,则第三边长可能是 A .2B .3C .5D .85.若正多边形的一个内角等于144°,则这个正多边形的边数是 A .9 B .10 C .11 D .12 6.如图是一个正方体被截去一角后得到的几何体,它的俯视图是7.某校九年级A .中位数为170B .众数为168C .极差为35D .平均数为170(第6题)A .B .D .C .2 / 14 8.如图,已知O 的直径AB 为10,弦CD =8,CD ⊥AB 于点E ,则sin ∠OCE 的值为A . 45B .35C . 34D.439.已知一次函数y kx b =+的图象如图所示,则关于x 的不等式(4)20k x b -->的解集为A .2x >-B .2x <-C .2x >D .3x <10.如图,边长为2a 的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是 A B .a C D .12a 二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.=▲. 12.函数5xy x =+中,自变量x 的取值X 围是▲. 13.如图,AB ∥CD ,∠C =20o,∠A =55o,则∠E =▲o.14.若关于x 的方程2x x a -+=0有两个相等的实数根,则a 的值为▲. 15.已知扇形的圆心角为45o,半径为2cm ,则该扇形的面积为▲cm 2.16.如图,矩形ABCD 沿着直线BD 折叠,使点C 落在C 1处,BC 1交AD 于点E ,AD =8,AB =4,则DE 的长为▲.C 1E DCBAAEFD CB(第13题)(第16题)(第18题)B N(第8题)(第9题)(第10题)3 /17.某家商店的账目记录显示,某天卖出26支牙刷和14盒牙膏,收入264元;另一天,以同样的价格卖出同样的65支牙刷和35盒牙膏,收入应该是▲ 元.18. 如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO BO,当A点在反比例函数1yx=(x>0)的图象上移动时,B点坐标满足的函数解析式为▲.三、解答题:本大题共10小题,共计96分.请在答题卡指定区......域.内作答,解答时应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)(1)计算:1201|3|(3)(6)2π-⎛⎫-+-+-- ⎪⎝⎭;(2)化简2211(1)2+1mm m m-+÷-.▲▲▲▲▲▲20.(本小题满分8分)(1)分解因式2(2)8a b ab-+;(2)解方程2312x x=--.▲▲▲▲▲▲21.(本小题满分9分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.天和7天以上53天学生参加实践活动天数7天和7天以上学生参加实践活动天数4 / 14CE请根据图中提供的信息,回答下列问题:(1)扇形统计图中a 的值为▲ %,该扇形圆心角的度数为▲ ; (2)补全条形统计图;(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少 人?▲▲▲22.(本小题满分8分)如图,已知△ABC 中,以AB 为直径的半⊙O 交AC 于D ,交BC 于E , BE =CE ,∠C =70o,求∠DOE 的度数.▲▲▲23.(本小题满分8分)如图,一台起重机,他的机身高AC 为21m ,吊杆AB 长为40m ,吊杆与水平线的夹角∠BAD 可从30°升到80°.求这台起重机工作时,吊杆端点B 离地面CE 的最大高度和离机身AC 的最大水平距离(结果精确到). (参考数据:sin80°≈0.98,cos80°≈,tan80°≈5.67,3≈)▲▲▲BAO5 / 1424.(本小题满分9分)有四X 背面图案相同的卡片A 、B 、C 、D ,其正面分别画有四个不同的几何图形(如图)小敏将这四X 卡片背面朝上洗匀摸出一X ,放回洗匀再摸出一X. (1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片用A 、B 、C 、D 表示)(2)求摸出的两X 卡片图形都是中心对称图形的概率.▲▲▲25.(本小题满分8分)如图,在四边形ABCD 中,AB =DC ,E 、F 分别是AD 、BC 的中点,G 、H 分别是对角线BD 、AC 的中点.(1)求证:四边形EGFH 是菱形;(2)若AB =1,则当∠ABC +∠DCB =90°时,求四边形EGFH 的面积.▲▲▲26.(本小题满分10分)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的倍.设两人出发x min 后距出发点的距离为y m .图中折线段OBA 表示小亮在A BCDEFGHA DCB6 / 14 整个训练中y 与x 的函数关系,其中点A 在x 轴上,点B 坐标为(2,480). (1)点B 所表示的实际意义是▲; (2)求出AB 所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?▲▲▲27.(本小题满分12分)如图,△ABC 中,∠C =90°,AC =3cm ,BC =4cm ,点E 、F 同时从点C 出发,以12cm/s 的速度分别沿CA 、CB 匀速运动,当点E 到达点 A 时,两点同时停止运动,设运动时间为t s .过点F 作BC 的垂线l 交AB 于点D ,点G 与点E 关于直线l 对称. (1)当t = ▲ s 时,点G 在∠ABC 的平分线上; (2)当t = ▲ s 时,点G 在AB 边上;(3)设△DFG 与△DFB 重合部分的面积为Scm 2, 求S 与t 之间的函数关系式,并写出t 的取值X 围.x /min/m O BA 4802 AGDF EBC备用图ACBl7 / 14▲▲▲▲▲▲28.(本小题满分14分)已知,经过点A (-4,4)的抛物线2y ax bx c =++与x 轴相交于点B (-3,0)及 原点O .(1)求抛物线的解析式;(2)如图1,过点A 作AH ⊥x 轴,垂足为H ,平行于y 轴的直线交线段AO 于点Q ,交抛物线于点P ,当四边形AHPQ 为平行四边形时,求∠AOP 的度数;(3)如图2,若点C 在抛物线上,且∠CAO =∠BAO ,试探究:在(2)的条件下,是否存在点G ,使得△GOP ∽△COA ?若存在,请求出所有满足条件的点G 坐标;若不存在,请说明理由.▲▲▲▲▲▲▲▲▲图2图18 / 142014年中考适应性考试数学参考答案和评分标准说明:本评分标准每题一般只提供一种解法,如有其他解法,请参照本标准的精神给分. 一、选择题二、填空题11. 4 12.5x ≠- 13.35 14.14 15.1π216.5 17.660 18.12y x=-三、解答题19.解:(1)原式=3912++-4分 =115分(2)原式=2+1(1)(1)(1)m m m m m -⋅+-3分 =1m m-5分 20. 解:(1)原式=22448a ab b ab -++1分=2244a ab b ++2分 =2(2)a b +4分 (2)2(2)3(1)x x -=-1分2433x x -=- 解得1x =-2分检验:当1x =-时,(1)(2)0x x --≠,3分 所以原方程的解为1x =-.4分21.解:(1)25,90°4分9 / 14(2)6分(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=15000∴该市 “活动时间不少于5天”的大约有15000人.9分22.解:连接AE ,1分∵AB 是⊙O 的直径, ∴∠AEB =90o,∴AE ⊥BC 2分 ∵BE =CE ∴AB =AC 4分∴∠B =∠C =70o ,∠BAC =2∠CAE 5分 ∴∠BAC =40o6分∴∠DOE =2∠CAE =∠BAC =40o8分23.解:当∠BAD =30°时,吊杆端点B 离机身AC 的水平距离最大;当∠B’AD =80°时,吊杆端点B ’离地面CE 的高度最大.1分 作BF ⊥AD 于F ,B´G ⊥CE 于G ,交AD 于F ’ .2分在Rt △BAF 中,cos ∠BAF =AFAB,∴AF =AB ·cos∠BAF =40×cos30°≈3(m ).4分在Rt △B’AF’中,sin ∠B´AF’=B'F'AB', ∴B’F’=AB’·sin∠B’AF’=40×sin80°≈39.2(m ).6分 ∴B’G =B’F’+F’G ≈39.2+21=60.2(m ).7分答:吊杆端点B 离地面CE 的最大高度约为m ,离机身AC 的最大水平距离约3m .7天和7天以上BAO10 / 148分24.解:①树状图4分或列表法②由图可知:只有卡片B 、D 才是中心对称图形。

江苏省南通市2014年中考数学试题(word版,含解析)

江苏省南通市2014年中考数学试题(word版,含解析)

江苏省南通市2014年中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2014•南通)﹣4的相反数()A. 4 B.﹣4 C.D.﹣考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣4的相反数4.故选A.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A. 160°B. 140°C. 60°D. 50°考点:平行线的性质.专题:计算题.分析:先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.解答:解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选B.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.(3分)(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选A.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.4.(3分)(2014•南通)若在实数范围内有意义,则的取值范围是()A.≥B.≥﹣C.>D.≠考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2﹣1>0,解得>.故选C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.(3分)(2014•南通)点P(2,﹣5)关于轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)考点:关于轴、y轴对称的点的坐标.分析:根据关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(,y)关于轴的对称点P′的坐标是(,﹣y),进而得出答案.解答:解:∵点P(2,﹣5)关于轴对称,∴对称点的坐标为:(2,5).故选:B.点评:此题主要考查了关于轴对称点的坐标性质,正确记忆坐标变化规律是解题关键.6.(3分)(2014•南通)化简的结果是()A. +1 B.﹣1 C.﹣D.考点:分式的加减法.专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===,故选D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.7.(3分)(2014•南通)已知一次函数y=﹣1,若y随的增大而增大,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限考点:一次函数图象与系数的关系.分析:根据“一次函数y=﹣3且y随的增大而增大”得到<0,再由的符号确定该函数图象所经过的象限.解答:解:∵一次函数y=﹣1且y随的增大而增大,∴<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.点评:本题考查了一次函数图象与系数的关系.函数值y随的增大而减小⇔<0;函数值y随的增大而增大⇔>0;一次函数y=+b图象与y轴的正半轴相交⇔b>0,一次函数y=+b图象与y轴的负半轴相交⇔b<0,一次函数y=+b图象过原点⇔b=0.8.(3分)(2014•南通)若关于的一元一次不等式组无解,则a的取值范围是()A. a≥1 B. a>1 C. a≤﹣1 D. a<﹣1考点:解一元一次不等式组.分析:将不等式组解出,根据不等式组无解,求出a的取值范围.解答:解:解得,,∵无解,∴a≥1.故选A.点评:本题考查了解一元一次不等式组,会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故答案为:6.75×104.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2014•南通)因式分解a3b﹣ab=ab(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差继续分解.解答:解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).故答案是:ab(a+1)(a﹣1).点评:本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.(3分)(2014•南通)如果关于的方程2﹣6+m=0有两个相等的实数根,那么m=9.考点:根的判别式.分析:因为一元二次方程有两个相等的实数根,所以△=b2﹣4ac=0,根据判别式列出方程求解即可.解答:解:∵关于的方程2﹣6+m=0有两个相等的实数根,∴△=b2﹣4ac=0,即(﹣6)2﹣4×1×m=0,解得m=9点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.(3分)(2014•南通)已知抛物线y=a2+b+c与轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线=﹣1.考点:抛物线与轴的交点.分析:因为点A和B的纵坐标都为0,所以可判定A,B是一对对称点,把两点的横坐标代入公式=求解即可.解答:解:∵抛物线与轴的交点为(﹣1,0),(3,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线==﹣1,即=﹣1.故答案是:=﹣1.点评:本题考查了抛物线与轴的交点,以及如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式求解,也可以用公式=求解,即抛物线y=a2+b+c与轴的交点是(1,0),(2,0),则抛物线的对称轴为直线=.点评:此题考查了梯形的性质、等腰三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(2014•南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在A区域的可能性最大(填A或B或C).考点:几何概率.分析:根据哪个区域的面积大落在那个区域的可能性就大解答即可.解答:解:由题意得:S A>S B>S C,故落在A区域的可能性大,故答案为:A.点评:本题考查了几何概率,解题的关键是了解那个区域的面积大落在那个区域的可能性就大.17.(3分)(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=60°.考点:圆周角定理;平行四边形的性质.专题:压轴题.分析:由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后又三角形外角的性质,即可求得∠OAD+∠OCD的度数.解答:解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60°.点评:此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.三、解答题(本大题共10小题,共96分)19.(10分)(2014•南通)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[(2y2﹣y)﹣y(2﹣3y)]÷2y.考点:整式的混合运算;零指数幂;负整数指数幂.分析:(1)先求出每一部分的值,再代入求出即可;(2)先算括号内的乘法,再合并同类项,最后算除法即可.解答:解:(1)原式=4+1﹣2﹣2=1;(2)原式=[2y(y﹣1)﹣2y(1﹣y)]÷2y=[2y(2y﹣2)]÷2y=2y﹣2.点评:本题考查了零指数幂,负整数指数幂,二次根式的性质,有理数的混合运算,整式的混合运算的应用,主要考查学生的计算和化简能力.20.(8分)(2014•南通)如图,正比例函数y=﹣2与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2>时,的取值范围.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先把A(m,2)代入y=﹣2可计算出m,得到A点坐标为(﹣1,2),再把A 点坐标代入y=可计算出的值,从而得到反比例函数解析式;利用点A与点B关于原点对称确定B点坐标;(2)观察函数图象得到当<﹣1或0<<1时,一次函数图象都在反比例函数图象上方.解答:解:(1)把A(m,2)代入y=﹣2得﹣2m=2,解得m=﹣1,所以A点坐标为(﹣1,2),把A(﹣1,2)代入y=得=﹣1×2=﹣2,所以反比例函数解析式为y=﹣,点A与点B关于原点对称,所以B点坐标为(1,﹣2);(2)当<﹣1或0<<1时,﹣2>.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21.(8分)(2014•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?考点:解直角三角形的应用-方向角问题.分析:易证△ABP是等腰三角形,过P作PD⊥AB,求得PD的长,与6海里比较大小即可.解答:解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.点评:本题主要考查了方向角含义,正确作出高线,转化为直角三角形的计算是解决本题的关键.22.(8分)(2014•南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤<1B.1≤<1.5C.1.5≤<2D.2≤<2.5E.2.5≤<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是C;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.考点:频数(率)分布直方图;扇形统计图;中位数.专题:图表型.分析:(1)可根据中位数的概念求值;(2)根据(1)的计算结果补全统计图即可;(3)根据中位数的意义判断.解答:解:(1)C组的人数是:50×40%=20(人),B组的人数是:50﹣3﹣20﹣9﹣1=7(人),把这组数据按从小到大排列为,由于共有50个数,第25、26位都落在1.5≤<2范围内,则中位数落在C组;故答案为:C;(2)根据(1)得出的数据补图如下:(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)(2014•南通)盒中有个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:=2,y=3;(2)小王和小林利用个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?考点:列表法与树状图法;概率公式.分析:(1)根据题意得:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球颜色相同、颜色不同的情况,再利用概率公式即可求得答案.解答:解:(1)根据题意得:,解得:;故答案为:2,3;(2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P(小王胜)==,P(小林胜)==.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.。

2014年江苏省南通市中考数学试卷

2014年江苏省南通市中考数学试卷

2014年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)D2.(3分)(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()3.(3分)(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()4.(3分)(2014•南通)若在实数范围内有意义,则x的取值范围是()>6.(3分)(2014•南通)化简的结果是()8.(3分)(2014•南通)若关于x的一元一次不等式组无解,则a的取值范围是()9.(3分)(2014•南通)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()﹣10.(3分)(2014•南通)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是().C D二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为_________吨.12.(3分)(2014•南通)因式分解a3b﹣ab=_________.13.(3分)(2014•南通)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=_________.14.(3分)(2014•南通)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线_________.15.(3分)(2014•南通)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=_________cm.16.(3分)(2014•南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在_________区域的可能性最大(填A或B或C).17.(3分)(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= _________度.18.(3分)(2014•南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于_________.三、解答题(本大题共10小题,共96分)19.(10分)(2014•南通)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.20.(8分)(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.21.(8分)(2014•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?22.(8分)(2014•南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是_________;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.23.(8分)(2014•南通)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=_________,y=_________;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?24.(8分)(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.25.(9分)(2014•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为_________cm,匀速注水的水流速度为_________cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.26.(10分)(2014•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.27.(13分)(2014•南通)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于点G.(1)若M为边AD中点,求证△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.28.(14分)(2014•南通)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.2014年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)D2.(3分)(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()3.(3分)(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()4.(3分)(2014•南通)若在实数范围内有意义,则x的取值范围是()>>6.(3分)(2014•南通)化简的结果是()﹣8.(3分)(2014•南通)若关于x的一元一次不等式组无解,则a的取值范围是()无解,求出得,∵9.(3分)(2014•南通)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()﹣BM=BC=6AM==12,∴∴AN=6,AN=6GF=610.(3分)(2014•南通)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是().C D,∴.由,得圆形纸片不能接触到的部分的面积为=二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.12.(3分)(2014•南通)因式分解a3b﹣ab=ab(a+1)(a﹣1).13.(3分)(2014•南通)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=9.14.(3分)(2014•南通)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线x=﹣1.x=x=x=15.(3分)(2014•南通)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=8cm.AE=16.(3分)(2014•南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在A区域的可能性最大(填A或B或C).17.(3分)(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 60度.18.(3分)(2014•南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于4.三、解答题(本大题共10小题,共96分)19.(10分)(2014•南通)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.20.(8分)(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.y=y=.21.(8分)(2014•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?×=12×海里.622.(8分)(2014•南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是C;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.23.(8分)(2014•南通)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=2,y=3;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?)根据题意得:;=,=.24.(8分)(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.∠∠25.(9分)(2014•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为14cm,匀速注水的水流速度为5cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.26.(10分)(2014•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.BP=EP=2BP=AB=1AP=,,EP=2,EB==GD=27.(13分)(2014•南通)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于点G.(1)若M为边AD中点,求证△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.CM=∴,即,CM=CM=3.EM==∴,∴FM=EF=EM+FM=∴,∴MG=S=EF××=+6EM==∴,∴FM=﹣=∴,∴MG=S=EF××=+628.(14分)(2014•南通)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.==,=2,解得的坐标是=,。

江苏省南通市2014年中考数学试卷解析

江苏省南通市2014年中考数学试卷解析

江苏省南通市2014年中考数学试卷一、选择题(本大题共10小题,每小题3 分》,共30分)1 . ( 3 分)(2014?南通) -4的相反数( )A . 4B. - 4C. 1D. 11.4-[4考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答. 解答:解:-4的相反数4.故选A .点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.3. ( 3分)(2014?南通)已知一个几何体的三视图如图所示,则该几何体是()2. ( 3分)(2014?南通)如图, ■ nCB EA . 160° B. 140仁40 °如果CD// BE,那么/ B 的度数为(C. 60°D . 50°考点:平行线的性质. 专题:计算题.分析:先根据邻补角的定义计算出/2=140 °解答:解:如图,•••/ 1=40°,•••/ 2=180° - 40°=140°, •/ CD// BE,•••/ B=Z 2=140°.2=180° -Z 1=140°,然后根据平行线的性质得/ B=Z同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.A.圆柱B.圆锥C.球D.棱柱考点:由三视图判断几何体分析:主视图、左视图、俯视 图是分别从物体正面、左面和上面看所得到的图形,从而得出 答案. 解答:解:俯视图为圆的几何体为球, 圆锥,圆柱,再根据其他视图,可知此几何体为圆柱. 故选A . 点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于 0,分母不等于0列式计算即可得解. 解答:解:由题意得,2x - 1> 0,1解得x>N 故选C.点评:本题考查的知识点为:分式有意义,分母不为0; 二次根式的被开方数是非负数.考点:关于x 轴、y 轴对称的点的坐标.分析:根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P (x , y )关于x 轴的对称点P'的坐标是(x ,- y ),进而得出答案.解答:解:•••点P (2, - 5)关于x 轴对称,•••对称点的坐标为:(2, 5). 故选:B .点评:此题主要考查了关于 x 轴对称点的坐标性质,正确记忆坐标变化规律是解题关键.2 ..6. ( 3分)(2014?南通)化简区一1 1 _尺的结果是( )A . x+1B. x - 1C. - xD . x考点:分式的加减法. 专题:计算题.x 的取值范围是(A.-B. _C. ID.: x >■x A Yx>-x 壬5. ( 3分)(2014?南通)点 P (2,- 5)关于x 轴对称的点的坐标为(A . ( - 2, 5)B. (2, 5)C. ( - 2,- 5) D . (2,- 5)分析 解答将分母化为同分母,通分,再将分子因式分解,约分. 22Xri X XX解: X 一 1 1 一 x=艾一 1 —瓦一14. ( 3分)(2014?南通)若 则=x,故选D.点评:本题考查了分式的加减运算. 分式的加减运算中,如果是同分母分式,那么分母不变, 把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.7. (3分)(2014?南通)已知一次函数y=kx- 1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:根据一次函数y=kx- 3且y随x的增大而增大”得到k v 0,再由k的符号确定该函数图「象所经过的象限. 解答:解:T一次函数y=kx- 1且y随x的增大而增大,••• k v 0,该直线与y轴交于y轴负半轴,•••该直线经过第一、三、四象限.故选:C.点评:本题考查了一次函数图象与系数的关系.函数值y随x的增大而减小? k v 0;函数值y随x的增大而增大? k>0;一次函数y=kx+b图象与y轴的正半轴相交? b>0 ,一次函数y=kx+b图象与y轴的负半轴相交? b v 0,一次函数y=kx+b图象过原点? b=0.& (3分)(2014?南通)若关于x的一元一次不等式组1’一了>°无解,则a的取值范围是()A. a>1B. a> 1C. a<- 1D. a v- 1考点:解一元一次不等式组.分析:将不等式组解出来,根据不等式组解答:一.一…解:解丘- 得,p-1<0|x-a>0无解,求出a的取值范围.r K<lI A》,卜-YO…一无解,••• a>1故选A.点评:本题考查了解一元一次不等式组,会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.9. (3 分)(2014?南通)如图,△ ABC中,AB=AC=18, BC=12,正方形DEFG的顶点E,F到BC的距离为(AC上,AD=AG, DG=6,则点考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质分析:首先过点A作AM丄BC于点M,交DG于点N,延长GF交BC于点H,易证得△ ADG ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.解答:解:过点A作AM丄BC于点M,交DG于点N,延长GF交BC于点H,•/ AB=AC, AD=AG,•AD:AB=AG: AB,•••/ BAC=Z DAG,•△ ADG^^ ABC,•••/ ADG=Z B,•DG// BC,•••四边形DEFG是正方形,•FG丄DG,•FH丄BC, AN 丄DG,•/ AB=AC=18, BC=12,1•BM=:BC=6,•AM=」・"ll2「,ANDG•R••• AN=6 ::,••• MN=AM - AN=6 . ■:,• FH=MN- GF=6 :': - 6.故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理•此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10. (3分)(2014?南通)如图,一个半径为r的圆形纸片在边长为a (--…」_ )的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片不能接触到的部分”的面积是B.3r考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题.分析:过圆形纸片的圆心01作两边的垂线,垂足分别为D, E,连AO1,则在Rt A ADO1中,可求得二四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与/ A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D, E,连AO1,贝U Rt A ADO1 中,/ O1AD=30 , O1D=r, ‘一r ....让^。

南通2014中考数学试题及答案

南通2014中考数学试题及答案

南通2014中考数学试题及答案各位考生在考场上奋笔疾书,2014中考数学真题即将揭开真面目。

中考网会在第一时间以最快的速度将2014中考数学真题呈现给大家,一旦中考真题及答案发布,将在此表页的头条显示,如果您需要查找的真题及答案没有显示,请按crtl+F5进行刷新。

请大家密切关注。

2014年南通中考数学试题及答案发布入口中考注意事项:超常考场发挥小技巧认真审题,每分必争审题是生命线。

审题是正确答题的前导。

从一个角度看,审题甚至比做题更重要。

题目审清了,解题就成功了一半。

认真审准题,才能正确定向,一举突破。

每次考试,总有一些考生因为审题失误而丢分。

尤其是那些似曾相识的题,那些看似很简单的题,考试要倍加细心,以防“上当受骗”。

我曾给学生一副对联:似曾相识“卷”归来,无可奈何“分”落去。

横批:掉以轻心。

越是简单、熟悉的试题,越要倍加慎重。

很多学生看题犹如“走马观花”,更不思考命题旨意,待到走出考场才恍然大悟,但为时已晚矣。

考试应努力做到简单题不因审题而丢分。

“两先两后”,合理安排中考不是选拔性考试,在新课改背景下,试卷的难度理应不会太大。

基础题和中等难度题的分值应占到80%。

考生拿到试卷,不妨整体浏览,此时大脑里的思维状态由启动阶段进入亢奋阶段。

只要听到铃声一响就可开始答题了。

解题应注意“两先两后”的安排:1.先易后难一般来说,一份成功的试卷,题目的排列应是遵循由易到难,但这是命题者的主观愿望,具体情况却因人而异。

同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。

”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。

2.先熟后生通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。

最新初中中考数学题库 2014南通市中考数学试卷及答案

最新初中中考数学题库 2014南通市中考数学试卷及答案

南通市2014年中考数学试卷最后一题解析【试题】如图,抛物线y=-x 2+2x+3与x 轴相交于A 、B 两点,与y 轴交于C ,顶点为D ,对称轴与BC 交于E.(1) 求DE 的长,(2) 设过E 的直线与抛物线y=-x 2+2x+3与x 轴相交于M (x 1,y 1),N (x 2,y 2)试判断当21x x -的值最小时,直线MN 与x 轴的位置关系,(3) 设P 为x 轴上的一点,∠DAO+∠DPO=∠α,当tan ∠α=4时,求P 的坐标.【解析】(1)略(2)∵E 的坐标为(1,2)∴用待定系数法得直线MN 的解析式为y=(2-b )x+b 点M ,N 的坐标是方程组⎩⎨⎧++-=+-=32)2(2x x y b x b y 的解,用代入法将方程组化为关于x 的一元二次方程,得x 2-bx+b -3=0,由韦达定理得,x 1+ x 2=b ,x 1x 2= b -3, ∵21x x -=221)(x x -=212214)(x x x x -+=)3(42--b b =8)2(2+-b ,∴当b=2时,21x x -最小值=22.∵b=2,∴直线MN 的解析式为y=2,∴直线MN ∥x 轴. (4) 有三种解法:① 如图1,这里数学机智灵活的同学易发现tan ∠DOH=4,又∵tan ∠α=4,∴∠DOH=∠α,应用三角形外角定理与∠DAO+∠DPO=∠α,得∠DPO=∠ADO ,显然△ADP ∽△AOD ,从而得AD 2=AO ·AP 1,而AD 2=20,AO=1,因此AP 1=20,∴OP 1=19,由对称性OP 2=17,∴P 1(19,0) P 2(-17,0)②③如图2,应用三角形外角定理转化出∠α.延长AD ,过P 1作P 1F ⊥AF 于F ,显然∠FD P 1=∠α,AD=25,∵tan ∠α=4,设DF=m ,则P 1F=4m ,△ADH ∽△A P 1F ,则mm +=52424 解得m=25,∴AF=45,P 1F=85,在直角三角形AF P 1中由勾股定理得,AP 1=20,以下与方法①相同.③如图3,如果高中生来解很简单,应用三角公式tan (β+γ)=γβγβtan tan 1tan tan -+ ∵∠α=∠β+∠γ,tan ∠α=4,tan ∠β=2 tan ∠γ=14HP ,将以上条件代入三角公式tan (β+γ)=γβγβtan tan 1tan tan -+,可解得H P 1=18,以下与方法①相同.。

2014年江苏省南通市中考真题数学

2014年江苏省南通市中考真题数学

2014年江苏省南通市中考真题数学一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)-4的相反数( )A. 4B. -4C.D. -解析:-4的相反数4.答案:A.2.(3分)如图,∠1=40°,如果CD∥BE,那么∠B的度数为( )A.160°B.140°C. 60°D. 50°解析:如图,∵∠1=40°,∴∠2=180°-40°=140°,∵CD∥BE,∴∠B=∠2=140°.答案:B.3.(3分)已知一个几何体的三视图如图所示,则该几何体是( )A.圆柱B. 圆锥C. 球D. 棱柱解析:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱. 答案:A.4.(3分)若在实数范围内有意义,则x的取值范围是( )A.x≥B.x≥-C. x>D. x≠解析:由题意得,2x-1>0,解得x>.答案:C.5.(3分)点P(2,-5)关于x轴对称的点的坐标为( )A. (-2,5)B.(2,5)C.(-2,-5)D.(2,-5)解析:∵点P(2,-5)关于x轴对称,∴对称点的坐标为:(2,5).答案:B.6.(3分)化简的结果是( )A. x+1B.x-1C.-xD. x解析:=-===x,答案:D.7.(3分)已知一次函数y=kx-1,若y随x的增大而增大,则它的图象经过( )A.第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限解析:∵一次函数y=kx-1且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.答案:C.8.(3分)若关于x的一元一次不等式组无解,则a的取值范围是( )A. a≥1B. a>1C. a≤-1D. a<-1解析:解得,,∵无解,∴a≥1.答案:A.9.(3分)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为( )A.1B. 2C. 12-6D. 6-6解析:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AC,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴,∴AN=6,∴MN=AM-AN=6,∴FH=MN-GF=6-6.答案:D.10.(3分)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是( )A.B.C.D. πr2解析:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.答案:C.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为吨.解析:将67500用科学记数法表示为:6.75×104.答案:6.75×104.12.(3分)因式分解a3b-ab= .解析:a3b-ab=ab(a2-1)=ab(a+1)(a-1).答案:ab(a+1)(a-1).13.(3分)如果关于x的方程x2-6x+m=0有两个相等的实数根,那么m= .解析:∵关于x的方程x2-6x+m=0有两个相等的实数根,∴△=b2-4ac=0,即(-6)2-4×1×m=0,解得m=9.14.(3分)已知抛物线y=ax2+bx+c与x轴的公共点是(-4,0),(2,0),则这条抛物线的对称轴是直线.解析:∵抛物线与x轴的交点为(-4,0),(2,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==-1,即x=-1. 答案:x=-1.15.(3分)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB= cm.解析:过点D作DE⊥AB于点E,∵在梯形ABCD中,AB∥CD,∴四边形BCDE是矩形,∴CD=BE,DE=BC=4cm,∠DEA=90°,∴AE==3(cm),∵AB∥CD,∴∠DCA=∠BAC,∵∠DAC=∠BAC,∴∠DAC=∠DCA,∴CD=AD=5cm,∴BE=5cm,∴AB=AE+BE=8cm.答案:8.16.(3分)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).解析:由题意得:S A>S B>S C,故落在A区域的可能性大,答案:A.17.(3分)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=°.解析:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO∴∠OAD+∠OCD=(∠1+∠2)-(∠ADO+∠CDO)=∠AOC-∠ADC=120°-60°=60°.答案:60°.18.(3分)已知实数m,n满足m-n2=1,则代数式m2+2n2+4m-1的最小值等于 .解析:∵m-n2=1,即n2=m-1≥0,m≥1,∴原式=m2+2m-2+4m-1=m2+6m+9-12=(m+3)2-12,则代数式m2+2n2+4m-1的最小值等于(1+3)2-12=4.答案:4.三、解答题(本大题共10小题,共96分)19.(10分)计算:(1)(-2)2+()0--()-1;(2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.解析:(1)先求出每一部分的值,再代入求出即可;(2)先算括号内的乘法,再合并同类项,最后算除法即可.答案: (1)原式=4+1-2-2=1;(2)原式=[x2y(xy-1)-x2y(1-xy)]÷x2y=[x2y(2xy-2)]÷x2y=2xy-2.20.(8分)如图,正比例函数y=-2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当-2x>时,x的取值范围.解析:(1)先把A(m,2)代入y=-2x可计算出m,得到A点坐标为(-1,2),再把A点坐标代入y=可计算出k的值,从而得到反比例函数解析式;利用点A与点B关于原点对称确定B点坐标;(2)观察函数图象得到当x<-1或0<x<1时,一次函数图象都在反比例函数图象上方. 答案:(1)把A(m,2)代入y=-2x得-2m=2,解得m=-1,所以A点坐标为(-1,2),把A(-1,2)代入y=得k=-1×2=-2,所以反比例函数解析式为y=-,点A与点B关于原点对称,所以B点坐标为(1,-2);(2)当x<-1或0<x<1时,一次函数图象都在反比例函数图象上方,-2x>.21.(8分)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?解析:易证△ABP是等腰三角形,过P作PD⊥AB,求得PD的长,与6海里比较大小即可.答案:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP·sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.22.(8分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是 C ;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.解析:(1)可根据中位数的概念求值;(2)根据(1)的计算结果补全统计图即可;(3)根据中位数的意义判断.答案:(1)C组的人数是:50×40%=20(人),B组的人数是:50-3-20-9-1=17(人),把这组数据按从小到大排列为,由于共有50个数,第25、26位都落在1.5≤x<2范围内,则中位数落在C组;故答案为:C;(2)根据(1)得出的数据补图如下:(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.23.(8分)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x= ,y= ;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?解析:(1)根据题意得:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球颜色相同、颜色不同的情况,再利用概率公式即可求得答案.答案:(1)根据题意得:,解得:;故答案为:2,3;(2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P(小王胜)==,P(小林胜)==.24.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.解析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;答案: (1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x-4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.25.(9分)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为 cm,匀速注水的水流速度为 cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.解析:(1)根据图象,分三个部分:满过“几何体”下方圆柱需18s,满过“几何体”上方圆柱需24s-18s=6s,注满“几何体”上面的空圆柱形容器需42s-24s=18s,再设匀速注水的水流速度为xcm3/s,根据圆柱的体积公式列方程,再解方程;(2)根据圆柱的体积公式得a·(30-15)=18·5,解得a=6,于是得到“几何体”上方圆柱的高为5cm,设“几何体”上方圆柱的底面积为Scm2,根据圆柱的体积公式得5·(30-S)=5·(24-18),再解方程即可.答案:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体”到注满用了42s-24s=18s,这段高度为14-11=3cm,设匀速注水的水流速度为xcm3/s,则18·x=30·3,解得x=5,即匀速注水的水流速度为5cm3/s;故答案为14,5;(2)“几何体”下方圆柱的高为a,则a·(30-15)=18·5,解得a=6,所以“几何体”上方圆柱的高为11cm-6cm=5cm,设“几何体”上方圆柱的底面积为Scm2,根据题意得5·(30-S)=5·(24-18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.26.(10分)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.解析:(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到BP AB=1,然后求得EP=2,最后利用勾股定理求得EB的长即可求得线段GD的长即可.答案:(1)∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.27.(13分)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.解析:(1)利用△MAE≌△MDF,求出EM=FM,再由MG⊥EM,得出EG=FG,所以△EFG是等腰三角形;(2)利用勾股定理EM2=AE2+AM2,EC2=BE2+BC2,得出CM2=EC2-EM2,利用线段关系求出CM.再△MAE∽△CDM,求出a的值,再求出CM.(3)①当点M在AD上时,②:①当点M在AD的延长线上时,作MN⊥BC,交BC于点N,先求出EM,再利用△MAE∽△MDF求出FM,得到EF的值,再由△MNG∽△MAE得出MG的长度,然后用含a的代数式表示△EFG的面积S,指出S的最小整数值.答案:(1)∵四边形ABCD是矩形,∴∠A=∠MDF=90°,∵M为边AD中点,∴MA=MD,在△MAE和△MDF中,,∴△MAE≌△MDF(ASA),∴EM=FM,又∵MG⊥EM,∴EG=FG,∴△EFG是等腰三角形;(2)如图1,∵AB=3,AD=4,AE=1,AM=a,∴BE=AB-AE=3-1=2,BC=AD=4,∴EM2=AE2+AM2,EC2=BE2+BC2,∴EM2=1+a2,EC2=4+16=20,∵CM2=EC2-EM2,∴CM2=20-1-a2=19-a2,∴CM=.∵AB∥CD,∴∠AEM=∠MFD,又∵∠MCD+∠MFD=90°,∠AME+∠AEM=90°,∴∠AME=∠MCD,∵∠MAE=∠CDM=90°,∴△MAE∽△CDM,∴=,即=,解得a=1或3,代入CM=.得CM=3或.(3)①当点M在AD上时,如图2,作MN⊥BC,交BC于点N,∵AB=3,AD=4,AE=1,AM=a,∴EM==,MD=AD-AM=4-a,∵∠A=∠MDF=90°,∠AME=∠DMF,∴△MAE∽△MDF∴=,∴=,∴FM=,∴EF=EM+FM=+=,∵AD∥BC,∴∠MGN=∠DMG,∵∠AME+∠AEM=90°,∠AME+∠DMG=90°,∴∠AME=∠DMG,∴∠MGN=∠AME,∵∠MNG=∠MAE=90°,∴△MNG∽△MAE∴=,∴=,∴MG=,∴S=EF·MG=××=+6,即S=+6,当a=时,S有最小整数值,S=1+6=7.②当点M在AD的延长线上时,如图3,作MN⊥BC,交BC延长线于点N,∵AB=3,AD=4,AE=1,AM=a∴EM==,MD=a-4,∵DC∥AB,∴△MAE∽△MDF∴=,∴=,∴FM=,∴EF=EM-FM=-=,∵∠AME+∠EMN=90°,∠NMG+∠EMN=90°,∴∠AME=∠NMG,∵∠MNG=∠MAE=90°,∴△MNG∽△MAE∴=,∴=,∴MG=,∴S=EF·MG=××=+6,即S=+6,当a>4时,S没有整数值.综上所述当a=时,S有最小整数值,S=1+6=7.28.(14分)如图,抛物线y=-x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1-x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.解析:(1)根据抛物线的解析式即可求得与坐标轴的坐标及顶点坐标,进而求得直线BC的解析式,把对称轴代入直线BC的解析式即可求得.(2)设直线MN的解析式为y=kx+b,依据E(1,2)的坐标即可表示出直线MN的解析式y=(2-b)x+b,根据直线MN的解析式和抛物线的解析式即可求得x2-bx+b-3=0,所以x1+x2=b,x1 x2=b-3;根据完全平方公式即可求得|x1-x2|====,所以当b=2时,|x1-x2|最小值=2,因为b=2时,y=(2-b)x+b=2,所以直线MN∥x轴.(3)由D(1,4),则tan∠DOF=4,得出∠DOF=∠α,然后根据三角形外角的性质即可求得∠DPO=∠ADO,进而求得△ADP∽△AOD,得出AD2=AO•AP,从而求得OP的长,进而求得P点坐标.答案:由抛物线y=-x2+2x+3可知,C(0,3),令y=0,则-x2+2x+3=0,解得:x=-1,x=3,∴A(-1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,解得,∴解析式为;y=-x+3,当x=1时,y=-1+3=2,∴E(1,2),∴EF=2,∴DE=DF-EF=4-2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2-b,∴直线MN的解析式y=(2-b)x+b,∵点M、N的坐标是的解,整理得:x2-bx+b-3=0,∴x1+x2=b,x1x2=b-3;∵|x1-x2|====,∴当b=2时,|x1-x2|最小值=2,∵b=2时,y=(2-b)x+b=2,∴直线MN∥x轴.(3)如图2,∵D(1,4),∴tan∠DOF=4,又∵tan∠α=4,∴∠DOF=∠α,∵∠DOF=∠DAO+∠ADO=∠α,∵∠DAO+∠DPO=∠α,∴∠DPO=∠ADO,∴△ADP∽△AOD,∴AD2=AO·AP,∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,同理,当点P在原点左侧,OP=17. ∴P1(19,0),P2(-17,0).。

2014年江苏省南通市中考数学试卷(附答案与解析)

2014年江苏省南通市中考数学试卷(附答案与解析)

数学试卷 第1页(共28页)数学试卷 第2页(共28页)绝密★启用前江苏省南通市2014年初中毕业、升学考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.4-的相反数是( )A .4B .4-C .14D .14- 2.如图,140∠=︒,如果CD BE ∥,那么B ∠的度数为( )A .160︒B .140︒C .60︒D .50︒3.已知一个几何体的三视图如图所示,则该几何体是 ( ) A .圆柱 B .圆锥 C .球 D .棱柱4.若121x -在实数范围内有意义,则x 的取值范围是( )A .12x ≥ B .12x ≥-C .12x >D .12x ≠5.点(2,5)P -关于x 轴对称的点的坐标为 ( ) A .(2,5)- B .(2,5) C .(2,5)-- D .(2,5)-6.化简211x x x x+--的结果是( )A .1x +B .1x -C .x -D .x7.已知一次函数1y kx =-,若y 随x 的增大而增大,则它的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.若关于x 的一元一次不等式组10,0x x a -⎧⎨-⎩<>无解,则a 的取值范围是( )A .a ≥1B .a >1C .a -≤1D .a -<19.如图,ABC △中,18AB AC ==,12BC =,正方形DEFG 的顶点E ,F 在ABC △内,顶点D ,G 分别在AB ,AC 上,AD AG =,6DG =,则点F 到BC 的距离为( )A .1B .2C .1226-D .626-10.如图,一个半径为r 的圆形纸片在边长为(23)a a r >的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“接触不到的部分”的面积是( )A .2π3r B .233π3r - C .2(33π)r -D .2πr第Ⅱ卷(非选择题 共120分)二、填空题(本大题共8小题,每小3分,共24分.把答案填写在题中的横线上) 11.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 吨.12.因式分解3a b ab -= .13.若关于x 的方程260x x m -+=有两个相等的实数根,则实数m = . 14.已知抛物线2y ax bx c =++与x 轴的公共点是(4,0)-,(2,0),则这条抛物线的对称轴是直线 .15.如图,四边形ABCD 中,AB DC ∥,90B ∠=︒,连接AC ,DAC BAC ∠=∠,若4cm BC =,5cm AD =,则AB = cm .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)16.在如图所示(A ,B ,C 三个区域)的图形中随机地撒一把豆子,豆子落在 区域的可能性最大(填A 或B 或C ).17.如图,点A ,B ,C ,D 在O 上,点O 在D ∠的内部,四边形OABC 为平行四边形,则OAD OCD ∠+∠= 度.18.已知实数m ,n 满足21m n -=,则代数式22241m n m ++-的最小值等于 .三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分) (1)2011(2)()2--+;(2)22232[()()]x x y xy y x x y x y ---÷.20.(本小题满分8分)如图,正比例函数2y x =-与反比例函数ky x=的图象相交于(,2)A m ,B 两点. (1)求反比例函数的表达式及点B 的坐标;(2)结合图象直接写出当2k x x->时,AB 的取值范围.21.(本小题满分8分)如图,海中有一灯塔P ,它的周围8海里内有暗礁,海轮以18海里/时的速度由西向东航行,在A 处测得灯塔P 在北偏东60︒方向上,航行40分钟到达B 处,测得灯塔P 在北偏东30︒方向上,如果海轮不改变航线继续向东航行,有没有触礁的危险?22.(本小题满分9分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组.A .0.51x ≤<,B .1 1.5x ≤<,C .1.52x ≤< D .2 2.5x ≤<,E .2.53x ≤<,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是 ; (2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.数学试卷 第5页(共28页) 数学试卷 第6页(共28页)23.(本小题满分8分)盒中有x 个黑球和y 个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是25;若往盒中再放进1个黑球,这时取得黑球的概率变为12.(1)填空:x = ,y = ;(2)小王和小林利用x 个黑球和y 个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王获胜,若颜色不同则小林胜,求两个人获胜的概率各是多少?24.(本小题满分8分)如图,AB 是O 的直径,弦CD AB ⊥于点E ,点M 在O 上,MD 恰好经过圆心O ,连接MB .(1)若16CD =,4BE =,求O 的直径; (2)若M D ∠=∠,求D ∠的度数.25.(本小题满分9分)如图1,底面积为230cm 的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止.在注水过程中,水面高度(cm)h 与注水时间(s)t 之间的关系如图2所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为 cm ,匀速注水的水流速度为 3cm /s ; (2)若“几何体”的下方圆柱的底面积为215cm ,求“几何体”上方圆柱的高和底面积.26.(本小题满分10分)如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且AEFG ABCD 菱形菱形,连接EB ,GD .(1)求证:EB GD =;(2)若60DAB ∠=︒,2AB =,3AG =,求GD 的长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共28页) 数学试卷 第8页(共28页)27.(本小题满分13分)如图,矩形ABCD 中,3AB =,4AD =,E 为AB 上一点,1AE =,M 为射线AD 上一动点,AM a =(a 为大于0的常数),直线EM 与直线CD 交于点F ,过点M 作MG EM ⊥,交直线BC 于点G .(1)若M 为边AD 中点,求证:EFG △是等腰三角形; (2)若点G 与点C 重合,求线段MG 的长;(3)请用含a 的代数式表示EFG △的面积S ,并指出S 的最小整数值.28.(本小题满分13分)如图,抛物线223y x x =-++与x 轴相交于A ,B 两点,与y 轴交于C ,顶点为D ,抛物线的对称轴DF 与BC 相交于点E ,与x 轴相交于点F . (1)求线段DE 的长;(2)设过点E 的直线与抛物线相交于点11(,)M x y ,22(,)N x y ,试判断当12||x x -的值最小时,直线MN 与x 轴的位置关系,并说明理由;(3)设P 为x 轴上的一点,DAO DPO α∠+∠=∠,当tan 4α∠=时,求点P 的坐标.5 / 14江苏省南通市2014年初中毕业、升学考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】因为实数a 的相反数为a -,则4-的相反数为4,故选A. 【考点】相反数. 2.【答案】B 【解析】140∠=︒180118040140AFD ∴∠=︒-∠=︒-︒=︒.CD BE ∥,140B AFD ∴∠=∠=︒,故选B.【考点】邻补角的性质,平行线的性质. 3.【答案】A【解析】根据三视图的画法,易知题中的三视图是圆柱的,故选A. 【考点】由简单几何体的三视图识别几何体. 4.【答案】C【解析】根据分式有意义的条件:分母不为0,二次根式在实数范围内有意义的条件:被开方数大于或等于0,则210x ->,解得12x >,故选C.【考点】二次根式在实数范围内有意义的条件,分式有意义的条件,解一元二次不等式. 5.【答案】B【解析】在直角坐标系中,关于x 轴的对称点的横坐标相同,纵坐标互为相反数,易知(2,5)P -关于x 轴的对称点为(2,5),故选B.【考点】平面直角坐标系中关于x 轴对称的点的特点. 6.【答案】D 【解析】22(1)11111x x x x x xx x x x x x -+=-==-----,∴选D. 【考点】分式的运算.数学试卷 第11页(共28页)数学试卷 第12页(共28页)7.【答案】C【解析】由y 随着x 的增大而增大,得0k >,则可画出符合题意的如下图像,易知图像过一、三、四象限,故选C.【考点】一次函数的图像与性质. 8.【答案】A【解析】这两个不等式的解集分别为:0x <,x a >,根据“大大小小,无解”,易得a 必须大于1;再考虑a 能不能取1,若1a =,则不等式组为1,1,x x ⎧⎨⎩<>这个不等式组也无解,综上1a ≥,故选A.【考点】解不等式组. 9.【答案】D【解析】过点A 作AN BC ⊥于点N ,分别交DG 、EF 于点H 、M .则6BN =,易求AN =,易证ADG ABC △△,则AH DGAN BC=,可求AH =易求6MN =,由于EF BC ∥,根据“平行线间的距离处处相等”,可知选D.【考点】正方形的性质,等腰三角形的性质,相似三角形的判定和性质,平行线间的距离处处相等. 10.【答案】C【解析】如图,O 分别切AB 、BC 于点D 、E ,连接OD 、OE 、OB.易知图中阴影部分为B ∠区域“接触7 / 14不到的部分”,可得,30OBE ∠=︒,易求得BE =,则22211120ππ223603OBE OBD ODEr r S S S S r r =+-=⨯+⨯--△△阴影部分扇形,易知A ∠、C ∠区域“接触不到的部分”的面积和上面的阴影部分面积相等,则这个圆形纸片“接触不到的部分”为:222π)π)3r r -=,故选C.【考点】等边三角形的性质,切线性质,切线长定理,求扇形面积.第Ⅱ卷二、填空题11.【答案】46.7510⨯【解析】对于绝对是大于或等于10的数可以写成10n a ⨯的形式,其中110a ≤<,n 是正整数,这里的n 等于原数的整数位减1.所以467500 6.7510=⨯,故填46.7510⨯. 【考点】科学记数法. 12.【答案】(1)(1)ab a a -+ 【解析】32(1)(1)(1)a b ab ab a ab a a -=-=-+,∴填(1)(1)ab a a -+.【考点】提公因式法分解因式,用公式法分解因式.13.【答案】9【解析】可求得此一元二次方程跟的判别式等于364m -,由于此方程有两个相等实根,则3640m -=,解得9m =,故填9.【考点】一元二次方程跟的判别式的应用. 14.【答案】1x =-【解析】二次函数图像与x 轴的公共点(4,0)-、(2,0)关于对称轴对称,∴这条抛物线的对称轴是直线1x =-,故填1x =-.数学试卷 第15页(共28页)数学试卷 第16页(共28页)【考点】二次函数图像的对称性. 15.【答案】8【解析】易证DAC BAC ACD ∠=∠=∠,得5cm CD AD ==,过点D 作DE AB ⊥于点E ,可证四边形ABCD为矩形,5cm BE CD ==,4cm DE BC ==,在Rt ADE △中,用勾股定理可求得3cm AE =,则358cm AB =+=,故填8.【考点】等腰三角形的判定,矩形的性质和判定,勾股定理. 16.【答案】A 【解析】C 区域的面积为4π,B 区域的面积为22π4π212π⨯-⨯=,∴豆子落在A 区域的可能性最大,故选A .【考点】简单的几何概率型等可能事件概率. 17.【答案】60【解析】连接OB 、OD.易证AOB △为等边三角形,则60OAB ∠=︒,易得120AOC ∠=︒,则60D ∠=︒,OD OA =,OD OC =,OAD ODA ∴∠=∠,OCD ODC ∠=∠,60OAD OCD ODA ODC D ∴∠+∠=∠+∠=∠=︒,故填60.【考点】菱形的性质,等腰三角形的性质,等腰三角形的判定和性质. 18.【答案】4 【解析】21m n -=,210n m ∴=-≥,则1m ≥,把21n m =-代入22241m n m ++-,得222(1)41(3)12m m m m +-+-=+-,1m ≥,2(3)124m ∴+-≥,即题中代数式有最小值,且最小值为4,故填4.【考点】整式加减,配方法,解不等式,消元思想,转化思想. 三、解答题 19.【答案】(1)1 (2)22xy -9 / 14【解析】解:(1)原式41221=+--=.(2)原式22[(1)(1)]x xy xy y x xy x y =---÷222[(1)(1)]x y xy x y xy x y =---÷ 22(11)x y xy xy x y =--+÷22xy =-.【考点】因式分解,整式加减,多项式除以单项式运算. 20.【答案】(1)(1,2)-(2)1x -<和01x <<【解析】解:(1)点(,2)A m 在正比例函数图像上,22m ∴=-,解得1m =-,即点A 的坐标为(1,2)-.把点A 的坐标代入反比例函数,得21k =-,解得2k =-,∴反比例函数关系式为2y x =-,2,2y x y x =-⎧⎪⎨=-⎪⎩的解为111,2,x y =-⎧⎨=⎩221,2,x y =⎧⎨=-⎩ ∴点B 为(1,2)-.(2)当2kx x->时,正比例函数的值大于反比例函数值,由图可知,正比例函数图像在反比例函数图像上方的x 的取值范围为:1x -<和01x <<.【考点】函数图像上点的性质,用待定系数发求函数关系式,数形结合. 21.【答案】继续航行不改变方向,无触礁危险.【解析】解:过点P 作PC AB ⊥于点C ,设PC x =,PC BD ∥,30BPC PBD ∴∠=∠=︒.在Rt PAC △中,90PCA ∠=︒.906030PAC ∠=︒-︒=︒,PC x =,则tan PC PCA AC ∠=,xAC=,解得AC =.同理可求,BC =.又40181260AB =⨯=(海里),12=,解得8x =,即直线AB 与点P 为圆心8海里为半径的圆相离,∴继续航行不改变方向,无触礁危险.数学试卷 第19页(共28页)数学试卷 第20页(共28页)【考点】解直角三角形的应用,一元一次方程的应用,直线与圆的关系. 22.【答案】(1)C (2)见解析(3)小明的说法符合实际 【解析】解:(1)C(2)补全频数直方图如下图:(3)由条形统计图的数据可知,小明做家务的时间比3152038++=(人)多,而3825>,所以小明的说法符合实际.【考点】频数分布直方图,扇形统计图,中位数. 23.【答案】(1)2;3 (2)见解析.【解析】解:(1)2,3;(2)结合(1)可列表表示该时间的所有可能性:由表格可知总可能性有20种,颜色相同的可能性为8种,颜色不相同的可能性为12种,82205P ∴==(小王获胜),23155P =-=(小林获胜). 【考点】简单的等可能事件的概率求法,二元一次方程组的应用,树状图或列表法. 24.【答案】(1)20 (2)30︒【解析】解:(1)弦CD AB ⊥,182DE CD ∴==,BC BD =,90OED ∠=︒.设O 的半径为x ,在Rt EDO △中,90OED ∠=︒,222OE ED OD +=,222(4)8x x ∴-+=,解之得10x =,O ∴的直径为20.(2)连接BD .BC BD =,M EDB ∴∠=∠ .MD 为O 直径,90MBD ∴∠=︒,90MDE EDB M ∴∠+∠+∠=︒.MDE M ∠=∠,90MDE MDE MDE ∴∠+∠+∠=︒,则30MDE ∠=︒.答:D ∠的度数为30︒.【考点】垂径定理,勾股定理,一元一次方程的应用,直径所对圆周角,圆周角的性质. 25.【答案】(1)14;5(2)5 cm ;324cm【解析】解:(1)14,5(2)由线段AB 的图像,结合(1),可得3015518a a-=,解得6a =;结合线段AB 图像,可知“几何体”上方的高为1165-=(cm );设“几何体”上方的底面积为2cm x ,可得305552418x ⨯-=-,解得24x =.答:“几何体”上的圆柱的高为5 cm ,底面积为324cm .【考点】一次函数的图像和性质,一次函数的应用,一元一次方程的应用. 26.【答案】(1)见解析(2 【解析】解:(1)菱形AEFG菱形ABCD ,GAE DAB ∴∠=∠,GAE GAB DAB GAB ∴∠+∠=∠+∠,即EAB GAD ∠=∠.又菱形ABCD 、AEFG ,AE AG ∴=,AB AD =,ABE ADG ∴≅△△,EB GD ∴=. (2)连接BD 交AC 于点O ,四边形ABCD 是菱形,2AB AD ∴==,BO AC ⊥,1302OAB DAB ∠=∠=︒.在Rt AOB △中,112BO AB ==,AO ∴==,EO AE AO AG AO ∴=+=+=在Rt BOE △中,BE ==DG BE ∴==数学试卷 第23页(共28页)【考点】菱形的性质,相似多边形的性质,全等三角形的判定和性质,解直角三角形,勾股定理. 27.【答案】(1)见解析 (2)(3)7【解析】证明:(1)M 为AD 的中点.AM DM ∴=.四边形ABCD 是矩形,AB CD ∴∥,AEM DFM ∴∠=∠,A FDM ∠=∠,AEM DFM ∴≅△△,EM FM ∴=.又MG ME ⊥,EG FG ∴=,即EFG △为等腰三角形. (2)如图①,矩形ABCD ,90A MDG ∴∠=∠=︒,90DCM GMD ∴∠=︒-∠ .又MG ME ⊥,90AME GMD DCM ∴∠=︒-∠=∠,AEM DCM ∴△△,AM AE CD DM ∴=,则134a a=-,解得1a =或3.当1a =时,则3DM =,在Rt DMG △中,MG ==当3a =时,则1DM =,在Rt DMG △中,10MG ==.综上MG =(3)本小题分三种情况,设EFG △的面积为S .①当01a <≤时,如图②,过点G 作GM AD ⊥于点N ,在Rt AEM △中,EM ==AB CD ∥,AEMDFM ∴△△ .AM ME MD FM ∴=,则4a a FM=-,解得FM =,EF ∴= .类似(2)可证AEMNMG △△,AM GNEM GM∴=,则3GM=,解得GM =2116622S EF GM a ∴==⨯+.当1a =时,EFG △的面积最小,这个最小12S =.②当13a <≤时,如图③类似①,可得266S a =+,26123S ∴≤<,最小整数7S =. ③当34a <≤时,如图④类似①,可得266S a=+,326683S ∴≤<,S 无最小整数值.④当4a >时,如图⑤,类似①,可得GM =,EF ,2116622S EF GM a ∴==⨯=+.综上所述,当0a >时,266S a=+,当a =时,S 有最小整数值7.【考点】矩形的性质,全等三角形的判定和性质,相似三角形的判断和性质,解一元二次方程,勾股定理. 28.【答案】(1)2 (2)直线MN 与x 轴平行 (3)(17,0)-,(19,0)【解析】解:(1)令0x =,则3y =,则点(0,3)C .令0y =,则2230x x -++=解得11x =-,23x =,则点(1,0)A -,点(3,0)B .2(1)4y x =--+,∴顶点D 为(1,4),点F 为(1,0).设直线BC 为y kx b =+,则3,30,b k b =⎧⎨+=⎩解得1,3,k b =-⎧⎨=⎩∴直线BC 为3y x =-+,在这个关系式中令1x =,则2y =.∴点E 坐标为(1,2),422DE ∴=-=.(2)设过点(1,2)E 的直线为y mx n =+,则2m n =+解得2n m =-,∴过点E 的直线为2y mx m =+-.过点E 的直线与抛物线的交点M 、N 的坐标为方程组223,2y x x y mx m⎧=-++⎪⎨=+-⎪⎩①②的解,把②代入①并整理,得2(2)10x m x m +---=,1212(2),1.x x mx x m +=--⎧∴⎨=--⎩12x x ∴-=∴当0m =时,12x x -的值最小,此时直线为2y =,即直线MN 与x 轴平行.数学试卷 第27页(共28页)(3)分四种情况:①点P 在点A 、O 之间时,如图①,连接OD 、延长BD 交y 轴于点M .在Rt DOF △中,90DFO ∠=︒,tan 4DFDOF OF∠==,11MDO DPO DBO DPO DAO α∠=∠+∠=∠+∠=∠,显然DOF α∠∠>,23BD OB =≠=,ODB DOB ∴∠≠∠,显然tan 4α∠≠,故此种情况不可能;②在OA 的延长线上,如图②,延长BD ,过点2P 作2P N BD ⊥于点N ,可设DN m =,2DAO DPO P DN α∠+∠=∠=∠,tan 4α∠≠,24P NDN∴=,设DN m =,则24P N m =,290P NB BFD ∠=∠=︒,2P BN DBF ∠=∠,2P BN DBF ∴△△,42∴=,解得m =,BN ∴=,2P N =在2Rt BNP △中,220P B =,217OP ∴=则点2(17,0)P -. ③在O 、F 之间,如图③根据对称性,结合①可知这种情况也不可能,3P 也不存在;④在OF 的延长线上,如图4,根据对称性,结合②,可得420P A =,419OP ∴=则点4(19,0)P .综上符合条件的点P 为(17,0)-,(19,0).【考点】用待定系数求函数关系式,解一元二次方程,一元二次方程系数的关系,锐角三角形函数的概念,相似三角形的判定和性质,二次函数的图像和性质.。

2014年南通中考数学精编版

2014年南通中考数学精编版

江苏省南通市2014年中考数学试题时间:120分钟满分:150分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上)1.﹣4的相反数()A.4B.﹣4C.D.﹣2.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60°D.50°3.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱4.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠5.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)6.化简的结果是()A.x+1B.x﹣1C.﹣x D.x7.已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1B.a>1C.a≤﹣1D.a<﹣1分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12﹣6D.6﹣610.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.πr2二、填空题(本大题共8小题,每小题3分,共24分)11.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为_____吨.12.因式分解a3b﹣ab=_________.13.如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=_________.14.已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线_________.15.如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=_________cm.16.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在_________区域的可能性最大(填A或B或C).∠OAD+∠OCD=_________°.18.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于_________.三、解答题(本大题共10小题,共96分)19.(10分)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.20.如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?22.九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是_________;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=_________,y=_________;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?24.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.25.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为_________cm,匀速注水的水流速度为_________cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.26.(10分)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.27.(13分)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.28.(14分)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.2014年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.解答:解:﹣4的相反数4.故选A.2.解答:解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选B.3.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选A.4.解答:解:由题意得,2x﹣1>0,解得x>.故选C.5.解答:解:∵点P(2,﹣5)关于x轴对称,∴对称点的坐标为:(2,5).故选:B.6.解答:解:=﹣===x,故选D.7.8解答:解:解得,,∵无解,∴a≥1.故选A.9.解答:解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AB,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选D.10..由,得=二、填空题(本大题共8小题,每小题3分,共24分)11.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.解答:解:将67500用科学记数法表示为:6.75×104.故答案为:6.75×104.12.因式分解a3b﹣ab=ab(a+1)(a﹣1).解答:解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).故答案是:ab(a+1)(a﹣1).13.如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=9.解答:解:∵关于x的方程x2﹣6x+m=0有两个相等的实数根,∴△=b2﹣4ac=0,即(﹣6)2﹣4×1×m=0,解得m=914.已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线x=﹣1.解答:解:∵抛物线与x轴的交点为(﹣1,0),(3,0),∴两交点关于抛物线的对称轴对称,15.如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=8cm.解答:解:过点D作DE⊥AB于点E,∵在梯形ABCD中,AB∥CD,∴四边形BCDE是矩形,∴CD=BE,DE=BC=4cm,∠DEA=90°,∴AE==3(cm),∵AB∥CD,∴∠DCA=∠BAC,∵∠DAC=∠BAC,∴∠DAC=∠DCA,∴CD=AD=5cm,∴BE=5cm,∴AB=AE+BE=8(cm).故答案为:8.16.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在A区域的可能性最大(填A或B或C).解答:解:由题意得:S A>S B>S C,故落在A区域的可能性大,故答案为:A.17.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60°.解答:解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,18.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于﹣12.解答:解:∵m﹣n2=1,即n2=m﹣1,∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=(m+3)2﹣12≥﹣12,则代数式m2+2n2+4m﹣1的最小值等于﹣12,故答案为:﹣12.三、解答题(本大题共10小题,共96分)19.(10分)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.解答:解:(1)原式=4+1﹣2﹣2=1;(2)原式=[x2y(xy﹣1)﹣x2y(1﹣xy)]÷x2y=[x2y(2xy﹣2)]÷x2y=2xy﹣2.20.(8分)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.21.(8分)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?解答:解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.22.(8分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是C;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.解答:解:(1)C组的人数是:50×40%=20(人),B组的人数是:50﹣3﹣20﹣9﹣1=7(人),把这组数据按从小到大排列为,由于共有50个数,第25、26位都落在1.5≤x<2范围内,则中位数落在C组;故答案为:C;(2)根据(1)得出的数据补图如下:(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.23.(8分)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=2,y=3;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?解答:解:(1)根据题意得:,解得:24.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为14cm,匀速注水的水流速度为5cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.解答:解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从满过由两个实心圆柱组成的“几何体”到注满用了42s﹣24s=18s,设匀速注水的水流速度为xcm3/s,则18•x=30•3,解得x=5,即匀速注水的水流速度为5cm3/s;故答案为14,5;(2)“几何体”下方圆柱的高为a,则a•(30﹣15)=18•5,解得a=6,所以“几何体”上方圆柱的高为11cm﹣6cm=5cm,设“几何体”上方圆柱的底面积为Scm2,根据题意得5•(30﹣S)=5•(24﹣18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.26.(10分)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.解答:(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;∴BP AB=1,AP==,AE=AG=,∴EP=2,,GD=27.(13分)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠MDF=90°,∵M为边AD中点,∴MA=MD在△MAE和△MDF中,∴△MAE≌△MDF(ASA),∴EM=FM,又∵MG⊥EM,∴EG=FG,∴△EFG是等腰三角形;(2)解:如图1,∵AB=3,AD=4,AE=1,AM=a∴BE=AB﹣AE=3﹣1=2,BC=AD=4,CM=∴EM==,MD=AD﹣AM=4﹣a,∴=,FM=EF=EM+FM=MG=S=MG=S=时,物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.解答:解:由抛物线y=﹣x2+2x+3可知,C(0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣x2|====,∴当b=2时,|x1﹣x2|最小值=2,∵b=2时,y=(2﹣b)x+b=2,∴直线MN∥x轴.育人为本·国际视野·创新思维新思维教育--培养孩子核心竞争力21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南通市2014年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2014?南通)﹣4的相反数()4 A.B.﹣4 C. D .﹣考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣4的相反数4.故选A.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2014?南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()140°60°5 160°0°D.B.A..C考点:平行线的性质.专题:计算题.分析:先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.解答:解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选B.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.(3分)(2014?南通)已知一个几何体的三视图如图所示,则该几何体是()柱棱.D 球.C 锥圆.B 柱圆.A考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选A.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.4.(3分)(2014?南通)若在实数范围内有意义,则x的取值范围是()CB..D.A.x≠x>x≥﹣x≥考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2x﹣1>0,解得x>.故选C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.(3分)(2014?南通)点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解答:解:∵点P(2,﹣5)关于x轴对称,∴对称点的坐标为:(2,5).故选:B.点评题主要考查了关轴对称点的坐标性质,正确记忆坐标变化规律是解题关键6.(3分)(2014?南通)化简的结果是()x x+1 D.﹣.A.B x1﹣xC.考点:分式的加减法.专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:﹣=解:===x,故选D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.7.(3分)(2014?南通)已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:根据“一次函数y=kx﹣3且y随x的增大而增大”得到k<0,再由k的符号确定该函数图象所经过的象限.解答:解:∵一次函数y=kx﹣1且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.点评:本题考查了一次函数图象与系数的关系.函数值y随x的增大而减小?k<0;函数值y随x的增大而增大?k>0;一次函数y=kx+b图象与y轴的正半轴相交?b>0,一次函数y=kx+b图象与y轴的负半轴相交?b<0,一次函数y=kx+b图象过原点?b=0.8.(3分)(2014?南通)若关于x的一元一次不等式组无解,则a的取值范围(a≥1D.a≤C1.a﹣1<﹣1> B .A.a考点一元一次不等式组分析将不等式组解出来,根据不等式组的取值范围.a无解,求出解答:得,解:解.,∵无解,∴a≥1.故选A.点评:本题考查了解一元一次不等式组,会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.9.(3分)(2014?南通)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()1 2 B.C. D .A.6﹣6612﹣似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质考点:相ADGA作H,易证得△GF交BC于点NMAM⊥BC于点,交DG于点,延长首分析:先过点,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.∽△ABC 于点,延长于点NGF交BCH,,交⊥:过点解答:解A作AMBC于点MDG ∵AB=AC,AD=AG,,AB=AG:AB:∴AD DAG,∠∵∠BAC= ,∴△ADG∽△AB∴ADGBD∵四边DEF是正方形DFBADFAB=AC=1BC=12,BC=∴BM=6=12,AM=∴,∴.∴,,∴AN=6,∴MN=AM﹣AN=6∴.FH=MN﹣GF=6﹣6故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.(3分)(2014?南通)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()πr2 D ..B.C.A形面积的计算;等边三角形的性质;切线的性质考点算题专题中ADOR分析圆形纸片的圆O作两边的垂线,垂足分别AO则在还可求出扇可求得.四边形ADO1E2倍,的面积的的面积等于三角形ADO1形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,...由∴.∵由题意,∠DO1E=120°,得,=.∴圆形纸片不能接触到的部分的面积为C.故选点评:本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014?南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故答案为:6.75×104.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2014?南通)因式分解a3b﹣ab=ab(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采平方差继续分解解答a3ab=aa=aa+故答案是aa+点评题考查了提公因式法与公式法分解因式要求灵活使用各种方法对多项式进行因分解一般来说如果可以先提取公因式的要先提取公因式再考虑运用公式法分解13.(3分)(2014?南通)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=9.考点:根的判别式.分析:因为一元二次方程有两个相等的实数根,所以△=b2﹣4ac=0,根据判别式列出方程求解即可.解答:解:∵关于x的方程x2﹣6x+m=0有两个相等的实数根,∴△=b2﹣4ac=0,即(﹣6)2﹣4×1×m=0,解得m=9点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.14.(3分)(2014?南通)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线x=﹣1.考点:抛物线与x轴的交点.分析:因为点A和B的纵坐标都为0,所以可判定A,B是一对对称点,把两点的横坐标代入公式x=求解即可.解答:解:∵抛物线与x轴的交点为(﹣1,0),(3,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==﹣1,即x=﹣1.故答案是:x=﹣1.点评:本题考查了抛物线与x轴的交点,以及如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式来求解,也可以用公式x=求解,即抛物线y=ax2+bx+c与x轴的交点是(x1,0),(x2,0),则抛物线的对称轴为直线x=.15.(3分)(2014?南通)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=8cm.考点:勾股定理;直角梯形.分析:首先过点D作DE⊥AB于点E,易得四边形BCDE是矩形,则可由勾股定理求得AE的长,易得△ACD是等腰三角形,则可求得CD与BE的长,继而求得答案.解答:解:过点D作DE⊥AB于点E,,CD∥AB中,ABCD∵在梯形.∴四边形BCDE是矩形,∴CD=BE,DE=BC=4cm,∠DEA=90°,∴AE==3(cm),∵AB∥CD,∴∠DCA=∠BAC,∵∠DAC=∠BAC,∴∠DAC=∠DCA,∴CD=AD=5cm,∴BE=5cm,∴AB=AE+BE=8(cm).故答案为:8.点评:此题考查了梯形的性质、等腰三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(2014?南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在A区域的可能性最大(填A或B或C).考点:几何概率.分析:根据哪个区域的面积大落在那个区域的可能性就大解答即可.解答:解:由题意得:SA>SB>SC,故落区域的可能性大故答案为点评题考查了几何概率解题的关键是了解那个区域的面积大落在那个区域的可能性大17.(3分)(2014?南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60°.考点:圆周角定理;平行四边形的性质.专题:压轴题.分析:由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后又三角形外角的性质,即可求得∠OAD+∠OCD的度数.解答:解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60°.点评:此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.18.(3分)(2014?南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于﹣12.考点方法的应用;非负数的性质:偶次方专题算题分析知等式变形后代入原式,利用完全平方公式变形,根据完全平式恒大于等,即可确定出最小值.解答:解:∵m﹣n2=1,即n2=m﹣1,∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=(m+3)2﹣12≥﹣12,则代数式m2+2n2+4m﹣1的最小值等于﹣12,故答案为:﹣12.点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.分)96小题,共10三、解答题(本大题共.19.(10分)(2014?南通)计算:﹣()﹣1﹣;)(﹣2)2+()0(1(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.考点:整式的混合运算;零指数幂;负整数指数幂.分析:(1)先求出每一部分的值,再代入求出即可;(2)先算括号内的乘法,再合并同类项,最后算除法即可.解答:解:(1)原式=4+1﹣2﹣2=1;(2)原式=[x2y(xy﹣1)﹣x2y(1﹣xy)]÷x2y=[x2y(2xy﹣2)]÷x2y=2xy﹣2.点评:本题考查了零指数幂,负整数指数幂,二次根式的性质,有理数的混合运算,整式的混合运算的应用,主要考查学生的计算和化简能力.20.(8分)(2014?南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.考点比例函数与一次函数的交点问题专题算题分析)先)代y2可计算,得点坐标为(,再A点坐标代入y=可计算出k的值,从而得到反比例函数解析式;利用点A与点B关于原点对称确定B点坐标;(2)观察函数图象得到当x<﹣1或0<x<1时,一次函数图象都在反比例函数图象上方.解答:解:(1)把A(m,2)代入y=﹣2x得﹣2m=2,解得m=﹣1,所以A点坐标为(﹣1,2),,2﹣1×2=﹣k=得y=)代入2,1(﹣A把所以反比例函数解析式为y=﹣,点A与点B关于原点对称,所以B点坐标为(1,﹣2);(2)当x<﹣1或0<x<1时,﹣2x>.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21.(8分)(2014?南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?考点:解直角三角形的应用-方向角问题.分析:易证△ABP是等腰三角形,过P作PD⊥AB,求得PD的长,与6海里比较大小即可.解答:解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP?sin∠PBD=12×=6海里.86∵>∴海轮不改变方向继续前进没有触礁的危险.点评:本题主要考查了方向角含义,正确作出高线,转化为直角三角形的计算是解决本题的关键.22.(8分)(2014?南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是C;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.考点:频数(率)分布直方图;扇形统计图;中位数.专题:图表型.分析:(1)可根据中位数的概念求值;(2)根据(1)的计算结果补全统计图即可;(3)根据中位数的意义判断.解答:解:(1)C组的人数是:50×40%=20(人),B组的人数是:50﹣3﹣20﹣9﹣1=7(人),把这组数据按从小到大排列为,由于共有50个数,第25、26位都落在1.5≤x<2范围内,则中位数落在C组;故答案为:C;(2)根据(1)得出的数据补图如下:(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)(2014?南通)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=2,y=3;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?考点:列表法与树状图法;概率公式.分析:(1)根据题意得:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球颜色相同、颜色不同的情况,再利用概率公式即可求得答案.解答:解:(1)根据题意得:,解得:;故答案为:2,3;(2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P(小王胜)==,P(小林胜)==.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)(2014?南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;25.(9分)(2014?南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为14cm,匀速注水的水流速度为5cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.考点:一次函数的应用.专题:应用题.分析:(1)根据图象,分三个部分:满过“几何体”下方圆柱需18s,满过“几何体”上方圆柱需24s﹣18s=6s,注满“几何体”上面的空圆柱形容器需42s﹣24s=18s,再设匀速注水的水流速度为xcm3/s,根据圆柱的体积公式列方程,再解方程;(2)根据圆柱的体积公式得a?(30﹣15)=18?5,解得a=6,于是得到“几何体”上方圆柱的高为5cm,设“几何体”上方圆柱的底面积为Scm2,根据圆柱的体积公式得5?(30﹣S)=5?(24﹣18),再解方程即可.解答:解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从满过由两个实心圆柱组成的“几何体”到注满用了42s﹣24s=18s,设匀速注水的水流速度为xcm3/s,则18?x=30?3,解得x=5,即匀速注水的水流速度为5cm3/s;故答案为14,5;(2)“几何体”下方圆柱的高为a,则a?(30﹣15)=18?5,解得a=6,所以“几何体”上方圆柱的高为11cm﹣6cm=5cm,设“几何体”上方圆柱的底面积为Scm2,根据题意得5?(30﹣S)=5?(24﹣18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.点评:本题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.26.(10分)(2014?南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE 为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.考点似多边形的性质;全等三角形的判定与性质;勾股定理;菱形的性质分析:(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到BPAB=1,然后求得的长即可.GD的长即可求得线段EB,最后利用勾股定理求得EP=2.解答:(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BPAB=1,AP==,AE=AG=,,EP=2∴,=∴EB==GD=.∴点评:本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.27.(13分)(2014?南通)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.考点:四边形综合题.分析:(1)利用△MAE≌△MDF,求出EM=FM,再由MG⊥EM,得出EG=FG,所以△EFG是等腰三角形;(2)利用勾股定理EM2=AE2+AM2,EC2=BE2+BC2,得出CM2=EC2﹣EM2,利用线段关系求出CM.(3)作MN⊥BC,交BC于点N,先求出EM,再利用△MAE∽△MDF求出FM,得到EF的值,再由△MNG∽△MAE得出MG的长度,然后用含a的代数式表示△EFG的面积S,指出S的最小整数值.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠MDF=90°,∵M为边AD中点,∴MA=MD在△MAE和△MDF中,∴△MAE≌△MDF(ASA),∴EM=FM,又∵MG⊥EM,∴EG=FG,∴△EFG是等腰三角形;(2)解:如图1,∵AB=3,AD=4,AE=1,AM=aBE=AAE=1=BC=AD=EM2=AE2+AMEC2=BE2+BCEM2=1+aEC2=4+16=2CM2=ECEMCM2=2a2=1a∴CM=.,N于点BC,交BC⊥MN,作2)解:如图3(.∵AB=3,AD=4,AE=1,AM=a∴EM==,MD=AD﹣AM=4﹣a,∵∠A=∠MDF=90°,∠AME=∠DMF,∴△MAE∽△MDF∴=,∴=,∴FM=,∴EF=EM+FM=+=,∵AD∥BC,∴∠MGN=∠DMG,∵∠AME+∠AEM=90°,∠AME+∠DMG=90°,∴∠AME=∠DMG,∴∠MGN=∠AME,∵∠MNG=∠MAE=90°,∴△MNG∽△MAE∴=,∴=,,MG= ∴∴S=EF?MG=××=+6,,+6S=即.当a=时,S有最小整数值,S=1+6=7.点评:本题主要考查了四边形的综合题,解题的关键是利用三角形相似求出线段的长度.28.(14分)(2014?南通)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.考二次函数综合题.点:分(1)根据抛物线的解析式即可求得与坐标轴的坐标及顶点坐标,进而求得直线BC的解析:析式,把对称轴代入直线BC的解析式即可求得.(2)设直线MN的解析式为y=kx+b,依据E(1,2)的坐标即可表示出直线MN的解析式y=(2﹣b)x+b,根据直线MN的解析式和抛物线的解析式即可求得x2﹣bx+b﹣3=0,所以x1+x2=b,x1 x2=b﹣3;根据完全平方公式即可求得∵|x1﹣x2|====,因为b=2时,y=(2﹣x2|最小值=2﹣b)x+b=2,所以当,b=2时,|x所以直M轴(3)由D(1,4),则tan∠DOF=4,得出∠DOF=∠α,然后根据三角形外角的性质即可求得∠DPO=∠ADO,进而求得△ADP∽△AOD,得出AD2=AO?AP,从而求得OP的长,进而求得P点坐标.解解:由抛物线y=﹣x2+2x+3可知,C(0,3),答:令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,,解得.∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣===x2|=,=2,|x1∴当b=2时,﹣x2|最小值,x+b=2(2﹣b)b=2∵时,y= 轴.∴直线MN∥x,4),((3)如图2,∵D1DOF=taα=又ta∴DOF∠∠∠ADO=α,∠∵∠DOF=DAO+ α,∠∵∠DAO+∠DPO= ,∴∠DPO=∠ADO AOD,∽△∴△ADP ,AP2=AO?AD∴.∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,∴P1(19,0),P2(﹣17,0).点本题考查了待定系数法求解析式,二次函数的交点、顶点坐标、对称轴,以及相似三角评:形的判定及性质,求得三角形相似是本题的关键.。

相关文档
最新文档