沪科版三角形中的边角关系总复习
沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明含答案
沪科版八年级上册数学第13章三角形中的边角关系、命题与证明含答案一、单选题(共15题,共计45分)1、如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为( )A.120°B.135°C.150°D.180°2、如图,△ABC的面积为1cm2, AP垂直∠B的平分线BP于P,则△PBC的面积为()A. B. C. D.3、如图,在矩形ABCD中,点E是AD上任意一点,则有()A.△ABE的周长+△CDE的周长=△BCE的周长B.△ABE的面积+△CDE 的面积=△BCE的面积C.△ABE∽△DECD.△ABE∽△EBC4、若等腰三角形的顶角为,则它的一个底角度数为A.20°B.50°C.80°D.100°5、平行四边形的两条对角线长分别为8cm和10cm,则其边长的范围是()A.2<x<6B.3<x<9C.1<x<9D.2<x<86、如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是()A.110°B.120°C.130°D.140°7、如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°8、如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°9、如果三角形的两边长分别是4和9,那么第三边长可能是( )A.1B.5C.8D.1410、如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=( )A.3:4B.4:3C.16:9D.9:1611、在△ABC中,∠A、∠B、∠C的对边分别是、、,则下列说法中错误的是()A.如果∠C-∠B=∠A,那么△ABC是直角三角形,∠C=90°B.如果,则∠B=60°,∠A=30° C.如果,那么△ABC是直角三角= D.如果,那么△ABC是直角三角形12、如图,四边形ABCD是菱形,AC=8,AD=5,DH⊥AB于点H,则DH的长为( )A.24B.10C.4.8D.613、如图,AB是圆O的直径,CD是圆O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=16°,则∠ABC的度数是( )A. B. C. D.14、如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F.若∠BAC=35°,则∠BFC的大小是()A.105°B.110°C.100°D.120°15、下列命题正确的有 ( )个①40°角为内角的两个等腰三角形必相似②若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为750③一组对边平行,另一组对边相等的四边形是平行四边形④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1⑤若△ABC的三边a、b、c满足a2+b2+c2+338=10a+24b+26c,则此△为等腰直角三角形。
三角形中的边角关系、命题与证明(知识点汇总 沪科8上)
第13章 三角形中的边角关系、命题与证明一、三角形(一)、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、顶点是A 、B 、C 的三角形,记作“ΔABC”,读作“三角形ABC”。
3、组成三角形的三条线段叫做三角形的边,即边AB 、BC 、AC ,有时也用a ,b ,c 来表示,顶点A 所对的边BC 用a 表示,边AC 、AB 分别用b ,c 来表示;4、∠A 、∠B 、∠C 为ΔABC 的三个内角。
(二)、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为a+b>c,a+c>b,b+c>a ;a -b<c,a -c<b,b -c<a 。
2、判断三条线段a,b,c 能否组成三角形:(1)当a+b>c,a+c>b,b+c>a 同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即.4、作用:∠判断三条已知线段能否组成三角形;∠当已知两边时,可确定第三边的范围;∠证明线段不等关系。
(三)、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C 所对的边AB 称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数。
沪科版八年级数学上册《第13章三角形中的边角关系,命题与证明 》单元试题及解析
沪科版八年级数学上册《第13章三角形中的边角关系,命题与证明》单元试题及解析一、选择题(本大题共15小题,共45分)1.如图,△ABC的角平分线BD与中线CE相交于点O.有下列两个结论:①BO是△CBE的角平分线;②CO是△CBD的中线.其中()A. 只有①正确B. 只有②正确C. ①和②都正确D. ①和②都不正确2.下列说法正确的是()①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A. ①②B. ②③C. ③④D. ②④3.具备下列条件的△ABC中,不是直角三角形的是()A. ∠A+∠B=∠CB. ∠A−∠B=∠CC. ∠A:∠B:∠C=1:2:3D. ∠A=∠B=3∠C4.已知三角形的两边长是2cm,3cm,则该三角形的周长l的取值范围是()A. 1<l<5B. 1<l<6C. 5<l<9D. 6<l<105.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A. 1个B. 2个C. 3个D. 4个6.下列说法错误的是()A. 锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高线在三角形外部C. 直角三角形只有一条高线D. 任意三角形都有三条高线、三条中线、三条角平分线7.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A. 1个B. 2个C. 3个D. 4个8.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A. 4B. 5C. 6D. 79.下列说法正确的是()A. 三角形的内角中最多有一个锐角B. 三角形的内角中最多有两个锐角C. 三角形的内角中最多有一个直角D. 三角形的内角都大于60°10.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为()A. 100°B. 120°C. 140°D. 160°11.已知三角形两个内角的差等于第三个内角,则它是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等边三角形12.等腰三角形的底边BC=8cm,且|AC−BC|=2cm,则腰长AC的长为()A. 10cm或6cmB. 10cmC. 6cmD. 8cm或6cm13.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°−∠B,④∠A=∠B=12∠C 中,能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个14.已知三角形的三边分别为2,a,4,那么a的取值范围是()A. 1<a<5B. 2<a<6C. 3<a<7D. 4<a<615.在△ABC中,∠A=12∠B=13∠C,则此三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形二、填空题(本大题共8小题,共24分)16.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE//AB,交AC于E,则∠ADE的大小是______ .17.在△ABC中,AC=5cm,AD是△ABC中线,把△ABC周长分为两部分,若其差为3cm,则BA=______ .18.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.19.如图,在△ABC中,∠B=42°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______.20.已知a,b,c是三角形的三边长,化简:|a−b+c|−|a−b−c|=______.21.等腰三角形的周长为20cm,一边长为6cm,则底边长为____cm.22.如图,∠A+∠B+∠C+∠D+∠E+∠F=______ 度.23.如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=______度.三、解答题(本大题共4小题,共31分)24.如图所示,求∠1的大小.25.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C−∠B有何关系?(不必证明)26.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.27.将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB=______ 度,∠DBC+∠DCB=______度,∠ABD+∠ACD=______ 度;(2)如图②,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论.(3)如图③,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD、∠ACD、∠A三者之间存在的数量关系.答案和解析1.【答案】A【解析】解:∵△ABC的角平分线BD与中线CE相交于点O,∴∠ABD=∠CBD,AE=BE,∴∠EBO=∠CBO,∴BO是△CBE的角平分线,又∵BO和DO不一定相等,∴CO不一定是△CBD的中线故选A.根据角平分线的定义和中线的定义,可直接得出结论.本题考查了三角形的角平分线、中线和高线,是基础知识要熟练掌握.2.【答案】D【解析】解:①三角形的角平分线是线段,说法错误;②三角形的三条角平分线都在三角形内部,且交于同一点,说法正确;③锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.说法错误;④三角形的一条中线把该三角形分成面积相等的两部分,说法正确.故选D.根据三角形的角平分线的定义与性质判断①与②;根据三角形的高的定义及性质判断③;根据三角形的中线的定义及性质判断④即可.本题考查了三角形的角平分线、中线和高的定义及性质,是基础题.从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.【答案】D【解析】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形,D选项中∠A=∠B=3∠C,即7∠C=180°,三个角没有90°角,故不是直角三角形,故选:D.由直角三角形内角和为180°求得三角形的每一个角,再判断形状.注意直角三角形中有一个内角为90°.4.【答案】D【解析】解:第三边的取值范围是大于1而小于5.又∵另外两边之和是5,∴周长的取值范围是大于6而小于10.故选D.根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.考查了三角形的三边关系,解题的关键是了解三角形的三边关系:两边之和大于第三边,两边之差小于第三边.5.【答案】C【解析】解:首先可以组合为13,10,5;13,10,7;13,5,7;10,5,7.再根据三角形的三边关系,发现其中的13,5,7不符合,则可以画出的三角形有3个.故选:C.从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.考查了三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边.这里一定要首先把所有的情况组合后,再看是否符合三角形的三边关系.6.【答案】C【解析】解:A、解:A、锐角三角形的三条高线、三条中线、三条角平分线分别交于一点,故本选项说法正确;B、钝角三角形有两条高线在三角形的外部,故本选项说法正确;C、直角三角形也有三条高线,故本选项说法错误;D、任意三角形都有三条高线、中线、角平分线,故本选项说法正确;故选:C.根据三角形的高线、中线、角平分线的性质分析各个选项.本题考查了三角形的角平分线、中线和高线,是基础题,熟记概念是解题的关键.7.【答案】C【解析】解:三条线段首尾顺次相接组成的图形叫三角形,故①错误;三角形的角平分线是线段,故③错误;三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,故④错误;所以正确的命题是②、⑤、⑥,共3个.故选:C.要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.此题综合考查三角形的定义以及三角形的三条重要线段.8.【答案】A【解析】解:等底同高的三角形的面积相等,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,又△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等.故选A.根据三角形的面积公式知,等底同高的三角形的面积相等,据此可得面积相等的三角形.本题考查了三角形的面积,理解三角形的面积公式,掌握等底同高的三角形的面积相等是解题的关键.9.【答案】C【解析】解:A、直角三角形中有两个锐角,故本选项错误;B、等边三角形的三个角都是锐角,故本选项错误;C、三角形的内角中最多有一个直角,故本选项正确;D、若三角形的内角都大于60°,则三个内角的和大于180°,这样的三角形不存在,故本选项错误.故选C.根据三角形内角和定理对各选项进行逐一分析即可.本题考查的是三角形内角和定理,即三角形内角和是180°.10.【答案】B【解析】解:∵∠A=2(∠B+∠C),∠A+∠B+∠C=180°,∴∠A+12∠A=180°,∠A=120°.故选B.根据三角形的内角和定理和已知条件即可得到∠A的方程,从而求解.此题考查了三角形的内角和定理.11.【答案】C【解析】【分析】本题考查了三角形内角和定理:三角形内角和是180°.利用三角形内角和可直接根据两已知角求第三个角或依据三角形中角的关系,用代数方法求三个角,也可在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.设三角形三个内角分别为∠A、∠B、∠C,且∠A−∠B=∠C,则∠B+∠C=∠A,根据三角形内角和定理得到∠A+∠B+∠C=180°,于是可计算出∠A=90°,由此可判断三角形为直角三角形.【解答】解:设三角形三个内角分别为∠A、∠B、∠C,且∠A−∠B=∠C,则∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴∠A+∠A=180°,∴∠A=90°,∴这个三角形为直角三角形.故选C.12.【答案】A【解析】解:∵|AC−BC|=2cm,∴AC−BC=2cm或−AC+BC=2cm,∵BC=8cm,∴AC=(2+8)cm或AC=(8−2)cm,即10cm或6cm.故选A根据绝对值的性质求出AC的长即可.本题考查的是等腰三角形的性质,熟知“等腰三角形的两腰相等”是解答此题的关键.13.【答案】D【解析】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=31+2+3×180°=90°,∴△ABC是直角三角形,∴②正确;③∵∠A=90°−∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴③正确;④∵∠A=∠B=12∠C,∴∠C=2∠A=2∠B,∵∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,∴△ABC是直角三角形,∴④正确;故选D.根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.本题考查了三角形内角和定理的应用,能求出每种情况的∠C的度数是解此题的关键,题目比较好,难度适中.14.【答案】B【解析】解:由于在三角形中任意两边之和大于第三边,∴a<2+4=6,任意两边之差小于第三边,∴a>4−2=2,∴2<a<6,故选B.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.本题考查了构成三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,难度适中.15.【答案】B【解析】解:∵∠A=12∠B=13∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得∠A=30°,所以,∠B=2×30°=60°,∠C=3×30°=90°,所以,此三角形是直角三角形.故选B.用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.16.【答案】40°【解析】解:∵DE//AB,∴∠ADE=∠BAD,∵∠B=46°,∠C=54°,∴∠BAD=180°−46°−54°=80°,∵AD平分∠BAC,∴∠BAD=40°,∴∠ADE=40°,故答案为40°.根据DE//AB可求得∠ADE=∠BAD,根据三角形内角和为180°和角平分线平分角的性质可求得∠BAD的值,即可解题.本题考查了三角形内角和为180°性质,考查了角平分线平分角的性质,本题中求∠ADE=∠BAD是解题的关键.17.【答案】8cm或2cm【解析】解:∵AD是△ABC中线,∴BD=CD.AD把△ABC周长分为的两部分分别是:AB+BD,AC+CD,|(AB+BD)−(AC+CD)|=|AB−AC|=3,如果AB>AC,那么AB−5=3,AB=8cm;如果AB<AC,那么5−AB=3,AB=2cm.故答案为:8cm或2cm.先根据三角形中线的定义可得BD=CD,再求出AD把△ABC周长分为的两部分的差等于|AB−AC|,然后分AB>AC,AB<AC两种情况分别列式计算即可得解.本题考查了三角形的角平分线、中线和高线,熟记概念并求出AD把△ABC周长分为的两部分的差等于|AB−AC|是解题的关键.18.【答案】75°【解析】【分析】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.先根据直角三角形两锐角互余求出∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°−60°=30°,∴∠α=30°+45°=75°.故答案为:75°.19.【答案】69°【解析】【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得12∠DAC+1 2∠ACF=12(∠B +∠B+∠1+∠2)=111°;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.【解答】解:∵三角形的外角∠DAC和∠ACF 的平分线交于点E ,∴∠EAC=12∠DAC,∠ECA=12∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴12∠DAC+12∠ACF=12(∠B+∠2)+12(∠B+∠1)=12(∠B+∠B+∠1+∠2),∵∠B=42°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴12∠DAC+12∠ACF=111°∴∠AEC=180°−(12∠DAC+12∠ACF)=69°.故答案是:69°.20.【答案】2a−2b【解析】解:∵a,b,c是三角形的三边长,∴a+c>b,b+c>a,∴a−b+c>0,a−b−c<0,∴|a−b+c|−|a−b−c|=(a−b+c)−(b+c−a)=a−b+c−b−c+a=2a−2b,故答案为:2a−2b.先根据三角形的三边关系定理得出a+c>b,b+c>a,再去掉绝对值符号合并即可.本题考查了三角形三边关系定理,绝对值,整式的加减的应用,解此题的关键是能正确去掉绝对值符号.21.【答案】6或8【解析】解:①6cm是底边时,腰长=12(20−6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20−6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6cm或8cm.故答案为:6或8.分6cm是底边与腰长两种情况讨论求解.本题考查了等腰三角形的性质,难点在于要分情况讨论.22.【答案】360【解析】解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.利用三角形外角性质可得∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,三式相加易得∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,而∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,从而可求∠A+∠B+∠C+∠D+∠E+∠F.本题考查了三角形内角和定理.解题的关键是三角形内角和定理与三角形外角性质的联合使用,知道三角形的外角和等于360°.23.【答案】45【解析】解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C=60°+50°=110°,∴∠1=180°−∠ABD−∠D=180°−110°−25°=45°.根据三角形的外角的性质及三角形的内角和定理可求得.本题考查三角形外角的性质及三角形的内角和定理,比较简单.24.【答案】解:如图所示,∵∠ACB=180°−140°=40°,且∠1是△ABC的外角,∴∠1=∠A+∠ACB=80°+40°=120°.【解析】先根据邻补角的定义求得∠ACB,再根据三角形外角性质,求得∠1的度数即可.本题主要考查了三角形的外角性质的运用,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.25.【答案】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°−30°−50°=100°.∵AE是∠BAC的平分线,∴∠BAE=50°.在Rt△ABD中,∠BAD=90°−∠B=60°,∴∠DAE=∠BAD−∠BAE=60°−50=10°;(2)∠C−∠B=2∠DAE.【解析】(1)由三角形内角和定理可求得∠BAC=100°,由角平分线的性质知∠BAE=50°,在Rt△ABD中,可得∠BAD=60°,故∠DAE=∠BAD−∠BAE;(2)由(1)可知∠C−∠B=2∠DAE.本题利用了三角形内角和定理、角的平分线的性质、直角三角形的性质求解.26.【答案】解:∵∠AFE=90°,∴∠AEF=90°−∠A=90°−35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°−∠CED−∠D=180°−55°−42°=83°.答:∠ACD的度数为83°.【解析】根据三角形外角与内角的关系及三角形内角和定理解答.三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.27.【答案】(1)140;90;50;(2)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°−∠A.证明如下:在△ABC中,∠ABC+∠ACB=180°−∠A.在△DBC中,∠DBC+∠DCB=90°.∴∠ABC+∠ACB−(∠DBC+∠DCB)=180°−∠A−90°.∴∠ABD+∠ACD=90°−∠A.(3)∠ACD−∠ABD=90°−∠A.【解析】解:(1)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°−40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°−90°=90°,∴∠ABD+∠ACD=140°−90°=50°;故答案为:140;90;50.(2)见答案;(3)见答案.【分析】(1)根据三角形内角和定理可得∠ABC+∠ACB=180°−∠A=140°,∠DBC+∠DCB=180°−∠DBC=90°,进而可求出∠ABD+∠ACD的度数;(2)根据三角形内角和定义有90°+(∠ABD+∠ACD)+∠A=180°,则∠ABD+∠ACD=90°−∠A.(3)由(1)(2)的解题思路可得:∠ACD−∠ABD=90°−∠A.本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.。
安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》解答题精选
2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》解答题精选一.解答题(共22小题)1.(2019秋•当涂县期末)如图,在△ABC中,∠A=75°,∠ABC与∠ACB的三等分线分别交于点M、N 两点.(1)求∠BMC的度数;(2)若设∠A=α,用α的式子表示∠BMC的度数.2.(2019秋•埇桥区期末)(1)如图(a),BD平分∠ABC,CD平分∠ACB.①当∠A=60°时,求∠D的度数.②猜想∠A与∠D有什么数量关系?并证明你的结论.(2)如图(b),BD平分外角∠CBP,CD平分外角∠BCQ,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).3.(2019秋•临泉县期末)如图,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件:①AB=DE;②AC=DF;③AB∥DE;④BE=CF.请你从中选三个作为题设,余下的一个作为结论,写出一个真命题,并加以证明.解:我写的真命题是:已知:;求证:.(注:不能只填序号)证明如下:4.(2019秋•濉溪县期末)在如图所示的平面直角坐标系中,作出下列坐标的A(﹣3,2),B(0,﹣4),C (5,﹣3),D(0,1).并求出四边形ABCD的面积.5.(2019秋•潜山市期末)如图,∠A=37°,∠B=28°,∠ADB=148°,求∠C的度数.6.(2019秋•庐阳区期末)如图,在△ABC中,AD、CE分别平分∠BAC和∠ACB,AD、CE交于点O,若∠B=50°,求∠AOC.7.(2019秋•庐阳区期末)在△ABC中,∠A+∠B=∠C,∠B﹣∠A=30°.(1)求∠A、∠B、∠C的度数;(2)△ABC按角分类,属于什么三角形?△ABC按边分类,属于什么三角形?8.(2019秋•裕安区期末)如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是角平分线,它们相交于为O,AD是高,求∠BAD和∠AOC的度数.9.(2019秋•瑶海区期末)如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.10.(2019秋•全椒县期末)已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC 和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.11.(2019秋•涡阳县期末)如图,在△ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.12.(2019秋•全椒县期末)如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.13.(2019秋•和县期末)如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠E的度数.14.(2019秋•涡阳县期末)如图,三角形AOB中,A、B两点的坐标分别为(﹣4,﹣6),(﹣6,﹣3),求三角形AOB的面积(提示:三角形AOB的面积可以看作一个梯形的面积减去一些小三角形的面积).15.(2018秋•望江县期末)在△ABC中,AB=9,BC=2,AC=x.(1)求x的取值范围;(2)若△ABC的周长为偶数,则△ABC的周长为多少?16.(2018秋•长丰县期末)已知:如图,D是AB上的一点,E是AC上一点,BE、CD相交于点F,∠A =62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFC的度数.17.(2018秋•埇桥区期末)在△ABC中,∠A=∠B+20°,∠C=∠A+50°,求△ABC各内角的度数.18.(2018秋•包河区期末)如图,△ABC中,∠ACB>90°,AE平分∠BAC,AD⊥BC交BC的延长线于点D.(1)若∠B=30°,∠ACB=100°,求∠EAD的度数;(2)若∠B=α,∠ACB=β,试用含α、β的式子表示∠EAD,则∠EAD=.(直接写出结论即可)19.(2018秋•桐城市期末)如图,△ABC中,AD⊥BC于点D,AE是∠BAC的平分线,∠B=30°,∠C =70°,分别求:(1)∠BAC的度数;(2)∠AED的度数;(3)∠EAD的度数.20.(2018秋•无为县期末)如图,AC平分∠DCE,且与BE的延长线交于点A.(1)如果∠A=35°,∠B=30°,则∠BEC=.(直接在横线上填写度数)(2)小明经过改变∠A,∠B的度数进行多次探究,得出∠A、∠B、∠BEC三个角之间存在固定的数量关系,请你用一个等式表示出这个关系,并进行证明.解:(2)关系式为:证明:21.(2018秋•阜南县期末)如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,求:∠DAE的度数.22.(2019春•庐江县期末)已知:三角形ABC和同一平面内的点D.(1)如图1,点D在BC边上,DE∥BA交AC于E,DF∥CA交AB于F.若∠EDF=85°,则∠A的度数为°.(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A,证明:DE∥BA.(3)如图3,点D是三角形ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》解答题精选参考答案与试题解析一.解答题(共22小题)1.【解答】解:(1)∵∠A =75°,∴∠ABC +∠ACB =180°﹣75°=105°,∴∠MBC +∠MCB =23×105°=70°,∴∠BMC =180°﹣70°=110°.(2)∵∠A =α,∴∠ABC +∠ACB =180°﹣α∴∠MBC +∠MCB =23×(180°﹣α)=120°−23α∴∠BMC =180°﹣(120°−23α)=60°+23α2.【解答】解:(1)①∵∠A =60°,∴∠ABC +∠ACB =180°﹣60°=120°,∵∠DBC =12∠ABC ,∠DCB =12∠ACB ,∴∠DBC +∠DCB =12×120°=60°,∴∠D =180°﹣60°=120°.②结论:∠D =90°+12∠A .理由:∵∠DBC =12∠ABC ,∠DCB =12∠ACB ,∴∠DBC +∠DCB =12×(∠ABC +∠ACB )=12(180°﹣∠A )=90°−12∠A∴∠D =180°﹣(90°−12∠A )=90°+12∠A .(2)不正确.结论:∠D =90°−12∠A .理由:∵∠DBC =12∠PBC ,∠DCB =12∠ACB ,∴∠DBC +∠DCB =12×(∠PBC +∠QCB )=12(∠A +∠ACB +∠A +∠ABC )=12(180°+∠A )=90°+12∠A ,∴∠D =180°﹣(90°−+12∠A )=90°−12∠A .3.【解答】解:我写的真命题是:已知:①②④;求证:③证明如下:∵BE =FC ,∴BE +EC =CF +EC ,即BC =FE ,在△ABC 和△DEF 中{AA =AA AA =AA AA =AA ,∴△ABC ≌△DEF (SSS ),∴∠B =∠DEF ,∴AB ∥DE .故答案为①②④;③.4.【解答】解:如图所示,S 四边形ABCD =12×5×3+12×5×5=20.5.【解答】解:连接CD 并延长点E , ∵∠ACD =∠ADE ﹣∠A =∠ADE ﹣37°,∴∠A =37°,∠ADE =∠A +∠ACD ,同理可得:∠BCD =∠BDE ﹣28°,∵∠ACB =∠ACD +∠BCD ,∴∠ADB =148°,∠ACB =∠ADB ﹣∠A ﹣∠B ,=148°﹣37°﹣28°=83°.6.【解答】解:∵∠ABC =50°, ∴∠BAC +∠ACB =180°﹣50°=130°,∵AD ,CE 分别平分∠BAC 、∠ACB ,∴∠OAC =12∠BAC ,∠OCA =12∠ACB ,∴∠OAC +∠OCA =12(∠BAC +∠ACB )=12×130°=65°,在△AOC 中,∠AOC =180°﹣(∠OAC +∠OCA )=180°﹣65°=115°.7.【解答】解:(1)由题意:{∠A +∠A =∠AAA −AA =30°AA +AA +AA =180°,解得{∠A =30°AA =60°AA =90°.(2)∵∠C =90°,∠A =30°,∠B =60°,∴按角分类,属于直角三角形.△ABC 按边分类,属于不等边三角形.8.【解答】解:∵AD 是高,∠B =50°,∴Rt △ABD 中,∠BAD =90°﹣50°=40°,∵∠BAC =90°,∠B =50°,∴△ABC 中,∠ACB =90°﹣50°=40°,∵AE ,CF 是角平分线,∴∠CAE =12∠BAC =45°,∠ACF =12∠ACB =20°,∴△AOC 中,∠AOC =180°﹣45°﹣20°=115°.9.【解答】解:(1)∵AB =4,AC =5,∴5﹣4<BC <4+5,即1<BC <9,故答案为:1<BC <9;(2)∵∠ACD =125°,∴∠ACB =180°﹣∠ACD =55°,∵DE ∥AC ,∴∠BDE =∠ACB =55°.∵∠E =55°,∴∠B =180°﹣∠E ﹣∠BDE =180°﹣55°﹣55°=70°.10.【解答】(1)证明:∵∠FEC =∠A +∠ADE ,∠F +∠BDF =∠ABC ,∴∠F +∠FEC =∠F +∠A +∠ADE ,∵∠ADE =∠BDF ,∴∠F +∠FEC =∠A +∠ABC ,∵∠A =∠ABC ,∴∠F +∠FEC =∠A +∠ABC =2∠A .(2)∠MBC =∠F +∠FEC .证明:∵BM ∥AC ,∴∠MBA =∠A ,、∵∠A =∠ABC ,∴∠MBC =∠MBA +∠ABC =2∠A ,又∵∠F +∠FEC =2∠A ,∴∠MBC =∠F +∠FEC .11.【解答】解:∵S △ABC =12AC •BE ,S △ABC =12BC •AD ,∴AC •BE =BC •AD ,∴BE =406=203.12.【解答】解:设BD =CD =x ,AB =y ,则AC =2BC =4x ,∵BC 边上的中线AD 把△ABC 的周长分成60和40两部分,AC >AB , ∴AC +CD =60,AB +BD =40,即{4A +A =60A +A =40,解得:{A =12A =28, 当AB =28,BC =24,AC =48时,符合三角形三边关系定理,能组成三角形,所以AC =48,AB =28.13.【解答】解:∵三角形的外角∠DAC 和∠ACF 的平分线交于点E ,∴∠EAC =12∠DAC ,∠ECA =12∠ACF ;又∵∠B =47°(已知),∠B +∠1+∠2=180°(三角形内角和定理),∴12∠DAC +12∠ACF =12(∠B +∠B +∠1+∠2)=227°2(外角定理),∴∠E =180°﹣(12∠DAC +12∠ACF )=66.5°.14.【解答】解:S △AOB =S 梯形BCDO ﹣(S △ABC +S △OAD ) =12×(3+6)×6﹣(12×2×3+12×4×6)=27﹣(3+12) =12.15.【解答】解:(1)由题意知,9﹣2<x <9+2,即7<x <11;(2)∵7<x <11,∴x 的值是8或9或10,∴△ABC 的周长为:9+2+8=19(舍去).或9+2+9=20或9+2+10=21(舍去)即该三角形的周长是20.16.【解答】解:(1)∵∠A =62°,∠ACD =35°,∴∠BDC =∠A +∠ACD =62°+35°=97°;(2)∵∠ABE =20°,∠BDC =97°,∴∠BFC =∠BDC +∠ABE =97°+20°=117°.17.【解答】解:∵∠A =∠B +20°,∠C =∠A +50°, ∴∠C =∠B +20°+50°,∵∠A +∠B +∠C =180°,∴∠B +20°+∠B +∠B +20°+50°=180°,解得:∠B =30°,∴∠A =30°+20°=50°,∴∠C =50°+50°=100°,即∠A =50°,∠B =30°,∠C =100°.18.【解答】解:(1)∵AD ⊥BC ,∴∠D =90°,∵∠ACB =100°,∴∠ACD =180°﹣100°=80°,∴∠CAD =90°﹣80°=10°,∵∠B =30°,∴∠BAD =90°﹣30°=60°,∴∠BAC =50°,∵AE 平分∠BAC ,∴∠CAE =12∠BAC =25°,∴∠EAD =∠CAE +∠CAD =35°;(2)∵AD ⊥BC ,∴∠D =90°,∵∠ACB =β,∴∠ACD =180°﹣β,∴∠CAD =90°﹣∠ACD =β﹣90°,∵∠B =α,∴∠BAD =90°﹣α,∴∠BAC =90°﹣α﹣(β﹣90°)=180°﹣α﹣β, ∵AE 平分∠BAC ,∴∠CAE =12∠BAC =90°−12(α+β),∴∠EAD =∠CAE +∠CAD =90°−12(α+β)+β﹣90°=12β−12α.故答案为:12β−12α.19.【解答】解:(1)∵∠B =30°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =80°;(2)∵AE 是∠BAC 的平分线,∴∠BAE =12∠BAC =40°,∴∠AED =∠BAE +∠B =40°+30°=70°;(3)∵AD ⊥BC ,∴∠ADE =90°,∴∠EAD =∠ADE ﹣AED =90°﹣70°=20°.20.【解答】解:(1)∵∠A =35°,∠B =30°,∴∠ACD =∠A +∠B =65°,又∵AC 平分∠DCE ,∴∠ACE =∠ACD =65°,∴∠BEC =∠A +∠ACE =35°+65°=100°, 故答案为:100°;(2)关系式为∠BEC =2∠A +∠B .理由:∵AC 平分∠DCE ,∴∠ACD =∠ACE ,∵∠BEC =∠A +∠ACE =∠A +∠ACD ,∵∠ACD =∠A +∠B ,∴∠BEC =∠A +∠A +∠B =2∠A +∠B .21.【解答】解:∵∠B =42°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =68°,∵AE 平分∠BAC ,∴∠CAE=12A BAC=34°,∵AD是BC边上的高,∴∠ADC=90°,∵∠C=70°,∴∠CAD=180°﹣∠ADC﹣∠C=20°,∴∠DAE=∠CAE﹣∠CAD=34°﹣20°=14°.22.【解答】解:(1)∵DE∥BA,DF∥CA,∴∠A=∠DEC,∠DEC=∠EDF,∵∠EDF=85°∴∠A=∠EDF=85°;故答案为:85;(2)证明:如图1,延长BA交DF于G.∵DF∥CA,∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3.∴DE∥BA.(3)∠EDF=∠A,∠EDF+∠A=180°,理由:如图2,∵DE∥BA,DF∥CA,∴∠EDF+∠E=180°,∠E+∠EAF=180°,∴∠EDF=∠EAF=∠A;如图3,∵DE∥BA,DF∥CA,∴∠EDF+∠F=180°,∠F=∠CAB,∴∠EDF+∠BAC=180°.即∠EDF+∠A=180°,。
沪科版八年级数学上册 第13章 《三角形边角关系》重点练
第13章《三角形中的边角关系》重点练1.下列长度的三条线段,不能组成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cm C.3cm,4cm,5cm D.5cm,6cm,7cm2.已知三角形两边的长分别是3和6,则此三角形第三边的长可能是()A.1B.2 C.8 D.113.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cm B.3cm C.4cm D.5cm4. 三角形的三边长分别是3,1﹣2m,8.则数m的取值范围是()A.﹣5<m<﹣2B.﹣5<m<2C.5<m<11D.0<m<2 5.△ABC的三个内角∠A,∠B,∠C满足∠A:∠B:∠C=3:4:5,则这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形6. △ABC满足条件∠A=∠B=∠C则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.如果一个三角形的三条高的交点恰好是三角形的一个顶点,则这个三角形的形状是()A.等腰三角形B.锐角三角形C.钝角三角形D.直角三角形8.下列四个图形中,线段BE是△ABC的高的是9、已知a,b,c是ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2cB.2a+2bC.2cD.010、已知n是正整数,若一个三角形的三边长分别是n+2、8+n、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个11、具备下列条件的△ABC中,不是直角三角形的是()A .∠A+∠B=∠CB .∠A=12∠B=13∠CC .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C12、如图,在ABC ∆中,AD 平分BAC ∠,EG AD ⊥,且分别交AB ,AD ,AC及BC 的延长线于点E ,H ,F ,G ,若45B ∠=︒,75ACB ∠=︒,则G ∠的度数为( )13、 如图AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=120°,∠C=40°,则∠DAE 的度数是 ______________ .14、三角形的三边长分别为3、m 、5=_______15、已知,,a b c 分别为ABC ∆的三边,且满足32,26a b c a b c +=--=-. (1)求c 的取值范围;(2)若ABC ∆的周长为12,求c 的值.16、已知,在 ABC 中,AB=8,且BC=2a+2,AC=22. (1)求a 的取值范围;(2)若 为等腰三角形,求这个三角形的周长。
沪科版八年级数学上第13章三角形中的边角关系、命题与证明13
自主学习
基础夯实
整合运用
思维拓展
第2页
八年级 数学 上册 沪科版
典例导学 如图,在△ABC 中,∠ACB=90°,∠ACD=∠B.求证:△CDB 是直角
三角形.
【思路分析】要证△CDB 是直角三角形,可证∠B+∠DCB=90°,在△ABC
中,已知∠ACB=90°,易证△CDB 是直角三角形.
自主学习
A.85° B.90° C.95° D.100°
自主学习
基础夯实
整合运用
思维拓展
第 14 页
八年级 数学 上册 沪科版
9.如图,在△ABC 中,∠C=90°,则∠B 为 A.15° B.30° C.50° D.60°
(D)
自主学习
基础夯实
整合运用
思维拓展
第 15 页
八年级 数学 上册 沪科版
10.已知三角形 ABC 的三个内角满足关系∠B+∠C=3∠A,则此三角形 (D)
八年级 数学 上册 沪科版
第 3 课时 三角形内角和定理的证明及 推论
自主学习
基础夯实
整合运用
思维拓展
第1页
八年级 数学 上册 沪科版
要点感知 1.三角形内角和定理:三角形的内角和等于 18180°0°. 2.为了证明的需要,在原来图形上添画的线叫做辅辅助线助线. 3.直角三角形的两锐角互互余 余. 4.有两个角互余的三角形是直直角角三三角形角形.
1 ∴∠EGD=3×(180°-60°)=40°, ∴∠1=40°.
自主学习
基础夯实
整合运用
思维拓展
第 23 页
八年级 数学 上册 沪科版
(2)∠AEF+∠FGC=90°. 理由:∵AB∥CD, ∴∠AEG+∠CGE=180°, 即∠AEF+∠FEG+∠EGF+∠FGC=180°, 又∵∠FEG+∠EGF=90°, ∴∠AEF+∠FGC=90°.
《三角形中的边角关系、命题与证明》填空题精选 2020年沪科版八年级上册期末复习(含答案)
2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习第13章《三角形中的边角关系、命题与证明》填空题精选一.填空题(共30小题)1.(2020春•铜陵期末)在平面直角坐标系中,三角形ABC的三个顶点的坐标分别是A(2,3),B(0,4),C(0,﹣2),则三角形ABC的面积为.2.(2020春•蜀山区期末)将一副直角三角板如图放置,点E在AC边上,且ED∥BC,∠C=30°,∠F =∠DEF=45°,则∠AEF=度.3.(2020春•芜湖期末)已知点A(﹣4,0),B(2,0),点C在y轴上,且△ABC的面积等于12,则点C 的坐标为.4.(2019秋•东至县期末)如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.若∠B=38°,∠C=70°,则∠DAE=.5.(2019秋•当涂县期末)设三角形三边之长分别为2,9,5+a,则a的取值范围为.6.(2019秋•蜀山区期末)写出命题“如果mn=1,那么m、n互为倒数”的逆命题:.7.(2019秋•蜀山区期末)如图,一个直角三角形纸片ABC,∠BAC=90°,D是边BC上一点,沿线段AD 折叠,使点B落在点E处(E、B在直线AC的两侧),当∠EAC=50°时,则∠CAD=°.8.(2019秋•肥东县期末)如图,在△ABC中,BD,BE将∠ABC分成三个相等的角,CD,CE将∠ACB 分成三个相等的角.若∠A=105°,则∠D等于度.9.(2019秋•潜山市期末)△ABC的两边长分别是2和5,且第三边为奇数,则第三边长为.10.(2019秋•当涂县期末)如图,若△ABC和△DEF的面积分别为S1、S2,则S1与S2的数量关系为.11.(2019秋•裕安区期末)如图,在平面直角坐标系中,O为坐标原点,点A(0,3)和点B(2,0)是坐标轴上两点,点C(m,n)(m≠n)为坐标轴上一点,若三角形ABC的面积为3,则C点坐标为.12.(2019秋•裕安区期末)如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F,若∠C=35°,∠DEF=15°,则∠B的度数为.13.(2019秋•包河区期末)命题“两直线平行,同位角相等”的逆命题是命题.(填“真”或“假”)14.(2019秋•裕安区期末)若△ABC的三边的长AB=5,BC=2a+1,AC=3a﹣1,则a的取值范围为.15.(2018秋•濉溪县期末)命题“如果∠A=∠B,那么∠A的余角与∠B的余角相等”的条件是,结论是.16.(2018秋•义安区期末)△ABC的两条角平分线BP、CP相交于点P,若∠A=80°,则∠BPC=.17.(2018秋•砀山县期末)下列命题中,真命题为.①如果一个三角形的三边长分别为√5,3,√14,那么这个三角形是直角三角形②如果两个一次函数的图象平行,那么它们表达式中的k相同③三角形的一个外角等于两个内角的和18.(2018秋•长丰县期末)命题“如果|a|=|b|,那么a2=b2”的逆命题是,此命题是(选填“真“或“假”)命题.19.(2018秋•安庆期末)设三角形三边之长分别为3,7,1+a,则a的取值范围为.20.(2018秋•瑶海区期末)已知点A(4,0)、B(0,5),点C在x轴上,且△BOC的面积是△ABC的面积的3倍,那么点C的坐标为.21.(2017秋•蚌埠期末)如图,D是线段AC上一点,连BD,用不等号“<”表示∠A,∠1的大小关系为.22.(2017秋•蜀山区期末)如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠A=70°,则∠BOC =.23.(2017秋•埇桥区期末)一个三角形的最大角不会小于度.24.(2017秋•颍上县期末)“对顶角相等”这个命题的逆命题是,它是一个命题(填“真”或“假”).25.(2017秋•怀远县期末)请给假命题“两个锐角的和是钝角”举一个反例.26.(2017秋•瑶海区期末)命题“两组对边分别平行的四边形是平行四边形”的逆命题,是命题.(填“真”或“假”)27.(2017秋•望江县期末)三角形三边长分别为3,1﹣2a,8,则a的取值范围是.28.(2017秋•埇桥区期末)把命题“任意两个直角都相等”改写成“如果…,那么…”的形式是.29.(2017秋•固镇县期末)命题“有两边相等的三角形是等腰三角形”它的题设是,结论是,它的逆命题是.30.(2017秋•临泉县期末)如图所示,△ABC中,BD,CD分别平分∠ABC和外角∠ACE,若∠D=24°,则∠A=度.2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》填空题精选参考答案与试题解析一.填空题(共30小题)1.【解答】解:如图,BC=4+2=6.所以S△ABC=12BC•x A=12×6×2=6.故答案是:2.2.【解答】解:∵ED∥BC,∠C=30°∴∠DEC=∠C=30°,∵∠DEF=45°,∴∠CEF=∠DEF﹣∠DEC=45°﹣30°=15°.∴∠AEF=180°﹣∠CEF=165°,故答案为:165.3.【解答】解:如右图所示,设C点的坐标是(0,x),∵S△ABC=12,∴12×AB×OC=12×6•|x|=12,∴|x|=4,故点C的坐标是(0,4)或(0,﹣4).故答案为(0,4)或(0,﹣4).4.【解答】解:∵∠B=38°,∠C=70°,∴∠BAC=72°,∵AE是∠BAC平分线,∴∠BAE=36°,∵AD是BC边上的高,∠B=38°,∴∠BAD=52°,∴∠DAE=∠BAD﹣∠BAE=16°,故答案为16°.5.【解答】解:由题意得9﹣2<5+a<9+2,解得2<a<6.故答案为:2<a <6.6.【解答】解:命题“如果mn =1,那么m 、n 互为倒数”的逆命题是如果m 、n 互为倒数,那么mn =1, 故答案为:如果m 、n 互为倒数,那么mn =1.7.【解答】解:设∠CAD =x .∵∠DAE =∠DAB ,∴50°+x =90°﹣x ,解得x =20°,∴∠CAD =20°,故答案为20.8.【解答】解:∵∠A =105°,∴∠ABC +∠ACB =180°﹣105°=75°,∵BD ,BE 将∠ABC 分成三个相等的角,CD ,CE 将∠ACB 分成三个相等的角,∴∠DBC +∠DCB =23×75°=50°, ∴∠D =180°﹣(∠DBC +∠DCB )=130°,故答案为130.9.【解答】解:∵5﹣2=3,5+2=7,∴3<第三边<7,∵第三边为奇数,∴第三边长为5.故选:5.10.【解答】解:过A 点作AG ⊥BC 于G ,过D 点作DH ⊥EF 于H .在Rt △ABG 中,AG =AB •sin40°=5sin40°,∠DEH =180°﹣140°=40°,在Rt △DHE 中,DH =DE •sin40°=8sin40°,S 1=8×5sin40°÷2=20sin40°,S 2=5×8sin40°÷2=20sin40°.则S 1=S 2.故答案为:S 1=S 2.11.【解答】解:∵点C (m ,n )(m ≠n )为坐标轴上一点,∴S △ABC =12×3×|m ﹣2|=3或S △ABC =12×2×|n ﹣3|=3,解得:m =4或0,n =6或0,∴C 点坐标为(4,0)或(0,6),故答案为:(4,0)或(0,6).12.【解答】解:∵EF ⊥BC ,∠DEF =15°,∴∠ADB =90°﹣15°=75°.∵∠C =35°,∴∠CAD =75°﹣35°=40°.∵AD 是∠BAC 的平分线,∴∠BAC =2∠CAD =80°,∴∠B =180°﹣∠BAC ﹣∠C =180°﹣80°﹣35°=65°.故答案为:65°.13.【解答】解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行,正确,为真命题,故答案为:真.14.【解答】解:∵△ABC 的三边的长AB =5,BC =2a +1,AC =3a ﹣1,∴①{(3a −1)+(2a +1)>5(3a −1)−(2a +1)<5, 解得1<a <7;②{(3a −1)+(2a +1)>5(2a +1)−(3a −1)<5, 解得a >1,则2a +1<3a ﹣1.∴1<a <7.故答案为:1<a <7.15.【解答】解:命题“如果∠A =∠B ,那么∠A 的余角与∠B 的余角相等”的条件是∠A =∠B ,结论是∠A 的余角与∠B 的余角相等,故答案为:∠A =∠B ;∠A 的余角与∠B 的余角相等.16.【解答】解:如图,∵BP 、CP 分别是△ABC 的角平分线∴∠ABP =∠CBP ,∠ACP =∠PCB ;∵∠A +∠ABC +∠ACB =180°,∴∠A +2∠CBP +2∠PCB =180°;∵∠A =80°,∴∠CBP +∠PCB =50°;在△BPC 中,又∵∠BPC +∠CBP +∠PCB =180°,∴∠BPC =130°.17.【解答】解:①如果一个三角形的三边长分别为√5,3,√14,∵(√5)2+32=(√14)2,∴这个三角形是直角三角形,是真命题,符合题意;②如果两个一次函数的图象平行,那么它们表达式中的k 相同,是真命题;③三角形的一个外角等于两个不相邻内角的和,故原说法错误.故答案为:①②.18.【解答】解:根据题意得:命题“如果|a |=|b |,那么a 2=b 2”的条件是如果|a |=|b |,结论是a 2=b 2”,故逆命题是如果a 2=b 2,那么|a |=|b |,该命题是真命题.故答案为:如果a 2=b 2,那么|a |=|b |;真.19.【解答】解:由题意,得{a +1>7−3a +1<7+3, 解得:3<a <9,故答案为:3<a <9.20.【解答】解:∵点A(4,0)、B(0,5),∴OA=4,OB=5,设OC=a(a≥0),有三种情况:①当C在x轴的负半轴上时,∵△BOC的面积是△ABC的面积的3倍,∴12×a×5=3×12×(4+a)×5,解得:a=﹣6,不符合a≥0,舍去;②当C在x轴的正半轴上,且在点A的右边时,∵△BOC的面积是△ABC的面积的3倍,∴12×a×5=3×12×(a﹣4)×5,解得:a=6,此时点C的坐标是(6,0),③当C点在O、A之间时,∵△BOC的面积是△ABC的面积的3倍,∴12×a×5=3×12×(4﹣a)×5,解得:a=3,此时点C的坐标是(3,0),所以点C的坐标为(3,0)或(6,0),故答案为:(3,0)或(6,0).21.【解答】解:∵∠1是△ABD的一个外角,∴∠A<∠1,故答案为:∠A<∠1.22.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠CBO,∠BCO=∠ACO,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠A)=12(180°﹣70°)=55°,∴在△BOC中,∠BOC=180°﹣55°=125°.故答案为:125°.23.【解答】解:由分析可知:如果三角形的最大角小于60°,那么此三角形的内角和小于180度,与三角形的内角和是180度矛盾.所以三角形的最大角不小于60度;故答案为:60.24.【解答】解:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,∴逆命题是:相等的角是对顶角,它是假命题,故答案为:相等的角是对顶角,假25.【解答】解:例如α=30°,β=40°,α+β<90°,故答案为:α=30°,β=40°,α+β=70°<90°,26.【解答】解:命题“两组对边分别平行的四边形是平行四边形”的逆命题是平行四边形的两组对边分别平行;该命题是真命题.故答案为:平行四边形的两组对边分别平行,真.27.【解答】解:∵三角形三边长分别为3,1﹣2a,8,∴8﹣3<1﹣2a<8+3,解得﹣5<a<﹣2.故答案为:﹣5<a<﹣2.28.【解答】解:把命题“任意两个直角都相等”改写成“如果…,那么…”的形式是:如果两个角都是直角,那么这两个角相等,故答案为:如果两个角都是直角,那么这两个角相等.29.【解答】解:命题“有两边相等的三角形是等腰三角形”它的条件是“有两边相等的三角形”,结论是“这个三角形是等腰三角形”,故题设是有两边相等的三角形,结论是“这个三角形是等腰三角形”,它的逆命题是“等腰三角形的两腰相等”.30.【解答】解:∵∠A=∠ACE﹣∠ABC=2∠DCE﹣2∠DBC=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D=48°.。
完整版沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明含答案
沪科版八年级上册数学第13章三角形中的边角关系、命题与证明含答案一、单选题(共15题,共计45分)1、△ABC的内角和为( )A.180°B.360°C.540°D.720°2、在△ABC中,,则△ABC是()A.等腰直角三角形B.锐角三角形C.钝角三角形D.直角三角形3、方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.不能确定4、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点层处.若∠A=22°,则∠BDC等于( )A.44°B.60°C.67°D.77°5、若三角形三个内角度数的比为1:2:3,则这个三角形的最小角是()A.30°B.45°C.60°D.90°6、在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=2∠B=3∠C,④中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个7、下列命题是假命题的是()A.线段垂直平分线上的点到线段两端的距离相等B.三角形的一个外角等于与它不相邻的两个内角的和C.有一个外角是120°的等腰三角形是等边三角形D.有两边和一角对应相等的两个三角形全等8、如图,在等腰△ABC中,∠BAC=120º,DE是AC 的垂直平分线,线段DE=1cm,则BD的长为( )A.6cmB.8cmC.3cmD.4cm9、下列命题中是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直10、在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是( )A. B. C.D.11、若等腰三角形的两边长分别是3和10,则它的周长是()A.16B.23C.16或23D.1312、如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB 上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°13、下列条件中,不能判定为直角三角形的是()A. B.C. D. ,,14、如图,在△ABC中,CD是∠ACB的平分线,∠A = 80°,∠ACB = 60°,那么∠BDC =()A.80°B.90°C.100°D.110°15、如图,在等腰中,,,点在边上,且,点在线段上,满足,若,则是多少?()A.9B.12C.15D.18二、填空题(共10题,共计30分)16、已知三角形的两边分别为a=2,b=5,则第三边c的取值范围为________.17、如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是________.18、已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为________.19、等腰三角形一腰上的高与另一腰的夹角是40°,则该等腰三角形顶角为________°.20、如图,中,,,BD平分交AC于点D,那么的度数是________.21、在等腰中,,,则∠A=________22、如图,直线与,轴分别交于A,B两点,C是以D(2,0)为圆心,为半径的圆上一动点,连接AC,BC,则△ABC的面积的最大值是________.23、已知等腰三角形的两边长是和,则它的周长是________.24、如图,是的高,是的平分线,,则的度数是________.25、已知三角形三个内角的度数之比为2:2:5,则其最大内角的度数是________.三、解答题(共5题,共计25分)26、如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC 的度数.27、如图,AD平分∠BAC,其中∠B=35°,∠ADC=82°,求∠BAC,∠C的度数.28、已知等腰三角形底边长为8,腰长是方程的一个根,求这个等腰三角形的腰长。
沪科版数学八年级上册 第十三章-三角形中的边角关系、命题和证明 巩固练习(解析版)
沪科版数学八年级上册-第十三章-三角形中的边角关系,命题与证明-巩固练习一、单选题1.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A.90°B.120°C.135°D.180°2.如图,∠1=100°,∠C=70°,则∠A的大小是()A.10°B.20°C.30°D.80°3.有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A. B.C. D.4.若一个三角形的一边长为3 cm,则它的周长可能为()A.4 cmB.5 cmC.6 cmD.8 cm5.下面四个图形中,线段BE是△ABC的高的图是()A. B. C. D.6.对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2﹣1;③不等式组的解集为:﹣1<x<4;④点(1,﹣2)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③④C.①②④D.①②③7.若线段2a+1,a,a+3能构成一个三角形,则a的范围是()A.a>0B.a>1C.a>2D.1<a<38.到三角形各顶点的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点二、填空题9.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。
量角器的O刻度线AB 对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是________.10.如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是________.11.命题“同位角相等”的逆命题是________12.一个三角形的两边长分别是3和8,周长是偶数,那么第三边边长是________.13.“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为________.14.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.15.如图,已知△中, ,剪去后变成四边形,则=________.16.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t 秒时,边CD所在直线恰好与边AB所在直线垂直,则t的值为________.三、解答题17.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制订出两种以上的划分方案以供选择(画图说明).18.如图,按规定,一块横板中AB、CD的延长线相交成85°角,因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB、CD的延长线相交所成的角是不是符合规定?为什么?四、综合题19.已知,如图,在△ABC中,AD平分∠BAC,DE、DF分别是△ADC的高和角平分线(∠C >∠DAC).(1)若∠B=80°,∠C=40°,求∠DAE的度数;(2)试猜想∠EDF、∠C与∠DAC有何种关系?并说明理由.20.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射.若被b 反射出的光线n与光线m平行,且∠1=50°,则∠2=________,∠3=________;(2)在(1)中,若∠1=55°,则∠3=________;若∠1=40°,则∠3=________;(3)由(1)、(2)请你猜想:当两平面镜a,b的夹角∠3等于多少度时,可以使任何射到平面镜a上的光线m,经过平面镜a,b的两次反射后,入射光线m与反射光线n平行,请说明理由.21.如图:△ABC的边BC的高为AF,AC边上的高为BG,中线为AD,AF=6,BC=12,BG=5,(1)求△ABD的面积.(2)求AC的长.(3)△ABD和△ACD的面积有何关系.答案一、单选题1.【答案】D【解析】【解答】解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故答案为:D【分析】在题目中,根据相邻三个角的角度和为180°,即可求得9个角的角度和,根据三个三角形为全等三角形,即可求得三个角的角度和。
三角形中的边角关系复习
21DC B AD C BA“三角形中的边角关系”的复习一、复习目标1.了解与三角形有关的线段(边、高、中线、角平分线),知道三角形三边关系的两个定理,会画出任意三角形的高、中线、角平分线.2.了解与三角形有关的角(内角、外角),会用平行线的性质与平角的定义说明三角形内角和等于180°,探索并理解三角形内角的和定理的三个推论. 3.了解三角形的按边、按角进行的分类。
4.了解定义、命题、真命题、假命题、原命题、逆命题、反例等概念,会判断命题的条件与结论,知道原命题与逆命题关系。
5.公理、定理、证明、演绎推理、辅助线等概念,会进行简单的推理证明 6. 提高学生的推理证明及学生的概括与归纳能力。
二、重难点重点是:梳理本章知识,强化知识之间的联系;难点是:提高学生的推理证明及学生的概括与归纳能力。
三、知识归纳1.三角形的概念不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.①三角形有三条边,三个内角,三个顶点.②组成三角形的线段叫做三角形的边;③相邻两边所组成的角叫做三角形的内角,简称角; ④相邻两边的公共端点是三角形的顶点, ④三角形ABC 用符号表示为△ABC ,⑤三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义. 2.三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.3.三角形的中线、角平分线、高(1)三角形中线:连结一个顶点和它对边中点的线段. 表示法:① AD 是△ABC 的BC 上的中线.② BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段。
八年级数学上册第13章三角形中的边角关系第1课时三角形中边的关系上课pptx课件新版沪科版
其它两边之差<三角形的一边<其它两边之和
三角形中任何两边的和大于第三边. 三角形中任何两边的差小于第三边.
三角形。
等腰三角形中, 相等的两边叫做 腰,第三边叫做 底边,两腰的夹 角叫做顶角,腰 与底边的夹角叫
做底角.
顶角
腰
腰
底角 底
底角
等腰三角形
等边三角形Leabharlann 不等边三角形按边分类
不等边三角形
腰和底不等的三角形 等腰三角形
等边三角形
在一个三角形中,任意两边之和与第三边 的大小关系如何?你判断的根据是什么?
A
c b
B
C
a
A
c b
B
C
a
由“两点之间,线段最短”可以得到
AB+AC>BC
同理可得:AC+BC>AB,
三角形的三边有这样的关系: (1) 三角形中任何两边的和大于第三边. (2) 三角形中任何两边的差小于第三边.
例1 等腰三角形中,周长为18cm. (1)如果腰长是底边长的2倍,求各边长; (2)如果一边长为4cm,求另两边长.
2.一个等腰三角形的一边是2cm,另一边是 9cm,则这个三角形的周20长cm是______.
3. 一个等腰三角形的一边是5cm,另一边是9cm, 则这个三角形的周长是_1__9_c_m__或__2_3_c_m__
4.已知一个三角形的两条边长分别为3cm和 9cm,你能确定该三角形第三条边长的范围吗?
解:(1)设等腰三角形的底边长为xcm, 则腰长为2xcm,根据题意,得
x+2x+2x = 18 解方程,得 x = 3.6 所以三角形的三边长为3.6cm,7.2cm, 7.2cm.
13.1.2 三角形中角的关系-2020秋沪科版(安徽)八年级数学上册习题课件(共21张PPT)
根据三角形内角和等于 180°, 可得∠A+∠ADB+∠ABD=180°, 所以可以知道∠CDB+∠CBD=180°-140°=40°. 又因为∠DCB+∠CDB+∠CBD=180°, 所以∠DCB=180°-40°=140°. 这说明若零件合格,则∠DCB=140°,而李师傅量得∠DCB= 142°,所以可以断定这个零件不合格.
第13章 三角形中的边角关系、命题与证明
13.1 三角形中的边角关系 第2课时 三角形中角的关系
提示:点击 进入习题
答案显示
核心必知 1 直角三角形;钝角三角形 2 180°
1C
2C
3A
4 50° 5 见习题
6 见习题 7 C
8 见习题 9 见习题 10 见习题
11 见习题 12 见习题
1.三角形按角分类: 直角三角形
12.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F 的度数, 并说明你的理由.
解:猜想∠A+∠B+∠C+∠D+∠E+∠F=360°. 理由:因为∠A+∠B+∠AMB=180°,∠AMB+∠BMP=180°, 所以∠BMP=∠A+∠B. 同理得∠ENM=∠E+∠F,∠MPC=∠C+∠D. 又因为∠BMP+∠ENM+∠MPC =(180°-∠NMP)+(180°-∠MNP)+(180°-∠MPN) =540°-(∠NMP+∠MNP+∠MPN)=540°-180°=360°, 所以∠A+∠B+∠C+∠D+∠E+∠F=360°.
三角形斜三角形锐钝角角三三角角形形 2.三角形的内角和等于_1_8_0_°____,一个三角形中最多有一个直
角或一个钝角.
1.一个三角形三个内角的度数分别是 95°,25°,60°,则这个三 角形是( C ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.三角形的概念
不在同一直线上的三条线段首尾顺次相接组成 的图形叫做三角形.
注意: 1:三条线段要不在同一直线上,且首尾顺 次相接; 2:三角形是一个封闭的图形; 3:△ABC是三角形ABC的符号标记,单独 的任意两边之和大于第三边; 三角形的任意两边之差小于第三边.
9.如图,已知,直线 AB∥CD,证明: ∠A+∠C=∠AEC.
10.已知如图所示,在△ABC 中,DE//BC,F是AB上的一 点,FE的延长线交BC的延长 线于点G,求证 ∠EGH>∠ADE.
A
3 4 1 2
例2、 如图,已知AD是 △ABD和△ACD的公共 边.
B
D C
证明:∠BDC=∠BAC+∠B+∠C
(3)三角形的角平分线:三角形一个内角的平分线与它 的对边相交,这个角顶点与交点之间的线段。
A
表示法: ① AD是△ABC的∠BAC的平分线. ② ∠1=∠2=½∠BAC.
1 2
B
D
C
注意:
①三角形的角平分线是线段;
②三角形三条角平分线全在三角形的内部;
③三角形三条角平分线交于三角形内部一点;
④用量角器画三角形的角平分线.
注意: 1:三边关系的依据是:两点之间线段是短 2:判断三条线段能否构成三角形的方法:只要满足较小 的两条线段之和大于第三条线段,便可构成三角形; 若不满足,则不能构成三角形. 3:三角形第三边的取值范围是: 两边之差<第三边<两边之和
3.三角形的高、中线、角平分线、
(1 )三角形的高:从三角形的一个顶点向它的对边所在 的直线作垂线,顶点和垂足之间的线段.
三角形中的边角关系 总复习
1.三角形的概念
不在同一直线上的三条线段首尾顺次相接组成 的图形叫做三角形.
①三角形有三条边,三个内角,三个顶点. ②组成三角形的线段叫做三角形的边; ③相邻两边所组成的角叫做三角形的内角,简称 角; ④相邻两边的公共端点是三角形的顶点, ④三角形ABC用符号表示为△ABC, ⑤三角形ABC的边AB可用边AB所对的角C的小写 字母c 表示,AC可用b表示,BC可用a表示.
7.有关“公理、定理、证明、推论、演绎推理、 辅助线”等概念 (1)公理:从长期实践中总结出来的,不需要再作 证明的真命题。 (2)定理:从公理或其他真命题出发,用推理方法证 明为正确的,并被选作判断命题真假的依据的真命 题 (3)推论:由公理、定理直接得出的真命题。 (4)演绎推理:从已知条件出发,依据定义、公 理、定理,并按照逻辑规则,推导出结论的方法。
解:设∠B=xº,则∠A=3xº ,∠C=4xº,
从而:x+3x+4x=180º ,解得x=22.5º . 即:∠B=22.5º ,∠A=67.5º ,∠C=90º .
考点四:三角形内角和定理:
例4 如图,点O是△ABC内一点,∠A=80°, ∠1=15°,∠2=40°,则∠BOC等于( ) A. 95° B. 120° C. 135° D. 650 A
证明三角形内角和定理的方法
添加辅助线思路:1、构造平角
A D E 1 2 F E A
A E 1
2
D
B 图2 C
1
2 D
B
图1
C
B
C
图3
添加辅助线思路:2、构造同旁内角
E A
E
A
F 4 C
1 2
B 图1 C
3
B
D
图2
9.三角形的外角
三角形的外角的定义: 三角形一边与另一边的延长线 组成的角,叫做三角形的外角.
4.三角形的分类:
1:按边分类
不等边三角形 三角形 腰与底不相等的等腰三角形 等腰三角形 腰与底相等的等边三角形
2:按角分类
直角三角形 三角形 锐角三角形 斜三角形 钝角三角形
5. 对“定义”的理解:
能明确界定某个对象含义的语句叫做定义。
注意:明确界定某个对象有两种形式:
A
表示法:① AD是△ABC的BC上的高线. ② AD⊥BC于D. ③ ∠ADB=∠ADC=90°.
B
注意:
D
C
① 三角形的高是线段;
② 锐角三角形三条高全在三角形的内部; 直角三角形有两条高是直角边,另一条在内部;
钝角三角形有两条高在三角形外,另一条在内部。
③ 三角形三条高所在直线交于一点.
3.三角形的高、中线、角平分线、
6.有关“命题”的概念
用来判断它是真(正确)、假(错误)的语句或 式子叫做命题。
注意:
① 命题有真命题和假命题两种, ② 命题由题设和结论两部分组成的. 前一部分,也 称之为条件,后一部分称之为结论。 ③ 命题通常是用“如果···, 那么···.”的形式给出. ··· ···
④ “如果p, 那么q.”中的题设与结论互换,得一个 新命题: “如果q, 那么p.” 这两个命题称为互逆命 题.其中一个命题叫原命题,另一个命题叫做逆命题. ⑤ 当一个命题是真命题时它的逆命题不一定是真命题. ⑥ 符合命题的题设,但不满足命题的结论的例子, 称之为反例. 要说明一个命题是假命题,只要举一个 反例即可.
分析与解: ∠O=180°-(∠OBC+∠OCB) =180°-(180°-(∠1+∠2+∠A) B =∠1+∠2+∠A=135°.
O 1 图1 2 C
巩固练习
1.在△ABC中,三边长a,b,c都是整数, 且满足a>b>c,a=8,那么满足条件的三角 形共有多少个?
a b c 8 5 4 8 6 5,4,3 8 7 7,6,5,4,3
3.如图,草原上有四口油井,位于四边形 ABCD的四个顶点上,现在要建立一个维修 站H,试问H建在何处,才能使它到四口油井 的距离之和HA+HB+HC+HD最小,说明理由.
4.如图,AC∥BD,AE平 分∠BAC交BD于点E,若 ∠1=64°,则∠2= .
5.如图所示的正方形网格中,网格线的交点 称为格点.已知A、B是两格点,如果C也是 图中的格点,且使得△ABC为等腰三角形, 则点C的个数是( )
①揭示对象的特征性质;
例如:从三角形的一个顶点向它的对边所在的直线 作垂线,顶点和垂足之间的线段叫做三角形的高. ② 明确对象的范围。 例如:整数和分数统称为有理数
考点一:数三角形的个数
例1 图中三角形的个数是( B )
A.8
B.9
C.10
D.11
考点二:三角形三边关系
例2 :已知四组线段的长分别如下,以各组线段为边 ,能组成三角形的是( C ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,10 例3:下列各组条件中,不能组成三角形的是( C ) A. a+1、a+2、a+3 (a>3) B. 3cm、8cm、10 cm C. 三条线段之比为1:2:3 D. 3a、5a、2a+1 (a>1)
三角形的外角与内角的关系:
1:三角形的一个外角与它相邻的内角互补;
2:三角形的一个外角等于它不相邻的两个内角的和;
3:三角形的一个外角大于任何一个与它不相邻的内角。 4:三角形的外角和为360°。
考点四:三角形内角和定理:
1 1 例3 △ABC中,∠B= ∠A= 4 ∠C,求 3
△ABC的三个内角度数.
A.6
B.7
C.8
D.9
6.已知:如图,AB∥CD, 直线EF分别交AB、CD于点 E、F,∠BEF的平分线与 ∠DFE的平分线相交于点 P.求证:∠P=90°.
7.求证:三角形内角之和等于 180°.
8.如图1,求证: ∠BOC=∠A+∠B+∠C.
如图2,∠ABC=100°,∠DEF=130°, 求∠A+∠C+∠D+∠F的度数.
考点二:三角形三边关系
例3.△ABC的三边长分别为4、9、x, ⑴ 求x的取值范围; ⑵ 求△ABC周长的取值范围; ⑶ 当x为偶数时,求x; ⑷ 当△ABC的周长为偶数时,求x; ⑸ 若△ABC为等腰三角形,求x.
考点三:三角形的三线
例4:下列说法错误的是( B ) A:三角形的三条中线都在三角形内。 B:直角三角形的高线只有一条。 C:三角形的三条角平分线都在三角形内。 D:钝角三角形内只有一条高线。 例5:在三条边都不相等的三角形中,同一条边上的中 线,高和这边所对角的角平分线,最短的是( B ) A:中线。 B:高线。 C:角平分线。 D:不能确定。
变式:1.已知小明家距离学校10千米,而 小蓉家距离小明家3千米.如果小蓉家到 学校的距离是d千米,则d满足 ?
变式2.用三条绳子打结成三角形(不考虑 结头长),已知其中两条长分别是3米和7 米,问这个等腰三角形的周长是多少?
2.如图,在△ABC中, ∠BAC=4∠ABC=4∠C,BD⊥AC于点 D,求∠ABD的度数。 答案∠ABD=30°
E
证法:延长AD
∵∠BDE=∠B+∠3 ∠ CDE=∠C+∠4 (三角形的任意一个外角等于与它不相邻的两内角 之和) ∴ ∠ BDC =∠BDE +∠ CDE = ∠B+∠C+∠3+∠4. 又 ∵ ∠BAC = ∠3+∠4, ∴ ∠ BDC = ∠B+∠C+ ∠BAC
附加: 证明: 等腰三角形两底角的平分线相等。 已知:如图,在△ABC中AB=AC,BD, CE是△ABC的角平分线。 求证:BD=CE.
(5)证明:演绎推理的过程就是演绎证明,简称 “证明”。
(6)辅助线:为了证明的需要,在原来的图形上添 画的线段或直线。
8.三角形的内角和定理:三角形的内角和等于180°.
(1)从折叠可以看出:∠A+∠B+∠C=180º