高一数学二次函数的性质与图象
高一数学一次函数和二次函数

即有k=m-2
解得,
0, 并且1-2m
0
m2
; 宠物DR 宠物DR ;
不少于800字。不得抄袭。 [写作提示]“钥匙”是开锁的工具,它熟悉事物的机理,最了解锁的“心”,所以能够灵活机动,只轻轻一转,就“轻而易举”地打开了锁。对于一般的事物、问题而言,这里的“心”是指事物的关键之处、问题的症结所在;对于人的思想、情感而言,“心” 是指隐秘之处的思想和情感。“铁棒”天生不是开锁的料,只会砸“锁”、撬“锁”。我们可以把它理解为没有抓住事物的关键或问题的症结,不讲科学、不讲技巧的蛮干。它也想开锁,只是采用的方式不正确,可见解决问题应追求合理的途径。参考拟题:开锁的启示、科学方法与科学 精神。 ? 25.阅读下面的文字,根据要求作文。 非洲加纳的库马西有一所寄宿学校。一天早上,一位老师走进教室,举起手里的一张画有一个黑点的白纸问学生:“同学们,你们看到什么了?”学生们齐声回答:“一个黑点。” 老师说:“不对!你们再看看,难道你们谁也没看到这是 一张白纸吗?”接着,老师语重心长地说:“在今后的生活中,你们可不要这样看人看事物啊!” 老师关于这张“白纸”的教导,一直铭刻在一个当时年仅17岁的学生的脑海深处。当年的这位学生就是现在的联合国秘书长科菲?安南。 请以“白纸与黑点”为话题写一篇文章。题目自拟, 文体自选,立意自定,不少于800字。 ? [写作提示]在这个硝烟不断,危机纷起,恐怖分子无孔不入,时刻都有意想不到的灾难发生的世界里,身为联合国秘书长的安南先生时时体味当年老师关于“白纸与黑点”的谆谆教诲,仍然乐观地看到这张虽有许多“黑点”的“白纸”的美丽。其 实,我们也常常遇到这样被染上了“黑点”的“白纸”。比如患过错误的同志,比如有许多毛病的同事……我们应该认真品味这位非洲老师的“黑点与白纸”的故事,从中领悟这样的道理:看人应当首先看“一张白纸”,即看人的主流,看人的优点,对别人的身上的“黑点”应当懂得宽 容、包涵,求同存异,不要只注意别人的“黑点”而刻意挑剔甚至吹毛求疵。 ? 26.阅读下面的文字,根据要求作文。 ? 比,是人人皆有的心态,所不同的是比的内容和方法因人而异:有的比吃比穿、比车比房,有的比成就、比贡献。比,又是我们认识事物的常用方法,拿中国古代的 文明和其他国家比,我们会比出自豪和勇气。拿我们现在的科技与发达国家比,我们比出了落后和清醒。但是,并不是人人都会正确运用比的。 请以“比”为话题,写一篇文章,文体自定,文题自拟,不少于800字。 ? [写作提示]这是一种提示性的话题作文,提示语中列举了一些常见 的“比”的内容和“比”的方法,目的是为了打开同学们的思路。你完全可以从中选择你熟悉的内容来写,但是也不必拘泥于提示的方面,还可以在更广阔的领域寻觅“比”的新鲜内容。但是值得注意的是:选择可比的事物必须是同一范畴的事物,要通过现象或形式异同的比较,概括出 可比点来;罗列差异不是目的,目的是通过差异来说明问题,所以,重点要放在对问题的分析上。 ? 27.阅读下面的文字,根据要求作文。 ? 一天,上帝带着一个教士来到地狱,教士发现地狱中的人们围着一口盛满粥的大锅端坐着。虽然他们每人都有一把长柄勺子,但由于勺柄太长, 他们谁也无法将食物送到自己的嘴里去,只能挨饿。上帝又带着教士来到天堂,这里的人们看上去既快乐又满足,虽然他们也是围着一口大锅,每人手里也拿一把长柄勺子。上帝见教士迷惑不解,便对他说:“难道你没看出来这里的人都学会喂对方了吗?” 请以“合作”为话题,写一 篇作文,所写内容必须在这个话题范围之内。 立意自定,题目自拟,写一篇不少于800字的议。 [写作提示] “合作”即互相配合做某事或共同完成某项任务。随着科学技术的突飞猛进和信息社会的高度发展,合作显得越来越重要。因为科技越发达,分支科学越繁多,社会分工就越精细, 而个人的智力、知识面是有限的,因此,加强合作,取长补短,优势互补,已越来越成为时代的要求。论重点应放在“为什么要进行合作”上,用摆事实,讲道理的方法来明合作的必要,可以引用名言阐述合作的必要,也可以举例明合作带来的各种好处,还可以从反面明不合作带来的弊 端,要用辩的方法,分析要全面,理由要充足,最后还要指出解决问题的办法,即合作的途径。如写议,论角度有“合作是成功的土壤”“合作是人类生存的必需”“个人离不开集体”“团结互助才能由弱变强”“协作就是力量”“团队精神”“优势互补、共同发展”等。 ? 28.阅读下 面的文字,按要求作文。 水,滋润万物,是生命之源; 暴雨倾盆,江河泛滥,也会带来灾难。 水,看似柔弱,却能把坚石滴穿; 汇成洪流,更可穿峡破谷,一往无前。 水,演绎出多少可歌可泣的故事, 流淌着古往今来多少悲欢…… 请以“水的联想”为题,写一篇文章。除诗歌外, 文体自选,不少于800字。 [写作提示]本题主要考查学生的联想、想象能力。具体的写作思路有:根据作文材料的提示,写水既可滋润万物、孕育生命,也会吞噬生灵、造成灾难;或者由水“能把坚石滴穿”“更可穿峡破谷”,阐发水的力量及水的精神;或者由人不能没有水,自然不能 没有水发挥开来,呼唤保护水资源。联想水的其他特点,比如,自己活动,并能推动别人的,是水;经常探求自己方向的,是水;以自己的清洁洗净他人的污浊,有容清纳浊的度量的,是水;能蒸发为云,变成雨、雪、雾,或凝结成晶莹如镜的冰,但不论变化如何,仍不失其本性的,还 是水……然后找到人与水的相似点,构思成篇。 ? 29.阅读下面一则材料,按要求作文。 林语堂先生说:中国人的脸,不但可以洗,可以刮,还可以争,可以留,有时好像争面子是人生的第一要义,甚至可以倾家荡产而为之。对此,你或许也有一些认识或经历。请以“面子”为话题, 写一篇文章,不少于800字,题目自拟,文体自选。 ? [写作提示]中国人爱争面子,在国人看来,面子是人们身份的标志,有面子是才干的表现。面子关系着人的尊严、荣誉。但是,为了面子而不顾实际,为了形象而不顾人的死活,却是当前某些人的一种通病。 面子关乎人们的尊严、 荣辱,当然要讲,特别是在大是大非面前,要面子就是讲尊严。但是,面子不等于虚荣心,不能“死要面子活受罪”,更不能为了所谓的政绩而劳民伤财、弄虚作假。有时候,勇于暴露自己的缺点,恰恰是给自己争来了面子。我们要的是表里如一、形式内容相统一的面子。 30.阅读下面 一则材料,按要求作文。 “美国宗教精神病学基金会”创始人之一的伯兰特医生曾录下他与几位患有不同程度心理疾病的病人的谈话,通过研究,他发现这些人总在不停地重复这类话:“如果当时那样多好”“只要我再如何如何,就不会如何如何”。他由此告诫人们说:“这些想法就 像毒药,它们会使你患上心理疾病。你必须学会说‘下次再来’。因为这句话指向未来,指向新的一天,它会让你受伤的心痊愈,会带给你健康的心灵。” 请以“着眼未来”为话题写一篇文章,自拟题目,自定文体,不少于800字。 [写作提示]“着眼未来”这个话题是要人们学会正确 对待现实生活中的各种困境、挫折等问题,学会摆脱不良情绪,拥有健康快乐的人生。它其实是在倡导一种积极乐观的人生态度。考生可据此展开联想:或儒或道,或穷或达、或成或败……人生其实不外乎积极有为和消极避世两种,在考虑选材时不必受“心理疾病”这个概念束缚,这样 难度就会减小。如果选取的视角新颖,对社会现象、现实人生的评判独特,自然会写出不一般的文章来。 ? 31.阅读下面材料,请以“人的价值”为话题写作文,立意自定,文体自选,题目自拟。不少于800字。 一个年轻人对智者说:“老师,我觉得自己什么事也干不好。没有人看重我, 我该怎么办呢?” 智者从手指上脱下一枚戒指交给年轻人说:“你到集市上把这枚戒指卖了,无论如何不能少于1个金币。” 年轻人到了集市上,到处兜售戒指,但没人肯出1个金币。 年轻人说:“老师,对不起,我没能达到你的要求。也许我可以卖到两个或3个银币,但我觉得那不应 该是这枚戒指的真正价值。” “年轻朋友,你说得太对了。”智者笑着说,“你再去一趟珠宝店,问他能出多少钱,但不要真卖戒指,问完价格你再带戒指回来。” 珠宝商仔细看了看戒指后说:“告诉你的老师,如果他想卖戒指,我最多可以给他58个金币。” “58个金币!”年轻人 惊呼。“对。”珠宝商说,“如果不着急的话,我可以出70个金币……” 年轻人兴奋地跑回去,将发生的一切告诉智者。智者说:“你就像这枚戒指,珍贵、独一无二,只有专家才能真正判定你的价值。你怎能期望生活中随便一个人就能发现你真正的价值呢。”智者说着将戒指套回手 上,“我们所有人都像这枚戒指,珍贵,独一无二;不过,我们进入生活的市场后却希望毫无经验的人肯定我们的价值。” [写作提示]人们都希望自己的价值被肯定,但几乎也都希望被别人肯定,特别是由此自己的感情就被别人左右了,直到自己终生一事无成,这是可悲的。人首先应 该有自知之明,清楚自己的能力和努力方向;然后排除干扰,一往无前。有掌声的人生是美丽的;没有掌声的人生,只要自觉无悔,也是美丽的。 32.阅读下面材料,根据要求作文。 那是上世纪70年代的一场比赛。 在比赛进行到第14个回合时,拳王阿里已经筋疲力尽,濒临崩溃,到了 如有一片羽毛落在他身上也能让他轰然倒地的地步。但阿里仍竭力保持坚毅的表情和势不低头的气势。这时,拳坛另一猛将弗雷泽支持不住,放弃了。裁判当即宣布阿里获胜,阿里再次获得“拳王”的美誉。 获胜的阿里还没走到台中央,便眼前一黑,双腿无力地跪倒在地。弗雷泽见此 后悔莫及。 这次比赛的结果告诉我们:很多人的失败,不是败在技术、智力和能力,而是败在意志力的丧失和最后一刻的自我放弃。 瞬间的放弃,导致了心中永恒的伤痛,生活中这类事例或教训难道还少吗?请以“瞬间与永恒”为话题写一篇作文。立意自定,文体自选,题目自拟,不 少于800字。 [写作提示]这一话题可以从两方面理解:其一,瞬间可以成就永恒。例如,“神六”上天的瞬间,航天员庄重而灿烂的微笑留在了历史的永恒之中。其二,瞬间也可以毁灭永恒。如果弗雷泽最后一刻没有坚持住,将给人们留下永远的遗憾。作文时应
高一数学二次函数图像性质总结

高一数学二次函数图像性质总结二次函数性质:a正号说明开口向上,负号说明开口向下;a的肯定值越大,抛物线开口越小;c表示抛物线与y轴的交点,图像过(0,c)点。
下面是给大家带来的(高一数学)二次函数图像性质(总结),希望能够帮助到大家!高一数学二次函数图像性质总结1二次函数图像2二次函数性质二次函数y=ax+bx+c(a0),当y=0时,二次函数为关于x的一元二次方程,即ax+bx+c=0(a0)此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax,y=ax+k,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a0)的图象形态相同,只是位置不同。
2.抛物线y=ax+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a).3.抛物线y=ax+bx+c(a0),若a0,当x-b/2a时,y随x的增大而减小;当x-b/2a时,y随x的增大而增大。
若a0,当x-b/2a时,y随x的增大而增大;当x-b/2a时,y随x的增大而减小.4.抛物线y=ax+bx+c(a0)的图象与坐标轴的交点:(1)图象与y轴肯定相交,交点坐标为(0,c);(2)当△=b-4ac0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax+bx+c=0(a0)的两根.这两点间的距离AB=|x2-x1|另外,抛物线上任何一对对称点的距离可以由2x|A+b/2a|(A为其中一点的横坐标)当△=0.图象与x轴只有一个交点;当△0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0.5.抛物线y=ax+bx+c的最值(也就是极值):假如a0(a0),则当x=-b/2a 时,y最小(大)值=(4ac-b)/4a.顶点的横坐标,是取得极值时的自变量值,顶点的纵坐标,是极值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a0).7.二次函数学问很简单与(其它)学问综合应用,而形成较为困难的综合题目。
高一数学二次函数的性质和图像

⑤.对称于原点的两点:
A(x,y)
x
y=x2 y= - x2 ...
... ...
-2 -1.5 4 2.25 -4 -2.25
-1 -0.5 1
0
0.5 0.25 -0.25
1 1 -1
1.5 2.25
2
...
0.25 0 -1 -0.25 0
4 -2.25 -4
... ...
函数图象画法
描点法
二次函数y=ax2的图象和性质
y
x
一. 平面直角坐标系: 1. 有关概念: 2. 平面内点的坐标: 3. 坐标平面内的点与有序 实数对是: 一一对应.
P (a,b)
第二象限
y(纵轴)
b
第一象限
a
第三象限
o
x(横轴)
第四象限
坐标平面内的任意一点M,都有唯一一对有序实数(x,y)与它对应; 任意一对有序实数(x,y),在坐标平面内都有唯一的点M与它对应.
注意:列表时自变量 2 取值要均匀和对称。 y x
画出下列函数的图象。
y x2
1 y x
列表 描点
1 2 (1) y x 2 (2) y 2 x 2 2 2 (3) y x 3
连线
y x2
用光滑曲线连结时要 用光滑曲线连结时要 用光滑曲线连结时要 用光滑曲线连结时要 自左向右顺次连结 用光滑曲线连结时要 用光滑曲线连结时要 用光滑曲线连结时要 用光滑曲线连结时要 自左向右顺次连结 自左向右顺次连结 自左向右顺次连结 自左向右顺次连结 自左向右顺次连结 自左向右顺次连结 自左向右顺次连结
( 3,6)与( 3,6)
3
3
( 3,6) y=-2x2
高一数学-1-8一次函数二次函数和复合函数

解析:由题意可知,f(a)=1-4 a=2,解之得 a=-1.
答案:-1
二次函数
[例 2] (2010·四川高考)函数 f(x)=x2+mx+1 的图象
关于直线 x=1 对称的充要条件是( )
A.m=-2
B.m=2
C.m=-1
D.m=1
解析:由-m2 =1 得,m=-2.
答案:A
函数 f(x)=4x2-mx+5 在区间[-2,+∞)上是增
二、二次函数的图象和性质
二次函数 y=ax2+bx+c(a、b、c 为常数,a≠0)
a>0
a<0
图 象
二次函数 y=ax2+bx+c(a、b、c 为常数,a≠0)
抛物线对称轴是 x=-2ba,顶点是-2ba,4ac4-a b2
抛物线开口向上,且向上 抛物线开口向下,且向下无限伸展
性 无限伸展
又 f(0)=-1,∴2a+h=-1,∴a=12,h=-2, ∴f(x)=12x2+ 2x-1.
答案:f(x)=12x2+ 2x-1
与二次函数有关的综合问题
[例 5] (2010·福建省宁德质检)若二次函数 f(x)=ax2 +bx+c(a≠0)满足 f(x+1)-f(x)=2x,且 f(0)=1.
性 =-2ba时,y 有最小 时,y 有最大值,y 最大=
质
值,y 最小=4ac4-a b2
4ac-b2 4a
三、三个二次(二次方程 ax2+bx+c=0,二次函数 y =ax2+bx+c,二次不等式 ax2+bx+c>0(a≠0)(或<0))的 关系
Δ=b2-4ac
Δ>0
分类
a>0 a<0
Δ=0 a>0 a<0
高一数学二次函数的性质与图象

欢乐电玩城安卓官方版
[单选]如果加入切换的影片入出点和入点没有可扩展区域,已经到头,那么()A.系统会自动在出点和入点处根据切换的时间加入一段静止画面来过渡B.系统会自动在出点和入点处以入点为准根据切换的时间加入一段画面来过渡C.系统会自动在出点和入点处以出点为准根据切换的时间来加入一段 [单选]关于慢性支气管炎病因的描述不正确的是()A.感染是慢支急性发作的主要诱因B.吸烟、大气污染是慢支发生、发展的重要因素C.急性发作期的主要病原菌为肺炎球菌和流感嗜血杆菌D.慢支是感染性和非感染性多种因素长期综合作用所致E.多种抗原引起的过敏反应,气道免疫功能低下亦为 [单选]关于精神病人的康复工作,以下哪项不对()A.病人的家庭成员、朋友和社会人士与医务人员的密切配合是康复工作顺利进行的关键B.康复措施必须贯彻在院内、外的全部医疗过程中C.必须延伸到社会中去D.必须发展以社区为基础的康复E.在我国,应逐渐放弃以医院为基地的康复 [单选]适用于各级公路的基层和底基层的粒料是()。A.填隙碎石B.泥结碎石C.天然砂砾D.级配碎石 [问答题,简答题]什么叫预拌砼?它分哪几种基本品种和等级? [单选]民航VHF收发信机的工作方式为()。A.单工B.双工C.半双工 [单选,A2型题,A1/A2型题]碘造影剂可发生过敏反应,除哪项外属于轻度反应()A.恶心、呕吐B.气喘、呼吸困难C.面色潮红D.头晕、头痛E.荨麻疹 [单选]有关患者隐私权保护的理解错误的是()A.患者既往的疾病史、生活史、婚姻史即其家族疾病史、生活史、情感史属于患者隐私B.披露患者隐私造成严重后果的,由县级以上人民政府卫生行政部门给予警告或者责令暂停6个月以上1年以下执业活动,情节严重的,吊销执业证书C.即使患者已 [单选,A2型题,A1/A2型题]原发性甲状腺功能减退症最早出现异常的是()A.血TSHB.血总T3C.血游离T3D.血总T4E.血游离T4 [单选]变更控制过程中,对于需求变更的确立,监理人员必须遵守的规则是()。①每一个项目变更必须用变更申请单提出,它包括对需要批准的变更的描述以及该项变更在计划、流程、预算、进度或可交付的成果上可能引起的变更②在准备审批变更申请单前,监理工程师必须与总监理工程师商 [问答题,简答题]什么是得率?影响甲醇得率的因素有哪些? [单选]不属于MEN1的特征性组分的疾病是()。A.甲状腺功能亢进症B.垂体瘤C.胃泌素瘤D.甲状旁腺功能亢进症E.胰岛素瘤 [单选]关于行政事业单位的资产,下列说法正确的是()。A.行政单位在盘盈固定资产时,按重置完全价值入账B.事业单位的存货应当按照市场平均价格记账C.行政事业单位的无形资产不包括非专利技术D.行政事业单位的应收及预付款项一般要计提坏账准备 [单选]制动器的销轴、销孔、制动瓦衬等磨损严重,致使制动时制动臂及其瓦块产生位置变化,导致制动力矩发生脉动变化,制动力矩小,就会产生()现象。A.溜钩B.不能吊运额定起重量 [单选]一般来讲,企业应该让销售人员担负起寻找客户、传递信息、()、提供服务、收集信息和分配货源等方面的任务。A、销售产品B、分配信息C、把握需求D、市场调研 [填空题]产品质量标准可分为国家标准、部门标准、企业标准及()等。 [单选,A2型题,A1/A2型题]男性,43岁。3小时前呕血1次,自觉头晕、乏力、出汗。查体:心率110次/分,血压100/70mmHg,肝掌,腹壁静脉曲张,超声示腹水。该患者的出血量可能为()A.>5mlB.50~70mlC.250~300mlD.500~1000mlE.>1500ml [单选]在下列害虫中,属于完全变态的是()。A、黄刺蛾B、蚜虫C、蚧D、蝗虫 [单选]下列不符合发票开具要求的是()。A.开具发票时应按号顺序填开,填写项目齐全、内容真实、字迹清楚B.填写发票应当使用中文C.可以拆本使用发票D.开具发票时限、地点应符合规定 [判断题]工程项目是一次性事件,所以对工程管理有比较高的要求。A.正确B.错误 [单选]使用如下什么方法可以升级cisco交换机的IOS软件()。A、CDPB、HSRPC、TFTPD、TELNET [单选]一般电气设备铭牌上的电压和电流值的数值是()。A.瞬时值;B.最大值;C.有效值;D.平均值。 [单选]某企业生产甲产品,属于可比产品,上年实际平均单位成本为500元,上年实际产量为1500件,本年实际产量为1200件,本年实际平均单位成本为475元,则本年甲产品可比产品成本降低率是A.2%B.5%C.6.5%%D.8% [单选]船舶在涨潮末的转潮期间,或在弱回流区中,由于航道狭窄,或为了避免复杂的掉头操纵,可采用:()。A.抛锚驶靠B.横移驶靠C.顺流驶靠D.滑行驶靠 [单选,共用题干题]患者女,19岁,学生。因"亚急起凭空闻人语、疑人害、兴奋夸大、精力旺盛1月余"于2008年7月23日入院。患者诉1月前独自在家时听见同学们议论她很坏;感觉有人在谋害她,并被跟踪、监视;同时表现兴奋、半夜里学习,觉自己思维反应像火箭,能力无限大,可以统治宇宙 [单选]在接触传染病后,对未接受主动免疫的易感儿,可给予丙种球蛋白肌注进行被动免疫,一般用于()A.预防结核B.预防麻疹C.预防乙型脑炎D.预防腮腺炎E.预防乙型肝炎 [问答题,简答题]销售成功的一般规律? [单选]在社会主义市场经济或以公有制为主导的市场经济条件下,()是作为经济法灵魂的一项根本性原则。A.平衡协调原则B.维护公平竞争原则C.有限干预原则D.责权利相统一原则 [判断题]在单胃家畜饲粮中不必强调维生素B族的供给。()A.正确B.错误 [单选]低血容量时,肾的生理改变是A.肾血流明显降低B.肾小球后动脉收缩C.肾小球前后动脉收缩D.肾血流出现选择性再分布E.以上均是 [判断题]为了预防、减少和避免学生伤害事故的发生,除应对学生加强安全意识和提高自我保护能力以及培养健康的心理素质外,还应对其强化纪律观念,尽量减少因自违纪行为而导致的伤害事故的发生。A.正确B.错误 [单选]检测客户现金收支或款项划转情况,对符合大额交易标准的,在该大额交易发生后()个工作日内,向中国反洗钱监测分析中心报告。A.3B.5C.10D.15 [单选]()是提出旅游规划思路的前提条件,应当立足当前,以发展的视角进行实事求是的分析判断。A.旅游发展环境分析B.旅游资源分析C.环境保护规划D.旅游业发展战略 [单选]作为慢性肾衰竭与急性肾衰竭鉴别依据的是()。A.血BUN/Cr>20B.蛋白尿与低蛋白血症较明显C.严重贫血D.严重低钙血症与高磷血症E.肾脏体积缩小 [单选]W6Mo5Cr4V2钢经1210℃淬火后,又经550℃回火,硬度可达到()HRC以上。A.58B.60C.63D.66 [单选,A2型题,A1/A2型题]下列哪项不符合抗肿瘤药物联合应用的原则()A.联合用药越多越好B.给药程序和疗程应符合细胞动力学C.药物的毒性尽可能不重复D.原则上选用单独应用也有效的药物E.选择对细胞增殖周期作用不同、影响DNA合成不同时相的药物 [单选,A2型题,A1/A2型题]下列有关医患关系中的自愿原则,叙述错误的是()。A.患者有选择医师的权利,医师有权利接受自己的服务对象B.患者有权依自主决定诊治方案C.医患间的协议约定可在不违背医疗法规的情况下自愿约定D.医患当事人可以对要约内容进行变更E.医患双方可以协议解除 [单选]精装图书必备的结构部件不包括()。A.护封B.书壳C.环).A.北京时间B.世界协调时C.发电地址所在地的当地时间 [单选]下列哪项不属于生长发育指标()A.年龄别低体重百分比B.人口自然增长率C.年龄别低身高百分比D.身高别低体重百分比E.新生儿低体重发生率
二次函数的性质与图象-德州一中

二次函数的性质与图象 高一数学 刘敏一、教材内容分析概括地讲,二次函数的图象在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。
一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图象由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。
二、教学目标根据教学大纲要求、新课程标准精神和高一学生心理认知特征,我确定了三个层面的教学目标。
第一个层面是基础知识与能力目标:理解二次函数的图象中a 、b 、c 、k 、h 的作用,能熟练地对二次函数的一般式进行配方,会对图象进行平移变换,领会研究二次函数图象的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;第二个层面是过程和方法目标:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;第三个层面是情感、态度和价值观目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
三、教学重难点:运用配方法研究二次函数的性质。
在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。
四、教学过程:为了更好的实践“1121”课堂教学模式,我设置了这样几个教学环节。
(一)复习旧知1、二次函数的定义;2、二次函数的顶点式以及对称轴方程、顶点坐标。
可以借助多媒体展示问题,学生思考后回答。
设计意图:通过对旧知识的回顾为新知识的学习做好铺垫。
(二)讨论交流在同一坐标系中作出23x y -=,22x y -=,2x y -=,2x y =,22x y =,23x y =的图象,回答:(1) 函数)0(2≠=a ax y 图象的开口方向、对称性、顶点与单调性、奇偶性、最值;(2) 观察函数图象随a 值变化的规律。
高中数学 第二章 函数 一元二次函数的图象和性质(1)教案 苏教版必修1-苏教版高一必修1数学教案

3.函数y=-3(x+2)2+5的图象的开口向,对称轴为,顶点坐标为;当x=时,函数取最值y=;当x满足时,y随着x的增大而减小.
4.求抛物线y=x2-2x-3的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.
活动三:想一想
例1求二次函数y=-3x2-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象
变式训练
已知函数y=x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值.
特殊补充
当堂检测
1.函数y=-x2+x-1图象与x轴的交点个数是
2.求抛物线y=1+6x-x2的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象
小结与作业
变式训练
求把二次函数y=x2-4x+3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位.
例2.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.
二次函数的图象和性质1
学习目标
1.掌握二次函数的图像和性质
2.体会数形结合的思想
学习重难点
二次函数的图像和性质
学生活动
教师活动
活动一:知识回顾
1、图像画法
2、解析式求解
活动二:练一练
1.二次函数y=2x2-mx+ቤተ መጻሕፍቲ ባይዱ图象的顶点坐标为(1,-2),则m=,n=.
高一数学二次函数的性质与图象

图像之间有什么关系?
实践探究 1
在同一坐标系下, 画出下列函数的图像 (1)y=x2 ; (2)y=2x2 ; 1 2 (3)y= x . 2
观察发现
ቤተ መጻሕፍቲ ባይዱ
1.二次函数y=ax2(a0)的图像 2 可由的y=x 图像各点纵坐标 变为原来的a倍得到 2.a决定了图像的开口方向: a>o开口向上,a<0开口向下 3.a决定了图像在同一直角坐标 系中的开口大小: |a|越小图像开口 就越大
巩固性训练一
.下列二次函数图像开口,按从小 到大的顺序排列为 (4),(2),(3),(1)
1 2 1 2 (1)f(x)= x ; (2)f(x)= x 4 2
1 2 (3)f(x)=- x ; (4) f(x)=-3x2 3
实践探究 2
在同一坐标系中 , 画出下列函数的图像: 2 (1) y=2x ; 2 (2) y=2(x+1) ; 2 (3) y=2(x+1) -3 .
观察发现
二次函数y=a(x+h)2+k (a0),
a决定了二次函数图像的开口大小及方向;
而且“a正开口向上,a负开口向下”; |a|越大开口越小; h决定了二次函数图像的左右平移, 而且“h正左移,h负右移”; k决定了二次函数图像的上下平移, 而且“k正上移,k负下移”。
巩固性训练二
1.将二次函数y=3x2的图像平行移动,顶 点移到(-3,2) 2+2 Y=3(x+3) ,则它的解析式为
2.2.2 二次函数的性质与图像 课件
问题1
说出下列函数的开口方向、对称轴、顶点
(1) y=(x+2)2-1; (2) y=-(x-2)2+2 ; (3) y=a(x+h)2+k .
高一数学二次函数的性质与图象

在线PDF转PPT都不会,还说你懂PPT?职场上,要想做出高端好看的PPT可不是一件容易的事情,除了必须掌握PPT中各种操作技巧,还要善于利用现成的PPT模板。 对于PPT模板的利用,除了靠度娘搜索,还得靠技巧,因为有些PPT模板被制作者转换成PDF格式,想要利用起来可并不容易,这时候你就需要下面这个在线PDF转PPT的技巧,可以直接将PDF转换成可编辑利用的PDF,非常方便。 第一步:打开在线PDF文档处理平台——.cn第二步:点击“PDF转PPT选项”,进入PDF文件上传页面,选择需要转换的PDF文件。 第三步:文件上传完成之后,点击“开始转换”,即可完成在线PDF转PPT第四步:点击“下载”即可得到在线PDF转PPT之后的文件掌握这4步骤,PDF格式的PPT模板也能为你所用,距离PPT大师就更进一步啦! 压缩PDF,一招给你的PDF“瘦身”在中国,一个以瘦为美的国度,大家都喜欢东西小巧一点,当然钱包除外。 在工作中也是一样的,我们都不喜欢很大的文件,既占用很多空间,又不方便传输。 所以我们都喜欢给文件“瘦瘦身”——压缩文件。 压缩PDF可以说是职场的常规操作了,怎么快速简便的压缩PDF呢?一起来看看吧~1.首先我们需要打开PDF在线文档处理平台——.cn2.接下来我们选择“PDF压缩”这个选项,那么就进入了上传PDF文件的页面,然后选择需要压缩的PDF文件 3.等到文件上传完,点击“开始压缩”选项,这样就可以直接在线进行压缩PDF文档了。 4.压缩完成之后,点击“下载”按钮,那么即可下载压缩后的PDF文档。 简简单单几步,我们就完成了压缩PDF,学会这招,你还用担心PDF文件占用大空间吗。
掌握在线PDF压缩技巧,让你只加薪不加班!随着网络社交的火爆,如今晒加班已经成为了生活中随处可见的现象,加班加到11点然后发条朋友圈,晒下自己有多努力,顺便展示给老板看自己有多热爱工作?然而试问又有谁愿意加班?作为 但是如何进行在线PDF压缩?网上千百种方法看得小编眼花缭乱,最后终于给小编找到了一个简单便捷且无需下载安装软件的在线PDF压缩方法,并且压缩后的文档还能保持较高的清晰度,一起来看看是什么骚操作吧!首先,前往PDF在线编 掌握这个在线PDF压缩技巧,保证让你只加薪不加班。 还不赶紧学起来! 好用还免费!错过这些阅读器功能,你就亏大了......在日常的办公中,我们会频繁与PDF文档打交道,提高工作效率的有效办法就是学会使用更多好用的PDF工具,如PDF阅读器。 在日常我们使用阅读器时,有哪些值得推荐的好用的功能呢?往下看。 一、页面显示拆分如果需要同时查看同一份文档的不同地方,就可以使用如下功能。 点击视图—页面显示的拆分,选择拆分的方式即可。 二、一键开启夜间模式晚上看文档很伤眼睛?一键即可开启夜间模式,缓解眼睛疲劳。 三、一键重排阅读PDF文档时,如果PDF文档本身的排版不喜欢或者不适合屏幕显示,可以点击“主页-重排”。 可能有些小伙伴试了第二、三点会发现并没有小编操作的效果,这是为什么呢?因为这些操作都有一个前提,那就是PDF文档是非图片类型,可编辑的模式。 像纸质扫描而成的PDF文档,图片转换而成的PDF文档,就是图片类型的文档,这类文档就无法实现以上第二、三点的功能。 那怎么解决呢?可以选择把这类PDF文档转换成可编辑的Word文档,再把Word文档直接拖拽到阅读器中,就能变成可编辑的PDF文档那如何转换呢?可以试试人工转换,专业处理图片类型的PDF文档,支持PDF转Word ,转换后文档可编辑、无 需要的小伙伴可以点击下单。 /smart 别再剁手啦,我用在线PDF转Word养你呀双十一刚刚过去,就需要应付一系列的会议,被任命为会议记录员的小编还没有从剁手后的伤感中逃离,接连不断的工作就把小编压得喘不过气来,加上5、6个会议记录还没处理,绝望的小编甚至神 这时,路过的王姐跟我说:“会议记录你去整理一下PPT就可以了”,然后她教了我一招在线PDF转Word技巧,很简单就把我手头上的这些工作给处理了。 一起来看看如何操作吧!首先打开这个PDF在线转换平台:点击“PDF转Word”图标, 上传PDF文件文件上传完毕后,点击“开始转换”按钮,就能完成在线PDF转Word等待转换完成后,点击“下载”按钮,就能将转换后的Word文档下载至电 而且推荐的这个网站还有很多免费功能,很合适我们这种刚剁完手的人,比如说在线PPT转PDF,在线PDF加密等,快去试试看吧。
2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)

人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。
高中数学 第二章 函数 2.2.2 二次函数的性质与图象课件 b必修1b高一必修1数学课件

说明
开口向上,a 越小,开口越
大,a 越大,开口越小
决定抛物
a
a>0
线的开口
方向与开
口大小,影
响单调性
在 -∞,-
b
2a
b
2a
上单调递减,在
, + ∞ 上单调递增
开口向下,|a|越小,开口越
大,|a|越大,开口越小
a<0
在 -∞,-
12/8/2021
第十二页,共四十三页。
b
2a
b
2a
上单调递增,在
, + ∞ 上单调递减
ax2+bx+c=0(a≠0)的关系(guān xì):二次函数f(x)的图象与x轴交点的个数等于
方程f(x)=0的实数根的个数,并且当二次函数f(x)的图象与x轴有交点时,其交
点的横坐标是方程f(x)=0的实数根.
12/8/2021
第五页,共四十三页。
M 目标导航
UBIAODAOHANG
1
Z 知识梳理 Z 重难聚焦
IANLI TOUXI
UITANGYANLIAN
x=− ;
2
1 +2
x=
;
2
③若二次函数y=f(x)对定义域内所有x都有f(a+x)=f(a-x)或f(x)=f(2a-x)或
f(-x)=f(2a+x),则对称轴为x=a(a为常数).
(2)利用对称性,结合开口方向,可以(kěyǐ)比较二次函数函数值的大小.
利用配方法化为 y= x +
的位置
b
2
2a
12/8/2021
第十四页,共四十三页。
+
高一数学二次函数的性质和图象课件

(一)二次函数的定义
解:根据题意,得
一般地,如果y=ax2+bx+c(a、b、c是常数,a≠0),那么y叫做x 的二次函数.
2
二次函数的几种表达式:
添加标题
、
添加标题
、
添加标题
、
添加标题
(顶点式)
添加标题
(一般式)
添加标题
(交点式)
添加标题
例2、已知抛物线y=ax2+bx+c(a≠0) 与x轴的两个交点的横坐标是 -1、3,与 y轴交点的纵坐标是 :
解: f(x)=x2-4x+1=(x-2)2-3, 对称轴是x=2,在区间[2, +∞)上是增函数. f(-1)=f(2-3)=f(2+3)=f(5), f(1)=f(2-1)=f(2+1)=f(3), 所以f(1)<f(4)<f(-1)=f(5).
例6. 已知二次函数y=x2-mx+m-2, (1)证明:无论m为何值时,函数的图象与x轴总有两个交点; (2)m为何值时,这两个交点之间的距离最小。
a
a,b
c
△
a决定开口方向:a>0时开口向上, a<0时开口向下
a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧 a、b异号时对称轴在y轴右侧 b=0时对称轴是y轴
c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴 c=0时抛物线过原点 c<0时抛物线交于y轴的负半轴
所以函数y=f(x)的图像可以看作是由y = x2 经一系列变换得到的,具体地说:先将y = x2 的图像向左移动4个单位,再向下移动2个单位得到 的图像
解:(1)配方得
(2)函数与x轴的交点是:
(-6,0)和( -2,0)
第四讲 二次函数的图像、性质与表达形式

1 2 x ,y=-2x2的图象,通过这些函数图象与函数y=x2的图 2
象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系. 先画出函数y=x2,y=2x2的图象. 先列表: x … 0 1 -3 -2 -1 x2 2x2 … … 9 18 4 8 1 2 0 0 1 2
2 4 8
3 9 18
(A)0个
(a≠0)
(1)图象经过点(1,-2),(0,-3),(-1,-6); (2)当x=3时,函数有最小值5,且经过点(1,11); (3)函数图象与x轴交于两点(1- 2,0)和(1+ 2,0),并与y轴交于(0,-2).
二、 二次函数y=ax2+bx+c的图像、性质
问题1 函数y=ax2与y=x2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y=2x2,y=
第 2 页
2014年陈经纶中学高一讲义
高中数学学习必备的初中知识技能 第四讲 二次函数的图像和性质
(B)1个 (C)2个 (D)无法确定 1 (2)函数y=-2(x+1)2+2的顶点坐标是 ( ) (A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2) 2.填空: (1)已知二次函数的图象经过与x轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y=a . (2)二次函数y=-x2+2 3x+1的函数图象与x轴两交点之间的距离为 . 3.根据下列条件,求二次函数的解析式.
O 图4-1
y
x
y=2(x+1)2 y=2(x+1)2 +1 y=2x2
第四讲
第 3 页
-1
O
x
2014年陈经纶中学高一讲义
高中数学学习必备的初中知识技能 第四讲 二次函数的图像和性质
一次函数和二次函数的性质与图象

一次函数和二次函数的性质与图象Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】【本讲主要内容】一次函数和二次函数的性质与图象【知识掌握】 【知识点精析】1. 一次函数定义:形如)0(≠+=a b ax y 的函数叫一次函数。
一次函数图象:斜率为a ,在y 轴上截距为b 的直线。
一次函数性质:在(-∞,+∞)上是单调函数,a>0增函数,a<0减函数。
2. 二次函数(1)定义:形如)0(2≠++=a c bx ax y 的函数叫二次函数。
(2)图象:抛物线,对称轴:abx 2-=,顶点)442(2a b ac a b --,,开口方向a>0向上;a<0向下。
(3)二次函数的基本性质 <1>二次函数的三种表示法:n x x a y x x x x a y c bx ax y +-=--=++=20212)();)((;<2>当a>0,f(x)在区间[p ,q ]上的最大值为M ,最小值为m ,令)(210q p x +=若p ab<-2,则M q f m p f ==)()(, 若02x a b p <-≤,则M q f m a bf ==-)()2(,若q a b x <-≤20,则m a bf M p f =-=)2()(,;若q ab ≥-2,则m q f M p f ==)()(,特别提醒:(1)学习“二次”函数时,要注意所给出函数解析式是不是“二次”的,即2x 项的系数是否为零,必要时加以讨论。
(2)一元二次函数、一元二次方程、一元二次不等式常常联系起来考查,要理清它们之间的联系,解题时要做到适时转换。
(3)图象要记熟,它是我们记忆的关键。
【解题方法指导】例1. (1)设x 、y 是关于m 的方程0622=++-a am m 的两个实根,则22)1()1(-+-y x 的最小值是( )A. 4112-B. 18C. 8D. 43剖析:由0)6(4)2(2≥+--=∆a a ,得2-≤a 或3≥a 。
高一数学人必修件时二次函数与一元二次方程不等式的应用

02
将原方程 $ax^2 + bx + c = 0$ 因式分解为 $(x - m)(x - n) = 0$。
03
解得 $x_1 = m$ 和 $x_2 = n$。
04
若无法找到满足条件的 $m$ 和 $n$,则此方法 不适用,需采用其他方 法求解。
03
一元二次不等式解法与性质
一元二次不等式解法
配方法
二次函数与一元二次不等式的联系
一元二次不等式表示的是二次函数在某个区间内的函数值大于或小于零的情况。通过解一元二次不等式,可以确定二 次函数在某个区间内的正负性。
二次函数、一元二次方程与不等式的区别
它们的研究对象不同,二次函数研究的是函数的性质,而一元二次方程和不等式研究的是数与数之间的 关系。此外,它们的解法也有所不同,需要根据具体情况选择合适的方法。
当 $Delta = 0$ 时,方程有两个相等的 实根,即 $x_1 = x_2 = -frac{b}{2a}$。
判别式 $Delta = b^2 - 4ac$。
当 $Delta > 0$ 时,方程有两个不相等 的实根,分别为 $x_1 = frac{-b + sqrt{Delta}}{2a}$ 和 $x_2 = frac{-b sqrt{Delta}}{2a}$。
二次函数的判别式$Delta=b^2-4ac$ ,决定了方程的根的情况,当
$Delta>0$时,方程有两个不相等的实 根;当$Delta=0$时,方程有两个相等 的实根;当$Delta<0$时,方程无实根
。
二次函数与一元二次不等式关系
一元二次不等式 $ax^2+bx+c>0$或 $ax^2+bx+c<0$的解集, 就是二次函数 $f(x)=ax^2+bx+c$在$x$ 轴上方或下方的部分对应的 $x$的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ห้องสมุดไป่ตู้
[单选,A1型题]下列哪项不属于血管外溶血的表现()A.起病缓慢B.病因通常为遗传性的C.严重贫血D.黄疸较不明显E.显著肝脾大 [单选,A2型题,A1/A2型题]“Bennett”骨折是指()。A.腕舟骨骨折B.月骨骨折并脱位C.第1及第2掌骨基底部同时骨折D.第1掌骨基底部骨折并脱位E.第1掌骨头骨折并脱位 [问答题,简答题]什么是路政目标管理? [单选]在Polygons模块中,下面()菜单可以直接翻转多边形的法线。A、AverageNormalB、SetVertexNormalC、SoftHardenD、Reverse [单选]员工的知识技能是"投入",员工的行为是"转换",员工的满意度和绩效是"产出"的观点来自于()。A.一般系统理论B.行为角色理论C.人力资本理论D.交易成本理论 [单选]下列关于财务目标、企业社会责任和商业道德的说法中,不正确的是()。A.股东和合同利益相关者之间既有共同利益,也有利益冲突B.企业只要遵守合同就可以避免股东与合同利益相关者的冲突C.企业的社会责任超出了法律和公司治理的规定范畴D.企业目标与社会目标并不总是一致的 [单选]民主人际关系学说促成()理论的产生,促进了教育管理理论的繁荣A.科学管理B.科层管理C.量化管理D.行为科学 [单选,A型题]九仙散的功用是()A.敛肺止咳,益气养阴B.敛肺止咳,益气补血C.敛肺止咳,益气温阳D.敛肺止咳,益气生津E.敛肺止咳,养阴补血 [单选]安全生产费用由建设单位根据()对工程安全生产情况的鉴定确认进行支付。A.项目经理B.总工程师C.专职安全管理人员D.监理工程师 [单选]堤防工程级别根据堤防工程的防洪标准确定,当堤防的防洪标准大于等于50年又小于100年时,堤防工程级别为()级。A.1B.2C.3D.4