浙江省数学学业水平测试模拟试题

合集下载

浙江温州2023-2024学年上学期学业水平检测九年级数学模拟试卷+答案

浙江温州2023-2024学年上学期学业水平检测九年级数学模拟试卷+答案

温州市2023学年第一学期学业水平检测九年级数学模拟试卷学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每题3分,共30分)的半径为2.已知OA.P点5.如图,已知圆心角A.156°A .B .C .D .7.已知抛物线21y x x −−,与x 轴的一个交点为()0m ,,则代数式22023m m −+的值为( ) A .2021 B .2022 C .2023 D .20248.如图,将ABD △绕顶点B 顺时针旋转36°得到CBE △,且点C 刚好落在线段AD 上,若30CBD ∠=°,则E∠的度数是( )A .42°B .44°C .46°D .48°9.如图,Rt ABC △中,90BAC ∠=°,AD BC ⊥,垂足为D ,点E ,F 分别是AB ,AC 边上的动点,DE DF ⊥,若5BC =, 3.2CD =,那么DE 与DF 的比值是( )A .0.6B .0.75C .0.8D .不确定的值10.已知抛物线()20y ax bx c a ++≠与x 轴的交点为()0A 1,和()30B ,,点()111P x y ,,()222P x y ,是抛物线上不同于A B ,的两个点,记1P AB △的面积为1S ,2P AB △的面积为2S ,则下列结论正确的是( )二、填空题(每题分,共分)11.如图,ABC 中,40A ∠=°,60C ∠=°,O 与边AB ,AC 的另一个交点分别为D , E .则AED ∠的大小为 °.12.下表记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数 100 200 500 1000 2000 成活的棵数 81 156 395 8001600 成活的频率 0.81 0.78 0.790.8 0.8 由此估计这种苹果树苗的移植成活的概率为 .13.已知二次函数235y x =−,当14x −≤≤时,y 的最小值为 .14.如图(1)是一座石拱桥,它是一个横断面为抛物线形状的拱桥,当水面在图示位置时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的关系式是 .15.如图,已知D 、E 、F 分别是ABC 的边AB AC BC 、、上的点,DE BC EF AB ∥,∥,ADE EFC △、△的面积分别为1、4,四边形BFED 的面积为 .16.如图,△ABC 是⊙O 的内接三角形,∠A =30°,3BC =,则⊙O 的半径为 .17.如图1,筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且O 被水面截得的弦AB 长为4m ,O 的半径长为3m ,若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是 m .18.如图,在Rt ABC △中,90ACB ∠=°,点D 在AB 上,点E 为BC 上的动点,将BDE △沿DE 翻折得到FDE ,EF 与AC 相交于点G ,若3AB AD =,3AC =,6BC =,0.8CG =,则CE 的值为 .三、解答题(46分)19.(6分)如图,点D 是△ABC 的边AB 上一点,∠ABC =∠ACD .(1)求证:△ABC ∽△ACD ;(2)当AD =2,AB =3时,求AC 的长.20.(6分)已知二次函数2y x bx c ++=-经过点30A (,)与03B (,). (1)求b ,c 的值.(2)求该二次函数图象的顶点坐标.21.如图所示,已知AB 为O 的直径,CD 是弦,且AB CD ⊥于点E .连接AC 、OC BC 、.(1)求证:ACO BCD ∠=∠;(2)若96AE BE CD ==,,求O 的直径.(1)请用画树状图或列表的方法,求抽出的两张卡片上的图案都是片分别记为1A 、2A ,图案为“黑脸”的卡片记为(2)若第一次抽出后不放回,请直接写出求抽出的两张卡片上的图案都是y24.(8分)如图,ABC 内接于⊙O ,过点O 作OH BC ⊥于点H ,延长OH 交⊙O 于点D ,连接AD 、BD ,AD 与BC 交于点E ,9AD =(1)求证:BAD CAD ∠=∠. (2)若OH DH =.①求BAC ∠的度数.②若⊙O 的半径为6,求DE 的长.(3)设BD x =,AB CE y ⋅=,求y 关于x 的函数表达式.参考答案:答案第1页,共1页。

2024年7月浙江省普通高中学业水平考试——数学仿真模拟试卷01(解析版)

2024年7月浙江省普通高中学业水平考试——数学仿真模拟试卷01(解析版)

2024年7月浙江省普通高中学业水平合格性考试数学仿真模拟试卷01(考试时间:80分钟;满分:100分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单项选择题(本大题共12小题,每小题3分,共36分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.集合{}|12A x x =-≤≤,{}|1B x x =<,则()A B ⋃R ð=()A .{}|1x x >B .{}1|x x ≥-C .{}|12<≤x x D .{}|12x x ≤≤【答案】B【分析】由补集和并集的定义直接求解.【详解】集合{}|12A x x =-≤≤,{}|1B x x =<,则{}1|B x x =≥R ð,(){}1|=A B x x ≥-R ð.故选:B2.已知复数z 满足(1i)2i z -=,则z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】化简复数1i z =-+,结合复数的坐标表示,即可求解.【详解】由题意,复数z 满足(1i)2i z -=,可得()()()2i 1i 2i 1i 1i 1i 1i z ⋅+===-+--+,所以复数z 在复平面内对应的点(1,1)Z -位于第二象限.故选:B.3.函数lg(2)y x =-的定义域是()A .(0,2]B .(0,2)C .(,2)-∞D .(2,)+∞【答案】C【分析】由对数函数的性质可得函数lg(2)y x =-的定义域.【详解】由函数lg(2)y x =-,得到20x ->解得x 2<,则函数的定义域是(),2∞-,故选:C .4.三个数0.35a =,50.3b =,515c ⎛⎫= ⎪⎝⎭大小的顺序是()A .a b c >>B .a c b >>C .b a c >>D .c a b>>【答案】A【解析】利用指数函数、幂函数的单调性即可求解.【详解】由5x y =为增函数,则0.30551a =>=,由5y x =为增函数,555110.35⎛⎫>> ⎪⎝⎭,所以a b c >>.故选:A5.已知向量()1,2a =r ,(),3b λ= ,若a b ⊥,则λ=()A .6-B .32-C .32D .6【答案】A【分析】根据向量垂直的坐标表示进行求解.【详解】因为()1,2a =r ,(),3b λ= ,a b ⊥,所以60a b λ⋅=+=,解得6λ=-.故选:A.6.从甲、乙等4名同学中随机选出2名同学参加社区活动,则甲,乙两人中只有一人被选中的概率为()A .56B .23C .12D .13【答案】B【分析】利用古典概型,列举计算事件数,即得解.【详解】将甲,乙分别记为x ,y ,另2名同学分别记为a ,b .设“甲,乙只有一人被选中”为事件A ,则从4名同学中随机选出2名同学参加社区活动的所有可能情况有(),x y ,(),x a ,(),x b ,(),y a ,(),y b ,(),a b ,共6种,其中事件A 包含的可能情况有(),x a ,(),x b ,(),y a ,(),y b ,共4种,故42()63P A ==.故选:B7.在ABC 中,已知D 是AB 边上的中点,G 是CD 的中点,若AG AB AC λμ=+u u u r u u u r u u u r,则实数λμ+=()A .14B .12C .34D .1【答案】C【分析】根据D 是AB 边上的中点,G 是CD 的中点,得到11,22AD AB CG CD ==u u u r u u u r u u u r u u u r ,再利用平面向量的线性运算求解.【详解】解:因为D 是AB 边上的中点,G 是CD 的中点,所以11,22AD AB CG CD ==u u u r u u u r u u u r u u u r ,所以12AG AC CG AC CD =+=+u u u r u u u r u u u r u u u r u u u r,()111242AC AD AC AB AC =+-=+u u u r u u u r u u u r u u u r u u u r ,又因为AG AB AC λμ=+u u u r u u u r u u u r,所以11,42λμ==,则34λμ+=,故选:C8.若棱长为)A .12πB .24πC .36πD .144π【答案】C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.9.如图,在四面体ABCD 中,,E F 分别是AC 与BD 的中点,若24CD AB ==,EF BA ⊥,则EF 与CD 所成角的度数为()A .90°B .45°C .60°D .30°【答案】D【分析】设G 为AD 的中点,连接,GF GE ,由三角形中位线定理可得GF AB ∥,GE CD ∥,则GEF ∠或其补角即为EF 与CD 所成的角,结合2AB =,4CD =,EF AB ⊥,在GEF △中,利用三角函数相关知识即可得到答案.【详解】设G 为AD 的中点,连接,GF GE ,则,GF GE 分别为,ABD ACD △△的中位线,所以GF AB ∥,112GF AB ==,GE CD ∥,122GE CD ==,则EF 与CD 所成角的度数等于EF 与GE 所成角的度数,即GEF ∠或其补角即为EF 与CD 所成角,又因为EF AB ⊥,GF AB ∥,所以EF GF ⊥,则GEF △为直角三角形,1GF =,2GE =,90GFE ∠=︒,在直角GEF △中,1sin 2GEF ∠=,即30GEF ∠=︒,所以EF 与CD 所成角的度数为30°.故选:D10.我国著名数学家华罗庚曾说:“数缺形时少直观,形少数时难入微,数形结合白般好,隔离分家万事休.”在数学的学习和研究中,有时可凭借函数的图象分析函数解析式的特征.已知函数()f x 的部分图象如图所示,则函数()f x 的解析式可能为()A .()21xf x x=-B .()221x f x x =+C .()221xf x x =-D .()2211x f x x +=-【答案】C【分析】根据图象函数为奇函数,排除D ;再根据函数定义域排除B ;再根据1x >时函数值为正排除A ;即可得出结果.【详解】由题干中函数图象可知其对应的函数为奇函数,而D 中的函数为偶函数,故排除D ;由题干中函数图象可知函数的定义域不是实数集,故排除B ;对于A ,当1x >时,0y <,不满足图象;对于C ,当1x >时,0y >,满足图象.故排除A ,选C.故选:C11.已知π17tan tan 422θθ⎛⎫+=- ⎪⎝⎭,则cos 2θ=()A .12-B .12C .45-D .45【答案】C【分析】利用两角和的正切公式可得出关于tan θ的方程,解出tan θ的值,再利用二倍角的余弦公式以及弦化切可求得cos 2θ的值.【详解】因为πtan tanπtan 1174tan tan π41tan 221tan tan 4θθθθθθ++⎛⎫+===- ⎪-⎝⎭-,整理可得2tan 6tan 90θθ-+=tan 3θ=,所以,222222cos sin 1tan 194cos 2cos sin 1tan 195θθθθθθθ---====-+++.故选:C.12.若0x >,0y >且x y xy +=,则211x y x y +--的最小值为()A .3B.52C.3D.3+【答案】D【分析】先把x y xy +=转化为111x y +=,再将2211x yx y x y +=+--,根据基本不等式即可求出.【详解】0x >,0y >且x y xy +=,111x y∴+=,211x y x y +-- ,()()2211xy x xy y x y -+-=--,21x y xy x y +=--+2x y =+,()112x y x y ⎛⎫=++ ⎪⎝⎭2333x yy x =++≥++当且仅当2x yy x =,即12x =+,1y =+故211x y x y +--的最小值为3+故选:D .二、多项选择题(本大题共4小题,每小题4分,共16分.每小题列出的四个备选项中有多个是符合题目要求的,全部选对得4分,部分选对且没错选得2分,不选、错选得0分.)13.下列说法中正确的是()A .直线10x y ++=在y 轴上的截距是1B .直线()20mx y m m +++=∈R 恒过定点()1,2--C .点()0,0关于直线10x y --对称的点为()1,1-D .过点()1,2且在x 轴、y 轴上的截距相等的直线方程为30x y +-=【答案】BC【分析】对于A 项,将直线方程化成斜截式方程即得;对于B 项,把直线方程化成关于参数m 的方程,依题得到1020x y +=⎧⎨+=⎩,解之即得;对于C 项,只需验证两点间的线段中点在直线上,且两点的直线斜率与已知直线斜率互为负倒数即可;对于D 项,需注意截距相等还包括都为0的情况.【详解】对于A 项,由10x y ++=可得:=1y x --,可得直线10x y ++=在y 轴上的截距是1-,故A 项错误;对于B 项,由20mx y m +++=可得:(1)20m x y +++=,因R m ∈,则有:1020x y +=⎧⎨+=⎩,故直线()20mx y m m +++=∈R 恒过定点()1,2--,故B 项正确;对于C 项,不妨设(0,0),(1,1)A B -,直线:10l x y --=,因直线AB 的斜率为1-与直线l 的斜率为1的乘积为1-,则得AB l ⊥,又由点A 到直线l与点B 到直线l 相等,且在直线l 的两侧,故点()0,0关于直线10x y --=对称的点为()1,1-,即C 项正确;对于D 项,因过点()1,2且在x 轴、y 轴上的截距相等的直线还有2y x =,故D 项错误.故选:BC.14.已知()π,0θ∈-,7sin cos 13θθ+=,则下列结论正确的是()A .ππ,2θ⎛⎫∈ ⎪⎝-⎭-B .12cos 13θ=C .5tan 12θ=D .17sin cos 13θθ-=-【答案】BD【分析】先利用题给条件求得sin ,cos θθ的值,进而得到θ的范围,tan θ的值和sin cos θθ-的值.【详解】由7sin cos 13θθ+=可得,7cos sin 13θθ=-,则227sin sin 113θθ⎛⎫-+= ⎪⎝⎭,即524sin 2sin 01313θθ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭解之得12sin 13θ=或5sin 13θ=-,又()π,0θ∈-,则5sin 13θ=-,故12cos 13θ=,则选项B 判断正确;由5sin 013θ=-<,12cos 013θ=>可得θ为第四象限角,又()π,0θ∈-,则π,02θ⎛⎫∈- ⎪⎝⎭,则选项A 判断错误;sin θ5tan θcos θ12==-,则选项C 判断错误;51217sin cos 131313θθ-=--=-,则选项D 判断正确.故选:BD15.已知函数()()e ,021,0xx f x f x x ⎧≤⎪=⎨->⎪⎩,若关于x 的方程()f x a =有两解,则实数a 的值可能为()A .1ea =B .1a =C .ea =D .3a =【答案】BD【分析】根据题意分析可得方程()f x a =的根的个数可以转化为()y f x =与y a =的交点个数,结合()y f x =的单调性与值域以及图象分析判断.【详解】①当0x ≤时,()e xf x =在(],0-∞内单调递增,且()01f =,所以()(]0,1f x ∈;②当0x >时,则()(]*2e ,1,,k x k f x x k k k -=∈-∈N ,可知()f x 在(]*1,,k k k -∈N 内单调递增,且()()21,2ekk f k f k -==,所以()*2,2,e k k f x k ⎛⎤∈∈ ⎥⎝⎦N ,且12222,e e k k kk ++<<∈N .方程()f x a =的根的个数可以转化为()y f x =与y a =的交点个数,可得:当0a ≤时,()y f x =与y a =没有交点;当20e a <≤时,()y f x =与y a =有且仅有1个交点;当122,ek k a k +<≤∈N 时,()y f x =与y a =有且仅有2个交点;当222,ek ka k +<≤∈N 时,()y f x =与y a =有且仅有1个交点;若关于x 的方程()f x a =有两解,即()y f x =与y a =有且仅有2个交点,所以实数a 的取值范围为12,2,e k k k +⎛⎤∈ ⎥⎝⎦N ,因为281,1,3,4e e ⎛⎤⎛⎤∈∈ ⎥⎥⎝⎦⎝⎦,而A 、C 不在相关区间内,所以A 、C 错误,B 、D 正确.故选:BD.16.如图,在直三棱柱111ABC A B C -中,12AA =,1AB BC ==,120ABC ︒∠=,侧面11AAC C 的对角线交点O ,点E 是侧棱1BB 上的一个动点,下列结论正确的是()A .直三棱柱的侧面积是4+B .直三棱柱的外接球表面积是4πC .三棱锥1E AAO -的体积与点E 的位置无关D .1AE EC +的最小值为【答案】ACD【分析】首先计算AC 长,再根据直棱柱的侧面积公式,即可判断A ;首先计算ABC 外接圆的半径,再根据几何关系求外接球的半径,代入公式,即可判断B ;根据体积公式,结合线与平面平行的关系,即可判断C ;利用展开图,结合几何关系,即可判断D.【详解】A.ABC 中,AC =,所以直棱柱的侧面积为(1124++⨯=+,故A 正确;B.ABC 外接圆的半径12sin120ACr ==,所以直棱柱外接球的半径R =则直三棱柱外接球的表面积24π8πS R ==,故B 错误;C.因为11//BB AA ,且1BB ⊄平面11AAC C ,1AA ⊂平面11AAC C ,所以1//BB 平面11AAC C ,点E 在1BB 上,所以点E 到平面11AAC C 的距离相等,为等腰三角形ABC 底边的高为12,且1AAO 的面积为122⨯=则三棱锥1E AAO -的体积为定值1132=,与点E 的位置无关,故C 正确;D.将侧面展开为如图长方形,连结1AC ,交1BB 于点E ,此时1AE EC +=D 正确.故选:ACD【点睛】关键点点睛:本题D 选项解决的关键是将平面11AA B B 与11CC B B 展开到同一个面,利用两点之间距离最短即可得解.三、填空题(本大题共4小题,每空3分,共15分.)17.已知函数()21,02,0x x f x x x ⎧+≤=⎨->⎩,则()2f =;若()10f x =,则x =.【答案】4-;3-.【分析】利用分段函数的性质计算即可.【详解】由条件可知()2224f =-⨯=-;若()201103x f x x x ≤⇒=+=⇒=-,若()021050x f x x x >⇒=-=⇒=-<,不符题意.故答案为:4-;3-18.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点与抛物线216y x =的焦点重合,则双曲线C 的顶点到渐近线的距离为.【解析】求出抛物线的焦点,可得双曲线的c ,运用离心率公式可得a ,再由a ,b ,c 的关系,求得b ,求出顶点到渐近线的距离,即可得到所求值.【详解】解:抛物线216y x =的焦点为(4,0),则双曲线的4c =,双曲线的离心率等于2,即2ca=,可得2a =,b ==则双曲线的渐近线方程为y =,顶点坐标为(20)±,,可得双曲线的顶点到其渐近线的距离等于d =【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率公式的运用,考查运算能力,属于中档题.19.已知a 、b 、c 分别为ABC 的三个内角A 、B 、C 的对边,2a =,且()(sin sin )()sin a b A B c b C +-=-,则ABC 面积的最大值为.【分析】先求出角A 的大小,由1sin 2S bc A =,考虑余弦定理建立,b c 的方程,再由基本不等式求bc 的最大值.【详解】解析:因为()(sin sin )()sin a b A B c b C +-=-,根据正弦定理可知(a b)()(c b)a b c +-=-,即222b c a bc +-=,由余弦定理可知1cos 2A =,又(0,π)A ∈,故π3A =,又因为2a =,所以224b c bc +-=,2242b c bc bc bc bc =+-≥-=(当且仅当b c =时取等号),即4bc ≤所以11sin 422S bc A =≤⨯=ABC20.已知定义在R 上的函数()f x 在(,3)-∞-上是减函数,若()() 3g x f x =-是奇函数,且()03g =,则满足不等式()0xf x ≤的x 的取值范围是.【答案】][3(),6,-∞-⋃-+∞【分析】由已知条件,可得()g x 是奇函数,则()f x 关于(3,0)-对称,可得()f x 在(,3)-∞-与(3,)-+∞上是减函数,且()()060f f -==,(3)0f -=,画出()f x 对应的函数草图,可得不等式()0xf x ≤的x 的取值范围.【详解】解:将()f x 向右平移3个单位,可得到()3f x -,由()() 3g x f x =-是奇函数,可得()g x 关于原点对称,则()f x 关于(3,0)-对称,且()00(3)g f =-=,由()f x 在(,3)-∞-上是减函数,可得()f x 在(3,)-+∞上也是减函数,由()03g =,可得()()033g g =-=,故可得:()()060f f -==,可得()f x 对应的函数草图如图,可得()0xf x ≤的解集为:][3(),6,-∞-⋃-+∞,故答案为:][3(),6,-∞-⋃-+∞.【点睛】本题主要考查函数单调性与奇偶性的综合,注意数形结合解题,属于难题.四、解答题(本大题共3小题,共33分.解答应写出文字说明、证明过程或演算步骤.)21.为了解某项基本功大赛的初赛情况,一评价机构随机抽取40名选手的初赛成绩(满分100分),作出如图所示的频率分布直方图:(1)根据上述频率分布直方图估计初赛的平均分;(2)假设初赛选手按1:8的比例进入复赛(即按初赛成绩由高到低进行排序,前12.5%的初赛选手进入复赛),试估计能进入复赛选手的最低初赛分数.注:直方图中所涉及的区间是:[50,60),[60,70),[70,80),[80,90),[90,100].【答案】(1)平均分的估计值为72分;(2)最低初赛分数为85分.【分析】(1)利用每小组中间值乘以每小组频率,再求和即可;(2)先设最低分数为x ,依题意大于x 的成绩的频率为0.125,即解得x .【详解】解:(1)由频率分布直方图得样本平均分550.15650.25750.4850.15950.0572x =⨯+⨯+⨯+⨯+⨯=.因此,初赛平均分的估计值为72分;(2)根据频率分布直方图,设40名选手进入复赛的最低分数为x ,依题意成绩落入区间[90,100]的频率是0.05,成绩落入区间[80,90)的频率是0.15,按初赛成绩由高到低进行排序,前12.5%的初赛选手进入复赛,可判断x 在[80,90)内,则(90)0.0150.050.125x -⨯+=,解得85x =.因此,估计能进入复赛选手的最低初赛分数为85分.22.已知函数()()sin 0f x x x ωωω=+>的最小正周期是π.(1)求ω值;(2)求()f x 的对称中心;(3)将()f x 的图象向右平移3π个单位后,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图象,求()g x 的单调递增区间.【答案】(1)2;(2),026k ππ⎛⎫- ⎪⎝⎭,Z k ∈;(3)52,266k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈.【分析】(1)由()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭且2T ππω==,即可求ω值;(2)由(1)知()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,结合正弦函数的对称中心即可求()f x 的对称中心;(3)由函数平移知()sin 23g x x π⎛⎫- ⎝=⎪⎭,结合正弦函数的单调性即可求()g x 的单调递增区间.【详解】(1)()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,又0ω>,∵2T ππω==,∴2ω=.(2)由(1)知,()2sin 23f x x π⎛⎫= ⎪⎝⎭,令23x k ππ+=,解得26k x ππ=-.∴()f x 的对称中心是,026k ππ⎛⎫- ⎪⎝⎭,Z k ∈.(3)将()f x 的图像向右平移3π个单位后可得:2sin 23y x π⎛⎫=- ⎪⎝⎭,再将所得图像横坐标伸长到原来的2倍,纵坐标不变得到:()sin 23g x x π⎛⎫- ⎝=⎪⎭,由22232k x k πππππ-≤-≤+,解得52266k x k ππππ-≤≤+,Z k ∈.∴()g x 的单调递增区间为52,266k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈.【点睛】关键点点睛:(1)应用辅助角公式求三角函数解析式,结合最小正周期求参数.(2)根据正弦函数的对称中心,应用整体代入求()f x 的对称中心.(3)由函数图像平移得()g x 解析式,根据正弦函数的单调增区间,应用整体代入求()g x 的单调增区间.23.函数()221a xb f x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求实数,a b 的值;(2)用定义证明函数()f x 在()1,1-上是增函数;(3)解关于x 的不等式()()10f x f x -+<.【答案】(1)1a =±,0b =(2)证明见解析(3)102x x ⎧⎫<<⎨⎬⎩⎭.【分析】(1)利用奇函数的性质,结合条件即可得解;(2)利用函数单调性的定义,结合作差法即可得解;(3)利用()f x 的奇偶性、单调性与定义域列式即可得解.【详解】(1)函数()221a xb f x x +=+是定义在()1,1-上的奇函数所以()00f =,则()0001b f b ===+,所以()221a x f x x =+因为1225f ⎛⎫= ⎪⎝⎭,则2112212514a f ⎛⎫== ⎪⎝⎭+,则21a =,所以1a =±,此时()21x f x x =+,定义域关于原点对称,又()()()2211xx f x f x x x --==--+-+,所以()f x 是奇函数,满足题意,故1a =±,0b =.(2)由(1)知()21x f x x =+.设12,x x 是()1,1-内的任意两个实数,且12x x <,()()()()()()221221121222221212111111x x x x x x f x f x x x x x +-+-=-=++++()()()()12122212111x x x x x x --=++,因为()()22121212110,0,10x x x x x x --<+>>+,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在()1,1-上是增函数.(3)因为()()10f x f x -+<,所以()()1f x f x -<-,即()()1f x f x -<-,则111111xxx x-<-<⎧⎪-<-<⎨⎪-<-⎩,所以021112xxx⎧⎪<<⎪-<<⎨⎪⎪<⎩,所以12x<<,即此不等式解集为12x x⎧⎫<<⎨⎬⎩⎭.。

2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题

2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题

一、单选题二、多选题1. 已知全集,集合,,则如图中阴影部分所表示的集合为A.B.C.D.2. 设,为双曲线C:的左、右焦点,Q 为双曲线右支上一点,点P (0,2).当取最小值时,的值为( )A.B.C.D.3. 已知数列为等差数列,若,且它们的前n项和有最大值,则使得的n 的最大值为A .19B .20C .21D .224. 设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A .0.01B .0.1C .1D .105. 在中,内角A ,B ,C 所对的边分别为,,.向量,.若,则角的大小为( )A.B.C.D.6.已知函数,若将的图象向右平移个单位后,再把所得曲线上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图象,则( )A.B.C.D.7.已知函数,若,且,则实数a 的最大值为( )A .2B.C .ln2D .e8. 已知展开式的常数项为76,则( )A .1B .61C .2D.9. 已知复数,,则下列结论中正确的是( )A .若,则B .若,则C .若且,则D .若,则或10. 已知圆C:,则下列四个命题表述正确的是( )A .圆C 上有且仅有3个点到直线1:的距离都等于1B.过点作圆C 的两条切线,切点分别为M ,N ,直线MN的方程为C .一条直线与圆C 交于不同的两点P ,Q ,且有,则∠PCQ的最大值为D .若圆C 与E :相外切,则2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题三、填空题四、解答题11. 下列结论正确的是( )A .若,则B.若,则的最小值为2C .若,则的最大值为2D .若,则12. 在不透明的罐中装入大小相同的红、黑两种小球,其中红球个,黑球个,每次随机取出一个球,记录颜色后放回.每次取球记录颜色后再放入个与记录颜色同色的小球和个异色小球(说明:放入的球只能是红球或黑球),记表示事件“第次取出的是黑球”,表示事件“第次取出的是红球”.则下列说法正确的是( )A.若,则B.若,则C.若,则D .若,则13.如图,一个几何体的正视图是底为高为的等腰三角形,俯视图是直径为的半圆,该几何体的体积为_________.14.已知函数,则的值域为__________.15. 函数的最大值为________.16. 如图,四棱锥的底面为平行四边形,底面,,,,.(Ⅰ)求证:平面平面;(Ⅱ)若E 是侧棱上的一点,且与底面所成的是为45°,求二面角的余弦值.17.已知函数,且.(1)求实数的取值范围;(2)设为整数,且对任意正整数,不等式恒成立,求的最小值;(3)证明:.18.已知函数为偶函数.(1)求的值;(2)当时,不等式恒成立,求实数的取值范围.19. 设为椭圆()上任一点,,为椭圆的左右两焦点,短轴的两个顶点与右焦点的连线构成等边三角形.(1)求椭圆的离心率;(2)直线:与椭圆交于、两点,直线,,的斜率依次成等比数列,且的面积等于,求椭圆的标准方程.20. 如图,在四棱锥中,平面,,为棱的中点.(1)求证://平面;(2)当时,求直线与平面所成角的正弦值.21. 在中,,,分别上的点且,,将沿折起到的位置,使.(1)求证:;(2)是否在射线上存在点,使平面与平面所成角的余弦值为?若存在,求出的长度;若不存在,请说明理由.。

2024年浙江省初中学业水平考试数学模拟试题

2024年浙江省初中学业水平考试数学模拟试题

2024年浙江省初中学业水平考试数学模拟试题一、单选题 1.()32-=( ) A .6-B .6C .8-D .82.作为全球首家商业运营C919 国产大飞机的航空公司,东航于 2023 年5月 28日圆满完成 C919全球商业首航,截至2023年 10 月 16 日,东航 2架 C919 飞机累计安全飞行1695.48小时.数据1 695.48用科学记数法表示为( )A .40.16954810⨯B .31.6954810⨯C .41.6954810⨯D .216.954810⨯3.下列计算结果是负数的是( )A .6-B .()()42-⨯-C .D .12-+4.下图是由四个相同的正方体堆砌而成的几何体,该几何体的俯视图是( )A .B .C .D .5.如图,点O 为凸透镜的光心,点 F 为凸透镜的焦点,根据凸透镜成像规律:过光心的光线经凸透镜后传播方向不变;过焦点 F 的光线经凸透镜折射后,折射光线平行于主光轴OA .现发光点 S 发出的光经过凸透镜折射后所成的像为S ',已知 31,28AOS OSF ∠=︒∠='︒,则 SBS '∠=( )A .121︒B .159︒C .59︒D .119︒6.《九章算术》是中国古代重要的数学著作,书中记载了这样一个题目:今有牛五羊二,直金十两.牛二羊五,直金八两.问牛羊各直金几何?其大意是:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设每头牛值x 两金,每头羊值y 两金,则可列方程组为( ) A .5282510x y x y +=⎧⎨+=⎩ B .5210258x y x y +=⎧⎨+=⎩C .2285210x y x y +=⎧⎨+=⎩D .5510528x y x y +=⎧⎨+=⎩7.为检测学生体育锻炼效果,从某班随机抽取10名学生进行篮球定时定点投篮检测,投篮进球数统计如图所示.对于这10名学生的定时定点投篮进球数,下列说法中错误的是( )A .中位数是5B .众数是5C .平均数是5.2D .方差是2二、多选题8.如图,在ABCD Y 中,10AB =,6BC =. E 是边AB 的中点,过点E 作AD 的平行线,交以AB 为直径的E e 于点F ,交 CD 于点H ,连接DF 并延长,交BC 于点G ,则BG 的长为( )A .3B .4C .5D .6三、单选题9.已知二次函数²y x bx c =++与x 轴只有一个交点,且图象经过两点()1,4A p -,()21,4B q p +,则p q ,满足的关系为( )A .24g p =B .2qp =C .()212q p +=D .()214q p +=10.如图,在矩形ABCD 中,6AB =,8BC =,点E 在线段BD 上(不与点B ,点D 重合),2AED ADE ∠=∠,则DE 的长为( )A .7.8BC .7.5D .8四、填空题11.因式分解:24a -=.12.两个不透明的布袋内装有除颜色外,其余完全相同的小球.甲袋中有2 个红球,1个白球,乙袋中有1 个红球,1个白球.搅匀后,从两个袋子中各随机摸出一个球,则摸出的两个球都为白球的概率为.13.如图,已知线段 AB ,分别以点 A 、点 B 为圆心,AB 的长为半径画弧,两弧交于点 C ,连结AC BC ,,则tan ABC ∠=.14.关于x 的一元二次方程²20ax bx ++=(0a ≠,a 和b 为常数)的两个根分别为1221x x =-=,,则抛物线22y ax bx =++的对称轴为直线.15.如图,O e 与直线l 相交,圆心O 到直线l 的距离OA =在直线l 上取点B 使3AB =,将直线l 绕点B 逆时针旋转15︒后得到的直线m ,若直线m 恰好与O e 相切于点C ,则O e 的半径为.16.如图,正方形ABCD 中,点E 在边AB 上,且 114BE AB ==,点F 在边BC 上,点G 在边CD 上,90GFE ∠=︒.(1)若tan 3GEF ∠=,则GE 的长为; (2)若EFG V 与△FCG 相似,则GE 的长为.五、解答题17.化简并求值:()()262x x x x -+++,其中2x =-.18.已知平面直角坐标系中,一次函数 1y k x b =+(1,k b 为常数, 10k ≠)的图象与反比例函数 2k y x=(2k 为常数, 20k ≠)的图象都经过点()1,9A 和点(),3B a ,求,a b 的值. 19.如图,AB 为O e 的直径,C 是O e 上一点,连结AC ,以点A 为圆心,AC 的长为半径作弧交O e 于点D ,连接AD CD ,,CD 与AB 相交于点E .(1)求证:CE DE = ;(2)若 330CE ACE =∠=︒,,求线段 BE 的长.20.某校九年级共8个班准备开展数学项目化学习,学生根据前期调研确定了“时光刻漏”“制作杆秤”“话说杭州GDP ”三个项目,每个班单独成立学习小组,其中每4人为一个小组(若最后剩余不足3人,则剩余的学生全部加入其中一个已成立的小组;否则剩余的学生单独成立一个学习小组),每小组只选择一个项目进行研究学习,依据收集的学生选择情况,绘制了如下表格:结合上述信息回答下列问题: (1)=a ________; b =________.(2)方方根据表格估计该校九年级的人数,方方说:“根据表格信息我可以估计出该校九年级至少有320人.”方方的说法是否正确?请说明理由. 21.在劳动课上,小华同学所在小组进行了风筝框架设计比赛(1)小华设计的风筝框架平面图如图1,已知. AB AD CB CD ==,,AC 与BD 交于点O ,求证: BO DO =(2)小明提出了改进建议:制作风筝框架只需要两个支架AC 和BD (如图2),当AC 垂直平分BD 时即可固定风筝.现在有总长度为120cm 的细木条用于制作该风筝框架,小明同学想做面积最大的风筝,请你帮他设计:当AC 为何值时,风筝的面积最大,面积最大值为多少? 22.综合与实践 【问题情境】在一次数学探究课上,老师带领大家一起研究特殊三角形的性质.圆圆小组对直角三角形进行了各种类型的折叠探究,并尝试用数学方法说明发现的结论. 类型 1.如图1,沿着DE 折叠,使点B 与点A 重合,折痕交AB 于点E ,交BC 于点D ,他们发现:点D 的位置与AC 和BC 的长有关. 问题1.若3BC =,1AC =,则BD =________.【变式探究】类型2.如图2,点D 为CB 上一点,沿着AD 折叠,AC 恰好落在AB 上,点C 的对称点为'C ,折痕交BC 于点 D .问题 2.①若 53AB AC =,则 BD CD=. ②请猜测AB AC 与 BD CD有何关系,并证明.【拓展思考】方方小组对等腰三角形进行了各种折叠探究.如图3,在等腰三角形ABC 中,BC 为底边,A ∠为钝角,点D 为边AC 上一点,将ABD △沿直线BD 翻折得到A BD 'V . 问题3.若4AD CD ==,6A C '=,求BD 的长.23.在生活中,我们会观察到这样的现象:当道路上车辆增多,车流密度增大,司机会被迫降低车速;当车流密度减小,车速又会增加.我们通常用车流密度K ,速度 v ,交通量Q 对道路的交通状况进行宏观描述.车流密度K 是指在单位长度(通常为1km )路段上,一条道路上某一瞬时的车辆数,它是表示在一条道路上车辆的密集程度.交通量Q 是指单位时间(通常为1小时)通过道路某断面的车辆数目.已知车流速度 v (单位:km/h )是车流密度K (单位:辆/km )的函数.某城市某条道路上,v 关于K 的函数图象如图所示.当车流密度030K <<时,则速度v 的值为理论最高值 80f v =;②当车流密度30270K ≤≤时,v 关于K 的函数关系为v a bK =- (a ,b 是常数),若车流密度K 达到最大值270时,则0v =.已知v 关于K 的函数图象经过0(30)8B ,. (1)若 120K =辆/km 时,求对应v 的值.(2)点,()P K v 是图象BC 上一个动点,过点 P 作横轴的垂线交于点 E ,作纵轴的垂线交于点 D ,此时矩形PDOE 所围成的面积为交通量Q (单位:辆/小时),求交通量Q 的最大值. 24.如图1, ABC V 是等边三角形,点 D ,点 E 分别是AB ,BC 上的动点,且满足 AD BE =,连接CD ,AE 交于点H ,以CE 为直径作O e 交CD 于点F .(1)求证:BAE ACD ≌△△. (2)如图 2,连接,AF EF ,①若 630AH AFH CF =∠==o ,,求直径CE 的长.②若()3,DH a FH a FH CF λ=⋅>=⋅,当 CHE AHF S S =V V 时,用含λ的代数式表示a .。

浙江省普通高中学业水平考试数学模拟试题

浙江省普通高中学业水平考试数学模拟试题

浙江省普通高中学业水平考试数学模拟试题一、选择题(共25小题,1-15每小题2分,16-25每小题3分,共60分.每小题给出的选项中只有一个是符合题目要求的,不选、多选、错选均不得分.)1、设集合M={0,1,2},则()A.1∈M B。

2∉M C。

3∈M D.{0}∈M2、函数y=()A。

[0,+∞)B。

[1,+∞)C。

(-∞,0] D。

(-∞,1]3、若关于x的不等式mx-2>0的解集是{x|x>2},则实数m等于()A.-1 B。

-2 C.1 D.24、若对任意的实数k,直线y-2=k(x+1)恒经过定点M,则M的坐标是()A。

(1,2) B。

(1,-2)C。

(-1,2) D。

(-1,-2)5、与角-6π终边相同的角是()A.56πB。

3πC。

116π D.23π6、若一个正方体截去一个三棱锥后所得的几何体如图所示,则该几何体的正视图是()(第6题图)A. B。

C。

D.7、以点(0,1)为圆心,2为半径的圆的方程是()A。

x2+(y-1)2=2 B. (x-1)2+y2=2 C。

x2+(y-1)2=4 D. (x-1)2+y2=48、在数列{a n }中,a1=1,a n+1=3a n(n∈N*),则a4等于()A.9B.10C.27 D。

819、函数y=的图象可能是()xxxA。

B. C。

D。

10、设a,b是两个平面向量,则“a=b”是“|a|=|b|”的( )A.充分而不必要条件B 。

必要而不充分条件 C.充要条件D.既不充分也不必要条件11、设双曲线C :2221(0)3y x a a-=>的一个顶点坐标为(2,0),则双曲线C 的方程是( ) A. 221163y x -=B 。

221123y x -=C 。

22183y x -= D.22143y x -= 12、设函数f (x)=sinxcosx ,x ∈R ,则函数f(x )的最小值是( )A.14-B 。

2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题 (2)

2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题 (2)

一、单选题二、多选题1.已知命题,,则为( )A.,B .,C.,D .,2. 已知则A.B.C.D.3. 若,则=( )A.B .7C.D .-74. 下列关于函数的命题正确的是A .函数在区间上单调递增B.函数的对称轴方程是()C.函数的对称中心是()()D .函数以由函数向右平移个单位得到5. 给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是( )A .0B .1C .2D .36. 设数列的前项和为,若,则( )A .0B .-2C .4D .27. 关于复数的命题,下列正确的为A .复数的模为1B .复数的虚部为C.D .若(,),则8. 函数的所有零点的乘积为,则( )A.B.C.D.9.如图,正方体的棱长为1,P是线段上的动点,则下列结论正确的是()A.四面体的体积为定值2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题 (2)2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题 (2)三、填空题四、解答题B.的最小值为C .平面D .当直线与AC 所成的角最大时,四面体的外接球的体积为10. 点在函数的图象上,当,则可能等于( )A .-1B.C.D .011.如图所示,在正方体中,E 是棱的中点,F 是侧面,(包含边界)内的动点,且平面,下列说法正确的是()A .与BE 是异面直线B .不可能与平行C .DF 不可能与平面垂直D .三棱锥的体积为定值12.已知向量满足,,且,则( )A.B.C.与的夹角为D.与的夹角为13.已知命题, 则:_______.14. 如图,已知正方体的棱长为分别是棱的中点,点为底面四边形内(包括边界)的一动点,若直线与平面无公共点,则点在四边形内运动所形成轨迹的长度为__________.15. 已知f (x )=sin(ω>0),f ()=f (),且f (x)在区间上有最小值,无最大值,则ω=_____.16. 已知函数.(1)若函数为偶函数,求a 的值;(2)若函数的最小值为8.求a 的值.17. 某商场在开业当天进行有奖促销活动,规定该商场购物金额前200名的顾客,均可获得3次抽奖机会,每次中奖的概率为,每次中奖与否相互不影响,中奖1次可获得50元奖金,中奖2次可获得100元奖金,中奖3次可获得200元奖金.(1)求顾客甲获得了100元奖金的条件下,甲第一次抽奖就中奖的概率;(2)若该商场开业促销活动的经费为1.5万元,则该活动是否会超过预算?请说明理由.18. 已知复数(是虚数单位)在复平面上对应的点依次为,点是坐标原点.(1)若,求的值;(2)若点的横坐标为,求.19. 2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾, 5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成,,,,五组,并作出如下频率分布直方图(图1):(1)试根据频率分布直方图估计小区平均每户居民的平均损失;(同一组中的数据用该组区间的中点值作代表);(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽出2户进行捐款援助,求抽出的2户居民损失均超过8000元的概率;(3)台风后区委会号召该小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在图2表格空白外填写正确数字,并说明是否有95%以上的把握认为捐款数额超过或不超过500元和自身经济损失是否超过4000元有关?经济损失不超过4000元经济损失超过4000元合计捐款超过500元30捐款不超过500元6合计附:临界值参考公式:,.0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.82820. 设数列满足.(1)求的通项公式(2)记数列的前n项和为,是否存在实数k,使得对任意恒成立?若存在,求出k的最小值;若不存在,请说明理由.21. 某晚报曾刊登过一则生活趣事,某市民唐某乘坐出租车时,在半途中骂骂咧咧要求司机临时停靠,打表计价结账,然后重新计价,继续前行,该市民解释说,根据经验,这样分开支付车费比一次性付费便宜一些,他的这一说法有道理吗?确实,由于出租车运价上调,有些人出行时会估计一下可能的价格,再决定是否乘坐出租车.据了解,2018年上海出租车在5时到23时之间起租价为14元/3千米,超起租里程单价为2.50元/千米,总里程超过15千米(不含15千米)部分按超起租里程单价加50%.此外,相关部门还规定了低速等候费和其他时段的计价办法,以及适合其他车型的计价办法.你乘坐过出租车吗?你会仿效那位市民唐某的做法吗?为什么?(1)根据上述情境你能提出什么数学问题?为了解决你的问题,你能否作出一些合理假设?(2)你能否根据你的假设建立数学模型,并回答你所提出的问题.。

浙江杭州西湖保俶塔实验学校2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】

浙江杭州西湖保俶塔实验学校2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】

浙江杭州西湖区保俶塔实验学校2024-2025学年九年级数学第一学期开学学业水平测试模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)实数a b 、在数轴上对应点如图所示,a -的结果是()A .2a B .2b C .2b -D .2a -2、(4分)菱形ABCD 中,如果E 、F 、G 、H 分别是各边中点,那么四边形EFGH 的形状是()A .梯形B .菱形C .矩形D .正方形3、(4分)若代数式有意义,则实数x 的取值范围是()A .x≠-3B .x>-3C .x≥-3D .任意实数4、(4分)Rt △ABC 中,斜边BC =2,则AB 2+AC 2+BC 2的值为()A .8B .4C .6D .无法计算5、(4分)如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为()A .65B .52C .53D .546、(4分)甲、乙两班分别由10名选手参加健美比赛,两班参赛选手身高的方差分别是S 甲2=1.5,S 乙2=2.5,则下列说法正确的是()A .甲班选手比乙班选手的身高整齐B .乙班选手比甲班选手的身高整齐C .甲、乙两班选手的身高一样整齐D .无法确定哪班选手的身高整齐7、(4分)下列运算正确的是()A .236m m m ⋅=B .352()a a =C .44(2)16x x =D .2m 3÷m 3=2m 8、(4分)小明同学发现自己一本书的宽与长之比是黄金比约为0.1.已知这本书的长为20cm ,则它的宽约为()A .12.36cmB .13.6cmC .32.386cmD .7.64cm 二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.10、(4分)如图,在矩形ABCD 中,对角线AC 与BD相交于点O ,60AOB ∠=,1AB =,则AD 的长为________.11、(4分)化简:21x x ++11x x -+=___.12、(4分)矩形的长和宽是关于x 的方程27120x x -+=的两个实数根,则此矩形的对角线之和是________.13、(4分)若关于的一元二次方程有实数根,则的取值范围为______.三、解答题(本大题共5个小题,共48分)14、(12分)已知关于x 的一元二次方程x 2﹣(k+1)x+2k ﹣2=1.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于1且小于1,求k 的取值范围.15、(8分)解不等式组12(1)5{32122x x x --≤-<+,并把解集在数轴上表示出来.16、(8分)射阳县实验初中为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x 频数频率0<x≤3100.203<x≤6a0.246<x≤9160.329<x≤1260.1212<x≤15m b 15<x≤182n 根据以上图表信息,解答下列问题:(1)表中a=,b=;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?17、(10分)先化简、再求值.(6⎛-⎝,其中32x =,27y =.18、(10分)已知:等腰三角形ABC 的一个角B α∠=,求其余两角A ∠与C ∠的度数.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,正方形ABCD 中,AB =6,E 是CD 的中点,将△ADE 沿AE 翻折至△AFE ,连接CF ,则CF 的长度是_____.20、(4分)关于x 的方程x 2+5x+m =0的一个根为﹣2,则另一个根是________.21、(4分)如图,某港口P 位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P ,各自沿固定方向航行,“远洋”号每小时航行12n mile ,“长峰”号每小时航行16n mile ,它们离开港东口1小时后,分别到达A ,B 两个位置,且AB=20n mile ,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是________.22、(4分)“m 2是非负数”,用不等式表示为___________.23、(4分)如果的平方根是3±,则a =_________二、解答题(本大题共3个小题,共30分)24、(8分)如图,在ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.25、(10分)作图题:在图(1)(2)所示抛物线中,抛物线与x轴交于A、B,与y轴交于C,点D是抛物线的顶点,过D平行于y轴的直线是它的对称轴,点P在对称轴上运动.仅用无刻度的直尺画线的方法,按要求完成下列作图:图①图②(1)在图①中作出点P,使线段PA PC+最小;(2)在图②中作出点P,使线段PB PC-最大.26、(12分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.详解:由数轴可得:a<0<b,a-b<0,a-=|b|+|a-b|-|a|,=b-(a-b)+a,=b-a+b+a,=2b.故选B.点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.2、C【解析】分析:利用中位线的性质证明四边形EFGH为平行四边形;再根据菱形的对角线互相垂直,可证∠EHG=90°,从而根据矩形的判定:有一角为90°的平行四边形是矩形,得出菱形中点四边形的形状.详解:∵菱形ABCD中,如果E、F、G、H分别是各边的中点,∴HE∥GF∥AC,HE=GF=12AC,∴四边形EFGH为平行四边形;又∵菱形的对角线互相垂直,∴∠EHG=90°,∴四边形EFGH的形状是矩形.故选:C.点睛:此题主要考查了菱形的性质,三角形中位线定理,矩形的判定.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.3、C 【解析】根据二次根式有意义的条件即可求出答案.【详解】∵代数式有意义∴x+3≥0∴x≥-3.故选C.本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.4、A 【解析】利用勾股定理,由Rt△ABC 中,BC 为斜边,可得AB 2+AC 2=BC 2,代入数据可得AB 2+AC 2+BC 2=2BC 2=2×22=1.故选A.5、A 【解析】先根据矩形的判定得出四边形AEPF 是矩形,再根据矩形的性质得出EF ,AP 互相平分且相等,再根据垂线段最短可以得出当⊥AP BC 时,AP 的值最小,即AM 的值最小,根据面积关系建立等式求解即可.【详解】解:∵3AB =,4AC =,5BC =,∴90EAF ∠=︒,∵PE AB ⊥,PF AC ⊥,∴四边形AEPF 是矩形,∴EF ,AP 互相平分,且EF AP =,又∵M 为EF 与AP 的交点,∴当AP 的值时,AM 的值就最小,而当⊥AP BC 时,AP 有最小值,即此时AM 有最小值,∵1122AP BC AB AC =,∴AP BC AB AC =,∵3AB =,4AC =,5BC =,∴534AP =⨯,∴125AP =,∴1625AM AP ==.故选:A .本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,找出AP 取最小值时图形的特点是解题关键.6、A 【解析】∵2S 甲=1.5,2S 乙=2.5,∴2S 甲<2S 乙,则甲班选手比乙班选手身高更整齐,故选A .本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、C【解析】A.2356m m m m ⋅=≠,错误;B.2365()a a a =≠,错误;C.()44216x x =,正确;D.33222m m m ÷=≠,错误.故选C.8、A【解析】根据黄金分割的比值约为0.1列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm ,∴书的宽约为20×0.1=12.36cm .故选:A .本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】画出图形,设菱形的边长为x ,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm ,在Rt △ABC 中,由勾股定理:x 2=(8-x )2+22,解得:x=174,∴4x=1,即菱形的最大周长为1cm .故答案是:1.解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.【解析】根据矩形的性质得出OA =OB =OC =OD ,∠BAD =90°,求出△AOB 是等边三角形,求出OB =AB =1,根据矩形的性质求出BD ,根据勾股定理求出AD 即可.【详解】∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∠BAD =90°,∵60AOB ∠=,∴△AOB 是等边三角形,∴OB =AB =1,∴BD =2BO =2,在Rt △BAD 中,AD ==考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.11、1【解析】分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.解答:解:原式=2x 1x x 1+-+=1.点评:本题考查了分式的加减运算.最后要注意将结果化为最简分式.12、1【解析】设矩形的长和宽分别为a 、b ,根据根与系数的关系得到a+b=7,ab=12,利用勾股定理得到矩形的对角线长,再利用完全平方公式和整体代入的方法可计算出矩形的对角线长为5,则根据矩形的性质得到矩形的对角线之和为1.【详解】设矩形的长和宽分别为a 、b ,则a+b=7,ab=12,所以矩形的对角线长==5,所以矩形的对角线之和为1.故答案为:1.本题考查了根与系数的关系,矩形的性质,解题关键在于掌握运算公式.13、【解析】根据一元二次方程的定义和根的判别式得到△=b 2-4ac ≥0,然后求出不等式的解即可.【详解】解:有实数根∴△=b 2-4ac ≥0即,解得:即的取值范围为:本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.三、解答题(本大题共5个小题,共48分)14、(3)证明见解析;(2)3<k<2.【解析】(3)根据方程的系数结合根的判别式,求得判别式0∆≥恒成立,因此得证;(2)利用求根公式求根,根据有一个跟大于3且小于3,列出关于k 的不等式组,解之即可.【详解】(3)证明:△=b 2-4ac=[-(k+3)]2-4×(2k-2)=k 2-6k+9=(k-3)2,∵(k-3)2≥3,即△≥3,∴此方程总有两个实数根,(2)解:x =解得x 3=k-3,x 2=2,∵此方程有一个根大于3且小于3,而x 2>3,∴3<x 3<3,即3<k-3<3.∴3<k<2,即k 的取值范围为:3<k<2.本题考查了根的判别式,解题的关键是:(3)牢记“当0∆≥时,方程总有两个实数根”,(2)正确找出不等量关系列不等式组.15、13x -≤<【解析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】由①得,x≥-1,由②得,x <3,所以,不等式组的解集为:-1≤x <3,在数轴上表示如下:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.16、(1)12;0.08(2)12(3)672【解析】试题分析:(1)直接利用已知表格中3<x ≤6范围的频率求出频数a 即可,再求出m 的值,即可得出b 的值;(2)利用(1)中所求补全条形统计图即可;(3)直接利用参加社区活动超过6次的学生所占频率乘以总人数进而求出答案.解:(1)a=50×0.24=12(人);∵m =50−10−12−16−6−2=4,∴b =4÷50=0.08;(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1−0.20−0.24)=672(人),17、;【解析】根据二次根式混合运算的法则化简,再将x ,y 的值代入计算即可.【详解】解:(6⎛+- ⎝((=-==当32x =,27y =时==本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.18、见解析.【解析】根据∠α的情况进行分类讨论求解即可.【详解】当90α︒≥时,由三角形内角和180︒,B Ð是顶角,所以1802A C α︒-∠=∠=当90α︒≤时,①B Ð是顶角,所以1802A C α︒-∠=∠=②B Ð是底角,A α∠=、1802C α︒∠=-或C α∠=、1802A α︒∠=-本题考查了等腰三角形的性质;等腰三角形中,已知没有明确具体名称时要分类讨论,这是解答本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】连接DF 交AE 于G ,依据轴对称的性质以及三角形内角和定理,即可得到∠AGD =∠DFC =90°,再根据面积法即可得出DG =,最后判定△ADG ≌△DCF ,即可得到CF =DG =.【详解】解:如图,连接DF 交AE 于G ,由折叠可得,DE =EF ,又∵E 是CD 的中点,∴DE =CE =EF ,∴∠EDF =∠EFD ,∠ECF =∠EFC ,又∵∠EDF+∠EFD+∠EFC+∠ECF =180°,∴∠EFD+∠EFC =90°,即∠DFC =90°,由折叠可得AE ⊥DF ,∴∠AGD =∠DFC =90°,又∵ED =3,AD =6,∴Rt △ADE 中,又∵∴DG =∵∠DAG+∠ADG =∠CDF+∠ADG =90°,∴∠DAG =∠CDF ,又∵AD =CD ,∠AGD =∠DFC =90°,∴△ADG ≌△DCF (AAS ),∴CF =DG =,故答案为:.本题主要考查了正方形的性质,折叠的性质以及全等三角形的判定与性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20、3-【解析】解:设方程的另一个根为n ,则有−2+n =−5,解得:n =−3.故答案为 3.-本题考查一元二次方程()200++=≠ax bx c a 的两根是12,x x ,则1212,.bc x x x x a a +=-⋅=21、南偏东30°【解析】直接得出AP=12n mile ,PB=16n mile ,AB=20n mile ,利用勾股定理逆定理以及方向角得【详解】如图,由题意可得:AP=12n mile ,PB=16n mile ,AB=20n mile ,∵122+162=202,∴△APB 是直角三角形,∴∠APB=90°,∵“远洋”号沿着北偏东60°方向航行,∴∠BPQ=30°,∴“长峰”号沿南偏东30°方向航行;故答案为南偏东30°.此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.22、2m ≥1【解析】根据非负数即“≥1”可得答案.【详解】解:“m 2是非负数”,用不等式表示为m 2≥1,故答案为:m 2≥1.本题主要主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.【解析】根据平方根的定义即可求解.【详解】∵9的平方根为3 ,,所以a=81此题主要考查平方根的性质,解题的关键是熟知平方根的定义.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)OF =.【解析】(1)根据菱形的性质得到AD ∥BC 且AD=BC ,等量代换得到BC=EF ,推出四边形AEFD 是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC ,利用勾股定理计算AC 的长,可得结论.【详解】(1)证明:∵四边形ABCD 是平行四边形∴AB=CD ,AB ∥CD.∵DF=CE ,∴DF+DE=CE+ED ,即:FE=CD.∵点F 、E 在直线CD 上∴AB=FE ,AB ∥FE.∴四边形ABEF 是平行四边形又∵BE ⊥CD ,垂足是E ,∴∠BEF=90°.∴四边形ABEF 是矩形.(2)解:∵四边形ABEF 是矩形O ,∴∠AFC=90°,AB=FE.∵AB=6,DE=2,∴FD=4.∵FD=CE ,∴CE=4.∴FC=10.在Rt △AFD 中,∠AFD=90°.∵∠ADF=45°,∴AF=FD=4.在Rt △AFC 中,∠AFC=90°.∴.∵点O 是平行四边形ABCD 对角线的交点,∴O 为AC 中点在Rt △AFC 中,∠AFC=90°.O 为AC 中点.∴OF=AC=.本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.25、(1)见解析;(2)见解析【解析】(1)作A 关于对称轴的对称点B,连接BC ,与对称轴的交点即为P 点;(2)由于点A 和点B 关于对称轴对称,则PA=PB,那么只要P、A、C 三点共线即可,即连接AC 并延长与对称轴的交点,就是所求的P 点.【详解】解:如图:(1)作A 关于对称轴的对称点B,连接BC ,与对称轴的交点即为P 点;点P 即为所求作(2)如图:延长AC 与对称轴的交点即为P 点.点P 即为所求作本题在函数图像中考查了两点之间直线最短和轴对称方面的知识,考查方式新颖,灵活运用所学知识成为解答本题的关键.26、(1)证明见解析;.【解析】(1)根据平行四边形的判定和菱形的判定证明即可;(1)根据菱形的性质和勾股定理解答即可.【详解】(1)∵AB ∥DC ,∴∠CAB =∠ACD .∵AC 平分∠BAD ,∴∠CAB =∠CAD .∴∠CAD =∠ACD ,第21页,共21页∴DA =DC .∵AB =AD ,∴AB =DC .∴四边形ABCD 是平行四边形.∵AB =AD ,∴四边形ABCD 是菱形;(1)∵四边形ABCD是菱形,∠DAB =60°,∴∠OAB =30,∠AOB =90°.∵AB =4,∴OB =1,AO =OC =1.∵CE ∥DB ,∴四边形DBEC 是平行四边形.∴CE =DB =4,∠ACE =90°.∴OE ===本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.。

2024年浙江初中毕业生学业模拟考试(台州卷)数学试题+答案+答题卡

2024年浙江初中毕业生学业模拟考试(台州卷)数学试题+答案+答题卡

2024年浙江省初中毕业生学业模拟考试(台州卷)数 学 试题卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平. 答题时,请注意以下几点:1. 全卷共4页,满分120分,考试时间120分钟.2. 答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效.3. 答题前,请认真阅读答题纸上的“注意事项”,按规定答题.4. 本次考试不得使用计算器.一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. “中国空间站”入选了2023年全球十大工程成就.空间站离地球的距离约为380 000米,数据380 000用科学计数法可表示为( ▲ ).A. 38×104B.3.8×106C.3.8×105D.0.38×106 2.下列四个2024年巴黎奥运会项目图标中,既是轴对称图形又是中心对称图形的是( ▲ ).A. B. C. D.3. 下列计算正确的是( ▲ ).A .32x x xB .523)(x xC .33)x x (D .326x x x4. 如图,直线AB ∥CD ,BC 平分∠ABD ,若∠1=55°,则∠2=( ▲ ).A .70°B .65°C .60°D .55°5. 对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P ′,Q ′,保持PQ =P ′Q ′,我们把这种变换称为“保距变换”,下列变换中不一定是“保距变换”的是( ▲ ). A . 平移 B. 旋转 C. 轴对称 D. 位似 6. 小明的期中与期末测试成绩如下表:A.小明期末与期中总分相同B.小明英语期末名次一定在中等以上C.小明数学期末成绩比期中有进步D.小明语文期末成绩比期中有退步(第4题) (第7题) (第10题)DC B AG FE D C B A 2 1 D C B A7. 如图,Rt △ABC 中,∠ABC =90°,AB =3,BC =2,以点C 为圆心,BC 长为半径作圆弧交AC 于点D ,则AD 长在( ▲ ).A. 0与1之间 B . 1与2之间 C. 2与3之间 D. 3与4之间8. 有如下数列:a 1,a 2,a 3,a 4,a 5,a 6,...,a n-2,a n-1,a n ,...,满足a n -2·a n =2a n -1,已知a 1=1,a 3=4, 则a 2024=(▲).A.8B.6C.4D.29. 学校要制作一块广告牌,请来两名工人,已知甲单独完成需4天,乙单独完成需6天,若先由乙做1天,再两人合作,完成任务后共得到报酬900元,若按各人的工作量计算报酬,则分配方案为( ▲ ). A .甲360元,乙540元B .甲450元,乙450元C .甲300元,乙600元D .甲540元,乙360元10. 如图,在Rt △ABC 中,∠ACB =90°,以AB 为边向三角形外作正方形ABDE ,作EF ⊥BC 于点F ,交对角线AD 于点G ,连接BG. 要求△BFG 的周长,只需要知道( ▲ ). A.线段BF 的长度 B.线段AC 的长度 C.线段FG 的长度 D.线段BC 的长度 二、填空题(本题有6小题,每小题4分,共24分) 11. 分解因式:x 2 xy = ▲ .12. 一个不透明的口袋中有3个质地相同的小球,其中2个红色,1个蓝色. 随机摸取一个小球是红色小球的概率是 ▲ .13. 小明用刻度尺(单位:cm )测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,D 是AB 的中点,点A ,B 对应的刻度分别是1,8,则CD = ▲ cm .14. 某绿化队原来用漫灌方式浇绿地,a 天用水m 吨,现改用喷灌方式,可使这些水所用的天数为2a 天,现在比原来每天节约用水 ▲ 吨.(用含a ,m 的代数式表示)15. 在平行四边形ABCD 中,点E ,F 在BC 边上,把△ABE 沿直线AE 折叠,△CDF 沿直线DF 折叠,使点B ,C 落在对角线AC 上的点G 处,若∠AGD =110°,则∠B 的度数为 ▲ .(第13题) (第15题)16. 已知抛物线k x a y +=2)2(-上有A (-2,y 1),B (1,y 2),C (4,y 3),D (5,y 4)四个点,某数学兴趣小组研究后得到三个命题:①若y 1+y 3 > y 2+y 4,则a > 0;②若y 2-y 3 > 0,则y 1-y 4 > 0; ③若y 2 y 3 = 0,则y 1 y 4 > 0. 属于真命题是 ▲ .(填写序号)三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分) 17.π0(2)2 .18. 解不等式组:14,23.x x xEGFDCBAA BC D19. 图1是太阳能路灯的实物图,图2是其示意图,AB 垂直于地面l ,AB =800 cm ,BC =105 cm ,∠ABC=108°,求点C 离地面的高度. (结果精确到1cm ,参考数据:sin18°≈0.31,cos18°≈0.95 ,tan18°≈0.31 )20. 如图,一次函数b kx y 与反比例函数xcy的图象相交于A ,B 两点,A ,B 的坐标分别为(2,n ),(-4,-2).(1)分别求出一次函数和反比例函数的解析式;(2)已知点M (m ,c ),B (m ,d ),分别在一次函数和反比例函数上,当c >d 时,直接写出m 的取值范围.(第20题) (第21题)21. 如图,在△ABC 中,∠ABC 的平分线BD 交AC 边于点D ,已知∠ADB =2∠ABD .(1)求证:AB ²=AD AC ;(2)若DC =2AD =2,求∠A 的度数.22. 某中学开展专家讲座,帮助学生合理规划周末使用手机的时间,并在讲座前后对本校学生周末手机使用时间情况进行随机抽样调查,制成如下统计图表(数据分组包含左端值不包含右端值).(1)在讲座开展前抽取的学生中周末使用时长在哪个区间的人数最多?占抽取人数的百分之几? (2)该校共有学生1500人,请估计讲座开展后全校周末使用手机8小时以上的学生人数;(3)小军认为,活动开展后的样本中周末使用手机6小时以上的人数与讲座前相比变化不大,所以讲座并没有起到效果.请结合统计图表,对小军分析数据的方法及讲座宣传活动的效果谈谈你的看法.DCBAlD BCA图1 图223. 图1是某校园的紫藤花架,图2是其示意图,它是以直线AB 为对称轴的轴对称图形,其中曲线AC ,AD ,BE ,BF 均是抛物线的一部分.图1 图2 图3素材1:某综合实践小组测量得到点A ,B 到地面距离分别为5米和4米.曲线AD 的最低点到地面的距离是4米,与点A 的水平距离是3米;曲线BF 的最低点到地面的距离是289米,与点B 的水平距离是4米.素材2:按图3的方式布置装饰灯带GH ,GI ,KL ,MN ,HJ ,布置好后成轴对称分布,其中GI ,KL ,MN ,HJ 垂直于地面, GI 与HJ 之间的距离比KL 与MN 之间的距离多2米.任务一:(1)在图2中建立适当的平面直角坐标系,求曲线AD 的函数解析式; 任务二:(2)若灯带GH 长度为d 米,求 MN 的长度.(用含d的代数式表示); 任务三:(3)求灯带总长度的最小值.24. 如图,半圆O 的直径AB =6.点C 在半圆O 上,连结AC ,BC ,过点O 作OD ∥AC 分别交BC , AB于点E ,D ,连结AD 交BC 于点F . (1)求证:点D 是 BC的中点; (2)将点O 绕点F 顺时针旋转90 °到点G .①当点G 在线段AD 上,求AC 的长;②当点G 在线段AC 上,求sin ∠ABC 的值.(第24题)FBOA E CDBO备用图A数学答案第1页共5页2024年浙江省初中毕业生学业模拟考试(台州卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分)题号12345678910答案CACADBBDBD二、填空题(本题有6小题,每小题4分,共24分)11.x (x -y )12.2313.3.514.2m a15.75°16.①③三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分)17.(6分)解:原式=3+1-4…3分=0…6分18.(6分)解:由①得:5x <-…2分由②得:1x <…4分∴不等式组的解集为:5x <-.…6分19.(6分)解:过点C 作CE ⊥AD ,垂足为E∵CE ⊥AD ,∴∠CEB =90°∴∠C =∠ABC -∠AEC =18°…2分∵BE =BC sin ∠C ,∴BE =105×0.31=32.55≈33(cm )…4分AE =AB +BE =833cm…6分答:点C 距离地面的高度是833cm20.(8分)解:(1)将B (-4,-2)代入xcy =42-=-c 得解得c=8…2分∴反比例函数的解析式:xy 8=令x=2代入得y=4∴A(2,4)将点A (2,4),点B (-4,-2)代入y =kx +b 得⎩⎨⎧+-=-+=bk b k 4224…4分数学答案第2页共5页解得⎩⎨⎧==21b k ∴一次函数的解析式为y =x +2…6分(2)-4<m <0或m >2(写对一个一分共2分)21.(8分)解证明:(1)∵BD 平分∠ABC ∴∠ABC =2∠ABD =2∠DBC∵∠ADB =2∠ABD ∴∠ABC =2∠ADB ……………1分∵∠ADB =∠DBC +∠C ∴∠ABD =∠C………………2分∴△ABD ∽△ACB ………………3分∴ACABAB AD =即AB ²=AD ⋅AC ………………4分(2)由(1)得∠DBC =∠C ∴BD =CD =2……………1分∵2AD =2∴AD =1∴AC =3∵AB ²=AD ⋅AC ∴AB=3……………2分∴AB ²+AD ²=BD ²……………3分∴∠A =90°……………4分22.(10分)(1)在开展前周末手机使用时长为4~6小时的同学最多.……2分5+8+15+12+10=50(人)15÷50×100%=30%……4分(2)16+24+40+16+4=100(人)4÷100×100%=4%1500×4%=60(人)……2分由样本估计总体,全校讲座开展后周末使用手机8小时以上大约有60人……3分(3)因为忽略了两次样本容量的差异,所以小军分析的方法不合理……1分样本中周末使用手机时长6小时以上的人数由44%下降为20%,所以此次讲座宣传活动是有效果的.……2分(未运用统计量说明的给1分)23.(10分)(1)如图,以地面所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的直角坐标系.设()234y a x =-+,代入()05A ,得:()25034a =-+,解得:19a =,()21349y x =-+ (3)分数学答案第3页共5页(2)2H d x =,12M d x =-,2113492M d y ⎛⎫=--+ ⎪⎝⎭214523699d d =-+214523699MN d d =-+…4分(3)设曲线BF 的函数解析式为:()22849y a x =-+,代入()04B ,得:()2284049a =-+解得:118a =,()21284189y x =-+设灯带总长度为w ,GH d =,22w MN HJ GH=++22145212822436991829d d d d⎡⎤⎛⎫⎛⎫=-++-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2111761239d d =-+,当2x =时,1739w =最小值.…3分24.(12分)解:(1)解法一:∵AB 是半圆O 直径∴∠C =90°……………………2分∵OD ∥AC∴∠OEB =∠C =90°,即OD ⊥BC……………………3分∴ BD= CD ,即点D 是 BC 的中点……………………4分解法二:∵OD ∥AC ∴∠D =∠CAD ……………………1分∵OA =OD ∴∠D =∠OAD …………………2分∴∠OAD =∠CAD……………………3分∴ BD= CD ,即点D 是 BC 的中点……………………4分解法三:连结CO ∵AB 是半圆O 直径∴∠ACB =90°……………………2分∵OD ∥AC ∴∠OEB =∠ACB =90°,即OD ⊥BC……………………3分∵OB =OC ,OE =OE ∴Rt △BOE ≌Rt △COE (HL )∴∠BOD =∠COD ∴ BD = CD ,即点D 是 BC的中点……………………4分(说明:各种方法合理均可.)(2)①解法一:连结OF ,作FG =OF∵点O 绕点F 顺时针旋转90°到点G ∴∠OFG =90°∴AF =DF……………………1分FBOAE CDF OAEC D G数学答案第4页共5页又∵OD ∥AC∴∠D =∠CAD ,∠C =∠DEC ∴△ACF ≌△DEF (AAS )……………………2分(由平行线直接得△ACF ∽△DEF 也给分.)∴AC =DE ∵O 是AB 中点,OD ∥AC ∴AC =2OE ……………………3分∵直径AB =6∴OE +DE =OD =3∴AC =2……………………4分解法二:连结OF ,BD ,作FG =OF ∵点O 绕点F 顺时针旋转90°到点G ∴∠OFG =90°∴AF =DF……………………1分又∵AB 是半圆O 直径∴∠ADB =90°∴OF ∥BD∴△OEF ∽△DEB ,OF :BD =1:2……………………2分∴DE =2OE ∵直径AB =6∴OE =1……………………3分∵O 是AB 中点,OD ∥AC ∴AC =2OE =2……………………4分(2)②解法一:如图,构造对应图形易证△CFG ≌△EOF………………1分∴OE =CF 由①得,AC =2OE ,△ACF ∽△DEF .设OE =CF =x ,则AC =2x ,DE =3-x ∴CF :AC =EF :DE =1:2∴EF =……………………2分∴CE =BE =CF +EF =∴在Rt △BOE 中,解得:x =1.8……………………3分∴sin ∠ABC ==0.6……………………4分(说明:各种方法合理均可.如:连结BD,通过比例和勾股定理求BD 的长等也可解决问题)解法二:如图,构造对应图形,作FH ⊥AB 于点H 易证△CFG ≌△EOF……………………1分∴OE =CF ,EF =CG ,∠OFE =∠CGF 易证△CFG ≌△HFO ,△CFA ≌△HFA ∴AC =AH =3,∠OFE =∠CGF =∠BOF ∴AG =AO =BO =BF =3……………………2分F B OAEC DGFBO AECD GF B O AE C DGH由①得,AC=2OE.设OE=CF=x,EF=CG=y,则AC=2x ∴2x-y=AG=3,x+y+y=BF=3(BC=2CE=2x+2y,再由AC2+BC2=AB2也可)解得:x=1.8……………………3分∴sin∠ABC==0.6……………………4分数学答案第5页共5页19.(本题满分6分)(第19题)21.(本题满分8分)(1)(4分)(第21题)(2)(4分)考号[0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9]20.(本题满分8分)(1)(6分)(2)(2分).(第20题)一、选择题(本题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)18.(本题满分6分)解不等式组:1423.x x x ⎧⎨⎩+<-,<+2024年中考模拟考试(一)数学答题卷学校班级姓名说明1、准考证号和选择题请用2B 铅笔填涂;2、除选择题外请用0.5mm 黑色中性笔答题;3、保持答题卷整洁,请勿折叠.缺考标记:[](考生不得填涂)二、填空题(本题有6小题,每小题4分,共24分)11..12..13..14..15..16...17.(本题满分6分)计算:9+(π-2)0+|-2|.三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分)◤□■◤◥24.(本题满分12分)(1)(4分)(第24题)(2)①(4分)②(4分)22.(本题满分10分)(1)(4分)(2)(3分)(3)(3分)23.(本题满分10分)(1)(3分)(图2)(2)(4分)(图3)(3)(3分)模拟(一)数学答题卷第3页共4页模拟(一)数学答题卷第4页共4页。

2023年7月浙江省温州市普通高中学业水平合格考试模拟数学试题(含答案解析)

2023年7月浙江省温州市普通高中学业水平合格考试模拟数学试题(含答案解析)

2023年7月浙江省温州市普通高中学业水平合格考试模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题CM平面α,则直线A.若//B.若//CM平面α,则直线三、双空题17.已知函数e ,1()ln ,1x x f x x x ⎧≤=⎨>⎩.则()1f =______;若()1f m =,则实数m 的值为______.四、填空题五、解答题(1)求直三棱柱111ABC A B C -的体积;参考答案:A B的中点,所以又因为E为11CC的中点.所以1C 因为D为1则()()1131,0,0,0,0,1,,,022A C B ⎛⎫ ⎪ ⎪⎝⎭故11131,,1,,222AB BC ⎛⎫⎛=-=-- ⎪ ⎪ ⎝⎭⎝ 记异面直线1AB 与1BC 所成角为θ,则所以1111cos cos ,|AB BC AB BC AB BC θ⋅== 故异面直线1AB 与1BC 所成角的余弦值为23.(1)0a =(2)10a -<<或01a <<(3)证明见解析【分析】(1)利用偶函数的性质求得显然,当()110f a =-<,即0a <<当a<0时,()1f x ax =-在(,1-∞-则()f x 的图像如下:显然,当()110f a -=--<,即-当0a =时,()221f x x x =--为偶函数,其零点个数必为偶数,不满足题意;综上:10a -<<或01a <<.(3)因为()221f x x x ax =--+,所以当01x <<时,()212f x x =-调递减,当1x ≥时,()1f x ax =-+,则g 因为()y g x =与2y =在()0,∞+有两个互异的交点所以()y g x =与2y =在()0,1与[1,又12x x >,所以2101,1x x <<>,且则22122a x x -=-,112a x -=,故要证21432x x a -<-,即证243x -只需证22222312021x x x x +-<-,即证即证42224310x x --<,即证(224x +因为201x <<,所以2201x <<,则所以()()22224110x x +-<显然成立,证毕【点睛】关键点睛:本题第3小问解决的关键是熟练掌握基本初等函数的大致图像,像得到22122x a x -+=,11a x -+=。

浙江省杭州市萧山区城区片六校2025届九上数学期末学业水平测试模拟试题含解析

浙江省杭州市萧山区城区片六校2025届九上数学期末学业水平测试模拟试题含解析

浙江省杭州市萧山区城区片六校2025届九上数学期末学业水平测试模拟试题 注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题3分,共30分)1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠ 2.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( )A .②④B .①③C .②③④D .①③④3.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB 拉到PB ′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1m ,则旗杆PA 的高度为( )A .11sin α-mB .11sin α+mC .11cos α- mD .11cos α+ m 4.抛物线 y=﹣(x ﹣1)2﹣2 的顶点坐标是( )A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(1,﹣2)5.如图,在四边形ABCD 中,AB CD ∥,对角线AC 、BD 交于点O 有以下四个结论其中始终正确的有( )①AOB COD ∆∆∽; ②AOD ACB ∆∆∽;③::DOC AOD S S DC AB ∆∆=; ④AOD BOC S S ∆∆=A .1个B .2个C .3个D .4个6.如图所示,A ,B 是函数1y x=的图象上关于原点O 的任意一对对称点,AC 平行于y 轴,BC 平行于x 轴,△ABC的面积为S ,则( )A .S=1B .S=2C .1<S<2D .S>27.质检部门对某酒店的餐纸进行调查,随机调查5包(每包5片),5包中合格餐纸(单位:片)分别为4,5,4,5,5,则估计该酒店的餐纸的合格率为 ( )A .95%B .97%C .92%D .98%8.二次函数21y x mx =++的图象的顶点在坐标轴上,则m 的值( )A .0B .2C .2±D .0或2±9.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC 的度数等于( )A .50°B .49°C .48°D .47°10.一元二次方程 x 2 +x =0的根是 ( )A .x 1=0,x 2=1B .x 1=0,x 2=﹣1C .x 1=x 2=0D .x 1=x 2=1二、填空题(每小题3分,共24分)11.如图,路灯距离地面9.6m ,身高1.6m 的小明站在距离路灯底部(点O )20m 的点A 处,则小明在路灯下的影子AM 长为_____m .12.已知一元二次方程260x x c -+=有一个根为2,则另一根为________.13.如图,在△ABC 中,∠ACB =90°,点D 、E 分别在边AC 、BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C恰好落在AB 边上的点F 处,若AC =2BC ,则DE CF 的值为____.14.如图,在矩形ABCD 中,点E 为AB 的中点,EF EC ⊥交AD 于点F ,连接()CF AD AE >,下列结论:①AEF BCE ∠=∠;②AF BC CF +>;③CEF EAF CBE S S S =+;④若32BC CD =,则CEF CDF ≅. 其中正确的结论是______________.(填写所有正确结论的序号)15.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.16.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.17.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的侧面面积为_____cm 2(结果保留π).18.如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB =30°,AB =BO ,反比例函数y = (x <0)的图象经过点A ,若S △AOB =,则k 的值为________.三、解答题(共66分)19.(10分)将两张半径均为10的半圆形的纸片完全重合叠放一起,上面这张纸片绕着直径的一端B 顺时针旋转30°后得到如图所示的图形,A B '与直径AB 交于点C ,连接点与圆心O′.(1)求BC的长;(2)求图中下面这张半圆形纸片未被上面这张纸片重叠部分的面积.20.(6分)如图,AB 为⊙O 的弦,⊙O 的半径为5,OC⊥AB 于点D,交⊙O于点C,且CD=1,(1)求线段OD 的长度;(2)求弦AB 的长度.21.(6分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.22.(8分)若矩形的长为x,宽为y,面积保持不变,下表给出了x与y的一些值求矩形面积.(1)请你根据表格信息写出y与x之间的函数关系式;(2)根据函数关系式完成下表x 232 1 8 y4 2 2223.(8分)如图,点O 为∠ABC 的边BC 上的一点,过点O 作OM ⊥AB 于点M ,到点O 的距离等于线段OM 的长的所有点组成图形W .图形W 与射线BC 交于E ,F 两点(点在点F 的左侧).(1)过点M 作MH BC ⊥于点H ,如果BE=2,2sin 3ABC ∠=,求MH 的长; (2)将射线BC 绕点B 顺时针旋转得到射线BD ,使得∠CBD 90MOB +∠=︒,判断射线BD 与图形W 公共点的个数,并证明.24.(8分)如图,在同一平面直角坐标系中,正比例函数y =2x 的图象与反比例函数y =k x的图象交于A ,B 两点,过点A 作AC ⊥x 轴,垂足为点C ,AC =2,求k 的值.25.(10分)在一个不透明的口袋中装有3张相同的纸牌,它们分别标有数字3,﹣1,2,随机摸出一张纸牌不放回,记录其标有的数字为x ,再随机摸取一张纸牌,记录其标有的数字为y ,这样就确定点P 的一个坐标为(x ,y ) (1)用列表或画树状图的方法写出点P 的所有可能坐标;(2)写出点P 落在双曲线3y x=-上的概率. 26.(10分)解方程: ()12410x x -+=.()2()()229241x x -=+参考答案一、选择题(每小题3分,共30分)1、D【分析】由函数是二次函数得到a-1≠0即可解题.【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0,解得:a≠1,故选你D.【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2、A【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可.【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心,∴OA =OC =OB ,∵四边形OCDE 为正方形,∴OA =OC <OD ,∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心,OA =OE =OB ,即O 是△AEB 的外心,OB =OC =OE ,即O 是△BCE 的外心,OB =OA ≠OD ,即O 不是△ABD 的外心,故选:A .【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.3、A【解析】设PA=PB=PB′=x ,在RT △PCB′中,根据sinα=PC PB ',列出方程即可解决问题. 【详解】设PA=PB=PB′=x ,在RT △PCB′中,sinα=PC PB ', ∴1x x-=sinα, ∴x-1=xsinα,∴(1-sinα)x=1,∴x=11sin α-. 故选A .【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.4、D【解析】根据顶点式解析式写出顶点坐标即可.【详解】抛物线 y =﹣(x ﹣1)2﹣2 的顶点坐标是(1,﹣2).故选D .【点睛】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.5、C【分析】根据相似三角形的判定定理、三角形的面积公式判断即可.【详解】解:∵AB∥CD,∴△AOB∽△COD,①正确;∵∠ADO 不一定等于∠BCO,∴△AOD 与△ACB 不一定相似,②错误;∴:::DOC AOD S S CO AO DC AB ∆∆==,③正确;∵△ABD 与△ABC 等高同底,∴ABD ABC S S ∆∆=,∵ABD AOB ABC AOB S S S S ∆∆∆∆-=-,∴AOD BOC S S ∆∆=,④正确;故选C.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.6、B【分析】设点A(m ,1m),则根据对称的性质和垂直的特点,可以表示出B 、C 的坐标,根据坐标关系得出BC 、AC 的长,从而得出△ABC 的面积. 【详解】设点A(m ,1m ) ∵A 、B 关于原点对称∴B(-m ,1m -) ∴C(m ,1m -) ∴AC=2m,BC=2m ∴1222ABC S m m==2 故选:B【点睛】本题考查反比例函数和关于原点对称点的求解,解题关键是表示出A 、B 、C 的坐标,从而得出△ABC 的面积. 7、C【分析】随机调查1包餐纸的合格率作为该酒店的餐纸的合格率,即用样本估计总体. 【详解】解:1包(每包1片)共21片,1包中合格餐纸的合格率4545592%25++++==. 故选:C .【点睛】本题考查用样本估计整体,注意1包中的总数是21,不是1.8、D【解析】试题解析: 当图象的顶点在x 轴上时,∵二次函数21y x mx =++的图象的顶点在x 轴上,∴二次函数的解析式为:2(1)y x =±,∴m =±2. 当图象的顶点在y 轴上时,m =0,故选D.9、A【解析】连接OC ,根据等边三角形的性质得到∠BOC =60°,得到∠AOC =100°,根据圆周角定理解答.【详解】连接OC ,由题意得,OB =OC =BC ,∴△OBC 是等边三角形,∴∠BOC =60°,∵∠AOB =40°,∴∠AOC =100°,由圆周角定理得,∠ADC =∠AOC =50°,故选:A .【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.10、B【分析】把一元二次方程化成x(x+1)=0,然后解得方程的根即可选出答案.【详解】解:∵一元二次方程x 2+x=0,∴x(x+1)=0,∴x 1=0,x 2=−1,故选B.【点睛】本题考查了因式分解法求一元二次方程的根.二、填空题(每小题3分,共24分)11、4【分析】//,AM AB AB OC OM OC=,从而求得AM . 【详解】解://,AB OCAM AB OM OC∴=, 1.6209.6AM AM =+ 解得4AM =.【点睛】本题主要考查的相似三角形的应用.12、4【分析】先把x=2代入一元二次方程,即可求出c ,然后根据一元二次方程求解即可.【详解】解:把x=2代入260x x c -+=得4﹣12+c=0c=8,2680x x -+=(x-2)(x-4)=0x 1=2,x 2=4,故答案为4.【点睛】本题主要考查解一元二次方程,解题的关键是求出c 的值.13、54【分析】由折叠的性质可知,DE 是CF 的中垂线,根据互余角,易证CDE B BCF ∠=∠=∠;如图(见解析),分别在Rt CDO Rt ABC Rt COE ∆∆∆、、中,利用他们的正切函数值即可求解.【详解】如图,设DE 、CF 的交点为O由折叠可知,DE 是CF 的中垂线1,2CF DE CO CF ∴⊥=,90COD ∴∠=︒ 90CDE DCF ∴∠+∠=︒又90ACB ∠=︒90BCF DCF ∴∠+∠=︒BCF CDE ∴∠=∠CDE B ∠=∠CDE B BCF ∴∠=∠=∠tan tan tan 2AC B CDE BCF BC∴∠=∠=∠== 设DO k =tan 2CO DO CDE k ∴=⋅∠=24,tan 4CF CO k OE CO BCF k ∴===⋅∠=5DE DO OE k ∴=+=5544DE k CF k ∴==.【点睛】本题考查了图形折叠的性质、直角三角形中的正切函数,巧妙利用三个角的正切函数值相等是解题关键.14、①③④【分析】根据矩形的性质和余角的性质可判断①;延长CB ,FE 交于点G ,根据ASA 可证明△AEF ≌△BEG ,可得AF =BG ,EF =EG ,进一步即可求得AF 、BC 与CF 的关系,S △CEF 与S △EAF +S △CBE 的关系,进而可判断②与③;由32BC CD =,结合已知和锐角三角函数的知识可得30BCE ∠=︒,进一步即可根据AAS 证明结论④;问题即得解决. 【详解】解:∵EF EC ⊥,90AEF BEC ∴∠+∠=︒,∵四边形ABCD 是矩形,∴∠B =90°,∴90BEC BCE ∠+∠=︒,AEF BCE ∴∠=∠,所以①正确;延长CB ,FE 交于点G ,如图,在△AEF 和△BEG 中,∵∠FAE =∠GBE =90°,AE=BE ,∠AEF =∠BEG ,∴△AEF ≌△BEG (ASA ),∴AF =BG ,EF =EG ,∴S △CEG =S △CEF ,∵CE ⊥EG ,∴CG =CF ,∴AF +BC =BG +BC =CG =CF ,所以②错误;∴S △CEF =S △CEG =S △BEG +S △CBE =S △EAF +S △CBE ,所以③正确;若3BC CD =132311tan 22BC BC BC BCE BE AB CD =====∠30BCE ∴∠=︒,30DCF ECF ∴∠=∠=︒, 在CEF ∆和CDF ∆中,∵∠CEF =∠D =90°,ECF DCF ∠=∠,CF=CF ,CEF ∴≌()CDF AAS ,所以④正确. 综上所述,正确的结论是①③④.故答案为:①③④.【点睛】本题考查了矩形的性质、余角的性质、全等三角形的判定和性质以及锐角三角函数等知识,综合性较强,属于常考题型,正确添加辅助线、熟练掌握上述基本知识是解题的关键.15、12【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可. 【详解】抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P (正面朝上)=12. 故答案为12. 【点睛】本题考查了概率公式,概率=发生的情况数÷所有等可能情况数.16、35【解析】分析: 2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解: 2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个, ∴抽到有理数的概率是:35. 故答案为35.点睛:知道“从2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.17、3π【详解】212033360ππ⨯=. 故答案为:3π. 18、-3【解析】如图所示,过点A 作AD ⊥OD ,根据∠AOB =30°,AB =BO ,可得∠D AB =60°, ∠OAB =30°,所以∠B AD =30°,在Rt △ADB 中,即,因为AB =BO ,所以,所以,所以,,根据反比例函数k 的几何意义可得:,因此,因为反比例函数图象在第二象限,所以三、解答题(共66分)19、(1)203π(2)502533π+【解析】试题分析:(1)连结BC ,作O′D ⊥BC 于D ,根据旋转变换的性质求出∠CBA′的度数,根据弧长公式计算即可;(2)根据扇形面积公式、三角形面积公式,结合图形计算即可.试题解析:(1)连结BC,作OD⊥BC 于D,可求得∠BO′C=1200,O′D=5,BC 的长为203π (2)''502533OBC O A C S S S π∆=+=+白扇形20、 (1)OD =4;(2)弦 AB 的长是 1.【分析】(1)OD=OC-CD ,即可得出结果;(2)连接AO ,由垂径定理得出AB=2AD ,由勾股定理求出AD ,即可得出结果.【详解】(1)∵半径是5,∴OC=5,∵CD=1,∴OD=OC﹣CD=5﹣1=4;(2)连接AO,如图所示:∵OC⊥AB,∴AB=2AD,根据勾股定理:AD=2222543-=-=,AO OD∴AB=3×2=1,因此弦AB 的长是1.【点睛】本题考查了垂径定理、勾股定理;熟练掌握垂径定理,由勾股定理求出AD是解决问题(2)的关键.21、(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得. ∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵ BE∥轴,∴点E的坐标是(0,-4).而CD =5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD. ∴□CBED是菱形22、(1)4yx=;(2)6,2222【分析】(1)矩形的宽=矩形面积÷矩形的长,设出关系式,由于(1,4)满足,故可求得k的值;(2)根据(1)中所求的式子作答.【详解】解(1)设kyx=,由于()1,4在此函数解析式上,那么k144=⨯=.∴4 yx =(2)x232 1 2 8 2y 6 22 4 2 1222【点睛】本题考查了列函数关系式表式实际问题,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.在此函数上的点一定适合这个函数解析式.23、(1)453;(2)1个.【分析】(1)先根据题意补全图形,然后利用锐角三角函数求出圆的半径即OM的长度,再利用勾股定理求出BM的长度,最后利用1122BMOS MO MB MH BO=⋅=⋅可求出MH的长度.(2)过点O 作ON ⊥BD 于点N ,通过等量代换可知∠CBD =∠ABC ,从而利用角平分线的性质可知OM ON =,得出BD 为⊙O 的切线,从而可确定公共点的个数.【详解】解:(1)∵到点O 的距离等于线段OM 的长的所有点组成图形W ,∴图形W 是以O 为圆心,OM 的长为半径的圆.根据题意补全图形:∵OM AB ⊥于点M ,∴∠90BMO =︒.在△BMO 中,2sin 3OM ABC BO ∠==, ∴32BO MO =. ∵2BE = ∴322BO OE OM =+=, 解得:4OM OE ==.∴6BO =.在Rt △BOM 中,222BM OM BO +=, ∴22226425BM BO OM =--= ∵1122BMO SMO MB MH BO =⋅=⋅ ∴11425622MH ⨯⨯= ∴453MH = (2) 解: 1个.证明:过点O 作ON ⊥BD 于点N ,∵∠CBD +∠MOB 90=︒,且∠ABC +∠MOB90=︒,∴∠CBD=∠ABC.∴OM ON=.∴BD为⊙O的切线.∴射线BD与图形W的公共点个数为1个.【点睛】本题主要考查解直角三角形和直线与圆的位置关系,掌握圆的相关性质,勾股定理和角平分线的性质是解题的关键.24、k=1【分析】根据题意A的纵坐标为1,把y=1代入y=1x,求得A的坐标,然后根据待定系数法即可求得k的值.【详解】解:∵AC⊥x轴,AC=1,∴A的纵坐标为1,∵正比例函数y=1x的图象经过点A,∴1x=1,解得x=1,∴A(1,1),∵反比例函数y=kx的图象经过点A,∴k=1×1=1.【点睛】本题考查的知识点是正比例函数以及反比例函数图象上点的坐标,直接待如即可求出答案,比较基础.25、(1)(-1,3) (2,3) (3,-1) (2,-1) (3,2) (-1,2),表格见解析;(2)13.【分析】(1)首先根据题意列出表格,由表格即可求得所有等可能的结果;(2)由(1)可求得所确定的点P落在双曲线y=﹣3x上的情况,然后利用概率公式求解即可求得答案.【详解】(1)列表得:则可能出现的结果共有6个,为(-1,3) (2,3) (3,-1) (2,-1) (3,2) (-1,2),它们出现的可能性相等;(2)∵满足点P(x ,y)落在双曲线y =﹣3x上的结果有2个,为(3,﹣1),(﹣1,3), ∴点P 落在双曲线3y x =-上的概率=26=13 【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.26、(1)x 1=3x 2=23;(2)x 1=45,x 2=1. 【分析】解一元二次方程常用的方法有因式分解法和公式法,方程2410x x -+=在整式范围内不能因式分解,所以选择公式法即可求解;而方程229(2)4(1)x x -=+移项后方程左边可以利用平方差公式进行因式分解,易求出此方程的解.【详解】解:(1)x 2﹣4x+4=3,(x ﹣2)2=3,x ﹣23所以x 1=3x 2=23;(2)9(x ﹣2)2﹣4(x+1)2=0,[3(x ﹣2)+2(x+1)][3(x ﹣2)﹣2(x+1)]=0,3(x ﹣2)+2(x+1)=0或3(x ﹣2)﹣2(x+1)=0,所以x 1=45,x 2=1. 【点睛】本题考查的是一元二次方程的解法,根据方程的特点和每一种解法的要点,选择合适的方法进行求解是关键.。

最新浙江省数学学考仿真模拟试题卷一(解析版)

最新浙江省数学学考仿真模拟试题卷一(解析版)

浙江省普通高中学业水平考试{1,2,3,4A B =,则m 等于( )C .3D .4{1,2,3,4A B =B ∈,又由}1,2,得4A ∉,则4B ∈,即4m =,故选:)(lg 1x =-}2≤ B .}D .{}2|x x ≤A2x ≤,所以函数的定义域为{}|12x x <≤.) D .3±3.【答案】C【解析】把圆的方程222420x y x y +-++=化为标准方程是(x –1)2+(y +2)2=3,∴故选C .4.不等式()()2230x x -->的解集是( ) A .()3,2,2⎛⎫-∞⋃+∞ ⎪⎝⎭B .RC .3,22⎛⎫⎪⎝⎭D .∅4.【答案】C【解析】原不等式可化为()()2230x x --<,解得322x <<,所以原不等式的解集是3,22⎛⎫⎪⎝⎭.故选:C.5.tan15︒=( )D .3+1tan 45tan 303tan(4530)21tan 45tan 30313---===+⋅+D .12,216b =,c ∴=.∴(2,,0)a m =(1,3,b n =-,若a //b ,则m n += 6 B .7C .8D .9.【答案】B【解析】由a //b ,且(2,,0)a m =,(1,3,1)b n =-,则存在非零实数λ使得λab ,()201n λλ=⎪=-⎩,解得6m =,1=,所以m 8.若直线l 与380x y ++=垂直,则直线l 的斜率为( ) A .-3 B .13-C .3D .138.【答案】D【解析】直线380x y ++=可化为38y x =--,其斜率为3k =-,又因为直线l 与直线380x y ++=垂直,所以直线l 的斜率为11'3k k =-=,故选D. 9.函数()21x f x x-=的图象大致为( )A .B .C .D .9.【答案】D【解析】由题意,函数()21x f x x -=,可得()()22()11x x f x f x x x----===-, 即()()f x f x -=,所以函数()f x 为偶函数,图象关于y 对称,排除B 、C ;当0x >时,()211x f x x x x-==-,因为函数在0∞(,+)上递增,排除A ,故选D . 10.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( ) A .223+ B .31+C .232-D .31-10.【答案】B【解析】根据正弦定理,,解得,,并且,所以.11.一个几何体的三视图及其尺寸如图,则该几何体的表面积为( )A .12πB .18πC .24πD .36π11.【答案】C【解析】根据三视图,所求的几何体是底面半径为3,母线长为5的圆锥,其表面积为233524πππ⨯+⨯⨯=.故选:C.12.已知,a b 是实数,则“11a b ==且”是“2a b +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件12.【答案】A【解析】根据题意,由于,a b 是实数,则“1a =且1b =”是“2a b +=,则可知条件可以推出结论,反之,则不一定成立,故可知答案为充分不必要条件,选A.13.如图所示,l αβ⋂=平面平面,A β∈,B β∈,AB l D ⋂=,C α∈,则平面ABC 和平面α的交线是( )A .直线ACB .直线BC C .直线ABD .直线CD13.【答案】D 【解析】∵lα,D l ∈,∴D α∈,又C α∈,∴CD α⊂.又CD ⊂平面ABC ,∴CD 为平面ABC与平面α的交线.故选D.14.已知实数x ,y 满足23600x y x y +≤⎧⎪≥⎨⎪≥⎩,则z x y =+的最大值为( )A .4B .3C .145D .214.【答案】B【解析】由题意,作出不等式组23600x y x y +≤⎧⎪≥⎨⎪≥⎩对应的平面区域,如图所示,目标函数z x y =+,可化为y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+过点B 时,此时直线y x z =-+的截距最大,目标函数取得最大值,又由2360x y x +=⎧⎨=⎩,解得(3,0)B ,所以目标函数的最大值为303z =+=.故选:B .15.函数3sin 33y x π⎛⎫=+⎪⎝⎭的图象可看成3sin 3y x =的图象按如下平移变换而得到的( ) A .向左平移9π个单位 B .向右平移9π个单位 C .向左平移3π个单位D .向右平移3π个单位15.【答案】A 【解析】3sin 33sin 339y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数3sin 33y x π⎛⎫=+ ⎪⎝⎭的图象可看成3sin 3y x =的图象向左平移9π个单位得到的.故A 正确. 16.数列{}n a 的前n 项的和满足*3,,2n n S a n n N =-∈则下列为等比数列的是( )A .{1}n a +B .{1}n a -C .{1}n S +D .{1}n S -16.【答案】A【解析】当1n =时,由32n n S a n =-得11312a a =-,即12a =;当2n ≥时,由32n n S a n =-得113(1)2n n S a n --=--,两式相减,得133122n n n a a a -=--,即132n n a a -=+,则113(1)n n a a -+=+,又113a +=,所以数列{1}n a +是以3为首项、公比为3的等比数列;故选A.17.已知P 为双曲线:22221(0,0)x y a b a b-=>>右支上一点,A 为其左顶点,(43,0)F 为其右焦点,满足||||AF PF =,3PFA π∠=,则点F 到直线PA 的距离为( )A .532B .72C .732D .15217.【答案】D【解析】由题意可得(),0A a -,(),0F c ,由||||AF PF =,3PFA π∠=可得APF 为等边三角形,所以有()3,22c a P a c ⎛⎫-+ ⎪ ⎪⎝⎭,代入双曲线方程可得()()22223144c a a c a b -+-=,结合222b c a =-化简可得22340c ac a --=,可解得4c a =,因为43c =,所以3a =,所以点F 到直线PA 的距离为()331553222a c +=⋅=,故选:D. 18.如图,在三棱锥P ABC -中,PB BC a ==,()PA ACb a b ==<,设二面角P AB C 的平面角为α,则( )A .+PCA PCB α∠+∠>π,2PAC PBC α<∠+∠ B .+PCA PCB α∠+∠<π,2PAC PBC α<∠+∠ C .+PCA PCB α∠+∠>π,2PAC PBC α>∠+∠D .+PCA PCB α∠+∠<π,2PAC PBC α>∠+∠ 18.【答案】C【解析】如图(1),取PC 中点D ,连接AD ,BD ,由PB =BC =a ,P A =AC 易知BD ⊥PC ,AD ⊥PC ,故可得PC ⊥平面ABD , 作PM ⊥AB 于M ,由ABP ABC ≅,可得CM ⊥AB , ∴PMC α∠=,又PM CM h a b ==<<,由图(2)可得2222PMC PBC PACα∠∠∠=>>,2PAC PBC α∴>∠+∠,PBC PAC ∠∠22PBC PACPCB PCA π∠∠+∠++∠=,故0)0)x ,(f -()1f a =,则实数a 的值为___________.2(0)0)x x <,所以()1f a =;221a -=,解得1,解得0a =(舍),综上:1a =+14;1.已知向量,a b 满足a b ⊥,且2,24,a a b =-=则b =___________. 3 【解析】a b ⊥,∴0a b ⋅=,24a b -=()22222412446a a b b a a bb ∴=-⋅+=+=-2a =,24416b ∴+=3b ∴=.21.已知数列{}n a 满足:1a a =,(1581n n n a a n a +-=∈-n ,都有3n a >,则实数a 的取值范围是___________. 21.【答案】()3,+∞ 【解析】1585(1)335(3)111n n n n n n n a a a a a a a +---===->---,又351y x =--在区间(3,)+∞上单调递增,113n n a a a a +∴>>⋯>=>,∴实数a 的取值范围是(3,)+∞.22.已知OPQ 是半径为1,圆角为6π扇形,C 是扇形弧上的动点,ABCD 是扇形的接矩形,则2AB AD +的最大值为___________.22.【答案】843- 【解析】设,06COP παα⎛⎫∠=≤≤⎪⎝⎭,扇形OPQ 的半径为1ABCD 是扇形的接矩形 则sin sin AD BC OC αα==⨯= ,cos cos OB OC αα=⨯=,3tan 3AD DOA AO ∠==,所以33sin AO AD α==,则cos 3sin AB OB OA αα=-=, 所以2AB AD +cos 3sin 2sin ααα=-+ ()23sin cos αα=-+()843sin ,tan 23αϕϕ=-+=+,因为tan 23ϕ=+所以512πϕ=, 所以当12πα=时, 2AB AD +取得最大值843-,故答案为: 843-三、解答题(本大题共3小题,共31分) 23.(本小题满分10分)已知函数()3cos 22sin cos 3f x x x x π⎛⎫=-- ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 在[]0,π上单调递增区间. 23.(本小题满分10分) 【解析】(1)由题意, 函数33()2sin 2sin 22f x x x x =+-13=sin 22sin 223x x x π⎛⎫=+ ⎪⎝⎭,(3分) 所以()f x 的最小正周期为22T ππ==.(5分) (2)令222232k x k πππππ-≤+≤+,k Z ∈,得51212k x k ππππ-≤≤+,k Z ∈,(7分)由[0,]x π∈,得()f x 在[0,]π上单调递增区间为0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦.(10分) 24.(本小题满分10分)已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点. (1)若1k =,求FA FB +的值;(2)点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程. 24.(本小题满分10分)【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,(3分)又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(5分)(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =,(7分) 整理得()1212420x x x x ++-=,解得32k =-,(9分) 所以直线l 的方程为3240x y +-=. (10分) 25.(本小题满分11分)已知函数2()231f x x x =-+,()sin()6g x k x π=-,(0k ≠)(1)问取何值时,方程(sin )sin f x a x =-在[)0,2π上有两解;(2)若对任意的[]10,3x ∈,总存在[]20,3x ∈,使12()()f x g x =成立,求实数k 的取值范围? 25.(本小题满分11分)【解析】(1)22sin 3sin 1sin x x a x -+=-化为22sin 2sin 1x x a -+=在[]0,2π上有两解,换sin t x =, 则2221t t a-+=在[]1,1-上解的情况如下:)0<或0∆=,16π⎫≤⎪⎭, (7分)∴10k≥或20k≤-.综上,实数k的取值范围是(][)∞+∞,,1020-- . (11分)。

2024年浙江省杭州市数学学业水平考试模拟A试题

2024年浙江省杭州市数学学业水平考试模拟A试题

2024年浙江省杭州市数学学业水平考试模拟A 试题一、单选题1.第27届杨柳青国潮灯展主题活动引爆假日文旅市场,春节期间累计接待游客5420000人次.将5420000用科学记数法表示应为( )A .60.54210⨯B .654.210⨯C .65.4210⨯D .45.4210⨯ 2.计算()2322m n -的结果是( )A .642m n -B .544m nC .644m nD .944m n 3.多项式2242x x -+因式分解为( )A .()221x -B .()221x +C .()221x -D .()221x + 4.如图,矩形ABCD 的相邻两边的长分别是3cm 和4cm ,顺次连接矩形ABCD 各边的中点,得到四边形EFGH ,则四边形EFGH 的周长为( )A .10cmB .12cmC .16cmD .20cm 5.已知点P 位于x 轴下方,距离x 轴a 个单位长度,位于y 轴右侧,距y 轴b 个单位长度,且40a -=,则点P 的坐标是( )A .(24)-,B .(42)-,C .(24),D .(42),6.如图,点O 是O e 的圆心,点A 、B 、C 、D 在O e 上,BD 为O e 的直径,52DBA ︒∠=,则ACB ∠的度数为( )A .52︒B .38︒C .22︒D .19︒7.实数a ,b )A .2b -B .2a -C .22b a -D .08.已知二次函数()240y ax ax c a =++>图象上的两点()15,y -和()22,x y ,若12y y >,则2x 的取值范围是( )A .25x >-B .22x <-C .251x -<<D .252x -<<- 9.某数学兴趣小组为了解我市气温变化情况,记录了今年3月份连续6天的最低气温(单位:℃):11,12,14,12,16,13.关于这组数,下列结论不正确的是( ) A .平均数是13B .众数是12C .中位数是12.5D .方差是310.勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接EG ,DG .若正方形ABCD 与EFGH ,则sin DGE ∠等于( )A B C D二、填空题118的结果是.12.如图,在四边形ABCD 中,AD BC ∥,对角线AC BD 、交于点O ,若ABC V 的面积为8,BOC V 的面积为5,则COD △的面积是.13.在一个不透明的口袋中,装有若干个红球和白球,它们除颜色外其余都相同,从中任意摸出一个球,摸到红球的概率为25,若白球有9个,则红球有个. 14.如图,BC 为圆锥底面直径,AD 为圆锥的高,若6cm AD =,60BAC ∠=︒,则这个圆锥的侧面积为2cm (结果保留π).15.饮水机接通电源会自动加热,加热时水温每分钟上升10C ︒,温度到100C ︒停止加热.然后水温开始下降,此时水温()y ℃与时间()min x 成反比例函数关系,水温降至30C ︒时,饮水机重复上述程序开始加热,加热时水温()y ℃与时间()min x 的关系如图所示.水温从30C ︒开始加热至100C ︒,然后下降至30C ︒这一过程中,水温不低于50C ︒的时间为min .16.如图,在ABCD Y 中,边AB 在x 轴上,边AD 交y 轴于点E .反比例函数()0k y x x =>的图象恰好经过点D ,与对角线DB 交于点F .若2314DBC AE ED DF FB S ===V ,,,则k 的值为三、解答题17.已知关于x 的一元二次方程()21220x m x m -++-=(m 为常数).(1)若方程的一个根为1,求m 的值及方程的另一个根;(2)求证:不论m 为何值时,方程总有两个实数根.18.2023年4月23日是第28个世界读书日.学校为营造“爱读书、多读书、读好书”浓厚氛围,开展了“书香校园,阅读有我”的读书活动.在5月份,为了解九年级学生的读书情况,随机调查了九年级40名学生读书数量(单位:本),并进行了以下数据的整理与分析: 数据收集2 53 54 6 15 3 4 2 2 3 3 4 4 4 4 3 44 5 6 7 3 6 7 5 8 3 4 7 3 4 6 5 5 5 7 8数据整理数据分析 绘制成不完整的扇形统计图和条形统计图:依据统计信息回答问题:(1)在统计表中,m =______;在条形统计图中,补全组别B 的条形图示.(2)在扇形统计图中,C 部分对应的圆心角的度数为______度;(3)若该校九年级学生人数为240人,请根据上述调查结果,估计该校九年级学生读书在4本以上的人数.19.如图,在ABC V 中,BAC ∠的平分线交BC 于点D ,DE AB ∥,DF AC ∥.(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且22AD =,求四边形AFDE 的面积.20.如图,在平面直角坐标系中,一次函数1(0)y kx b k =+≠的图象与反比例函数2(0)m y m x=≠的图象相交于第一,三象限内的(3,4)A ,(,2)B a -两点,与x 轴交于点C .(1)求该反比例函数和一次函数的表达式;(2)在第三象限的反比例函数图象的一点P ,使得POC △的面积等于18,求点P 的坐标. 21.如图,在ABCD Y 中,点E 是BC 中点.点F 是AD 中点.连接AE CF EF EF 、、,平分AEC ∠.(1)求证:四边形AECF 是菱形:(2)连接AC ,与EF 交于点O ,连接OD .若5AF =,3sin 5FAC ∠=,求OD 的长. 22.已知二次函数()20y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如下表:(1)求该二次函数的表达式;(2)将该二次函数的图像向右平移1个单位,再向上平移2个单位,得到的图像所对应的函数表达式.23.如图,以AB 为直径作O e ,过点A 作O e 的切线AC ,连接BC ,交O e 于点D ,点E 是BC 边的中点,连接AE .(1)求证:2AEB C ∠=∠;(2)若8AC =,4sin 5B =,求DE 的长.。

2023年7月浙江高中学业水平考试数学试卷试题真题(含答案详解)

2023年7月浙江高中学业水平考试数学试卷试题真题(含答案详解)

2023年7月浙江省普通高中学业水平考试数学本试题卷分选择题和非选择题两部分,共4页,满分100分,考试时间80分钟.考生注意:1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2. 答题时,请按照答题纸上“注意事项〃的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.3. 非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.选择题部分(共52分)一、单项选择题(本大题共12小题,每小题3分,共36分.每小题列出的四个备选项中,只有一个是符合题目要求的,不选、多选、错选均不得分)1.己知集合,= {-1,0,1,2}, 3 = {x|x 〉0},则下列结论不正确的是()B. 0^A(^B A.leAC\BC.D.2.函数*的定义域是()A.-00,——2B.C.D.1■00,—2#3—,+ oo{、 x > 0} - A\JB3.复数z = i (2 + i )在复平面内对应的点位于)A.第一象限B.第二象限C.第三象限D.第四象限4.已知平面向量U = (L —1), 5 = (2,4),若则实数4 =2A. B. -2 C. D.-115.已知sin[ 0 + -^= cos 。

,贝\\ tan20 =)AMC.2^3丁D.2^36.上、下底面圆的半径分别为尸、2r,高为3尸的圆台的体积为A.771丫3B.217ir3C.(5+27!)兀尹D.(5+7^)*7.从集合{123,4,5}中任取两个数,则这两个数的和不小于5的概率是()3749A.—B.—C.—D.—5105108.大西洋畦鱼每年都要逆游而上,游回产地产卵.研究畦鱼的科学家发现鲤鱼的游速v(单位:m/s)可以表示为v=klog3盐,其中。

表示畦鱼的耗氧量的单位数.若一条畦鱼游速为2m/s时耗氧量的单位数为8100,则游速为lm/s的畦鱼耗氧量是静止状态下畦鱼耗氧量的()A.3倍B.6倍C.9倍D.12倍9.不等式(x-e)(e^-l)<0(其中e为自然对数的底数)的解集是()A.{x|0<x<1}B.(x0<x<e}C.{x|xv0或x>l}D.{x|xvO或x>e}10.已知。

【学考模拟 】浙江省2024年7月普通高中学业水平测试仿真模拟数学试卷+答案解析

【学考模拟 】浙江省2024年7月普通高中学业水平测试仿真模拟数学试卷+答案解析

【学考模拟】浙江省2024年7月普通高中学业水平测试仿真模拟数学试卷❖一、单选题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知,则复数Z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知,,则在上的投影向量为()A.B.C.D.3.已知函数的定义域为集合A ,值域为集合B ,则()A. B.C. D.4.已知,为钝角,且,,则()A.B.C.D.5.甲、乙两名乒乓球运动员进行一场比赛,采用7局4胜制先胜4局者胜,比赛结束,已知每局比赛甲获胜的概率均为,则甲以4比2获胜的概率为()A.B. C.D.6.已知向量,,且,则实数t 的值为()A.3B.C. D.27.用平面截一个球,所得的截面面积为,若到该球球心的距离为,则球的体积()A.B.C. D.8.若m 满足,则m 的值为()A.1B.2C.D.09.常用放射性物质质量衰减一半所用的时间来描述其衰减情况,这个时间被称做半衰期,记为单位:天,铅制容器中有甲、乙两种放射性物质,其半衰期分别为,,开始记录时,这两种物质的质量相等,512天后测量发现乙的质量为甲的质量的,则,满足的关系式为()A. B.C.D.10.设a ,b 为实数,则“”是“”的() A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件11.设的内心为I ,而且满足,则的值是()A.B.C.D.12.一个顶点为P ,底面中心为O 的圆锥体积为1,若正四棱锥内接于该圆锥,平面ABCD 与该圆锥底面平行,A ,B ,C ,D 这4个点都在圆锥的侧面上,则正四棱锥的体积的最大值是()A.B.C.D.二、多选题:本题共4小题,共16分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得4分,部分选对的得2分,有选错的得0分。

13.已知幂函数,其中a ,,则下列说法正确的是()A. B.若时,C.若时,关于y 轴对称D.恒过定点14.饮料瓶的主要成分是聚对苯二甲酸乙二醇酯,简称“PET ”.随着垃圾分类和可持续理念的普及,饮料瓶作为可回收材料的“主力军”之一,得以高效回收,获得循环再生,对于可持续发展具有重要意义,上海某高中随机调查了该校某两个班班,B 班月份每天产生饮料瓶的数目单位:个,并按分组,分别得到频率分布直方图如下:下列说法正确的是()A.A班该月平均每天产生的饮料瓶个数估计为41B.B班5月产生饮料瓶数的第75百分位数C.已知该校共有学生1000人,则约有150人5月份产生饮料瓶数在之间D.15.已知函数,则下列说法正确的是()A.的图像是中心对称图形B.的图像是轴对称图形C.是周期函数D.存在最大值与最小值16.已知函数则关于x的方程根的个数可能是()A.0个B.1个C.2个D.3个三、填空题:本题共4小题,共15分。

2023-2024学年浙江省杭州市普通高中学业水平合格考试数学质量检测模拟试题(含答案)

2023-2024学年浙江省杭州市普通高中学业水平合格考试数学质量检测模拟试题(含答案)

2023-2024学年浙江省杭州市普通高中学业水平合格考试数学模拟试题A .()e ln xf x x =⋅C .()e ln xf x x=+()0,πα∈A .....已知函数()e 2x f x ⎧⎪=⎨⎪⎩的方程()f x a =有两解,.1ea =B ea =D .如图,在棱长为2的正方体中,E 为棱C D ''的中点,过,,A D BC '''分别交于点A .存在点H ,使得AE ⊥B .线段D G '的长度的最大值是C .当点F 与点C 重合时,多面体D .点D 到截面AEF 的距离的最大值是19.在ABC 中,内角,,A B C 的对边分别为20.已知函数()12e2x f x x x -=+-,则使得四、解答题(本大题共3小题,共21.已知函数()22cos sin 2f x x x ⎛=+ ⎝(1)求AA '的长;(2)若D 为线段AC 的中点,求二面角23.已知函数()(2f x x x =+(1)当0a =时,求()f x 的单调区间;16.BD【分析】建立空间直角坐标系,运用空间向量求解【详解】为原点,DC 为y 轴,DA 为x 轴,DD )()()('2,0,0,0,1,2,0,0,0,0,0,2E D D ()()'2,1,2,,2,2,AE D H p =-=- 点不在线段BC 上,错误;平面//ABCD 平面''''A B C D ,GE AH 、GE ,此时1m =,88,5489x DO ==-+梯形AFEG 的高()22252⎛⎫=- ⎪ ⎪⎝⎭四棱锥D AFEG -的体积D AFEG V -由②③式可知,当42255m ==⨯时,故选:BD.23.(1)单调递减区间为10,⎛ ⎝(2)(][),31,-∞-⋃+∞【分析】(1)将函数写成分段函数,结合二次函数的性质得到函数的单调区间;(2)不妨令12x x <,则(f。

浙江省2024年初中学业水平考试模拟试卷数学(榜眼卷)

浙江省2024年初中学业水平考试模拟试卷数学(榜眼卷)

浙江省2024年初中学业水平考试模拟试卷数学考生须知:1.本试题卷共4页,满分120分,考试时间120分钟:2.答题前,考生务必使用黑色字迹的钢笔或签字笔填写学校、班级、姓名、准考证号等信息.3.答题时,请按照答题卷上“注意事项”的要求,在答题卷相应的位置上规范作答,在本试题卷上的作答一律无效.4.本次考试不允许使用计算器.画图先用2B铅笔,确定无误后用钢笔或签字笔描黑.卷I说明:本卷共有1大题,10小题、共30分.请用2B铅笔在“答题卷”上将你认为正确的选项对应的小方枢涂黑、涂满.一、选择题(本题共有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.在-1,0,2,-3.5中选一个数与10相加使结果最小,应选A.-1B.0C.2D.-3.52.如图是一个五金零件,它的主视图是3.转动转盘(如图),指针停留在无理数区域的概率是A. B. C. D.4.不等式组的解在数轴上的表示如图所示,则另一个不等式可能为A.2x+4<0B.2x+4≤0C.2x+4>0D.2x+4≥05.如图,在△ABC中,∠ACB=60°,将线段AC绕着点C顺时针旋转20°,点A的对应点D正好在边AB上,则∠B的度数为()A.40°B.35°C.30°D.25°6.一次函数y=(k+2)x+5与二次函数y=3x²+4的交点个数为()A.0B.1C.2D.不确定7.某商场销售两种亚运会吉祥物纪念章,已知A种纪念章买两盒送一盒,每盒62元;B种纪念章打九折,原价每盒90元,东东需要的3盒A种纪念章和2盒B种纪念章共需()A.366元B.348元C.286元D.304元8.如图,D是△ABC的边AB上一点,且AD:DB=2:1,过点D作DE//BC,交AC于点E,取线段AE的中点F,连结DF.若DF=4,则△ABC中AC边上的中线长为()A.2B.6C.7D.89.如图,A,B,C依次是残破镜子上的三个点,弓形的弦AC的长为3cm,∠ABC=120°,则这个镜子的直径长为()A.2cmB.4cmC.cmD.cm10.如图,在直角梯形ABCD中,AB=AD=6,BC=14,E为AB的中点,F为线段BC上的动点,连结FE,将△BEF沿EF折叠得到△GEF.在点F从点B运动到点C的过程中,若射线FG与上底AD相交于点P,则点P 相应运动的路径长为二、填空题(本题共有6小题,每小题3分,共18分)11.因式分解:m²-9=12.若扇形的弧长为5π,圆心角为50°,则它的半径为13.如图,在矩形ABCD中,AB=3,AD=4,点E在线段AD上,AD=4AE.连结AC,BE,二者相交于点F,连结BD,与AC相交于点G,则FG=14.如图所示为凸透镜成像示意图,CD是蜡烛AB通过凸透镜MN所成的虚像.已知蜡烛的高AB为4.8cm,蜡烛AB离凸透镜MN的水平距离OB为6cm,该凸透镜的焦距OF为10cm,AE//OF,OF=OF,则像CD的高为cm.15.如图,点P从正八边形的顶点A出发,沿着正八边形的边顺时针方向走,第1次走1条边长到点H,第2次走2条边长到点F,3次走3条边长到点C……以此类推,第50次走到顶点16.如图2是东东用图1中的七巧板拼成的数字5,A,B,C均是七巧板中直角三角形和正方形的顶点,连结AB,AB与BC的夹角为α,则tanα的值是三、解答题(本题共有8小题,共72分)17.(本题满分6分)如图是小明一道题的计算过程:(1)请用下划线划出小明计算出错的地方.(2)请写出正确的计算过程.18.(本题满分6分)如图,在6×6的方格纸中,点A,B均在格点上,试按要求画出相应的格点图形(每小题只需画一个).(1)在图1中作一条线段,使它与AB互相垂直平分.(2)在图2中作一个△ABC,使它是轴对称图形,且符合S△ABC=5.19.(本题满分8分)在平面直角坐标系中,已知一次函数与x轴相交于点A,与y轴相交于点B,经过点B 的抛物线y₂=x²+bx+c的顶点C在线段AB上(不包括点B).(1)求b,c的值(2)当时,请直接写出x的取值范围.20.(本题满分8分)为了落实“双减”政策.某校进行了课时作业分层设计课题研究,分别在A,B,C三个班开展比对实验.A班没有开展分层作业设计,B班开展“好、差”两层分层设计,C班开展“好、中、差”三层分层及个别学生特殊布置设计.一段时间后对实验前、后开展的前测和后测(难度、题型、总分相同的试卷,满分100分)数据进行整理比对,如表1和表2.(1)请选择一种适当的统计量,分别比较A,B,C三个班的后测数据(2)通过分析前测、后测数据,请对该校开展的课时作业分层设计实验效果进行评价.21.(本题满分10分)如图1是一手机直摇专用支架,AB为立杆,其高为100cm,BC为支杆,它可绕点B 旋转,其中BC长为30cm,CD为悬杆,滑动悬杆可调节CD的长度.(1)如图2,当支杆BC与地面亚直,悬杆CD与支杆BC之间的夹角∠BCD=60°且CD的长为30cm时,求手机怒挂点D距离地面的高度.22.(本题满分10分)已知AB,CD是圆o的内接四边形ACBD的两条对角线,AB,CD相交于点M,且AB=CD.(1)如图1,求证:BM=DM.(2)在图1中找出一组全等的三角形,并给出证明.(3)如图2,圆o的半径为5,弦CD⊥AB于点P,当△CBP的面积为时,求AB的长.23.(本题满分12分)24.(本题满分12分)如图,直线与y轴相交于点A,与x轴相交于点B,与反比例函数图象相交于P,Q两点.过点Q作x轴的垂线,垂足为C,连结OQ,OP并延长OP,与直线QC相交于点M.在第一象限找点N,使以P,Q,N,M为顶点的四边形为平行四边形,反比例函数经过点N.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、解答题 ( 共 4 小题,共 30 分 )
31. ( 本题 7 分 ) 已知
( π,π), sin 2
4 , 求 cos 及 sin( 5
π ) 的值 .
3
32.(本题 7 分,有 A、 B 两题,任选其中一题完成, )
( A) 如图 , 在直三棱柱 ABC A1B1C1 中 , AC 3 , BC 4 , AB 5 , 点 D 是 AB
参考答案 一、选择题 ( 共 25 小题, 1-15 每小题 2 分, 16-25 每小题 3 分,共 60 分。 )
题号 1
2
3
4
5
6
7
8
9 10 11 12 13
答案 C
D
C
B
A
B
D
D
A
C
A
D
A
题号 14 15 16 17 18 19 20 21 22 23 24 25
答案 A
D
C
D
C
A
B
C
D
33. ( 本题 8 分 ) 如图,由半圆 x2 y2 1( y 0) 和部分抛物线 y a(x2 1) ( y 0 , a 0 )合成的曲线 C
(第 33 题 B 图)
y
称为“羽毛球形线” ,且曲线 C经过点 (2,3) .
Q
( 1)求 a 的值; ( 2)设 A(1,0) , B ( 1,0) ,过 A 且斜率为 k 的直线
(2) 令 BC1 与 CB1 的交点为 E , 连结 DE . 因为 D 是 AB 的中点 , E 为 BC1 的中点 , 所以 ∥ AC1 . 又 因为 AC1 平面 CDB 1, 平面 CDB1 ,
所以 AC1 ∥平面 CDB1 .
(B)( 1)如图,建立空间直角坐标系,则 A(0,0,0) , B(2 3,0,0) , C (2 3,6,0) ,
(A) 1
(B)
2
(C)
2 (D)
6
2
2
2
17.若平面向量 a, b 的夹角为 60o ,且 | a | 2 | b | ,则
(A) a (b a)
(B)
a (b a)
(C) b ( b a)
(D)
b (b a)
18.如图,在正方体 ABCD A1B1C1D1 中, E 为 BC1的中点,则 DE 与面 BCC1 B1 所成
( A)①②
(B) ①④ (C) ①③
(D) ③④
24.用餐时客人要求:将温度为 10oC 、质量为 0.25 kg 的同规格的某种袋装饮料加热至
30 C~ 40 C . 服务员将 x 袋该种饮料同时放入温度为 80oC 、 2.5 kg 质量为的热水中, 5
分钟后立即取出. 设经过 5 分钟加热后的饮料与水的温度恰好相同, 此时, m1 kg 该饮料提
k2
1 1
k 2 2k ,即 k 2 2k 1 0 , k
解得 k 1
2 .又由题意
k2 k2
1 1
1, k 1 1即 k
2 ,而 1
2 2,
因此存在实数 k 1 2 ,使 QBA PBA .
( 2)方法二 : 由题意可知 QBA PBA , APB =90o ,
则 QBA BAP 90 ,
故 k QB kQA 1.
2014 年浙江省宁波第二中学数学学业水平测试模拟试题
选择题部分
一、选择题 ( 共 25 小题, 1-15 每小题 2 分, 16-25 每小题 3 分,共 60 分。每小题中只有一
个选项是符合题意的。不选、多选、错选均不得分
)
1.已知集合 A {1,2,3,4} , B {2,4,6} ,则 A I B 的元素个数是
(A) (1, ) (B) (0,1)
(C)
( 1,1)
(D)
( , 1) U (1, )
非选择题部分
二、填空题 ( 共 5 小题,每小题 2 分,共 10 分 )
3
26.已知一个球的表面积为 4 cm,则它的半径等于
▲ cm.
27.已知平面向量 a (2,3) , b (1,m) ,且 a / /b ,则实数 m 的值为 ▲ .
(A)0 个
(B)1

(C)2

(D)3

2. log 2 12 log 2 3
1
(A) 2
(B)
0
(C)
(D)
2
3.若右图是一个几何体的三视图,则这个几何体是
(A) 圆锥
(B)
棱柱
(C) 圆柱
(D)
棱锥
4.函数 f ( x) sin(2x π)( x R) 的最小正周期为 3
(A) π
(B)
π
2
(C) 2π
(A) 1
(B)
0
(C)
1
(D)
1
15.在空间中,已知 a, b 是直线, , 是平面,且 a , b , / / ,则 a, b 的位置关
系是
(A) 平行
(B)
相交
(C)
异面
(D)
平行或异面
16.在△ ABC中,三边长分别为 a,b, c ,且 A 30 , B 45 , a 1 ,则 b 的值是
D (0,2,0) , P(0,0,3) .
uuur
uuur
uuur
所以 AP (0,0,3) , AC (2 3,6,0) , BD ( 2 3,2,0) ,
uuur uuur
uuur uuur
所以 BD gAP 0 , BDgAC 0 .
所以 BD ⊥ AP , BD ⊥ AC , 又 PA I AC A, BD ⊥ 面 PAC .
(A) [2, )
(B)
(2, )
(C)
8.圆 ( x 1)2 y2 3 的圆心坐标和半径分别是
(A) ( 1,0),3
(B)
(1,0),3
(C)
( , 2]
(D)
( ,2)
( 1, 0), 3 (D) (1,0), 3
9.各项均为实数的等比数列 { an} 中, a1 1 , a5 4 ,则 a3
C
C
A
二、填空题 ( 共 10 分,填对一题给 2 分,答案形式不同的按实际情况给分 )
2
2
27.
3
28.
x y 1 29. 1504 30.
2
16 4
1k 4
三、解答题 ( 共 30 分)
31.
因为 θ
π ( , π),sin θ
4
,
2
5
所以 cosθ
1 sin 2 θ
3

5
又因为
sin( θ+
π )
所以点 Q 的坐标为 (k
2
1,k
2k) .
又代入 x 2 y2 1得
(1 k 2) x2 2 k2 x k2 1 0 ,
所以 x 1 或 x
k2 1, k2 1
k2 1 2k
所以点 P 的坐标为 ( k2
1, k2
). 1
因为 QBA PBA ,
所以 k BP
2k
k BQ ,即
k2 1 k2 1
(D)

5.直线 x 2 y 3 0 的斜率是
1
(A)
(B)
2
1
(C)
2
2
(D)
6.若 x 1 满足不等式 ax2 2x 1 0 ,则实数 a 的取值范围是
2
( 第 3 题图 )
2
(A) ( 3, )
(B)
( , 3)
(C) (1, )
(D)
( ,1)
7.函数 f ( x) log 3 (2 x) 的定义域是
( 第 10 题图 )
(A) 0,
(B)
0, 2
(C)
1,
(D)
0,1
13.设 x 为实数,命题 p :
x
R,
2
x
0 ,则命题 p 的否定是
( A) p : x 0 R, x02 0
( B) p : x0 R, x02 0
( C) p : x R, x2 0
( D) p : x R, x2 0
14.若函数 f ( x) ( x 1)( x a) 是偶函数,则实数 a 的值为
sin
θ
cos
π +
cos
θ
sin
π
1 cosθ+
3 sin θ,
3
3
32
2
所以
sin( θ+
π )
1
43 +(
4 4 33


3 25 2
5
10
32. ( A)证明 : (1) 因为三棱柱 ABC A1B1C1 为直三棱柱 , 所以 C1C 平面 ABC , 所以 C1C AC . 又因为 AC 3 , BC 4 , AB 5 , 所以 AC 2 BC 2 AB2 , 所以 AC BC . 又 CC1 BC C , 所以 AC 平面 CC1B1B , 所以 AC BC1.
(A) 2
(B)
2
(C) 2
(D)
10.下列函数中,图象如右图的函数可能是
(A) y x3
(B)
2 y 2x
(C) y x
(D)
11.已知 a R ,则“ a 2 ”是“ a2 2a ”的
y log 2 x
(A) 充分不必要条件 (B) 必要不充分条件
(C) 充要条件
(D)
既不充分也不必要条件
相关文档
最新文档