02第二章酶促反应动力学

合集下载

酶促反应动力学实验报告

酶促反应动力学实验报告

酶促反应动力学实验报告酶促反应动力学实验报告摘要:本实验旨在研究酶促反应的动力学过程。

通过测量不同底物浓度下酶催化反应速率的变化,分析酶的催化特性和底物浓度对反应速率的影响。

实验结果表明,酶促反应速率与底物浓度呈正相关关系,但随着底物浓度增加,反应速率逐渐趋于饱和。

1. 引言1.1 酶的作用1.2 酶促反应动力学2. 实验方法2.1 材料准备2.2 实验步骤3. 实验结果与分析3.1 反应速率与底物浓度关系曲线3.2 酶活性计算公式及计算结果4. 讨论与结论4.1 反应速率与底物浓度关系解释4.2 实验误差及改进方案1 引言1.1 酶的作用酶是一类生物催化剂,能够加速生物体内化学反应的进行。

它们通常是蛋白质或核酸分子,并具有高度特异性。

在细胞内,酶参与调节代谢途径、合成新物质以及降解废物等重要生物过程。

1.2 酶促反应动力学酶促反应动力学研究酶催化反应速率与底物浓度、温度和pH等因素之间的关系。

其中,底物浓度是影响酶催化速率的重要因素之一。

当底物浓度较低时,反应速率随着底物浓度的增加而迅速增加;当底物浓度较高时,反应速率逐渐趋于饱和。

2 实验方法2.1 材料准备- 酶溶液:根据实验要求选择合适的酶溶液。

- 底物溶液:根据实验要求配置不同浓度的底物溶液。

- 缓冲液:用于维持实验环境中恒定的pH值。

- 试管或微孔板:用于进行反应混合和观察。

- 分光光度计:用于测量反应混合液的吸光度变化。

2.2 实验步骤1. 准备一系列不同浓度的底物溶液,并标明其浓度。

2. 在试管或微孔板中分别加入相同体积的酶溶液和不同浓度的底物溶液,混合均匀。

3. 将反应混合物放入分光光度计中,设置适当的波长并记录吸光度值。

4. 在一定时间间隔内,测量吸光度值的变化,并记录下来。

5. 根据实验数据计算反应速率。

3 实验结果与分析3.1 反应速率与底物浓度关系曲线根据实验数据绘制反应速率与底物浓度关系曲线。

实验结果显示,随着底物浓度的增加,反应速率也增加。

第二章 生物反应动力学 1 酶促反应 PPT课件

第二章 生物反应动力学 1 酶促反应 PPT课件

经典酶学研究中,酶活力的测定是在反应 的初始短时间内进行的,并且酶浓度、底物浓 度较低,且为水溶液,酶学研究的目的是探讨 酶促反应的机制。 工业上,为保证酶促反应高效率完成,常 需要使用高浓度的酶制剂和底物,且反应要持 续较长时间,反应体系多为非均相体系,有时 反应是在有机溶剂中进行。
1.1.3 酶促反应的特征
优点:
• • • •
常温、常压、中性范围(个别除外)下进行反应; 与一些化学反应相比,省能且效率较高; 专一性好; 反应体系较简单,反应过程的最适条件易于控制等。
不足:
• 多限于一步或几步较简单的生化反应过程; • 一般周期较长。
1.1.4
研究酶促反应的目的
对工程技术人员而言,仅用于解释酶促反应的 机制是不够的,还应对影响其反应速率的因素进行 定量分析,建立可靠的反应速率方程式,为反应器 的合理设计合反应过程的最佳条件选择服务。
1.2 均相酶促反应动力学
• ������ 均相酶反应:系指酶与反应物系处于同一 相—液相的酶催化反应,它不存在相间的物质传 递。
• ������ 非均相酶反应:系指酶与反应物系处于不同 相的酶催化反应,反应过程存在相间的物质传递。
1.2.1 酶促反应动力学基础
1 影响酶促反应速率的因素
酶 促 反 应 速 率 的 影 响 因 素 浓度因素: 酶浓度、底物浓度、产物浓度、效应物浓度。
积分
(C A0
1 dCD k 2 dt C D )(C B 0 C D ) 1 1 1 ( )dCD k 2 dt C B 0 ) C A0 C D C B 0 C D
(C A0
(C A0
C (C C D ) 1 ln B 0 A0 k 2t C B 0 ) C A0 (C B 0 C D )

生物反应及反应器原理(全)

生物反应及反应器原理(全)

生物反应及反应器原理第一章序论1。

1 生物反应工程研究的目的1。

2 生物反应工程学科的形成生物反应工程的研究内容与方法⏹1。

3.1生物反应动力学⏹1。

3.2 生物反应器⏹1。

3.3 生物反应过程的放大与缩小第二章酶促反应动力学⏹2。

1 酶促反应动力学的特点⏹ 2.1.1 酶的基本概念⏹ 2.1.1。

1 酶的分类、组成、结构特点和作用机制⏹一、酶的分类⏹(1)氧化还原酶⏹(2)转移酶⏹(3)水解酶⏹(4)异构酶⏹(5)裂合酶⏹(6)连接酶(合成酶)⏹二、酶的组成⏹酶是蛋白质,因此有四级结构,其中一级结构二级结构三级结构四级结构酶蛋白有三种组成:单体酶寡聚酶多酶复合体全酶=蛋白质部分(酶蛋白)+非蛋白部分三、酶的作用机制⏹(1)锁钥模型(2)诱导契合模型2.1.1。

2 酶作为催化剂的共性➢一、催化能力➢二、专一性➢三、调节性⏹酶浓度的调节⏹激素调节⏹共价修饰调节⏹限制性蛋白水解作用与酶活力调控⏹抑制剂调节⏹反馈调节⏹金属离子和其它小分子化合物的调节2.1.2 酶的稳定性及应用特点⏹2。

1.2.1 酶的稳定性⏹2。

1.2.2 酶的应用特点2.1。

3 酶和细胞的固定化技术⏹2。

1。

3。

1 固定化技术的基本概念⏹ 2.1。

3。

2 固定化酶的特性⏹ 2.1.3。

3 固定化细胞的特性⏹2。

1.3。

4 酶和细胞的固定化技术2.1.4 酶促反应的特征2。

2 均相酶促反应动力学2.2.1 酶促反应动力学基础影响酶促反应的主要因素有:(1)浓度因素:酶浓度、底物浓度(2)外部因素(主要是环境因素):温度、压力、溶液的介电常数、离子强度、pH值(3)内部因素(结构因素):底物、效应物浓度、酶的结构⏹酶促反应动力学模型的建立➢ 当酶促反应速率与底物浓度无关,此时为零级反应当反应速率与底物浓度的一次方成正比时, 为一级反应⏹ 也就是酶催化作用下,A B 的过程 ⏹此时反应式为:式中:K1-一级反应速率常数a0-底物A 的初始浓度 b - t 时间产物C 的浓度➢ 当底物A 与底物B 产生产物C 时,即:A +B C 时,为二级反应—②式中:K2-二级反应速率常数a0-底物A 的初始浓度 b0-底物B 的初始浓度 C -t 时间底物C 的浓度 如果把②式积分可得:➢ 当:A B C 时,即连锁的酶促反应过程可用如下方程式表示:-—③——④——⑤式中:a -A 的浓度b -B 的浓度c -C 的浓度K1-第一步反应速率常数 A B K2-第二步反应速率常数 B C当 a + b + c=a0时,即:A 的初始浓度为a0,B 和C 的初浓度为0,得出:当反应达t 时间后,A 、B 、C 的最终浓度。

2 酶促反应动力学(2)

2 酶促反应动力学(2)

2.2.4 抑制剂对酶促反应速率的影响首先应搞清失活作用与抑制作用的异同。

失活作用:指物理或化学因素部分或全部破坏了酶的三维结构,引起酶的变性,导致酶部分或全部丧失活性。

抑制作用:指酶在不变性条件下,由于活性中心化学性质的改变而引起酶活性的降低或丧失。

凡能使酶的活性下降而不引起酶蛋白变性的物质称做酶的抑制剂(inhibitor)。

使酶变性失活(称为酶的钝化)的因素如强酸、强碱等,不属于抑制剂。

通常抑制作用分为可逆性抑制和不可逆性抑制两类。

2.2.4.1竞争性抑制图2-3 竞争性抑制作用示意图 反应机理:P E ES S E k k k +→⇔+−211 (2-36)EI I E IK ⇔+ (2-37) 采用快速平衡法推导动力学方程:ES C k r 2= (2-38)S ES S E K k k C C C ==−11(2-39) I EIIE K C C C = (2-40) EI ES E E C C C C ++=0 (2-41)解之,得SI I S SC K C K C r r ++=)/1(max (2-42)E IS式中,02max E C k r =,11k k K S −=采用稳态法推导动力学方程:ES C k r 2= (2-43)0211=−−=−ES ES S E ESC k C k C C k dtdC (2-44)0=−=−EI i I E i EIC k C C k dtdC (2-45) EI ES E E C C C C ++=0(2-46)解之,得SI I m SC K C K C r r ++=)/1(max (2-47)式中: 02max E C k r =,121k k k K m +=− 令 )/1(I I m m K C K K +=′,(2-47)式可变形为Sm SC K C r r +′=max (2-48) 式中 m m K K >′将(2-48)式与米氏方程比较,可知最大反应速率测有变化,而K m 增大。

2酶促反应动力学-28页精选文档

2酶促反应动力学-28页精选文档

2 酶促反应动力学教学基本内容:酶促反应的特点;单底物酶促反应动力学方程(米氏方程)的推导;抑制剂对酶促反应的影响,竞争性抑制和非竞争性抑制酶促反应动力学方程的推导;产物抑制、底物抑制的概念,产物抑制和底物抑制酶促反应动力学方程的推导;多底物酶促反应的机制,双底物酶促反应动力学的推导;固定化酶的概念,常见的酶的固定化方法,固定化对酶性质的影响及固定化对酶促反应的影响,外扩散过程和内扩散过程分析;酶的失活动力学。

2.1 酶促反应动力学的特点2.2 均相酶促反应动力学2.2.1 酶促反应动力学基础2.2.2 单底物酶促反应动力学2.2.3抑制剂对酶促反应速率的影响2.2.4多底物酶促反应动力学2.3 固定化酶促反应动力学2.4 酶的失活动力学授课重点:1. 酶的应用研究与经典酶学研究的联系与区别2. 米氏方程。

3 竞争性抑制酶促反应动力学方程。

4. 非竞争性抑制酶促反应动力学方程。

5. 产物抑制酶促反应动力学方程。

6. 底物抑制酶促反应动力学方程。

7. 双底物酶促反应动力学方程。

8. 外扩散对固定化酶促反应动力学的影响,Da准数的概念。

9. 内扩散对固定化酶促反应动力学的影响,φ准数的概念。

10. 酶的失活动力学。

难点:1. 采用稳态法和快速平衡法建立酶促反应动力学方程。

2. 固定化对酶促反应的影响,五大效应(分子构象的改变、位阻效应、微扰效应、分配效应及扩散效应)的区分。

3. 内扩散过程分析,涉及到对微元单位进行物料衡算和二阶微分方程的求解、无因次变换、解析解与数值解等问题。

4.温度对酶促反应速率和酶的失活速率的双重影响,最适温度的概念。

温度和时间对酶失活的影响。

本章主要教学要求:1. 掌握稳态法和快速平衡法推导酶促反应动力学方程。

2. 了解酶的固定化方法。

理解固定化对酶促反应速率的影响。

掌握Da 准数的概念及φ准数的概念,理解外扩散和内扩散对酶促反应速率的影响。

3. 了解酶的一步失活模型与多步失活模型,反应过程中底物对酶稳定性的影响。

生化工程第二章酶促反应动力学优秀课件

生化工程第二章酶促反应动力学优秀课件

化学动力学
反应速率及其测定
• 反应速率:单位时间内反 应物或生成物浓度的改变。 P
• 设瞬时dt内反应物浓度的 很小的改变为dS,则:
v
dS dt
• 若用单位时间内生成物浓
v
度的增加来表示,则:
v
dP dt
t
v
dP dt
t
反应分子数
• 反应分子数:是在反应中真正相互作用的分子的数目。
• 如:A → P
反应物在容器中混合良好
反应速率采用初始速率
单底物酶促反应动力学
E +S
k+1 ES
k-1
k+2
E +P
快速平衡学说的几点假设条件:
1. 酶和底物生成复合物[ES],酶催化反应是经中间复合物完 成的。
2. 底物浓度[S]远大于酶的浓度[E],因此[ES]的形成不会降低 底物浓度[S],底物浓度以初始浓度计算。
属于单分子反应
• 根据质量作用定律,单分子反应的速率方程式是:
v k[A] • 双如:A+B → C+D
属于双分子反应
• 其反应速率方程可表示为:
vk[A]B []
• 判断一个反应是单分子反应还是双分子反应,必须先了解反应机制, 即了解反应过程中各个单元反应是如何进行的。
• 反应机制往往很复杂,不易弄清楚,但是反应速率与浓度的关系可用 实验方法来确定,从而帮助推论反应机制。
生化工程第二章酶 促反应动力学
实例
• 脂肪酶催化酯化反应: 生物柴油
油料
甘油 + 脂肪酸
甲醇 NaOH
生物柴油
• 高果糖浆:
α-淀粉酶
糖化酶Biblioteka 葡萄糖异构酶淀粉浆液

第2章酶促反应动力学

第2章酶促反应动力学

酶应用的特点
1) 酶的稳定性及应用特点 2) 酶是以活力、而不是以质量购销的 3) 酶有不同的质量等级:
工业用酶 食品用酶 医药用酶 …… 实际应用酶时应注意,没有必要使用比工艺条件所需 纯度更高的酶。
酶应用的特点
酶应用的特点
酶应用的特点
酶应用的特点
• 经典酶学研究中,酶活力的测定是在反应的初始短时间内 进行的,并且酶浓度、底物浓度较低,且为水溶液,酶学 研究的目的是探讨酶促反应的机制。
酶的分类
• 例如:
编号EC1.1.1.1(已醇脱氢酶)
第一大 类(氧 化还原 酶)
第一亚 类(氧 化基团 是CHO
H)
第一亚
亚类 (NAD 为H的 受体)
在此亚 亚类中 的顺序

酶的催化共性
1)降低反应的活化能 如过氧化氢的分解,无催化剂时反应 活化能为75.31kJ/mol,加入过氧化氢酶后,过氧化氢分 解反应的活化能为8.37kJ/mol;
酶的分类
• 国际生物化学联合会(International Union of Biochemistry IUB)国际酶学委员会(Enzyme Commission, EC)于1961年 提出的酶的分类与命名方案的规定,按照酶进行催化反应 的类型,可将酶分为六类: 1)氧化还原酶类(oxidoreductases) 2)转移酶类(transferases) 3)水解酶类(hydrolases) 4)裂合酶(lyases) 5)异构酶(isomerases) 6)连接(或合成)酶(ligase, synthetases)
2)加快反应速率 一般非酶催化反应速率太低,不易观察, 酶催化反应速率和在相同pH值与温度下非酶催化反应速 率可直接比较的例子很少。已知己糖激酶可加快反应速率, 大于1010倍;乙醇脱氢酶大于2×108倍。

酶促反应动力学ppt课件.ppt

酶促反应动力学ppt课件.ppt

五、Km和Vmax值的测定
(2) 双倒数 作图法
将米氏方 程式两侧 取双倒数, 以1/v1/[s]作图, 得出一直 线.
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
五、Km和Vmax值的测定
(3) Hanes— Woolf作图法
- d[ES] / dt = k2[ES] + k3[ES]
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
二、酶促反应的动力学方程式
当酶体系处于动态平衡时,ES的形成速 度和分解速度相等
k1([E] — [ES]) * [S] = k2[ES] + k3[ES]
因为当底物浓度很高时,酶反应速率(v)与 [ES]成正比,即
v = k3[ES] ,代入(1)式得:
V = k3[E][S] / (Km+[S])
(2)
当底物浓度很高时所有的酶都被底物饱和而转 变为ES复合物,即[E]=[ES],酶促反应达到最 大速度Vmax,所以
Vmax = k3[ES] = k3[E]
i =1-a (4) 抑制百分数; i %=(1-a) x 100% 通常所谓抑制率是指抑制分数或抑制百分数。
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
二、抑制作用的类型
v 根据抑制作用是否可逆:
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目

第二章均相酶催化反应动力学

第二章均相酶催化反应动力学

能 量

平 E+S
ES
E2
G
P+ E
反应过程
2.1.2 酶的催化特性
(1)有较高的催化效率
➢ 酶的分子活力:在最适宜的条件下,每 1mol酶在单位时间内所能催化底物的最 大量(mol)。
➢ 酶催化中心活力:在单位时间内,每一 个酶的催化中心所能催化底物的量(mol)。 又称为酶的转换数。
得:
rp k 2 CE 0 Cs rp, max Cs (2 8)
ks Cs
Ks Cs
M- M方 程
动力学参数: Ks k 1 Cs CE (2 9) k 1 C [ES ]
rp, max k 2 CE 0
式中: rp, max — P的最大生成速率, mol /( L s)
忽略,也不必考虑这个P E [ES ] 逆反应存在。 可见,此方程仅适用于反应初始状态
2.2.1 Michaelis-Menten 方程
该法认为酶催化反应机理中,生成产物一步的速率要慢于 底物与酶生成复合物的可逆反应的速率,因此,生成产物一步 的速率决定整个酶催化反应的速率,而生成复合物的可逆反应 达到平衡状态,因此又称为“平衡”假设。
对单一底物参与的简单酶催化反应
E S k1 ES k2 E P k1
根据化学动力学,反应速率可表示为
rs 1 dns rp 1 dnp (2-1)
v dt
v dt
式中:rs—底物S的消耗速率,mol/(L•S) rp—产物P的生成速率,mol/(L•S) v—反应体系的体积,L ns—底物S的物质的量,mol np—产物P的物质的量,mol t—时间,s
根据上述假设和式 (2-2),有:

湖南农业大学生物化学04-酶学-02酶促反应动力学

湖南农业大学生物化学04-酶学-02酶促反应动力学

(一)基本概念
失活(Inactivation) 使酶蛋白变性而引起酶活 力的丧失 变性剂 无 抑制(Inhibition) 酶的必需基团化学性质发 生改变,但酶没有变性,而导 致的酶活性的降低甚至丧失 有 选择性 抑制剂
抑制程度的表示方法: 不加抑制剂时的反应速率为v0,加抑制剂后的速率为vi 相对(残余)活力分数(a) 抑制分数(i) 指被抑制而失去活力的分数 a = vi / v0 i = 1 - a = 1 - vi / v0
二、底物浓度对酶反应速率的影响
(一)中间络合物学说

(二)酶促反应动力学方程式

Back
(一)中间络合物学说
1903年,Henri和Wurtz提出“酶底物中间络合物学说” 亦称 “中间产物学说”
E
+
S
k1 k2
ES
k3ELeabharlann +Pv Vmax
Henri用蔗糖酶水解蔗糖,得到双曲线
零级反应 混合级反应 一级反应 [S]
0.5 / 60 = K = 1/ 92000
766.7 S-1 Back
3、米氏常数的测定
基本原则:将米氏方程变化成相当于 y=ax+b的直线 方程,再用作图法求出Km。 双倒数作图法(Lineweaver-Burk法) 米氏方程的双倒数形式:
1 Km 1 1 — = —— . — + —— v Vmax [S] Vmax
不加抑制剂时的反应速率为v0加抑制剂后的速率为vi相对残余活力分数a抑制分数i指被抑制而失去活力的分数aviv0i1a1viv0二抑制作用的类型非专一性不可逆抑制作用irreversible酶的抑制作用专一性竞争性抑制competitive可逆抑制作用reversible非竞争性抑制noncompetitive反竞争性抑制uncompetitiveback可逆与不可逆抑制抑制剂与酶以非共价键结合而引起酶活力降低或丧失能用物理方法如透析超滤等除去抑制剂而使酶复活抑制作用是可逆的

第二章酶促反应动力学

第二章酶促反应动力学

谢 谢 大 家
第二章
酶促反应动力学
2.1 酶促反应动力学的特点
2.1.1 酶的基本概念 2.1.2 酶的稳定性及应用特点 酶是以活力、而不是以质量购销的。 酶有不同的质量等级:工业用酶、食品用酶、 医药用酶。酶的实际应用中应注意,没有必要使 用比工艺条件所需纯度更高的酶。
经典酶学研究中,酶活力的测定是在反应 的初始短时间内进行的,并且酶浓度、底物浓 度较低,且为水溶液,酶学研究的目的是探讨 酶促反应的机制。 工业上,为保证酶促反应高效率完成,常 需要使用高浓度的酶制剂和底物,且反应要持 续较长时间,反应体系多为非均相体系,有时 反应是在有机溶剂中进行。
x
i
i
1
E k d Ad exp d RT
2.4.1.3 温度对酶失活的影响
Ed kd Ad e xp RT
k 2 e S r p,max S r p (rs ) Ks S Ks S
• 式中rs为底物消耗速度(负号表示减少); • rp为产物生成速率; • Ks为平衡常数,其又称饱和常数(saturation constant)。
利用稳态法获得米氏方程,同样基于三点假设。 其中第(1)和(2)两点与快速平衡法一致,第 三点是在基于底物浓度比酶的浓度高得多,中间 复合物ES分解时所得到的酶又立即与底物结合, 使中间复合物浓度维持不变。即在这段时间里, x的生成速率与x的消失速率相等,达到动态平衡, 即所谓“稳态”。
S
S
I
I E
E
竞争性抑制反应机理:
快速平衡法推导动力学方程:
解之,得

式中:
采用稳态法推导动力学方程:
解之, 得

酶促反应动力学(有方程推导过程)ppt课件

酶促反应动力学(有方程推导过程)ppt课件

当酶反应体系处于恒态时: v1 v2
即: k 1 E t E S S k 1 E k 2 S E S EtSE E SSSk1k 1k2
令: k1 k2 Km k1
则: K m E S E S S E tS
经整理得: ES
Et S Km S
(1)
由于酶促反应速度由[ES]决定,即 vk2ES
2、pH影响酶分子的构象:过高或过低pH都会影响酶分子 活性中心的构象,或引起酶的变性失活。
整理版课件
9
动物体内多数酶的最适pH值接近中性,但也有例外,如胃 蛋白酶的最适pH约1.8,肝精氨酸酶最适pH约为9.8(见下表)。
一些酶的最适pH
整理版课件
10
四、 底物浓度对反应速度的影响
1、酶反应与底物浓度的关系
种酶与不同底物作用时,Km 值也不同。各种酶的 Km 值
范围很广,大致在 10-1~10-6 M 之间。
整理版课件
17
3. Km在实际应用中的重要意义
(1)鉴定酶:通过测定可以鉴别不同来源或相同来源但 在不同发育阶段、不同生理状态下催化相同反应的酶是 否属于同一种酶。
(2)判断酶的最佳底物:如果一种酶可作用于多个底 物,就有几个Km值,其中Km最小对应的底物就是酶的 天然底物。如蔗糖酶既可催化蔗糖水解 (Km=28mmol/L),也可催化棉子糖水解 (Km=350mmol/L),两者相比,蔗糖为该酶的天然底物。
➢ 在一定范围内,反应速度达到最大时对应的温度称为该 酶促反应的最适温度(optimum temperature Tm).一 般动物组织中的酶其最适温度为35~40℃,植物与微生 物中的酶其最适温度为30~60℃,少数酶可达60℃以上, 如细菌淀粉水解酶的最适温度90℃以上。

《酶促反应动力学》课件

《酶促反应动力学》课件

底物浓度对反应速率的影响
总结词
随着底物浓度的增加,反应速率通常会加快,但当底 物浓度达到一定值后,反应速率将不再增加。
详细描述
底物是酶催化反应的对象,底物的浓度也会影响反应速 率。通常情况下,随着底物浓度的增加,反应速率会加 快。然而,当底物浓度达到一定值后,反应速率将趋于 稳定,不再增加。这是因为酶的活性位点有限,只能与 一定量的底物结合。
详细描述
酶促反应的活化能是酶促反应所需的最小能量,只有当底物获得足够的能量时,才能够 被酶催化发生反应。活化能的大小反映了酶促反应发生的难易程度,活化能越高,反应 越难以进行。通过实验测定活化能的大小,可以帮助我们了解酶促反应的动力学特征和
机制。
03
米氏方程与双倒数图
米氏方程的推导
总结词
米氏方程是描述酶促反应速度与底物浓 度关系的数学模型,通过实验数据和推 导,可以得出该方程的具体形式。
酶促反应动力学在药物代谢领域的应用,如研究药物在体内的代 谢过程和代谢产物的生成,有助于了解药物的作用机制和药效。
药物合成
在药物合成过程中,酶促反应动力学可用于优化药物合成 的反应条件和提高产物的纯度,降低副反应和废物产生。
在Hale Waihona Puke 境科学中的应用污染物降解酶促反应动力学可用于污染物降解领域,如有机污染物的 生物降解和重金属离子的转化,通过研究酶促反应动力学 参数,实现污染物的有效降解和转化。
温度对反应速率的影响
总结词
温度的升高通常会加快反应速率,但过高的温度可能导致酶失活。
详细描述
温度可以影响酶促反应的速率。一般来说,温度越高,分子间的运动越快,从而促进酶与底物的结合和反应的进 行。然而,过高的温度可能导致酶失活,从而降低反应速率。因此,选择合适的温度对于维持酶的活性和促进反 应的进行非常重要。

第二章 酶促反应动力学习题答案

第二章 酶促反应动力学习题答案

第三章 酶促反应动力学习题答案1. 答:酶促反应特征:(1)反应条件温和(常温);(2)高度的专一性;(3)反应效率高;(4) 反应过程易于控制。

三者主要区别:p262. 答:①Lineweaver-Burk 法:米氏方程可变形为以作图,将得一直线,直线截距为率为据此计算r max 和K m 。

此法由于采用两个独立变量物浓度很低时,反应速率也很低,取倒数,误差较大。

斜,底,②HanesWoolf 法:米氏方程可变形为作图,将得一直线,直线截距为,斜率为,据此计算r max 和K m 。

此法在底物浓度很低时误差较小。

③EadieHofstee 法:米氏方程可变形为将得一直线,直线截距为r max ,斜率为,据此计算r max 和K m 。

上述方法的共同点,是要从动力学实验中获取不同的C S 值和r 值。

而r 不能由试验直接取得,试验中能直接得到的是不同时间t 时的浓度C S 值(或C P 值)。

为此需要根据速率的定义式,在C S ~t 的关系曲线上求取相应各点切线的斜率,才能确定不同时间的反应速率r 。

这种求取动力学参数的方法又称之为微分法。

显然,用这种微分法作图求取反应速率会带来较大的误差。

④积分法米氏方程积分后可变形为作图,将得一直线,直线斜率为,截距为。

因此直接采用动力学实验中测得的时间t、底物浓度C S 数据作图,即可求取动力学参数值。

3.4.6.解:酶催化水解反应机制为采用稳态法推导反应动力学方程:7.答:(1)酶的稳定性受温度和时间的双重影响,其函数表达式为图2-11 清楚地表明了温度和时间对酶稳定性的双重影响。

在同一温度下,不同的保温时间残存酶活力有极大差异。

图(a)中不同温度下保温10min 后残余酶活力曲线只表明,在保温时间为10min时,酶在50°C 以下是稳定的,而并不能得出“酶在50°C 以下是稳定的”这一结论。

因为不同的保温时间必将对酶的稳定性产生影响。

酶促反应动力学多底物动力学

酶促反应动力学多底物动力学

k2[B] k-4[Q] k-3[P]
EQ:
k1[A]
k-1
k-1
k2[B] k-4[Q] k3
k-2 k-4[Q] k3
k2[B] k-4[Q] k3
V=k4[EQ] – k-4[E][Q] =(k4∙КEQ – k-4[Q]∙КE) [E0]/∑К
=
num1[A][B] - num2[P][Q]
反应速度:Vf= К12 [E] ; Vr= К21 [EA]
❖ К具有方向性,是一种矢量。其方向与酶形式旳 流向有关
(二)King-Altman 法环节:
(1)首先写出反应历程,然后将反应历程安排成封 闭环形式。环旳角数就是酶存在形式数目,用n表 达。然后在各角之间连线上标出各步反应旳К。
E + A k1 EA k2 EP k3 E + P
3!
=3
(3-1)!(3-3+1)!
King- Altman 图形不包括封闭环形式:
E1
E2
E3
E4
❖ n=4,m=5
n-1线(3线)图数目=
5!
=10个,
(4-1)!(5-4+1)!
❖ 2个封闭环形式无效,应清除。共有8个有效旳 King- Altman 图形
反应历程中有时可能没有逆反应,此时有些 KingAltman 图形不存在。
分为: 非中心复合物:酶未完全被底物饱和 中心复合物: 酶已经完全被底物饱和,
(EAB EPQ); (EA EP)
(二) 反应机制旳分类和命名
(以双底物双产物反应为例):
1. 序列(sequential)反应机制: 酶必需与全部底物都结合之后才有产物放出。对于双

课件:酶促反应动力学

课件:酶促反应动力学

竞争性抑制作用的动力学
➢ 有竞争性抑制剂存在时,Km值增大 (1+[I]/Ki)倍,Km值随[I]的增高而增大;
➢ 在[E]固定时,当[S] ﹥﹥ Km (1+[I]/Ki), Km (1+[I]/Ki)项可忽略不计,则v= Vmax, 即最大反应速率不变。
竞争性抑制的动力学曲线
a=1+[I]/Ki
底物浓度对酶促反应速率的影响
• 反应速率对底物浓度作图,得到的是一个 双曲线
• 在低底物浓度时, 反应速率与底物浓度成正 比,表现为一级反应特征。
• 当底物浓度达到一定值,反应速率达到最 大值(Vmax),此时再增加底物浓度,反 应速率不再增加,表现为零级反应
• 此现象称为饱和效应,对应的图称为底物 饱和曲线,说明酶促反应中酶的底物结合 部位都被底物占据时反应达到最大速率
• 抑制剂:引起抑制作用的化合物。抑制剂 能够与酶的必需基团以非共价或共价的方 式形成比较稳定的复合体或结合物。抑制 剂对酶的抑制具有选择性。
• 酶的抑制作用机理:
– 在化学结构上与被抑制的酶的底物分子(底物 类似物)或底物的过渡状态相似——活性中心 结合。
– 非底物类似物——不与活性部位结合,但和酶 活性部位以外的必需基团结合,从而影响酶促 反应过程。
酶促反应动力学
• △G为负,说明热力学有利,其值与反应的 平衡常数有关
• 活化能是动力学的范畴,和反应的速率常数
• 酶促反应动力学研究酶促反应速率以及影 响此速率的各种因素
• 酶促反应速率指反应的初速率,一般指底 物浓度被消耗5%以内的速率
• 影响因素:底物浓度、酶浓度、产物浓度、 pH、温度、抑制剂、激活剂等
米氏方程
Vmax [S] V=

酶工程 第二章酶动力学 第一节酶促反应动力学

酶工程 第二章酶动力学 第一节酶促反应动力学

1913年前后,米彻利斯(Michaelis)和曼吞(Menten) 在前人工作的基础上,通过大量的定量研究,提出了酶促动力 学基本原理,并推导出了著名的米-曼氏方程,推导过程如下:
根据上述反应式,中间产物ES的生成速度(底物S的消失速度)
v1=k1[S][E]-k2[ES]
(2-1)
而ES的消失速度(产物P的生成速度) v2=k3 [ES],当反应达到 平衡时,即v1=v2时
第一节 酶促反应动力学
对许多酶的性质的观察和研究得知,在低的底物浓度[S]下, 反应速度(v)直接与底物浓度[S]成正比;在高底物浓度[S]下, 速度趋向于最大值(Vmax),此时反应速度与底物浓度[S]无关 (如图2-1)。
图2-1 单底物酶促反应的反应速度与底物浓度的关系
第一节 酶促反应动力学
图2-5 乒乓反应机理 实际上,多底物酶促反应动力学是非常复杂的,以上只是作以简要介绍, 有关详细内容,可查阅相关专著。
将米氏方程改写成以下形式
以 对作图,绘出曲线,横轴截距即为-值,纵轴截距则是 (图2-2)。
第一节 酶促反应动力学
图2-2 双倒数作图
第一节 酶促反应动力学
二、多底物动力学 通常情况下,酶催化反应涉及两个(少数情况下三个)底物。 现在我们考虑一个涉及两种底物和两种产物的酶促反应物反应。现在已知的生化反应 中有六成以上属于这一种反应。双底物反应的机理有下面三种 可能:
第一节 酶促反应动力学
1.有序反应机理(ordered reaction) 这种情况下,A和B分别可被说成是先导底物和后随底物,Q 是A的产物,最后被释放。A和Q竞争同游离酶E结合,但A和B则 不会(或者Q和B也不会)发生竞争(如图2-3)。依赖烟酰胺腺 嘌呤二核苷酸(NAD+或NADP+)的脱氢酶的反应就属于这种类型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

KS
k1 k1Leabharlann [E ][S ] [ES ]
k-1 E+S
k+1 (4)
即,
[ES
]
[E0][S ] [S ] KS
代入公式(2)得到
vP
k 2 [E 0 ][S [S ] KS
]
(5)
17
当反应初始时刻,底物[S]>>[E],几乎所有的酶都与底物结合成 复合物[ES],因此[E0]≈[ES],反应速率最大,此时产物的最大 合成速率为:
5
把反应速率与反应物浓度无关的反应叫做零级反应。
v= k
• 反应分子数和反应级数对简单的基元反应来说是 一致的,但对某些反应来说是不一致的。例如:
Sucrase
• Sucrose + H2O ─→ Glucose + Frucose • 是双分子反应,但却符合一级反应方程式。
因为蔗糖的稀水溶液中,水的浓度比蔗糖浓度大得多, 水浓度的减少与蔗糖比较可以忽略不计。因此,反应速 率只决定于蔗糖的浓度。
18
E +S
k+1
ES
k-1
k+2 E + P
稳态学说
稳态学说的几点假设条件:
1. 酶和底物生成复合物[ES],酶催化反应是经中间复合物完 成的。
2. 底物浓度[S]远大于酶的浓度[E],因此[ES]的形成不会降低 底物浓度[S],底物浓度以初始浓度计算。
3. 在反应的初始阶段,产物浓度很低,P+E→ES这个可逆反 应的速率极小,可以忽略不计。
4
反应级数
根据实验结果,整个化学反应的速率服从哪种分子反 应速率方程式,则这个反应即为几级反应。 例:对于某一反应其总反应速率能以单分子反应的速 率方程式表示,那么这个反应为一级反应。 又如某一反应: A + B → C + D
v k[A][B]
式中k为反应速率常数
符合双分子反应的表达式,为二级反应。
vP
d[P ] dt
k2[ES ]
(1)
(2)
16
反应体系中酶量守恒:
[E0] [E ] [ES ]
(3)
由前面的公式(1)得:
[E
]
k-1[ES ] k1[S ]
代入公式(3),变换后得:
[ES
]
[E0][S ]
[S
]
k1 k1
对于酶复合物ES的解离平衡过程来说, ES
其解离常数可以表示为,
13
酶反应动力学
➢ 酶反应动力学的两点基本假设:
反应物在容器中混合良好 反应速率采用初始速率
14
单底物酶促反应动力学
E +S
k+1 ES
k-1
k+2
E +P
快速平衡学说的几点假设条件:
1. 酶和底物生成复合物[ES],酶催化反应是经中间复合物完 成的。
2. 底物浓度[S]远大于酶的浓度[E],因此[ES]的形成不会降低 底物浓度[S],底物浓度以初始浓度计算。
• 双如:A+B → C+D 属于双分子反应
• 其反应速率方程可表示为:
v k [A][B]
• 判断一个反应是单分子反应还是双分子反应,必须先了解反应机制, 即了解反应过程中各个单元反应是如何进行的。
• 反应机制往往很复杂,不易弄清楚,但是反应速率与浓度的关系可用 实验方法来确定,从而帮助推论反应机制。
第二章 均相酶催化反应动力学
Lysozyme
化学反应的基础知识
• 反应进行的方向 • 反应进行的可能性 • 反应进行的限度
化学热力学
• 反应进行的速率 • 反应机制
化学动力学
Green Fluorescent Protein
2
反应速率及其测定
• 反应速率:单位时间内反 应物或生成物浓度的改变。 P
• 设瞬时dt内反应物浓度的 很小的改变为dS,则:
v
dP dt
v
dS dt
t
• 若用单位时间内生成物浓
v
度的增加来表示,则:
v
dP dt
t3
反应分子数
• 反应分子数:是在反应中真正相互作用的分子的数目。
• 如:A → P
属于单分子反应
• 根据质量作用定律,单分子反应的速率方程式是:
v k [A]
A
t
7
k 二级反应 A+B ─→ C
v k[A][B]
k指反应的速率常数。 反应速率与反应物的性质和浓度、温度、压力、 催化剂及溶剂性质有关
8
酶促反应动力学基础-平衡常数
• 平衡:可逆反应的正向反应和逆向反应仍在继续进行, 但反应速率相等的动态过程。
• 反应的平衡常数与酶的活性无关,与反应速率的大小无 关,而与反应体系的温度、反应物及产物浓度有关。
v = k [S]
6
酶促反应动力学基础-反应速率
零级反应
v
d[S dt
]
rmax
dA
dt
k1
一级反应 A ─→ B
A0
v d[A] k[A] dt
积分后得: ln[A] kt C 这儿:k是反应速率常数,C是积分常数
一级反应
若反kt应开始(t=0)时,[A]=[A0],则C=[A0], 最后得到: [A]=[A0]e-
3. 不考虑P+E→ES这个可逆反应的存在。
4. [ES]在反应开始后与E及S迅速达到动态平衡。
15
E +S
k+1
k-1
ES k+2 E + P
快速平衡学说
➢ 对于单底物的酶促反应:
dP dS
dt t 0
dt t 0
由假设4可得到: k1[E ][S ] k1[ES ]
由假设3可得到产物的合成速率为:
VP max k2[E0]
代入式(5)得:
vP
d[P ] dt
k2[E0][S ] KS [S ]
VP max[S ] KS [S ]
(6)
式中:
Vp,max: 最大反应速率
如果酶的量发生改变,最大反应速率相应改变。
KS: 解离常数,饱和常数
低KS值意味着酶与底物结合力很强,
(看看KS的公式就知道了)。
4. [ES]的生成速率与其解离速率相等,其浓度不随时间而变 化。
• 平衡常数(K)的计算:
例:A+3B
2C+D
K
[C]2[D] [A] [B]3
9
酶的基本概念
酶可加快反应速率 降低反应的活化能(Ea) 不能改变反应的平衡常数K 不能改变反应的自由能变化(ΔG)
✓酶有很强的专一性 ✓较高的催化效率 ✓反应条件温和 ✓酶易失活
10
酶促反应动力学基础
影响酶促反应的主要因素
✓ 浓度因素(酶浓度,底物浓度,产物浓度等) ✓ 外部因素(温度,压力,pH,溶液的介电常数,
离子强度等) ✓ 内部因素(底物及效应物浓度,酶的结构)
11
酶与底物的作用机理
• Lock and Key Model
12
Induced-Fit Model
• 象手与手套的 关系.
• 当低物接近酶 的活性中心并 与之结合时, 酶的构象能发 生改变,更适 合于底物的结 合。
相关文档
最新文档