汽车变截面钢板弹簧的设计计算

合集下载

汽车钢板弹簧设计计算1

汽车钢板弹簧设计计算1

#DIV/0! #DIV/0! #DIV/0!! #DIV/0! #DIV/0! #DIV/0!
#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!
1
14)(1-μi-1)↑3Ki 12)*13)
15)Bi 14)+1 16)ξi=Bi-αi-2*Ci-2 n=6,ξn=ξ6
2.钢板弹簧总成刚 度C=6EIn/ln↑3/ξ
n (N/mm)
1)刚度差(C实-C 理)/C实*100 (%) 2)钢板弹簧总成挠 度fc=2*Pn/C (mm) 3)钢板弹簧的固有 频率N (Hz)=16/fc ↑0.5 (1.3~2.3Hz)
0
#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
0 -0.1889 -0.13115 #DIV/0! #DIV/0! #DIV/0! #DIV/0!
47 #DIV/0!
#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
45
#DIV/0! ###### ###### #DIV/0!
2.065591 #DIV/0! #DIV/0! #DIV/0! #DIV/0!
#DIV/0! #DIV/0! #DIV/0!
4.A(L/2,(n0-1)h↑ 3),B(S/2,nh↑3)两 点直线方程: (x-x1)/(x1x2)=(y-y1)/ (y1-y2) 即:x=ay+b x1=L/2 x2=S/2 a=(x1-x2)/(y1y2) b=x1-(x1-x2) *y1/(y1-y2) 5.求各片的弦长Li (xi)圆整为尾数为 1)最短片L1 L2 (单边) L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 n=6,Ln=L6

少片变截面钢板弹簧的设计计算

少片变截面钢板弹簧的设计计算

少片变截面钢板弹簧的设计计算钢板弹簧是一种常见的机械弹簧,在各种机械和设备中得到广泛应用。

它由在轴线方向上并排排列的一系列弯曲的钢板组成,呈螺旋状。

当外力作用于弹簧时,它会发生形变,具有很好的弹性回复能力,是一种具有重要机械性能的弹簧。

一、设计计算1、弹簧基本要素弹簧基本要素包括钢带材料、外直径、内直径、圈数、导程、自由长度和加工工艺。

其中材料是决定弹簧机械性能的关键要素。

通常钢板弹簧采用碳素钢、合金钢等材料,其弹性模量会随材料强度的提高而增大。

2、弹簧设计弹簧的设计需要考虑弹簧的工作条件,计算外力的大小、方向、作用点等,从而确定弹簧材料的选择、外径、圈数等要素。

弹簧设计需要考虑以下几个方面:(1)弹簧的工作负荷:根据机械设备的工作条件和要求确定弹簧承受的最大负荷,以此作为设计的起点。

(2)弹簧的外径和内径:根据弹簧材料、工作负荷和工作环境等要素来确定弹簧的外径和内径大小。

(3)弹簧的圈数和导程:弹簧的圈数和导程直接决定了其刚度和变形量,需要根据实际需求来设计,避免过强或过松。

(4)弹簧自由长度:弹簧自由长度也会影响到其机械性能,需要根据实际工作环境来确定。

二、样例下面以一种常见的钢板弹簧为例,介绍其设计和计算过程。

1、材料选择假设需要设计一种碳素钢的钢板弹簧,采用SWO-A钢带材,其具有以下机械性能:屈服强度:235MPa弹性模量:210GPa泊松比:0.3材料密度:7.85g/cm³2、外径和内径的确定假设弹簧的最大工作负荷为500N,弹簧碳素钢钢带的工作应力取90%时,最大弹簧应变量ρs应该小于σ/2E,即(υ-Dw)/Dw≥0.08。

可根据此公式,确定外径Dw=20mm。

根据设计要求,弹簧的圈数为8,导程为3mm。

当弹簧材料确定且弹簧固定长度生成后,利用弹簧方程(Fs=kρs)推导,得到弹簧直径Di=17.9mm。

3、根据内径、外径和圈数确定性能参数内直径ID=Di-2t,弹簧导程l0=π(Di+Dw)/2,自由长度L0=l0*(n-1)+2*ra+ra-ra*υ/Dw。

钢板弹簧设计说明书

钢板弹簧设计说明书

目录一、确定断面尺寸及片数 ------------------------------------------------------------------------ 2二、确定各片钢板弹簧的长度 ------------------------------------------------------------------ 4三、钢板弹簧的刚度验算 ------------------------------------------------------------------------ 5四、钢板弹簧总成在自由状态下的弧高及曲率半径计算。

------------------------------- 7H ------------------------------------------------------------------------------------ 71.钢板弹簧总成在自由状态下的弧高02.钢板弹簧各片自由状态下曲率半径的确定 -------------------------------------------------------------------------------- 8五、钢板弹簧总成弧高的核算 ---------------------------------------------------------------- 10六、钢板弹簧的强度验算 ---------------------------------------------------------------------- 11二、(修改)确定各片弹簧长度--------------------------------------------------------------- 12三、(修改)钢板弹簧的刚度验算 ------------------------------------------------------------ 14四、(修改)钢板弹簧总成在自由状态下的弧高及曲率半径计算 --------------------- 15五、(修改)钢板弹簧总成弧高的核算 ------------------------------------------------------ 17六(修改)钢板弹簧的强度验算 ------------------------------------------------------------- 18七、钢板弹簧各片应力计算 ------------------------------------------------------------------- 18八,设计结果 ------------------------------------------------------------------------------------- 20九、参考文献 ------------------------------------------------------------------------------------- 21十、附总成图 ----------------------------------------------------------------- 错误!未定义书签。

某微车的少片变截面钢板弹簧结构设计分析与验证

某微车的少片变截面钢板弹簧结构设计分析与验证

( ) = n d [ 1 …t (
d f l 、 用 负 号 ) 由式 ( 9 ) 乘 n减 式 ( 1 0 )得
d ( d , J 、 )= —
) ] ( 用 正 号 ,
( 1 0 )
( 上接第 6 6页 )
6 结 论
( 1 1 )
由 上述 结果 对 比可 知 ,刚 度 、强 度 的结 果 均 比较 接 近 ,台 架耐 久 试 验 也 满 足 了 8万 次 断 裂 的标 准 要 求 。耐 久 性 反 映 了 强
( 2 )辅具结构简单 ,一般 中小型机 械厂都可 以自制 ; ( 3 )辅具可 实现车 间现 场 随 时测量 ,准确 可靠 ,轻巧 耐
用 ,完 全 满 足 生产 现 场 测 量 要 求。
d ( d ) = , n 一 d [ 1 + c 。 t (
d , J 、 用负号 ) 的尺寸 m : ,则
明 了该 设 计 方法 的可 行 性 。
文中主要利用材料力学的简单基础公式对板 簧进行理论计 式 ( 1 2 ) 中 :A d ( △ d 』 J 、 )为被测 圆锥大 、小端直径 ;
n d ( d )为大 ( 小 ) 标 准 圆柱 直径 。
算 ,并未涉及经验之类的系数 ,相对很多其他计算 方法较 为简 洁 明了。并通过 C A E分析验证与台架验证 ,该板簧的理论计算 得 以认证。这一套设计开发流程 ,比较完善地将理论 与实 际结
式 ( 1 1 ) 中 :n可 以取 为 任 意 值 ,在 此 ,笔 者 取 大 、 小标 准 圆 柱 直 径 之 比 ,即 n= n d / d ,代 入式 ( 4) 后 可 得
d ( d , j 、 )= 。 ( 1 2 )

汽车变截面钢板弹簧的设计计算

汽车变截面钢板弹簧的设计计算

汽车变截面钢板弹簧的设计计算东风汽车工程研究院 陈耀明 2006年5月前 言少片变截面钢板弹簧在我国已有多年的制造和使用经验,特别是大、中型客车,采用者相当广泛。

然而,涉及变截面簧的设计计算方法,虽然二十几年前悬架专委会曾做过一些介绍,但资料零散、重复、不完整,尤其是比较常用的加强型变截面簧,资料反而欠缺。

撰写本文的目的,就是为悬架设计者提供变截面簧的比较完整的设计计算资料,主要是刚度计算公式和应力分布计算方法。

变截面簧轮廓线包括梯形和抛物线形两大类,每类又含有根部、端部加厚,或只有根部加厚,或都不加厚等几种变型。

这样,可以说几乎所有的变截面簧轮廓线都可在本文找到计算公式。

此外,本文还介绍了各种轮廓线的选型原则以及若干设计经验等,可供设计人员参考。

附录中列出已有资料中的一些计算公式,并证明了它们和本文公式的一致性。

本文的式(1)~(3)引自日本资料“自动车用重型钢板弹簧”,其它公式(6)~(15)是笔者近期重新推导出来的。

当然,有一些和过去推导出来的公式完全一致。

一、 纵截面为梯形的变截面弹簧这种弹簧的轧锥部分(3l ~4l 段)为梯形,而根部和端部都将厚度增大,称为加强型变截面簧,见图1。

图1为四分之一椭圆钢板弹簧,其刚度计算公式为:654321αααααα+++++=EK ----------------(1)若对称地扩展成为半椭圆钢板弹簧,其总刚度为:6543212αααααα+++++=EK ----------------(2)若弹簧由若干等长、相同轮廓线的叠片所组成,则其合成的总成刚度为:6543212αααααα+++++=nEK ----------------(3)式中 )/(10058.225mm N E ×=为弹性模数n 弹簧片数,单片弹簧1=n313114bt l =α⎥⎦⎤⎢⎣⎡++−+−+−−=1221112121221122212211132ln 223)(22212t t t Al t t l A t Al t t l A t Al t bA α )(43233323l l bt −=α ⎥⎦⎤⎢⎣⎡++−+−+−−=2322322223233223232223234ln 223)(22212t t t Bl t t l B t Bl t t l B t Bl t bB α ⎥⎦⎤⎢⎣⎡++−+−+−−=3423432324244324242234335ln 223)(22212t t t Cl t t l C t Cl t t l C t Cl t bC α )(43536346l l bt −=α而 1212l l t t A −−=3423l l t t B −−=4534l l t t C −−=其中 b 弹簧宽度实际应用中,有些弹簧的轮廓线有所简化,见图2,其刚度计算式也有所变化: 1、增厚转折点急剧变化,2型。

汽车变截面钢板弹簧的优化设计

汽车变截面钢板弹簧的优化设计

′ Pmax = max{P 1, P 2} = m •
则制动时: σ t max =
G l + ϕCC • 2 2l
(17) (18)
Pmaxl m′G (l + ϕ CC ) = W0 4W0 Pmax l Fx m ′G (l + ϕC C ) m ' Gϕ + = + W0 bh1 4W0 bh1 L2 + ϕ h g L2
P1 FX
驱动时: σ t max =
(19)
式中:m/为轴荷再分配系数,制动时: m ′ = Ga 为汽车总载荷,N;hg 为汽车重心高度, mm;La 为轴距,mm;L2 为汽车后轴中心线 至重心的距离,mm;G 为轴荷,N;l 为钢 板弹簧的主片半长 l=l1,mm;Cc 为弹簧固定 点至路面的距离,mm; ϕ 为路面附着系数, 取 ϕ =0.8;W0 为弹簧的总截面系数:
设Hale Waihona Puke 技术汽车变截面钢板弹簧的优化设计
赵 云 郑财权
(福州大学机械工程学院) 摘 要:本文对各片不等长变截面钢板弹簧进行了研究,按质量最小为目标函数建立了钢板弹簧优化设计的数学模型,
并利用 Visual Basic6.0 高级语言采用复合形法开发了优化计算程序。通过实例设计计算表明,用该优化计算程序进行设 计,可使汽车钢板弹簧的质量比原设计减少 33.3~43.2%。 关键词:变截面钢板弹簧 优化 设计
C=
η
(1) BB
2ξ ,N/mm (1) P2 / P1 − η BA
(5)
式中:ξ为修正系数,由于梁弯曲理论是基于等截面梁建立的,用它计算变截面梁的变形,其结果是 近似的;另一方面,实际生产的弹簧其截面形状并不是理想的矩形。因此计算总成刚度时引入一个修 正系数ξ,经验取ξ= 0.9~0.92;η ij(k) 为变形系数,mm/N,表示第 k 片由于 j 处单位作用力所产生 的 I 处的挠度;Pk 为片端力,N。 由梁弯曲理论,可推得变形系数 η ij(k)为:

汽车钢板弹簧的设计

汽车钢板弹簧的设计

汽车钢板弹簧的设计一、汽车钢板弹簧的基本特性钢板弹簧的主要功能是作为汽车悬架系统的弹性元件,此外多片弹簧的片间摩擦又起作系统的阻尼作用,多数钢板弹簧通过卷耳和支座兼有导向作用。

但就其基本的受力情况及结构特点,钢板弹簧具有以下两个基本特征:1、无论钢板弹簧以什么形式装在汽车上,它都是以梁的方式在工作,也就是说它的主要受力方向垂直于钢板弹簧长度。

同时,由于受变形相对其长度很小,因此可以利用材料力学中有关小挠度梁的理论,即线性原理来进行分析计算。

2、钢板弹簧装在汽车上所承受的弯矩,基本上是单向载荷,因而其弯曲应力也是单向应力。

二、等应力梁的概念椭圆形半椭圆形四分之一椭圆形除早期的汽车采用过椭圆形钢板弹簧,近代汽车绝大多数采用半椭圆形钢板弹簧,只有极少数采用四分之一椭圆形钢板弹簧。

无论何种形式的钢板弹簧,就其总成而言,都是根部支承,端部承爱集中载荷,它都是以梁的方式在工作。

众所周知,理想的梁应该是一根等应力梁,这样才能获得材料的最佳利用。

对于钢板弹簧而言,无论单片或多片,设计者应该努力将它设计成等应力梁或近似于等应力梁。

就单片梁而言,当只有单片承爱集中载荷时,有两种轮廓可以满足等应力梁的要求。

对于等厚度者,宽度应成三角形,对于等宽度者,厚度为抛物线形状。

当然,从理论上讲,只要截面系数沿片长方向与弯矩成比例变化,都可以成为等应力梁。

然而汽车上几乎没有采用同时变厚又变宽的弹簧。

上述轮廓线只是对弯曲应力而言,实际上钢板弹簧端部受剪切强度的要求以及卷耳的存在,第一种轮廓只能是在三角形端部加上等宽的矩形或整个宽度成为梯形,而第二种轮廓只能是抛物线端部接上一段等厚度的矩形或厚度按梯形变化的梁。

为了简化轧制工艺,对于等宽度者,可用梯形代替抛物线。

此外,根部也设计成为平直的,便于与支承座贴合,也就是说,或者由梯形和根部、端部为矩形的三段直线构成。

所以,在实际应用上,只能把弹簧设计成为近似的等应力梁。

由于结构上的原因,没有人在汽车上采用等厚度变宽度的单片钢板弹簧,但等宽度变厚度的单片钢板弹簧早就得到实际的应用。

汽车钢板弹簧的性能计算和试验

汽车钢板弹簧的性能计算和试验

汽车钢板弹簧的性能计算和试验首先,汽车钢板弹簧的性能主要包括以下几个方面。

1.抗压性能:汽车钢板弹簧需要承受车身的重力和不同路况下的载荷,因此需要具备良好的抗压性能。

这主要取决于材料的强度和设计的结构形式。

2.弹性模量:汽车钢板弹簧必须具备足够的弹性,以便在受到压力后能够恢复原状,保持悬挂系统的正常工作状态。

3.疲劳寿命:汽车钢板弹簧在长期使用的过程中,需要承受反复加载和卸载的作用,容易发生疲劳断裂。

因此,提高弹簧的疲劳寿命是非常重要的,需要选择耐疲劳性能好的材料和合理的结构设计。

其次,汽车钢板弹簧的计算主要包括以下几个方面。

1.材料选择:根据汽车钢板弹簧所需的强度和弹性模量,选择合适的材料。

常用的材料有碳素钢和合金钢等。

2.结构设计:根据汽车的荷载情况和悬挂系统的要求,设计合适的弹簧结构。

包括弹簧片的长度、宽度、厚度以及弹簧片的叠放方式等。

3.刚度计算:根据汽车的质量、弹簧的刚度系数以及悬挂系统的要求,计算出合适的弹簧刚度。

刚度计算可通过弹簧公式和有限元分析等方法进行。

最后,汽车钢板弹簧的试验主要包括以下几个方面。

1.负荷试验:对汽车钢板弹簧进行加荷试验,测试其承受负荷的能力。

这通常包括静态负荷试验和动态负荷试验两种。

2.疲劳试验:通过反复加载和卸载的试验,测试汽车钢板弹簧的疲劳寿命。

疲劳试验通常包括弯曲疲劳试验和循环疲劳试验。

3.刚度试验:通过施加不同荷载,测量弹簧的变形量和对应的载荷,计算出弹簧的刚度系数。

在试验过程中,需要遵循相关的试验标准和方法,确保试验结果的准确性和可靠性。

综上所述,汽车钢板弹簧是汽车悬挂系统中不可或缺的元件,其性能、计算和试验的合理设计和有效实施,对于保证汽车悬挂系统的稳定性、舒适性和安全性具有重要的意义。

少片变厚断面钢板弹簧的设计

少片变厚断面钢板弹簧的设计

公司网址: 电子邮箱:4612757@1为减轻整车重量,使车辆轻量化,改善汽车的平顺性,作为汽车钢板弹簧易损件来说,是实现车辆轻量化的一个不可忽视的零件。

因此,目前国内许多汽车越来越多地开始采用由一片或几片纵向变厚断面弹簧组成的少片弹簧。

(见图一)图一现就宽度不变的抛物线叶片弹簧和梯形变厚叶片弹簧的刚度及其有关应力的计算介绍如下:一、抛物线叶片弹簧(见图二)1、等应力梁实际上抛物线叶片弹簧是一种等应力梁少片变厚断面钢板弹簧的设计公司网址: 电子邮箱:4612757@2设弹簧端部的载荷为P ,弹簧宽度为B ,那么弹簧中央部位A —A 处的应力бA 则为:бA=6P e /Bh 〈1〉弹簧在任一截面ex 处的应力бx 则为:бx=6Pe x /Bh x 〈2〉因弹簧是等应力梁,所以弹簧在任一截面处的应力均相等,由公式:〈1〉和公式〈2〉相等条件得到:hx=h (ex/e ) 〈3〉由上式可看出,欲使弹簧在各截面处的应力相等。

叶片弹簧各点厚度必须沿长度×方向做成抛物线形状。

实际上,理想的抛物线弹簧是无法使用的,这种弹簧在端部不能承受剪应力,卷耳端部强度差,加工难。

所以考虑卷耳端部的强度和弹簧中部实际装车夹紧状况,抛物线叶片弹簧应制成如下:见图三2221公司网址: 电子邮箱:4612757@3图三图中:A 、B 、C 、D 部份弹簧厚度不变,而B 、C 、O 部份弹簧厚度按抛物线变化。

2、抛物线叶片弹簧的刚度: 弹簧在任一截面处的惯性矩分别是 在(O —e 1)范围内J 1为常数 J 1= 式中:n 弹簧片数在(e 1e 2)范围内,断面惯性矩J 2为X 的函数。

J 2= 由公式〈3〉得:J 2= ×( )×n 在(e 2 e 1)范围内,J 3为常数。

J 3= 由于在不同长度范围内惯性矩J 值不同,经整理后刚度值为: C= · ·a式中a 断面修正系数,通常取0.9结论:事实上,抛物线叶片弹簧,在现实的汽车钢板弹簧3 3 3 231 12 ×n ×nBh 1╳nxBh 12 32Bh 12e xe 3 2Bh6E J 3 e (1+( )·K ) e 2 e 3公司网址: 电子邮箱:4612757@4加工中,不能付诸实现,因此较多地采用的是梯形变厚断面代替抛物线变化的梁。

汽车钢板弹簧设计计算

汽车钢板弹簧设计计算

1.1单个钢板弹簧的载荷已知汽车满载静止时汽车前轴荷G1=3000kg,非簧载质量Gu1=285kg,则据此可计算出单个钢板弹簧的载荷:Fw1=(G1-Gu1)/2=1357.5 kg (1)进而得到:Pw1=Fw1×9.8=13303.5 N (2)1.2钢板弹簧的静挠度钢板弹簧的静挠度即静载荷下钢板弹簧的变形。

前后弹簧的静挠度都直接影响到汽车的行驶性能[1]。

为了防止汽车在行驶过程中产生剧烈的颠簸(纵向角振动),应力求使前后弹簧的静挠度比值接近于1。

此外,适当地增大静挠度也可减低汽车的振动频率,以提高汽车的舒适性。

但静挠度不能无限地增加(一般不超过240 mm),因为挠度过大,即频率过低,也同样会使人感到不舒适,产生晕车的感觉。

此外,在前轮为非独立悬挂的情况下,挠度过大还会使汽车的操纵性变坏。

一般汽车弹簧的静挠度值通常如表1[2]所列范围内。

本方案中选取fc1=80 mm。

1.3钢板弹簧的满载弧高满载弧高指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差[3]。

当H0=0时,钢板弹簧在对称位置上工作。

考虑到使用期间钢板弹簧塑性变形的影响和为了在车架高度已限定时能得到足够的动挠度值,常取H0∈10-20mm。

本方案中H01初步定为18mm。

1.4钢板弹簧的断面形状板弹簧断面通常采用矩形断面,宜于加工,成本低。

但矩形断面也存在一些不足。

矩形断面钢板弹簧的中性轴,在钢板断面的对称位置上。

工作时,一面受拉应力,一面受压应力作用,而且上、下表面的名义拉应力和压应力的绝对值相等。

因材料的抗拉性能低于抗压性能,所以在受拉应力作用的一面首先产生疲劳断裂。

除矩形断面以外的其它断面形状的叶片,其中性轴均上移,使受拉应力的一面的拉应力绝对值减小,而受压应力作用的一面的压应力绝对值增大,从而改善了应力在断面上的分布情况,提高了钢板弹簧的疲劳强度并节约了近10%的材料。

汽车与钢板弹簧减振性能的理论分析与计算

汽车与钢板弹簧减振性能的理论分析与计算

摘要本次设计的题目是汽车钢板弹簧减震性能的理论分析与计算。

主要任务是对江铃汽车少片簧进行的理论分析与计算。

设计的主要内容是:选定钢板弹簧的结构,根据给定的尺寸、外力等数据,运用机械振动学中的离散体与连续体的知识,用连续体振动方程计算出钢板弹簧各片的应力,而后再用有限元软件Ansys软件分析各片簧的应力,然后把理论计算结果与软件分析结果进行比较,最后根据尺寸用CAD软件画出钢板弹簧的零件图和装配图。

钢板弹簧是汽车悬架的重要元件,其能保证汽车具有良好的行驶平顺性和良好的操纵稳定性,还能保证汽车在车轮跳动时,主销定位参数变化不大,车轮运动与导向机构相协调,不出现摆振现象,转向时使整车有一定的不足转向。

钢板弹簧本身还能兼起导向机构的作用,并且由于弹簧各片之间的摩擦而起到一定的减震作用。

总之,由实践得知钢板弹簧对汽车行驶平顺性、稳定性、通过性、燃油经济性等多种使用性能都有影响,因此钢板弹簧的设计对汽车的性能有很大影响,其设计也是汽车设计的一个重要方面。

关键词:钢板弹簧理论分析机械振动学 Ansys有限元软件ABSTRACTThe title of this design is the calculation and theoretical analysis of damping performance of automobile leaf spring. The main task is the calculation and theoretical analysis of less leaf spring of JiangLing cars. The main content of the design: selected the structure of leaf spring, according to the given size and forces and other data, using the knowledge of discrete body and continuous body of the mechanical vibration , then calculate the forces of each piece of steel spring according to the continuous body vibration equation. Then analysis the forces with the finite element software. Then compare the two results, finally paint out the assembly drawings.Leaf spring is an important component of automobile suspended frame , which can ensure the car has a good ride and good handling and stability , also can guarantee pin location parameters changed significantly and wheel movement aligned with steering mechanism and has no vibration and also ensure the vehicle has a certain lack of steering when the car beats the wheel. Leaf spring itself can also holds up the role of steering mechanism, and due to friction between the springs, it also can play s certain role of shock.In short, the practice proved that spring on vehicle ride comfort, stability, adoption, fuel economy, and other kinds of performance, so the design of leaf spring have a great impact on the performance of the car, its design is also an important aspect of automotive design.KEYWORDS: leaf spring theoretical analysis mechanical vibration ANSYS finite element software目录前言 (1)1.汽车工业简介 (1)2.汽车构造 (2)3.汽车悬架系统的作用、组成与分类 (2)4.设计任务 (5)2 钢板弹簧的传统理论分析 (3)2.1受力分析和载荷计算 (3)2.1.1 受力分析和静态载荷的计算 (3)2.1.2动态载荷的计算 (4)2.2钢板弹簧传统分析方法的应力计算 (6)2.2.1 力学模型的简化 (7)3 应力的计算 (8)3.1共同曲率法 (8)3.2许用应力的确定 (10)3.3少片钢板弹簧的简单估算方法 (11)3.4极限工况应力计算 (12)3.5钢板弹簧刚度和挠度的计算 (13)3.5.1 建模假设 (13)3.5.2 主副簧接触过程中的载荷计算 (14)3.5.3 载荷—挠度特性计算 (15)3.5.4钢板弹簧刚度的计算公式 (17)3.5.5 钢板弹簧自由刚度的计算 (18)3.5.6 夹紧状态下钢板弹簧刚度的计算 (19)3.6钢板弹簧振动理论分析 (19)4 钢板弹簧的有限元计算与分析 (22)4.1有限元工程分析在汽车设计中的应用 (22)4.2建立有限元模型 (23)4.2.1 有限元计算模型的简化 (23)4.2.2 定义单元属性 (24)4.2.3 接触分析 (25)4.2.4 施加载荷和约束 (27)4.2.5 设置求解选项 (28)4.2.6 有限元计算结果 (29)5 理论计算结果与有限元计算结果比较 (32)6 小结 (33)7 致谢 (34)8 参考文献 (35)前言1.汽车工业简介汽车是最重要的现代交通工具,汽车的种类最多、最普及、活动范围最广泛、运输量最大的交通工具。

110 微型汽车设计后钢板弹簧悬架钢板弹簧设计

110 微型汽车设计后钢板弹簧悬架钢板弹簧设计

为110 微型汽车设计后钢板弹簧悬架。

已知参数:总重:Ga=13100N( 驾驶室内两人)自重:Go=6950N( 驾驶室内两人)空车:前轴载荷=4250N后轴载荷=2700N满载:前轴载荷=5750N后轴载荷=7350N非簧载质量=690N (指后悬架)钢板弹簧长度L=(1000~1100)mm骑马螺栓中心距S= 70mm满载时偏频n= ( 1.5~1.7 )H叶片端部形状:压延要求:∙确定钢板弹簧叶片断面尺寸,片数;∙确定钢板弹簧各片长度(按1:5 的比例作图);∙计算钢板弹簧总成刚度;∙计算钢板弹簧各片应力;注意:①叶片断面尺寸按型材规格选取(参看“汽车标准资料手册”中册P39,表5—36),本题拟在以下几种规格内选取:= 6 65,7 65,8 656 63,7 63,8 636 70,7 70,8 70②挠度系数可按下式计算:式中:n’—主动片数n—总片数设计要求:1 )要求在CAD 环境下进行钢板弹簧各片长度的确定。

2 )要求对计算结果进行分析说明。

60Si2Mn E=2.06*105N/mm2满载偏频n2=1.6Hz钢板弹簧长度L=1050mm许用弯曲应力【σw】=500MPa无效长度系数k=0.5一.宽度b和片厚h1.J0=[(L-ks)3cδ]/(48E)(1)c=F w/f cF w2=(G2-G u2)/2=(7350-690)/2=3330NF c2=(5/n2)2=(5/1.6)2=97.66mmc=3330/97.66=34.10N/mm(2)δ=1.5/[1.04(1+0.5*0/8)]=1.5*1.04=1.56与主片等长的片数n’=0 总片数n=8J0=[(1050-0.5*70)3*34.10*1.56]/(48*2.06*106)=5625.60N/mm22.W0=F w(L-ks)/4[σw]=3330*(1050-0.5*70)/(4*500)=1689.9753.h p=2J0/W0=6.66mm4.宽度b的值在(6~10)h p中选取,取b=9h p=59.94mm5.片厚h的值为1.1h p,h=7.33mm6.选取国产型材h*b=8*65二.钢板弹簧长度Σh i3=8*63=1728由作图法得到8片钢板弹簧的长度序号单边L/2 取整圆整双边L使用matlab,计算程序为:l=[97 160 220 280 342 405 465 525]; %各片弹簧长度a=[1:8];b=[1:8];c=[1:8];e=[1:8];yd=[1:8];yg=[1:8];%yd为端接触应力,yg为固定端应力a(1)=(3-l(1)/l(2))/(2*l(1)/l(2));b(1)=-2;c(1)=0;e(1)=-a(1)/b(1);for i=2:7a(i)=(3-l(i)/l(i+1))/(2*l(i)/l(i+1));b(i)=-(2+(1-l(i-1)/l(i))*(1-l(i-1)/l(i))*(1-l(i-1)/l(i)));c(i)=(3-l(i-1)/l(i))*(l(i-1)/l(i))*(l(i-1)/l(i))/2;e(i)=a(i)/(-b(i)-c(i)*e(i-1));endE=2.06*10*10*10*10*10; %弹性模量J=65*8*8*8/12;p=12*E*J/(2*l(8)*l(8)*l(8)+(l(8)-l(7))*(l(8)-l(7))*(l(8)-l(7))-e(7)*( 3*l(8)*l(7)*l(7)-l(7)*l(7)*l(7))); %刚度w=65*8*8/6;f(8)=(7350-690)/4;for i=1:7f(8-i)=f(9-i)*e(8-1);endfor i=2:8yd(i)=(f(i)*l(i)-f(i-1)*l(i-1))/w;yg(i)=f(i)*(l(i)-l(i-1))/w;endyd(1)=f(1)*l(1)/w;yg(1)=0;最终计算结果。

汽车变截面钢板弹簧的设计计算

汽车变截面钢板弹簧的设计计算

汽车变截面钢板弹簧的设计计算摘要本文介绍了汽车变截面钢板弹簧的设计计算,包括弹簧参数计算、弹簧形状设计及材料组成等方面。

通过对变截面钢板弹簧的物理特性进行分析,结合设计要求,以及材料及工艺的要求,采用MARC建模及软件进行非线性有限元分析,得出变截面钢板弹簧的设计结果。

关键词:变截面钢板弹簧,参数计算,形状设计,MARC建模1. IntroductionVariable-Cross-Section Steel Plate Spring (VCSSPS) is an important part in auto manufacture. VCSSPS can provide smooth and reliable force when it works in enclosed space because ofits advantages of light weight and small size. It has been widely used in body, chassis, engine and suspension systems. VCSSPS contains a variety of parameters such as material, shape, size and load. And its performance is greatly affected by these parameters. Thus, it is very important to design the VCSSPS in a reasonable way.In general, VCSSPS design includes three steps: parameters calculation, shape designing and material selection. First, parameters calculation must be done according to the design requirement. Then, shape should be designed according to parameters carefully. Furthermore, the material and processes should be carefully selected and applied.In this paper, we introduce the VCSSPS design process and analysis. We use MARC software to analyze the VCSSPS under nonlinear finite element environment and get the parameters’ design results. The main contributions include: 1) a conciseintrod uction of VCSSPS design process; 2) analysis of parameters’ effects on VCSSPS; 3) the optimization of geometry design and material selection; 4) the design results of VCSSPS.2 Parameter CalculationThe parameters of VCSSPS mainly include load, length,section size, curvature, number of plate and material. The calculation results of these parameters have significantinfluence on the performance of VCSSPS.2.1 LoadLoad is the product of spring force and displacement, which can be obtained from the static deflection and force performance data provided by the design requirements.2.2 LengthLength of VCSSPS is determined by the static performance. Generally, the distance between the mounting holes should be the same as that of the mating parts.2.3 Section SizeThe section size of VCSSPS can be obtained from the load and displacement provided by the design requirements. Generally, thesection size should be determined according to the static performance.2.4 CurvatureCurvature of VCSSPS is determined by the section size. Generally, the curvature should be designed according to thestatic performance.2.5 Number of PlateThe number of plate is determined by the dynamic performance. Generally, the number of plate should be designed according tothe dynamic performance.2.6 MaterialThe ideal material for VCSSPS is determined by the static, dynamic and temperature requirements. Usually, good strength and modulus of elasticity are preferred.3 Shape DesignThe shape of VCSSPS should be designed according to the parameters calculated above. In general, the shape of VCSSPS should be designed as follows:3.1 Section SizeSection size of VCSSPS should be designed according to the calculated parameters. Generally, the section size should be designed as uniform as possible.3.2 Number of PlateThe number of plate should be designed according to the calculated parameters. Generally, the number of plate should be designed as many as possible.3.3 Geometry。

变截面板簧刚度设计与计算

变截面板簧刚度设计与计算
板簧各段接点处厚度值mm处的惯性距mm作用于板簧端部的载荷kn板簧半跨长度mm段为抛物线段其抛物线方程为ebruary1999ipmen段内的惯性矩该段长度较段内的惯性矩该段为抛物线段所以4p所以刚度单片板簧刚度
总第 113 期 T ot al N o . 113 冶 金 设 备 1999年 2 月第 1期 Februar y 1999 M ET A L LU RGI CA L EQ U IP M ENT
= -w 5 - -f 5= 3. 171- 1. 53= 1. 641, 及式( 19) 解出 -w 6 = 1. 46, 故 w 6 = 1. 46 t = 0. 9m m 。 第七 辊取
w7
弯或负值压弯。 从理论上看压弯量在4. 5mm 以下 可以得到良好矫直, 再大没有必要 , 各辊的分配 也不需严格限定。 5 结语 本文所提供的方法用文献 [ 2] 的实测值验证 是可用的, 其理论简单 , 方法容易, 程序严谨 , 很 具有实用性。 但压弯量计算法的适用性不仅与其 本身的精确性有关 , 也与设备刚度的正确定量有 关, 如矫直辊的弹跳量及压力系统的刚度 值等。 压弯量数学模型的精确化在我国 已具有现实意 义, 文献[ 4] 已经取得初步成果 , 本文作为一种参 与, 愿与同行们共同推进这一工作。
G =
EB = 37. 5 N/ m m 4 K ( i) GD 1= 2G = 75 N/ m m 第一片简图( 如图2 所示) :
图 2 6700后簧第一片
( 转第6 页) — 31 —
总 第 113 期 冶 金 设 备 1999年 2 月第 1期
L L
2
( 2)
dx +
总第 113 期 T ot al N o . 113 冶 金 设 备 1999年 2 月第 1期 Februar y 1999 M ET A L LU RGI CA L EQ U IP M ENT

钢板弹簧设计说明书

钢板弹簧设计说明书

目录一、确定断面尺寸及片数 ------------------------------------------------------------------------ 2二、确定各片钢板弹簧的长度 ------------------------------------------------------------------ 4三、钢板弹簧的刚度验算 ------------------------------------------------------------------------ 5四、钢板弹簧总成在自由状态下的弧高及曲率半径计算。

------------------------------- 7H ------------------------------------------------------------------------------------ 71.钢板弹簧总成在自由状态下的弧高02.钢板弹簧各片自由状态下曲率半径的确定 -------------------------------------------------------------------------------- 8五、钢板弹簧总成弧高的核算 ---------------------------------------------------------------- 10六、钢板弹簧的强度验算 ---------------------------------------------------------------------- 11二、(修改)确定各片弹簧长度--------------------------------------------------------------- 12三、(修改)钢板弹簧的刚度验算 ------------------------------------------------------------ 14四、(修改)钢板弹簧总成在自由状态下的弧高及曲率半径计算 --------------------- 15五、(修改)钢板弹簧总成弧高的核算 ------------------------------------------------------ 17六(修改)钢板弹簧的强度验算 ------------------------------------------------------------- 18七、钢板弹簧各片应力计算 ------------------------------------------------------------------- 18八,设计结果 ------------------------------------------------------------------------------------- 20九、参考文献 ------------------------------------------------------------------------------------- 21十、附总成图 ----------------------------------------------------------------- 错误!未定义书签。

钢板弹簧计算

钢板弹簧计算

钢板弹簧的计算1. 1 钢板弹簧的布置方案的选择钢板弹簧在汽车上可以纵置也可以横置纵向布置时还具有导向传力的作用并有一定的减震作用连得因而使的悬架系统结构简化。

而横向布置时因为要传递纵向力必须设置附加的导向传力装置使结构复杂、质量加大所以只在极少数汽车上应用。

如下图所示它中部用U型螺栓将钢板弹簧固定在车桥上。

悬架前端为固定铰链也叫死吊耳。

它由钢板弹簧销钉将钢板弹簧前端卷耳部与钢板弹簧前支架连接在一起前端卷耳孔中为减少摩损装有衬套。

后端卷耳通过钢板弹簧吊耳销与后端吊耳与吊耳架相连后端可以自由摆动形成活动吊耳。

当车架受到冲击弹簧变形时两卷耳之间的距离有变化的可能。

图4.1 1. 2 钢板弹簧主要参数的确定EQ1042轻型货车相关参数∶悬架静挠cf72mm悬架动挠度cf80mm轴距Z3300mm 单个钢板弹簧的载荷111509.8563522wmgFN 1. 2. 1 满载弧高af 满载弧高af是指钢板弹簧装到车轴桥上汽车满载时钢板弹簧主片上表面与两端不包括卷耳孔半径连线间的最大高度差。

常取af1020mm这里取af10mm.。

1. 2. 2钢板弹簧长度L的确定钢板弹簧长度L是指弹簧伸直后两卷耳中心之间的距离在总布置可能的条件下应尽可能将钢板弹簧取长些。

在下列范围内选用钢板弹簧的长度轿车L0.400.55轴距货车:前悬架L0.260.35轴距后悬架L0.350.45轴距。

应尽可能将钢板弹簧取长些原因如下1增加钢板弹簧长度L能显著降低弹簧应力提高使用寿命降低弹簧刚度改善汽车平顺性。

2在垂直刚度c给定的条件下又能明显增加钢板弹簧的纵向角刚度。

3刚板弹簧的纵向角刚度系指钢板弹簧产生单位纵向转角时作用到钢板弹簧上的纵向力矩值。

4增大钢板弹簧纵向角刚度的同时能减少车轮扭转力矩所引起的弹簧变形。

本设计中L0.35×3300mm1155mm 1.2.3 钢板断面尺寸及片数的确定 a.钢板断面宽度b的确定有关钢板弹簧的刚度、强度等可按等截面简支梁的计算公式计算但需引入挠度增大系数δ加以修正。

弹簧设计计算公式

弹簧设计计算公式

弹簧设计计算公式弹簧是一种经过热处理的金属线,具有弹性变形能力。

在工程设计中,弹簧广泛应用于机械、汽车、电器等领域,用于悬挂、减震、传动等功能。

弹簧设计的核心是确定其几何参数和力学性能,以满足特定的工作要求。

弹簧设计的计算公式包括弹簧刚度、变形、工作力和应力等参数。

以下是一些常用的弹簧设计公式:1.弹簧刚度:弹簧刚度是指单位变形时产生的力的大小。

弹簧刚度可以通过以下公式计算:K=Gd^4/8nD^3其中,K表示弹簧刚度,G表示弹簧材料的剪切模量,d表示弹簧线径,n表示弹簧的有效圈数,D表示弹簧的平均直径。

2.弹簧变形:弹簧的变形可以通过以下公式计算:δ=(F×L)/(K×n)其中,δ表示弹簧的变形,F表示作用在弹簧上的力,L表示弹簧自由长度,K表示弹簧刚度,n表示弹簧的有效圈数。

3.弹簧的工作力:弹簧的工作力可以通过以下公式计算:F=K×δ其中,F表示作用在弹簧上的力,K表示弹簧刚度,δ表示弹簧的变形。

4.弹簧的应力:弹簧的应力可以通过以下公式计算:σ=(8×F×L)/(π×d^3×n)其中,σ表示弹簧的应力,F表示作用在弹簧上的力,L表示弹簧自由长度,d表示弹簧线径,n表示弹簧的有效圈数。

需要注意的是,以上公式适用于简单的弹簧设计,如果涉及复杂的弹簧形状或材料,可能需要使用更复杂的计算方法或有限元分析。

弹簧设计时,需要根据实际工作条件和要求,选择合适的弹簧材料和尺寸,以保证弹簧的功能和安全性。

同时,还需要考虑弹簧的寿命、疲劳强度、预紧力等因素,以确保弹簧在长期使用中的可靠性。

除了上述的计算公式,弹簧设计还需要考虑弹簧的安装方式、表面处理、工艺要求等因素。

综合考虑这些因素,可以进行合理的弹簧设计,满足工程需求。

2汽车钢板弹簧的性能、计算和试验

2汽车钢板弹簧的性能、计算和试验

汽车钢板弹簧的性能、计算和试验东风汽车公司技术中心陈耀明1983年3月初稿2005年1月再稿目录前言(2)一.钢板弹簧的基本功能和特性(3)1.汽车振动系统的组成(3)2.悬架系统的组成和各元件的功能(6)3.钢板弹簧的弹性特性(7)4.钢板弹簧的阻尼特性(12)5.钢板弹簧的导向特性(14)二.钢板弹簧的设计计算方法(17)1.单片和少片变断面弹簧的计算方法(17)2.多片钢板弹簧的刚度和工作应力计算(24)3.多片弹簧各单片长度的确定(32)4.多片弹簧的弧高计算(36)5.钢板弹簧计算中的几个具体问题(43)三.钢板弹簧的试验(46)1.钢板弹簧的静刚度测定(46)2.钢板弹簧的动刚度测定(50)3.钢板弹簧的应力测定(52)4.钢板弹簧单片疲劳试验(53)5.钢板弹簧总成疲劳试验(54)前言本文是为汽车工程学会悬架专业学组所办的“减振器短训班”撰写的讲义,目的是让汽车减振器的专业人员对钢板弹簧拥有一些基本知识,以利于本身的工作。

内容分为三部分:钢板弹簧的基本功能和特性,设计计算方法,以及试验等。

因为这部分内容非本次短训班的重点,所以要求尽量简单扼要,也许有许多不全面的地方,只供学习者参考。

有关钢板弹簧较详细的论述,可参考本学组所编的“汽车悬架资料”。

一.钢板弹簧的基本功能和特性1.汽车振动系统的组成汽车在道路上行驶,由于路面存在不平度以及其它各种原因,必然引起车体产生振动。

从动态系统的观点来看,汽车是一个多自由度的振动系统。

其振源主要来自路面不平度的随机性质的激振,此外还有发动机、传动系统以及空气流动所引起的振动等等。

为改善汽车的平顺性,也就是为减小汽车的振动,关键的问题是研究如何对路面不平度的振源采取隔振措施,这就是设计悬架系统的根本目的。

换言之,就是在一定的道路不平度输入情况下,通过悬架系统的传递特性,使车体的振动输出达到最小。

当研究对象仅限于悬架系统时,人们往往把车体当为一个刚体来看待。

少片变截面钢板弹簧的设计计算

少片变截面钢板弹簧的设计计算

少片变截面钢板弹簧的设计计算钢板弹簧是由钢板材料弯曲而成的一种弹簧。

与圆钢弹簧相比,钢板弹簧具有更高的弹性限度和更大的变形能力。

因此,在工程设计中,钢板弹簧得到了广泛的应用。

少片变截面钢板弹簧特指弹簧的板片数量较少且断面形状发生变化的钢板弹簧。

下面将介绍少片变截面钢板弹簧的设计计算。

1.确定设计参数在进行钢板弹簧的设计计算之前,需要确定所需的设计参数。

包括工作负荷F、工作长度L、显微硬度和板片数量n等。

显微硬度是指在微观级别下测量的钢板的硬度。

确定这些参数后,可以通过下列公式计算弹簧的弹性变形:δ=8 × FL^3/En × d^4其中δ表示弹簧的弹性变形,E表示钢板的弹性模量,d表示钢板厚度。

2.确定钢板尺寸和弹簧几何参数在确定设计参数后,可以计算钢板弹簧的几何参数。

包括钢板长度L,钢板宽度b,钢板厚度d,弹簧直径D和板片数量n。

根据这些参数计算出钢板的截面积A和钢板的极径I:A=b × d × nI=b × d^3 × n/123.计算钢板的各个应力和变形在完成钢板的几何参数计算后,可以计算钢板的各个应力和变形。

包括板片的单向弯曲应力σ、截面变形度θ和截面扭转角φ。

单向弯曲应力σ可以通过下面的公式计算:σ=-My/I其中M表示截面转矩,y表示截面离中心轴的距离。

4.校核钢板的疲劳寿命在完成各个应力和变形的计算后,需要对钢板进行疲劳寿命校核。

通常采用S-N曲线法进行疲劳寿命计算。

根据应力幅值和循环次数可以得到S-N曲线,从而计算钢板的疲劳寿命。

总之,少片变截面钢板弹簧的设计计算是一项非常重要的工作,涉及到很多参数和公式的计算。

在实际应用中,需要综合考虑各种因素,确保设计的弹簧满足工程要求。

微型货车后钢板弹簧设计

微型货车后钢板弹簧设计

微型货车后悬架钢板弹簧设计一前言钢板弹簧结构简单,使用维修方便,除了起弹性元件作用之外,还兼起导向作用,长期以来在汽车特别是载货汽车上得到广泛应用。

本方案中某微型货车后悬架采用渐变刚度钢板弹簧,即副簧放在主簧之下,副簧随载荷变化逐渐起作用:主簧和弹簧开始接触前,刚度为定值,特性呈线性;主簧和副簧从开始接触到完全接触,刚度逐渐增大,特性呈非线性,主簧和副簧完全接触后,成为一体,载荷继续增大时,刚度趋于定值,特性近似线性。

除第五片簧采用变截面簧片外,其余各片采用等厚簧片,方案如图1所示:图1 某微型货车后悬架钢板弹簧装配效果图二钢板弹簧设计的已知参数1)弹簧负荷整车参数如下表:表1根据整车布置给定的空载、满载,最大载质量及非簧载质量,可得到在每副弹簧承载最大载质量时,单个钢板弹簧的载荷为:P m=(1603-107)/2*9.8=7330.4N2)弹簧伸直长度在新车设计时,一般由总布置给出弹簧伸直长度的控制尺寸,在布置可能的情况下,应尽量增加弹簧长度。

汽车设计推荐钢板弹簧长度如表2:表2该微型货车后悬架采用纵置非对称式钢板弹簧,轴距为2800mm,设计长度为2800*43%=1206mm,圆整为1200mm.前段为580mm.后段为620mm, 其中U型螺栓夹紧长度为108mm。

3)悬架静挠度悬架的静挠度即为满载静止时悬架上的载荷与此时悬架刚度之比,为了防止车身产生较大的纵向角振动,应使前后悬架的静挠度接近。

定义主簧刚度为40N/mm,复合刚度为110N/mm。

对变刚度弹簧,悬架的静挠度可由钢板弹簧的弧高变化得到。

4)弹簧满载弧高由于车身高度、悬架动行程及钢板弹簧导向特性等都与汽车满载弧高有关,因此弹簧满载弧高值应根据整车和悬架性能要求给出适当值,在车架高度限度的情况下,为了获得良好的操纵稳定性,满载弧高取为-12mm。

5)弹簧弧高变化定义钢板弹簧的弧高变化如表3所示:表3三钢板弹簧主要参数的确定1)片厚的确定由于矩形断面成本低,易加工,本方案采用矩形断面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取决于卷耳强度要求。对卷耳进行强度校核计算,确定该部位的板厚。若与轧锥小端厚度不能衔接, 就采用加厚措施。
由于前簧往往比较薄,制动力又很大,端部加厚措施是必要的。
8
4、 有效长度的选取 由于变截面簧根部很厚,U 形螺栓相对单薄,特别是加垫之后,实际上是夹不死它。也就是说,U 形
螺栓跨距内的那段无效长度往往是有效的。因此,设计时要根据根部厚度及夹紧结构,来确定无效长度系 数。

t2 )
l2 ≤ x ≤ l3 , t(x) = t2 = const
l3 ≤ x ≤ l4

t(x)
=
t2
+
x ( l4
− l3 − l3
)(t3

t2 )
l4 ≤ x ≤ l5

t(x)
=
t3
+
x ( l5
− l4 − l4
)(t 4

t3 )
l5 ≤ x ≤ l6 , t(x) = t4 = const
--------------(10)
k′
= η1
⋅k
=1+
(2η1
− 1)λ32

2η1 (λ1
3
⋅ λ2 ) 2
+ η1 ⋅η η2
⋅ λ13
若对称地扩展成为半椭圆钢板弹簧,其总刚度为:
-----(11)
K = 6EI3 k ⋅l3
--------------(12)
若弹簧由若干等长、相同轮廓线的叠片所组成,则其合成的总成刚度为:
2、 没有加厚,为一般轮廓断面,3 型。
这时, l1 = l2 = 0 ,α1 = 0 ;
t1 = t2 ,α 2 = 0 ;
l4 = l5 ,t3 = t4 , α5 = 0 。
将α 3 ,α 4 ,α 6 代入式(1)~(3)求解。
3、 端部没有平直段(非卷耳端、短轧锥),4 型。
这时, l1 = l2 = 0 ,α1 = 0 ;
3
W (x) 计算断面的断面系数
n 弹簧片数
断面系数为:
W (x) = b ⋅ t(x)2 6
----------------(5)
式中 t(x) 沿片长变化的厚度
b 弹簧宽度
当 0 ≤ x ≤ l1 , t(x) = t1 = const
l1 ≤ x ≤ l2

t(x)
=
t2
+
( l2 l2
−x − l1 )(t1
同样,化简后可得
k = 1 + λ32 −η ⋅ λ13
=
1
+
λ32
(1

1 η
)
--------------(15)
对于抛物线的变截面簧,仍然可以采用式(4)、(5)来计算沿片长的应力分布,只是在抛物线区 段,厚度的变化规律有所不同,即:
当 0 ≤ x ≤ l1 , t(x) = t1 ( 或 t2 ) = const
优质的材料和轧制工艺,使表面缺陷减少或减轻,也就可以选取抛物线形,让较多材料承受较高 应力,以减轻重量。反之,材质与工艺较差者,宜选用梯形轮廓线。 2、 根部加强
对于板簧根部较厚(20mm 以上),且 U 形螺栓夹紧装置不是特别强,尤其是根部加有软垫者,应该采 用加厚措施。否则,由于夹不死,最大弹簧应力恰好处在中心孔位置上。加上该孔有应力集中,其结果是 在中心孔处早期断裂。除了中心孔要倒角以减小应力集中外,加厚并取消软垫或改为硬垫是最有效措施。 简单说,大中型客、货车的变截面簧根部应加厚。 3、 端部加强
附录中列出已有资料中的一些计算公式,并证明了它们和本文公式的一致性。本文的式(1)~(3) 引自日本资料“自动车用重型钢板弹簧”,其它公式(6)~(15)是笔者近期重新推导出来的。当然,有 一些和过去推导出来的公式完全一致。 一、 纵截面为梯形的变截面弹簧
这种弹簧的轧锥部分( l3 ~ l4 段)为梯形,而根部和端部都将厚度增大,称为加强型变截面簧,见
=
t0
(
x l
)
1 2
=
t2
(
x l1
)
1 2
图中所标尺寸定义如下:
---------------(6)
l1 端部加强(平直)段长度
t1 端部加强段厚度
t2 端部平直段与抛物线交点处的厚度
l2 根部加强(平直)段距端点长度
t4 根部加强段厚度
4
t3 根部平直段与抛物线交点处的厚度 l 端点至根部总长度
所以,选用什么样的轮廓线,取决于两个因素: (1) 最大应力处在什么部位。
如果最大应力位于根部(根部不加厚、加软垫或夹紧装置不是很强),那么轧锥部分可选用抛物 线形,以获得较好的材料利用率,且可降低刚度。这种选择多数用在轿车或轻型车的悬架上。
相反,大中型客车或货车,往往根部要加厚,最大应力点不在根部,而是在轧锥段。这时选用梯 形轮廓较合适,使最大应力局限在极值点的小区域,碰上缺陷的概率较低,使寿命提高。 (2) 弹簧材料和轧制工艺的优劣。
请注意,此处所取惯性矩不是根部惯性矩,而是平直段与抛物线交点处的断面惯性矩。这样选取只
是为了方便与其它轮廓线的计算公式对比。
当然,若算式(7)要选取根部惯性矩来计算也是可以的,但挠度系数要相应改变。
Θ
I3
=
I4 η1
,代入式(7),得
K = 3EI 4 = 3EI 4 η1 ⋅ k ⋅ l 3 k′ ⋅ l 3
对于 2 型弹簧,在根部和端部厚度有突变,该位置之应力也有突变。
二、 纵截面为抛物线形状的变截面弹簧
这种弹簧的轧锥部分( l1 ~ l2 )为抛物线形状,该抛物线的顶点在端点(集中载荷作用点),而根部
和端部都将厚度增大,以满足结构强度的要求,见图 3。该抛物线函数为:
t(x)
=
t3
(
x l2
)
1 2
众所周知,在抛物线区段,应力分布是均等的,即为等应力的。从理论上讲,这种轮廓线似乎是最 理想的,其材料利用率是最高的。然而,从另一方面看,亦即从“比例尺效应”的理论看,等应力分布并 不一定是理想的设计。
大家知道,材料疲劳损伤、断裂都是从表面缺陷引发的,而由于材质或工艺上的原因,材料表面总 有缺陷存在。如果结构上高应力区所占的比例大,缺陷处在高应力点的概率就高,因此该结构就会出现早 期损坏,即寿命降低。相反,如果高应力区所占比例小,缺陷碰到高应力点的概率就低得多,该结构的寿 命就会高得多。这就是所谓的“比例尺效应”。

2(λ1
3
⋅ λ2 ) 2

⋅ λ13
Θη = (t3 )3
,又 t2
=
(
l1
)
1 2
=
(
λ1
)
1 2
t2
t3 l2
λ2
∴η
=
( λ2
)
3 2
λ1
3
,η ⋅ λ13 = (λ1 ⋅ λ2 ) 2
且η 2 = ( λ2 )3 代入上式,化简后得 λ1
6
k
=
1 η1
(1 −
λ32
)
+
2λ32
−η
⋅ λ13
图 1。图 1 为四分之一椭圆钢板弹簧,其刚度计算公式为:
K=
E
α1 +α2 +α3 +α4 +α5 +α6
----------------(1)
若对称地扩展成为半椭圆钢板弹簧,其总刚度为:
1
K=
2E
α1 + α2 +α3 +α4 + α5 + α6
----------------(2)
若弹簧由若干等长、相同轮廓线的叠片所组成,则其合成的总成刚度为:
根据我们经验,对于总质量达 15 吨的大中型客、货车,其板簧无效长度系数甚至可取零,即全长有 效。对于中、轻型车,可取 0.2 左右,而不像多片簧取 0.4~0.5。
当然,应在试制后对样品进行测试,再来核对该系数。 5、 横截面的断面参数计算
变截面簧的理论分析和公式计算,都是将横截面当为矩形的。实际上,弹簧片轧制时侧边都自然地 形成圆角。所以按矩形断面来计算惯性矩、断面系数和断面积,结果都偏大。即,算出的刚度偏大,应力 偏小。可以有两种方法进行修正: (1) 计算断面参数时考虑圆角的影响。例如,认定圆角半径等于片厚,则:
2(t1 − Al1 ) t2
+
A 2 l12
− 3t12 + 2t1 Al1 2t12
+
ln
t2 t1
⎤ ⎥ ⎦
α3
=
4
bt
3 2
(l33

l
3 2
)
α4
=
12 bB 3
⎡ ⎢
2t
2
Bl3


t
2 2
2t
2 3
− B 2l32
+
2(t 2
− Bl3 ) t3
+
B 2l32

3t
2 2
+
2t2 Bl3
t1 = t2 ,α 2 = 0 ;
l3 = 0 ,α3 = 0 ;

l4 = l5 ,t3 = t4 ,α5 = 0 。
将α 4 ,α 6 代入式(1)~(3)求解。
从图 1 可见,沿片长的应力分布为:
σ = P⋅x n ⋅W (x)
---------------(4)
式中 P 端部负荷 x 端部至计算断面距离
B = t3 − t2 l4 − l3
C = t4 − t3 l5 − l4
相关文档
最新文档