分类资料的统计分析(一)3PPT课件
合集下载
预防医学(二)第十七章 分类变量资料的统计 分析
第二节 分类变量资料的统计推断
• 一、率的抽样误差与标准误 • 由随机抽样造成的样本率和总体率的差异,以及各样本率 之间的差异称为率的抽样误差。 • 率的抽样误差可用率的标准误来表示 • 率的标准误的计算
• σp为率的标准率,π为总体率,n为样本含量
第二节 分类变量资料的统计推断
• 二、总体率的可信区间估计 • 方法:查表法、正态近似法 • 1.查表法 • 当样本含量较小(如n≤50),特别是p接近于0或1时,可根 据样本含量n和阳性数x,查相关统计学教材“百分率的可信区间” 表,求得总体率可信区间。
第三节 卡方检验(X2检验)
• 一、四格表资料的X2检验 • 2.假设检验步骤 • (1)建立检验假设,确定检验水准 • H0:π1=π2,即试验组与对照组的总体有效率相等。 • H1:π1≠π2,即试验组与对照组的总体有效率不等 • α=0.05(双侧检验) • (2)计算检验统计量
• A为实际频数 • T为理论频数
第三节 卡方检验(X2检验)
• 三、行✖列表资料的X2检验 • 例:某医院用3种方案治疗急性无黄疸型病毒性肝炎 254例, 观察结果见下表,问3种疗法的有效率是否不等。
• 检验假设具体步骤: • H0:3种治疗方案的有效率相等
第三节 卡方检验(X2检验)
• 三、行✖列表资料的X2检验 • 检验假设具体步骤: • H1:3种治疗方案的有效率不全等,α=0.05
第二节 分类变量资料的统计推断
• 四、率的u检验 • 2.计算检验统计量 • (2)两样本率比较的u检验
• 其中P1和P2为两样本率,Sp1-p2为两样本率之差的标准误, P含c量为两样本合并率,Pc=(X1+X2)/(n1+n2),n1和n2分别为两样本
第三章--统计整理-幻灯片(1)
如某班学生按年龄分组:17岁,18岁,19岁, 20岁, 21岁,22岁。
组距式分组
将作为分组依据的数量标志的整个取 值范围依次划分为若干个满足互斥性
和包容性的区间,用这些数值区间作
为组的名称。
某班学生统计 学原理成绩分 组
60分以下 60—70分 70—80分 80—90分 90分以上
组距式分组中的一些概念 《统计学原理》第三章 统计整理
对教师 的分类
按性别分类
男性 女性
高级 按职称分类 中级 共计7组
初级 2+3+2
青年 按年龄分类
中年
复合分组体系
对教师 的分类
按性别 分类
按职称 分类
按年龄 分类
《统计学原理》第三章 统计整理
共计12组 男 2×3×2
女 高级
中级
初级 青年 中年
《统计学原理》第三章 统计整理
统计资料的再分组
• 统计资料的再分组就是把统计分 组资料按某种要求,重新划定各 组界限,再将资料中的单位数或 比重分布重新做出调整。
对总体单位而言,是“合”,即将性质相同的 个体组合起来,在同一组内则保持着相同的性 质。
分组
《统计学原理》第三章 统计整理
25%
33%
分组前
分组后
42%
作用:1·区分事物的性质
例:按所有制性质划分,我国现有8种经济类型:
国有经济;集体经济;私营经济;个体经济 联营经济;股份制经济;外商投资经济;港 澳台投资经济
将统计调查得到的原始资料进行科
统计整理 学的分类和汇总,使之成为系统化、
条理化的综合资料,以反映研究总 体的特征。
地位 是统计调查的继续,统计分析的前提 和基础,起着承前启后的作用。
统计学复习ppt第3章++数据的图表展示
▪ 升序和降序 ▪ 寻找数据的基本特征
4. 数据透视
按需要汇总
统计学
STATISTICS (第二版)
数据审核
3 -8
统计学
STATISTICS (第二版)
数据审核—原始数据
(raw data)
1. 完整性审核
应调查的单位或个体是否有遗漏 所有的调查项目或变量是否填写齐全
2. 准确性审核
数据是否真实反映实际情况,内容是否符合 实际
3 -5
统计学
STATISTICS (第二版)
3.1 数据的预处理
3.1.1 3.1.2 3.1.3 3.1.4
数据审核 数据筛选 数据排序 数据透视表
3 -6
统计学
STATISTICS (第二版)
3 -7
数据的预处理
1. 数据审核
▪ 检查数据中的错误
2. 数据筛选
▪ 找出符合条件的数据
3. 数据排序
3 - 17
统计学
STATISTICS (第二版)
数据透视表
(用Excel创建数据透视表)
第1步:在Excel工作表中建立数据清单 第2步:选中数据清单中的任意单元格,并选择【数据】菜单
中的【数据透视表和数据透视图】 第3步:确定数据源区域 第4步:在【向导—3步骤之3】中选择数据透视表的输出位置,
统计函数—COUNTIF
统计学
STATISTICS (第二版)
分类数据的图示—条形图
(bar chart)
1. 用宽度相同的条形的高度或长短来表示 各类别数据的图形
2. 有单式条形图、复式条形图等形式
3. 主要用于反映分类数据的频数分布
4. 绘制时,各类别可以放在纵轴,称为条 形图,也可以放在横轴,称为柱形图 (column chart)
4. 数据透视
按需要汇总
统计学
STATISTICS (第二版)
数据审核
3 -8
统计学
STATISTICS (第二版)
数据审核—原始数据
(raw data)
1. 完整性审核
应调查的单位或个体是否有遗漏 所有的调查项目或变量是否填写齐全
2. 准确性审核
数据是否真实反映实际情况,内容是否符合 实际
3 -5
统计学
STATISTICS (第二版)
3.1 数据的预处理
3.1.1 3.1.2 3.1.3 3.1.4
数据审核 数据筛选 数据排序 数据透视表
3 -6
统计学
STATISTICS (第二版)
3 -7
数据的预处理
1. 数据审核
▪ 检查数据中的错误
2. 数据筛选
▪ 找出符合条件的数据
3. 数据排序
3 - 17
统计学
STATISTICS (第二版)
数据透视表
(用Excel创建数据透视表)
第1步:在Excel工作表中建立数据清单 第2步:选中数据清单中的任意单元格,并选择【数据】菜单
中的【数据透视表和数据透视图】 第3步:确定数据源区域 第4步:在【向导—3步骤之3】中选择数据透视表的输出位置,
统计函数—COUNTIF
统计学
STATISTICS (第二版)
分类数据的图示—条形图
(bar chart)
1. 用宽度相同的条形的高度或长短来表示 各类别数据的图形
2. 有单式条形图、复式条形图等形式
3. 主要用于反映分类数据的频数分布
4. 绘制时,各类别可以放在纵轴,称为条 形图,也可以放在横轴,称为柱形图 (column chart)
《统计分析法》课件
聚类分析
总结词
将相似的对象归为一类。
VS
详细描述
聚类分析是一种常用的统计分析方法,用 于将相似的对象归为一类。通过聚类分析 ,可以将数据集划分为若干个类别,使得 同一类别内的对象尽可能相似,不同类别 之间的对象尽可能不同。在聚类分析中, 通常采用距离度量、层次聚类等方法来对 数据进行分类,并解释其意义和用途。
数据安全与隐私保护
随着大数据的广泛应用,数据安全和隐私保护将成为统计分析法的 重要研究方向,以确保数据的安全性和合法性。
THANK YOU
感谢聆听
《统计分析法》ppt课件
目
CONTENCT
录
• 引言 • 统计分析法的基本概念 • 统计分析法的常用方法 • 统计分析法的实际应用案例 • 统计分析法的注意事项与局限性 • 总结与展望
01
引言
什么是统计分析法
统计分析法是一种利用统计学原理对大量数据进行 处理、分析和解释的方法。
它通过收集、整理、描述、解释和推断数据,来认 识事物的本质、揭示内在规律。
方差分析
总结词
比较不同组数据的变异程度。
详细描述
方差分析是一种常用的统计分析方法,用于比较不同组数据的变异程度。通过方差分析,可以确定不 同组数据之间的差异是由随机误差还是系统误差引起的。在方差分析中,通常采用F检验或t检验等方 法来比较不同组数据的变异程度,并确定各因素对总体变异的影响程度。
主成分分析
3. 数据分析
运用统计分析法对数据进行深入分析,如描述性统计 、因子分析、聚类分析等。
05
4. 结果解读
根据分析结果,解读市场趋势和消费者需求,为决策 提供依据。
医学研究数据分析
2. 数据整理
统计学完整ppt课件完整版
假设检验的基本思想:小概率事件原 理
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
统计学ppt(全)
概率论—数理统计
概率沦研究起源于17世纪中叶意大利文艺复兴时代,代表人物主要有法国的拉普拉斯和比利时的凯特勒 古典统计时期的概率论基本上是独立发展的,最开始的概率论是从对赌博的研究开始。它与统计学(主要是指政治算术)没有太多的联系 从19世纪中叶到20世纪中叶,概率论的进一步发展为数理统计学的形成和发展奠定了基础。主流从描述性统计学向推断统计学发展 本世纪50年代以后,统计理论、方法和应用进入了一个全面发展的阶段
统计指标体系
由若干个相互联系相互制约的统计指标组成的一个统计指标系统 基本统计指标体系 专题统计指标体系
几种常用的统计软件 (Software)
典型的统计软件 SAS SPSS MINITAB STATISTICA Excel
第一章 绪论
第一节 统计与统计学 第二节 统计学的产生与发展 第三节 统计学的研究对象与方法 第四节 统计学的要素和指标
学习目标
1. 理解统计与统计学的含义 2. 理解统计学的对象和方法 了解统计学的产生与发展过程
第一节 统计与统计学
一. 统计与统计学的含义 二. 统计学的性质和作用
统计数据的内在规律 (一些例子)
正常条件下新生婴儿的性别比为107:100 投掷一枚均匀的硬币,出现正面和反面的频率各为1/2;投掷一枚骰子出现1~6点的频率各为1/6 农作物的产量与施肥量之间存在相关关系
统计学的应用领域
统计学
经济学
管理学
医学
工程学
社会学
…
应用统计的领域
actuarial work (精算) agriculture (农业) animal science (动物学) anthropology (人类学) archaeology (考古学) auditing (审计学) crystallography (晶体学) demography (人口统计学) dentistry (牙医学) ecology (生态学) econometrics (经济计量学) education (教育学) election forecasting and projection (选举预测和策划) engineering (工程) epidemiology (流行病学) finance (金融) fisheries research (水产渔业研究) gambling (赌博) genetics (遗传学) geography (地理学) geology (地质学) historical research (历史研究) human genetics (人类遗传学)
概率沦研究起源于17世纪中叶意大利文艺复兴时代,代表人物主要有法国的拉普拉斯和比利时的凯特勒 古典统计时期的概率论基本上是独立发展的,最开始的概率论是从对赌博的研究开始。它与统计学(主要是指政治算术)没有太多的联系 从19世纪中叶到20世纪中叶,概率论的进一步发展为数理统计学的形成和发展奠定了基础。主流从描述性统计学向推断统计学发展 本世纪50年代以后,统计理论、方法和应用进入了一个全面发展的阶段
统计指标体系
由若干个相互联系相互制约的统计指标组成的一个统计指标系统 基本统计指标体系 专题统计指标体系
几种常用的统计软件 (Software)
典型的统计软件 SAS SPSS MINITAB STATISTICA Excel
第一章 绪论
第一节 统计与统计学 第二节 统计学的产生与发展 第三节 统计学的研究对象与方法 第四节 统计学的要素和指标
学习目标
1. 理解统计与统计学的含义 2. 理解统计学的对象和方法 了解统计学的产生与发展过程
第一节 统计与统计学
一. 统计与统计学的含义 二. 统计学的性质和作用
统计数据的内在规律 (一些例子)
正常条件下新生婴儿的性别比为107:100 投掷一枚均匀的硬币,出现正面和反面的频率各为1/2;投掷一枚骰子出现1~6点的频率各为1/6 农作物的产量与施肥量之间存在相关关系
统计学的应用领域
统计学
经济学
管理学
医学
工程学
社会学
…
应用统计的领域
actuarial work (精算) agriculture (农业) animal science (动物学) anthropology (人类学) archaeology (考古学) auditing (审计学) crystallography (晶体学) demography (人口统计学) dentistry (牙医学) ecology (生态学) econometrics (经济计量学) education (教育学) election forecasting and projection (选举预测和策划) engineering (工程) epidemiology (流行病学) finance (金融) fisheries research (水产渔业研究) gambling (赌博) genetics (遗传学) geography (地理学) geology (地质学) historical research (历史研究) human genetics (人类遗传学)
统计数据的整理及其显示(ppt-107页)(共106张PPT)全篇
2、统计分组的原则
穷尽原则
互斥原则
注意:统计分组是对总体认识深化的手段,它是一切统计研究的基 础,应用于统计工作的全过程,是统计研究的基本方法。
⑴ 类型分组
揭露社会经济现象的类型,反映各类型的特点。
例
单位:亿元
类 型 1999年 2000年 2001年 2002年
农业 14 106.2 13 873.6 14 462.8 14 931.5
审核
对第二手数据: 完整性: 准确性: 适用性:数据的来源、口径以及
有关背景资料; 时效性:尽可能使用最新的数据。
(2)数据筛选
当数据中的错误不能予以纠正,或者有些数据不符合 调查的要求而又无法弥补时,需要对数据进行筛选。
数据筛选的内容:
▪ 将某些不符合要求的数据或有明显错误的数
据予以剔除;
例如:企业按人数分组
499及以下
500 ~ 999
1000 ~ 2999 3000及以上
工人按工资分组
600 ~ 700 700 ~ 800 800 ~ 1200
1200 ~ 1500
适用条件: 它适用于变量值变化范围较大、不同变量值个数
较多的离散型变量及连续型变量的场合。
注意:连续型变量的数值不能一一列举,故
例如:按以五分制计分的成绩对全班100名学生进行分组,宜单 变量数列;按以百分制计分的成绩对全班100名学生进行分组 ,宜组距式数列;
1. 定类数据的排序
▪ 字母型数据,排序有升序降序之分,但习惯
上用升序
▪ 汉字型数据,可按汉字的首位拼音字母排列
,也可按笔画排序,其中也有笔画多少的升 序降序之分
2. 定距和定比数据的排序
递递增增排排序序:后设可一表组示数为据:为X(1X)1<,X(X2)2<,……<X,(NX) N, 递减排序可表示为:X(1)>X(2)>…>X(N)
穷尽原则
互斥原则
注意:统计分组是对总体认识深化的手段,它是一切统计研究的基 础,应用于统计工作的全过程,是统计研究的基本方法。
⑴ 类型分组
揭露社会经济现象的类型,反映各类型的特点。
例
单位:亿元
类 型 1999年 2000年 2001年 2002年
农业 14 106.2 13 873.6 14 462.8 14 931.5
审核
对第二手数据: 完整性: 准确性: 适用性:数据的来源、口径以及
有关背景资料; 时效性:尽可能使用最新的数据。
(2)数据筛选
当数据中的错误不能予以纠正,或者有些数据不符合 调查的要求而又无法弥补时,需要对数据进行筛选。
数据筛选的内容:
▪ 将某些不符合要求的数据或有明显错误的数
据予以剔除;
例如:企业按人数分组
499及以下
500 ~ 999
1000 ~ 2999 3000及以上
工人按工资分组
600 ~ 700 700 ~ 800 800 ~ 1200
1200 ~ 1500
适用条件: 它适用于变量值变化范围较大、不同变量值个数
较多的离散型变量及连续型变量的场合。
注意:连续型变量的数值不能一一列举,故
例如:按以五分制计分的成绩对全班100名学生进行分组,宜单 变量数列;按以百分制计分的成绩对全班100名学生进行分组 ,宜组距式数列;
1. 定类数据的排序
▪ 字母型数据,排序有升序降序之分,但习惯
上用升序
▪ 汉字型数据,可按汉字的首位拼音字母排列
,也可按笔画排序,其中也有笔画多少的升 序降序之分
2. 定距和定比数据的排序
递递增增排排序序:后设可一表组示数为据:为X(1X)1<,X(X2)2<,……<X,(NX) N, 递减排序可表示为:X(1)>X(2)>…>X(N)
有序分类资料的统计分析课件
推动不同数据源之间的融合与共享,以增 加有序分类资料的数据量。
建立统一的分类标准和方法,提高不同数 据源之间的可比性。
发展高级统计方法
研究和发展针对有序分类资料的高级统计 分析方法,以满足更复杂的数据分析需求 。
提高数据分析的透明度和可重复 性
通过制定标准操作程序和使用开源软件, 提高有序分类资料分析的透明度和可重复 性。
有序分类资料的统计分析课 件
目 录
• 有序分类资料的概述 • 有序分类资料的统计分析方法 • 有序分类资料的实际应用 • 有序分类资料的局限性及未来发展方向 • 案例分析
01
有序分类资料的概述
有序分类资料的概念
有序分类资料
有序分类资料是有等级差异的分 类资料,例如疾病程度、教育程 度等,每个类别之间存在顺序关 系。
特点
有序分类资料具有等级性和有序 性,各类别之间存在明确的顺序 关系,可以用于描述和比较不同 类别的优劣或程度差异。
有序分类资料的类型
等级资料
等级资料是有序分类资料的一种,按 照优劣或程度的不同分为不同的等级 ,例如疗效等级、病情严重程度等级 等。
计数资料
顺序资料
顺序资料是有序分类资料的一种,通 过将观察单位按照优劣或程度的不同 排序来描述数据,例如收入水平的排 序。
案例三:有序分类资料在社会学研究中的应用
总结词
社会学研究的有序分类资料分析
详细描述
在社会学研究中,有序分类资料常用于研究社会阶层、教育程度、职业类型等社会结构 变量。例如,将受访者的教育程度分为“小学及以下”、“初中”、“高中”、“大学 及以上”等类别,可以分析不同教育程度人群的就业、收入、消费等方面的差异,为社
谱系聚类
通过谱系聚类,将有序分类资料按照树状图的形 式进行分类。
第三章-数据分类汇总分析PPT课件
16255 服装
32855
42009
10850
12522
食品 体育用品 艺术品 自行车
4
二. 获得各类销售额排行榜
利用分类汇总,企业可以获得销售额排行榜、各种商品质 量指标排行榜、销售人员完成销售任务排行榜、各种产品 库存量与库存积压资金排行榜……
120000
Northwind公司前十大客户销售额
时间序列可以帮助企业了解经营状况、预 测未来的变化趋势。
数据透视表能从不同的角度汇总数据,它 也是生成时间序列的有效工具。
37
四. 利用数据透视表生成时间序列
【例3-5】利用 数据透视表,对 Northwind公司 的销售数据按月 汇总各产品的销 售额。
分组:步长-同时 选中月、年
产品名称 (全部)
儿童用品 39686 524 2044 40255 24367
服装
16255
47196
食品
32855 472 2856 16404 19269
体育用品 10850 1080 5113 13970 3869
艺术品 42009 2893 4119 43932 24990
自行车 12522 746 4211 20383 24728
30
二.数据透视表的灵活性
分类字段的调整 分类字段值的调整 汇总字段的调整 数据透视表工具的功能
31
二.数据透视表的灵活性
分类字段的调整
利用报表筛选区域筛选数据:
将数据透视表字段列表中的字段直接拖至报表筛选 区域;
从行标签或列标签区域,拖动字段至报表筛选区域; 报表筛选区域,可以放置一个或多个字段; 可改变多个字段的排列位置; 可挑选一个值或多个值来进行筛选; 可将报表筛选区域的字段拖动到其他区域; 可删除“报表筛选”区域的字段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人数
219 180
86
65 550
百分比(%) 39.8 32.7 15.6 11.8 100
(二) 率 (Rate)
概念:又称频率指标,指实际发生数与可能发生该现
象的总观察单位数之比,用以说明某种现象发生的 频率或强度。
计算公式:率=可发 能生 发某 生现 某象 现的 象观 的单 察 观数 位 单 察数 位 k
k为比例基数:100%、1000‰、10万/10万等,主要根据 习惯用法和使算得的率一般至少保留一、二位整数,以便阅 读。
注意:不受其它指标的影响;各率相互独立,其和 不为1(如是则属巧合)。
表4 某年某地四种常见心血管病死亡率
病名
平均人口数
人数
死亡率
(1/10万)
高血压
172665
40
23.2
冠心病
172665
11
6.4
恼卒中 172665Fra bibliotek253
146.5
风心病 172665
38
22.0
思考题
发病率(incidence rate) 会超过100%?
患病率(prevalence rate)
患病率
某地某时点某病患数病例 某地同期内平均人口 k数
发病率 某某 人人 群群 某同 时期 期平 某均 病例 人 新数 口 病 k数
表2 某地1992年护理人员学历构成
学历
人数
构成比(%)
本科
99
0.14
大专
1248
1.74
中专
53521
72.65
无学历
18763
25.47
合计
73667
100.00
表3 中学生服用营养保健品持续时间
一年 二年 三年 四年 合计
人数
219 138
86
65 508
百分比(%) 43.1 27.2 16.9 12.8 100
出生性别比 116.5 120.3 117.8 118.3 119.4 122.3 119.5
正常的出生人口性别比,应在103至107之间
暴露 有 无
合计
表6 病例对照研究资料整理表
病例组 a c
a+c
对照组 b d
b+d
合计 a+b c+d a+b+c+d
OR=(a/c)/(b/d)=ad/bc
男
3
11
4
5
1
5
29
女
3
7
6
3
2
1
22
合计 6
18
10
8
3
6
51
表8 某年某市不同年龄组居民高血压患病人数及其相对数
年龄 (岁)
调查 人数
患病 构成比(%) 患病率
人数
(%)
<20
4046 P=Σr0/ Σn 0.00
0.00
20~
3037
1=53225/27306.14(7 正确)0.49
30~
(一)构成比(Proportion)
➢ 概念:也叫构成指标,是指事物内部某一组成部分的
例数与该事物各组成部分的总例数之比,用以说明事 物内部各组成部分所占的比重或分布。
➢ 计算公式:构成比事=物 某内 一部 组各 成组 部成 分 总部 的 例分 例 数 1的 0数 % 0
例如:疾病和死亡顺位等 ➢ 特点:1.各组成部分的构成比之和为100%。
(五)样本率或构成比的比较应做假设检验
率的u检验、x2检验
例:据下述资料,“锑剂短程疗法治疗 血吸虫病病例的临床分析”一文认为 “其中11~20岁死亡率最高,其次为 21~30岁组”,对否?
表7 锑剂治疗后死亡者年龄分布
性别 ≤10岁 11~20 21~30 31~40 41~50 51~60 合计
表5 1989~2003年重庆市出生人口性别比
年份 出生性别比
1989
116.1
1990
116.5
1991
117.6
出生人口性1别99比2=男婴/女婴117.2
1993
116.3
1994
117.4
1995
117.5
1996
116.7
年份 1997 1998 1999 2000 2001 2002 2003
第十一章 分类资料的统计分析
第一节 分类资料统计描述
一、常用相对数
相对数概念: 两个有联系的指标之比 计算相对数意义
绝对数:是研究事物现象的 基本资料
能否说明乙地医疗改革推 进的更快些?
要考核甲乙两地医疗制度改革推进情况,甲地有
50000名在职职工参加了医疗保险,乙地有70000名
在职职工参加了医疗保险
参保率甲地=50000/ 60000×100%=83.33%
参保率乙地=70000/100000
×100%=70相%对数——便于事物 间相互比较和分析
100%:比例基数
计算相对数的意义:
使被比较的资料基数相同,扣除 基数的影响,便于正确描述计数资 料的水平及进行相互比较。
相对数种类:构成比、率、相对比。
4250
94
2.91
2.21
40~
5332 P= Σ3p72/ 组数(11错.53误) 6.98
50~
3764
726
22.51
19.29
60~
4918
1329
41.21
27.02
≥70
2014
689
21.37
34.21
合计 Σn27361 Σr3225 100.00 11.79
三、 率标准化法 standardization method
常用的相对比:
两类个体例数之比 R=A类发生的例数/B类发生的例数
如出生人口的性别比
两个率之比(相对危险度,relative risk,RR) RR=p1/p2
如吸烟的冠心病发病率是不吸烟的2.14倍
两个相对比之比(优势比,odds ratio, OR) OR=(a/c)/(b/d)=ad/bc
如疾病组暴露比值与对照组暴露比值之比
2.某一部分比重增大,则其它部分相应减少。
表1 2006年上海市前十位疾病死亡原因和构成
死因顺位
占死亡总数(%)
循环系病 肿瘤
呼吸系病
33.96 31.45 11.31
损伤中毒
5.88
内分泌营养代谢病
4.08
消化系病
2.63
传染病及寄生虫病
1.69
精神系病
1.16
泌尿生殖系病
1.06
神经系病
0.99
(三)相对比(Relative Ratio)
概念:又称对比指标,是指两个有联系的指标之比。
说明一个指标是另一个指标的几倍或百分之几。
计算公式:相对比 甲 乙= 指 指(或 标 标 10% 0 )
注意:1.甲、乙指标可以性质相同,也可以不同 2.甲、乙指标可以是绝对数,也可以是相对
数或者是定量指标
二、 应用相对数的注意事项
(一)率和构成比不能混淆
• 指标的选择错误:应计算频率指标而选择了构成比 • 构成比当成率来分析
(二)分母不宜过小
(三)平均率(总率或合计率)的计算
(四)比较时注意资料的可比性
1. 观察对象同质,研究方法相同,观察时间相 等,以及民族、地区等客观条件一致。
2. 各组的内部构成是否相同。