机械原理凸轮机构
机械原理第九章凸轮机构及其设计
凸轮的设计和参数选择
设计原则
凸轮的设计应考虑载荷、速度 和精度等因素,并满足运动学 和强度学的要求。
参数选择
凸轮的参数包括凸轮半径、凸 轮轴角度和凸轮顶点位置等, 应根据具体需求进行选择。
优化方法
通过数学模型和仿真分析,可 以优化凸轮的形状和参数,以 提高凸轮机构的性能。
凸轮机构的运动分析
1
转动运动
通过凸轮的旋转,实现机构的直线或曲线运动。
2
滑动运动
随着凸轮轮廓的变化,机构的接触点会产生水平或竖直方向的滑动运动。
3
摇摆运动
凸轮的摇杆或滚柱可以实现机构的摇摆运动。
凸轮机构的布置和设计原则
1 布置方式
根据机构的运动要求和空间限制,选择合适 的凸轮布置方式,如列状、行状或环状。
2 设计原则
在凸轮机构的设计过程中,要考虑机构的刚 度、强度和稳定性等因素,以提高机构的性 能。
凸轮机构的应用案例
发动机气门机构
凸轮机构用于控制发动机气门的 开闭,保证发动机的正常运行。
印刷机印版定位
凸轮机构用于实现印刷机印版的 准确定位,提高印刷质量。
纸张折叠机构
凸轮机构用于纸张折叠机构,实 现精确的折叠操作。
小结和要点
1 2 3 4
5
6
凸轮机构是一种常见的机械传动机构。 凸轮机构具有多种分类和特点。 凸轮的设计和参数选择需要考虑多个因素。 凸轮机构的运动分析可以通过几何和动力学方法 实现。 凸轮机构的布置和设计应根据具体要求进行选择。
凸轮机构在多个领域都有广泛应用。
凸轮机构是机械工程中常见的一种机构,用于将轮系运动转化为直线或曲线 的机械动作。它具有简单可靠的特点,广泛应用于各个领域。
机械原理与设计之凸轮机构概述
机械原理与设计之凸轮机构概述摘要本文介绍了机械原理与设计中的凸轮机构。
凸轮机构是一种常用于工程和机械设计中的传动机构,能够将旋转运动转化为直线运动。
本文将详细介绍凸轮机构的基本原理、构造和应用领域,并讨论凸轮机构的设计要点和优缺点。
引言凸轮机构是一种基于凸轮的传动机构,其通过凸轮与从动件之间的接触,将旋转运动转化为直线运动。
凸轮机构广泛应用于机械制造领域和工程设计中,例如发动机、工具机和自动化装置等。
熟悉凸轮机构的工作原理和设计方法对于机械工程师和设计师来说至关重要。
一、凸轮机构的基本原理凸轮机构的基本原理是利用凸轮的几何形状,通过其与从动件的接触来实现运动转换。
凸轮通常是一个圆柱体,其几何形状决定了从动件的运动规律。
当凸轮旋转时,凸轮上的凸起与从动件相互作用,驱动从动件做直线运动。
凸轮的几何形状可以根据特定的运动要求进行设计和调整。
二、凸轮机构的构造凸轮机构由凸轮、从动件和传动组成。
凸轮是凸轮机构的核心部件,其几何形状决定了从动件的运动规律。
从动件与凸轮相互作用,通过凸轮的旋转实现直线运动。
传动装置用于传递动力和控制凸轮的旋转。
凸轮机构的构造可以基于具体的应用需求进行设计和调整。
凸轮机构广泛应用于许多机械设备和自动化系统中。
它们常见的应用领域包括: - 发动机:凸轮机构用于控制气门的开启和关闭,调节进气和排气过程; - 工具机:凸轮机构用于控制工具的运动,例如车床的进给机构和转塔机床的换刀装置; - 自动化装置:凸轮机构用于实现复杂的运动路径和动作,例如自动化流水线和机器人系统。
四、凸轮机构的设计要点设计凸轮机构时,需要考虑以下要点: 1. 凸轮的几何形状:凸轮的形状应根据需要的从动件运动规律进行设计。
2. 从动件的类型:根据不同的运动要求,选择合适的从动件类型,如销轴、滑块或摇杆等。
3. 传动装置:选择合适的传动装置,以传递动力和控制凸轮的旋转。
4. 动力和扭矩:确定凸轮机构所需的动力和扭矩,以确保正常运行。
机械原理9凸轮机构
复合型橡胶凸轮
未来凸轮机构中将逐步使用复 合型橡胶凸轮代替铸铁或钢凸 轮,以降低噪音、提高安卓性 等。
绿色环保
凸轮机构的绿色环保趋势也将 是未来重要的发展方向,主要 包括材料的生产过程及使用环 保等方面。
凸轮机构在汽车发动机中的应用
汽车发动机气门控制
凸轮机构通过传递卡盘、摇臂等 控制部分实现汽车发动机的运转 规律。
汽车变速器控制机构
凸轮机构也可用于汽车变速器的 运转,控制配合机构实现汽车的 变速和前进后退等功能。
汽车转向机构
前轮转向机构和汽车转向机构都 可以使用凸轮机构来实现控制驾 驶员操作,具有精度和可靠性等 优点。
特点
设计简单,使用广泛。凸轮在 运动过程中会带动其他机构的 工作。
应用
• 汽车发动机的进气门和 排气门传动机构。
• 纺织设备中控制织机各 部件升降、打开、闭合、 控制采纱、切纱等工作。
• 数控机床、切割等机械 设备中的传动与定位机 构。
双动凸轮机构
定义
双动凸轮机构主要由两个凸轮 和一对滑块组成,可以实现两 个互不相同的运动规律。
特点
控制运动精确、运动简单、且 适用于高速运动,长时间负载 等方面。
应用
• 工业设备中的精密机构、 机械手臂等,在精度要 求高的应用中广泛使用。
• 汽车发动机中控制滑门 和配油器的开关等。
• 用于复杂的机电一体化 的设计中,如机床、生 产线等方面。
凸轮轮廓的设计
确定轮廓确定参数
在凸轮轮廓设计中参数的确定 是很关键的,需要考虑一些因 素:凸轮的型号、运动学、力 学特性等方面,使得凸轮轮廓 达到最优的效果。
3 最重要的运动特点是
具有非规律的运动过程,同时常与制动件、相切滑块联合使用。
凸轮机械原理ppt
凸轮、从动件和机架是凸轮机构的基本结构,其中凸轮是控制从动件运动的 关键元件。
凸轮机构的分类
根据凸轮和从动件的运动关系,凸轮机构可分为平面凸轮机构和空间凸轮机 构,以及摆动从动件凸轮机构和移动从动件凸轮机构。
凸轮机构的优化目标与方法
凸轮机构的优化目标
主要包括提高凸轮机构的传力性能、减小凸轮和从动件之间的接触应力、降低凸 轮机构的振动和噪声等方面。
凸轮机构的工作过程是凸轮转动时,从动件在凸轮轮 廓控制下沿着一定轨迹进行往复运动。
平面凸轮机构又可以分为尖顶从动件、滚子从动件和 平底从动件三种类型。
从动件的运动规律取决于凸轮的轮廓形状和从动件的 Βιβλιοθήκη 构形式。凸轮机构的运动规律
凸轮机构的运动规律取决于凸轮的轮廓形状和从动件 的结构形式。
每种运动规律都有其特点和应用范围,可以根据实际 需要选择合适的运动规律。
解决方法
为了减小冲击,可以在配合部件之间加入阻尼材料,如橡胶 、聚氨酯等,以吸收冲击能量。同时,可以调整配合间隙的 大小,提高配合部件的刚度,以减小冲击。
凸轮机构的疲劳及解决方法
总结词
凸轮机构的疲劳是由于长期承受交变载荷 的作用,使得配合部件表面出现微裂纹并 逐渐扩展,最终导致配合部件破坏。
VS
解决方法
2023
凸轮机械原理
目录
• 凸轮机构概述 • 凸轮机构的工作原理 • 凸轮机构的类型及特点 • 凸轮机构的常见问题及解决策略 • 凸轮机构的设计及优化 • 凸轮机构的应用前景与发展趋势
01
凸轮机构概述
凸轮机构的定义与特点
凸轮机构的定义
凸轮机构是一种广泛应用于各种机械中的高副机构,它由凸 轮、从动件和机架三个基本构件组成,通过凸轮的轮廓控制 从动件的位移和运动规律。
凸轮机构原理
凸轮机构原理凸轮机构是一种常见的机械传动装置,它通过凸轮的旋转运动将其上连接的零件带动实现特定的运动规律。
在本文中,将介绍凸轮机构的原理及其应用。
一、凸轮机构的基本原理凸轮机构由凸轮、从动件和驱动件组成。
其中,凸轮是核心部件,它通常形状为圆柱体,其轴线与从动件轴线平行。
凸轮的外表面通常具有不规则的形状,以满足特定的运动要求。
从动件与凸轮接触并被驱动进行运动,驱动从动件的力来自于驱动件。
凸轮机构的工作原理是基于凸轮的旋转运动。
当凸轮旋转时,凸轮上的形状会与从动件进行接触,从而产生驱动力。
凸轮的形状决定了从动件的运动规律,可以实现直线运动、转动运动或复杂的轨迹运动等。
在凸轮机构中,凸轮的运动通常是以连续的方式完成的。
当凸轮旋转一周后,以不同速度和运动规律运动的从动件会回到初始位置,从而实现特定的往复或连续运动。
在某些凸轮机构中,凸轮的速度和角度可以通过其他传动装置进行调节,以实现调整从动件的运动规律。
二、凸轮机构的应用凸轮机构广泛应用于各种机械设备中,其中最常见的是内燃机的气门控制系统。
在内燃机中,凸轮机构负责控制气门的开关,以实现燃烧室的进气和排气。
凸轮机构通过凸轮和气门杆的连接,将凸轮的旋转运动转换为气门的上下运动,从而实现气门的开启和关闭。
不同类型内燃机根据其工作原理和要求,凸轮机构的设计和形状也会有所不同。
此外,凸轮机构还应用于机床、自动化生产线、纺织机械等领域。
在机床中,凸轮机构可以用于驱动工作台、进给机构和切削工具等,以实现工件的加工和加工过程的自动化。
在自动化生产线中,凸轮机构可以配合其他传动装置,如链条、齿轮等,实现物料的输送和组装。
而在纺织机械领域,凸轮机构则常用于纺纱机、织布机等的驱动系统,以实现纱线的拉伸和布匹的运动。
凸轮机构的应用范围非常广泛,其原理简单可靠,具有良好的可控性和稳定性。
通过根据具体的运动要求设计凸轮的形状和相关的传动装置,可以实现各种复杂的运动规律,为机械运动的控制和操作提供了有效的解决方案。
机械原理第9章凸轮机构及其设计
第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。
机械原理 第3章 凸轮机构
2
26
§3.3 凸轮轮廓曲线的设计 一、凸轮轮廓曲线设计是根据凸轮参数如 基圆半径、推程和推程运动角、回程及回程 运动角、远、近休止角、偏距等参数,用反 转法设计凸轮轮廓曲线。
27
二、1-对心反转图解法设计凸轮廓线,见下图:
28
29
2-偏心反转 图解法设计凸轮轮廓
主要介绍已知从动件运动规律线图设计凸轮轮廓。 一、直动从动件盘形凸轮轮廓的绘制 分别介绍以下两种类型。 1、偏置尖顶直动从动件盘形凸轮 已知从动件位移线图如图3-8 (b)所示,基圆半径 r0,凸轮行程h,推程运动角Φ=1800,休止角 Φs=300,回程角Φ'=900,按图示画出凸轮轮廓线。 作图步骤按反转法如下: 1)将Φ、Φ'各平为4等份,如图(b)中1-1';...8-8'。 并以偏距e和r0画圆,如图(a)所示。基圆与导 路的交点B0(C0)即为从动件的起始点。 2)以OC0为起点,在基圆上平分Φ=180和Φ'=90 分别得C1、C2、C3、和C6、C7、C8各点,并过 C0、C1 . . . 各点向偏距圆作切线,这些切线就是 反转法导路在此点的位置。 3)在各对应的切线上,取C1B1=11' ;C2B2=22' ....得从动件尖顶位置B1、B2、B3... 4)将B0、B1、B2…连接成光滑的曲线就是凸轮 轮廓线(注意:B4、B5是圆弧,B9、B0之间是基 圆) 最后画出图纸进行加工。 30 当e=0时,各切线变成通过O点的射线。
10
一、从动件的运动规律的描述与术语
从动杆位移线图的作图方法及基本名词术语
首先应确认,从动件的运 动规律是由主动件凸轮的轮 廓形状决定的。在图 3-5 中, 回转中心 O 到半径最小点 A 的 K' 圆叫基圆。图 3-5 中凸轮的轮 ϕk 廓规律是,弧 AB 间的半径逐 渐变大,对应的圆心角为 ϕ; 弧 BC 间半径保持不变,对应 K ϕk 的圆心角为 ϕ s ;弧 CD 间半径 逐步变小到基圆半径,对应 的圆心角为 ϕ ' ;弧 DA 间半径 保持基圆半径不变,对应的 圆心角为ϕs'。现凸轮以ω速度 顺时针转动,以 φ=ωt 为横坐 标,从动杆的移动 S为纵坐标, 则从动杆的移动曲线展开图 图3-12:凸轮轮廓与从动件位移线图 如(b)所示。其中: h--升程;ϕ--推程运动角;ϕs--远休止角; ϕ‘--回程运动角;ϕ's--近休止角。这 些角度总和为360˚。从图中可知,当凸轮从A点转过ϕk角到K点时,从动杆升高 到K’点;当凸轮从A点转过ϕ角度,从动杆升高了h到B点。其他各点作图方法 11 一样,然后将各点连成光滑的曲线,就是从杆的位移线图(b).
机械原理课件9 凸轮机构
1、凸轮廓线设计的基本原理
• 解析法、作图法 • 相对运动原理法:(也称反转法) • 此时,凸轮保持不动
• 对整个系统施加 -ω
运动
• 而从动件尖顶复合运动的 轨迹即凸轮的轮廓曲线。
-ω
A A A A A A A A
1 2
3’ 2’ 1’
ω
r0
1
O
2 3
3
2.用作图法设计凸轮廓线
1)对心直动尖顶从动件盘形凸轮
e
对心平底推杆凸轮机构
平底摆杆凸轮机构
从动件与凸轮之间易形成油膜,润滑状况好,受力平稳, 传动效率高,常用于高速场合。但与之相配合的凸轮轮廓 必须全部外凸。
偏心平底推杆凸轮机构
滚子摆杆凸轮机构
e
§9-2 推杆的运动规律
一.推杆常用的运动规律
凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式; 2)推杆运动规律; 3)合理确定结构尺寸; 4)设计轮廓曲线。
a
2h 2
02
2 sin 0
R= 2
h
A 0 1 v
2
3 4
5
6
7
8
回程: s=h[1-δ /δ
0
′)/2π
0
′
+sin(2π δ /δ
0
0
]
v=hω [cos(2π δ /δ 0’)-1]/δ a=-2π
hω 2 sin(2π δ /δ
′
FI ma 0
(1).对心直动尖顶从动件盘形凸轮
s
h
对心直动尖顶从动件凸轮机构 中,已知凸轮的基圆半径rmin, 角速度ω和从动件的运动规律, 设计该凸轮轮廓曲线。 设计步骤小结:
机械原理大作业凸轮机构有关公式
机械原理大作业凸轮机构有关公式凸轮机构是机械传动中常见的一种机构,具有转动曲线的特点,可以将驱动轴的转动运动通过凸轮的滚动轮廓来实现对从动件的相应动作控制。
在凸轮机构的设计和分析中,有一些与凸轮曲线有关的公式是十分重要的。
一、凸轮曲线方程凸轮曲线是指凸轮的滚动轮廓,可以通过数学方法来表示。
常见的凸轮曲线方程有圆弧、椭圆、正弦曲线等。
其中,最常用的是圆弧和直线的组合,这种凸轮曲线被称为简谐凸轮曲线。
简谐凸轮曲线方程可以表示为:y = r (1 - cos(θ - θ0))其中,r为凸轮半径,θ为凸轮角度,θ0为凸轮曲线的初相位差。
凸轮在其中一角度θ的位置的坐标可以通过此公式计算得出。
二、凸轮曲线的导数和导数变化率在凸轮机构的设计和分析中,对凸轮曲线的导数和导数变化率也有相当重要的影响。
凸轮的导数表示了凸轮曲线的斜率,而导数的变化率表示了凸轮曲线的曲率。
凸轮曲线的导数可以表示为:dy/dθ = r sin(θ - θ0)凸轮曲线的导数变化率可以表示为:d²y/dθ² = r cos(θ - θ0)通过对凸轮的导数和导数变化率的计算和分析,可以确定从动件的运动状态和速度变化情况,进而进行凸轮机构的设计和优化。
三、凸轮压力和压力角在凸轮机构中,凸轮和从动件之间存在着压力作用。
对于凸轮的任何一个位置,凸轮所施加的压力可以通过力的分解计算得出,并且可以利用凸轮的转角来表示。
凸轮的压力可以表示为:F = P * r * cos(θ - θ0)其中,P为压力系数,r为凸轮半径,θ为凸轮角度,θ0为凸轮曲线的初相位差。
凸轮的压力角可以表示为:φ = atan(dy/dθ)其中,dy/dθ为凸轮曲线的导数。
凸轮的压力角可以用来描述凸轮的主动件施加力的方向和作用范围,对凸轮机构的设计和分析具有指导意义。
以上是凸轮机构常见的几个重要的公式,通过这些公式可以计算和分析凸轮机构的运动学和动力学性能,为凸轮机构的设计和优化提供指导。
凸轮机构工作原理
凸轮机构工作原理
凸轮机构是一种常用于机械传动的装置,主要由凸轮轴和凸轮组成。
凸轮是一种特殊形状的轴,在其表面上具有凸起的凸轮形状。
当凸轮轴旋转时,凸轮的凸起部分会与其他部件接触,从而产生一定的动作。
凸轮机构的工作原理主要包括以下几个步骤:
1. 凸轮轴旋转:当凸轮轴被驱动时,凸轮随着轴的旋转而一起旋转。
2. 凸轮形状引导:凸轮的凸起部分会与其他部件(例如推杆、摇臂等)接触。
凸轮的形状通常根据工作需求而设计,可以是圆形、椭圆形、正弦曲线形等。
凸轮的形状决定了其他部件的运动规律。
3. 动作传递:当凸轮的凸起部分与其他部件接触时,凸轮会传递动作给这些部件。
这些部件根据凸轮的形状进行相应的运动,例如推动活塞、打开或关闭阀门等。
凸轮机构的优点是能够将旋转运动转换为线性运动或非规律的运动。
通过设计不同形状的凸轮,凸轮机构可以实现复杂的运动轨迹。
凸轮机构广泛应用于各种机械装置中,例如发动机的气门控制系统、纺织机械的工作机构等。
机械原理凸轮机构
O
Ov
1
1
2 3 4 5 6 234 56
速度的变化率(即跃度j)在这些 位置为无穷大——柔性冲击
v
O
2
适应场合:中速轻载
O
2
a a0
O 2
j
3.简谐运动(余弦加速度运动)
当质点在圆周上作匀速运动 时,它在该圆直径上的投影所构 成的运动规律—简谐运动
s
h 2
1
cos
π Φ
φ
特点:有柔性冲击
作平底的内包络线,即为所要设计 的凸轮廓线
4.4 解析法设计平面凸轮轮廓曲线
一、直动滚子从动件盘形凸轮
已知:凸轮以等角速度 逆
y
时针方向转动,凸轮基园半
径ro、滚子半径rr,导路和凸
e
轮轴心间的相对位置及偏距e,
B0 ''
n
从动件的运动规律 s s(。)
1. 理论廓线方程: B(x, y)
s0 O
4.1.2 凸轮机构的分类
1. 按凸轮的形状分类
盘形凸轮 移动凸轮
圆柱凸轮
盘形凸轮:最基本的形式,结构简单,应用最为广泛
移动凸轮:凸轮相对机架做直线运动
圆柱凸轮:空间凸轮机构
2. 按从动件的形状分类
尖端能以任意复杂的凸轮轮廓 保持接触,从而使从动件实现 任意的运动规律。但尖端处极 易磨损,只适用于低速场合。
d
min
s
e
L
rρ
rb r' Cu
O
4.6 圆柱凸轮机构
一、直动从动件圆柱凸轮机构
O
rm 1
O a)
v1
η η
1
η 2
v2
哈工程机械原理凸轮机构
哈工程机械原理凸轮机构1. 引言凸轮机构是机械工程中广泛应用的一种机构,包括了凸轮、滑块、连杆等部件。
在哈工程机械中,凸轮机构常用于控制机械运动的节奏和轨迹。
本文将介绍哈工程机械原理凸轮机构的工作原理以及在机械设计中的应用。
2. 凸轮机构的工作原理凸轮机构是一种基于凸轮运动的机械机构,可以将轴向转动运动转化为连杆运动或滑块运动。
凸轮通过主动轴驱动,使得凸轮轴随着转动,而凸轮则由于轴上的凸状物而在转动过程中产生周期性的起伏变化。
在哈工程机械中,凸轮机构常用于控制机器的工作节奏,例如控制挖掘机的铲斗起升。
通过控制凸轮的形状和凸轮轴的转速,可以实现不同速度和轨迹的运动。
凸轮机构的工作原理可以简要概括为以下几个步骤:1.凸轮轴的转动:凸轮机构的主动轴通过电机或其它动力装置驱动,使得凸轮轴开始转动。
2.凸轮的曲线轮廓:凸轮的轮廓可以根据具体的要求设计和加工,常见的形状包括圆形、椭圆形等。
不同的轮廓形状可以实现不同的动作轨迹。
3.滑块或连杆的运动:凸轮的曲线轮廓通过接触滑块或连杆,将轴向转动运动转化为连杆运动或滑块运动。
滑块或连杆的运动速度和轨迹由凸轮的形状和凸轮轴的转速决定。
4.控制机器的运动:滑块或连杆的运动可以用于控制机器的工作,例如挖掘机的铲斗起升运动。
通过调整凸轮的形状和凸轮轴的转速,可以调节机器的运动速度和轨迹。
3. 哈工程机械原理凸轮机构的设计与应用哈工程机械原理凸轮机构在机械设计中具有广泛的应用。
在以下几个方面,哈工程机械原理凸轮机构发挥了重要的作用:3.1 挖掘机挖掘机构挖掘机是哈工程机械中常见的设备之一,它的挖掘机构是由凸轮机构控制的。
凸轮机构通过控制铲斗的起升和倾斜,实现了挖掘机的挖掘和卸料功能。
凸轮的形状和凸轮轴的转速可以调节铲斗的升降速度和倾斜角度,使挖掘机能够适应不同的工作条件。
3.2 压路机振动机构哈工程机械中的压路机常常采用凸轮机构实现振动功能。
凸轮的曲线轮廓可以使滑块产生上下振动运动,从而使压路机产生振动力。
凸轮机构机械原理
凸轮机构机械原理凸轮机构是一种重要的动力机构,常被用于驱动各种机械传动机构,如进气门、凸轮磨床等。
它是由凸轮、滑块、连杆等零件组成的,通过凸轮的回转运动,使滑块做直线或曲线运动,从而驱动其他机械零件进行工作。
凸轮机构具有结构简单、运动规律稳定、传动效果可靠等优点,因此在许多机械装置中得到了广泛应用。
凸轮机构的工作原理是凸轮的凸顶腔和滑块之间的相互作用。
常见的凸轮形状主要有圆形、椭圆形和正弦形等,在机械传动中起到不同形式的转动和直线动作。
在凸轮机构中,凸轮通过旋转或者平行移动来改变滑块的运动状态,使其在各个工作阶段完成不同的工作。
凸轮机构的运动是由凸轮的运动形状和滑块的连接方式共同决定的。
滑块的运动有直线运动和曲线运动两种形式。
当凸轮为圆形或椭圆形时,滑块呈现直线运动,这种凸轮机构被称为滚子机构;当凸轮为正弦形时,滑块呈现曲线运动,这种凸轮机构被称为滑块机构。
凸轮机构的滑块运动可分为快速行程和慢速行程两个阶段,通过凸轮的不同形状设计,可以实现不同的行程和速度要求。
凸轮机构的传动效果可靠并且具有一定的精度,这主要是由于滑块的运动轨迹是凸轮形状决定的。
滑块与凸轮之间的配合要求较高,一般要求其紧密配合,并采用润滑措施以减少磨损和噪声。
为了保证凸轮机构的正常运行,一般还需要加装一些辅助装置,如导向装置、回程装置等。
凸轮机构在应用中有很多种工作形式,如单凸轮、双凸轮、三凸轮等。
在设计凸轮机构时,需要考虑到工作的特点和要求,选择合适的凸轮形状和运动轨迹,以及相应的滑块、连杆等零件的结构参数。
凸轮机构的设计和制造需要考虑到许多因素,如传动比、工作精度、传动效率等。
为了使传动效果更好,一般会采用润滑措施,并且对关键部位进行加工和装配精度控制。
总之,凸轮机构是一种重要的动力机构,其工作原理是通过凸轮的回转运动,使滑块做直线或曲线运动,从而驱动其他机械零件进行工作。
凸轮机构具有结构简单、运动规律稳定、传动效果可靠等优点,因此在各种机械传动中得到了广泛的应用。
机械原理凸轮机构精品ppt课件
38
二、从动件运动规律的选择
1.机器的工作过程只要求凸轮转过一角度时,推杆完成 一行程h或φ,对运动规律并无严格要求。
则应选择直线或圆弧等易加工曲线作为凸轮的轮廓曲 线。如夹紧凸轮。
φ ω
工件
39
2. 机器的工作过程对推杆运动有要求,则应严格按工作 要求的运动规律来设计凸轮廓线。如刀架进给凸轮。
设计:凸轮轮廓曲线。
ω
r0
o
44
μs=( )mm/mm
8’ 9’
7’
11’
5’ 3’
1’
12’
13’ 14’
12 345 67 8 9 11 13 15
μφ=( )°/mm
取适当的比例尺μl=μs
-ω ω
15
o
45
设计步骤:
① 按给定从动件的运动规律绘制从动件的位移线图。 ② 确定从动件尖底的初始位置。 ③ 确定导路在反转过程中的一系列位置。 ④ 确定尖底在反转过程中的一系列位置。 ⑤ 绘制凸轮廓线。
偏置尖底直动从动件盘形
凸轮机构
20
9.从动件的运动线图
从动件的运动规律——从动件 的位移、速度和加速度与时间 或凸轮转角间的关系。
位移方程 s = f(φ)
速度方程
v
ds dt
ds d
d dt
ds d
加速度方程
a
d
2 s
dt 2
dv dt
dv d
d dt
2
d
2 s
d 2
21
M s1 M1
M’ s1
第一节 凸轮机构的类型
一、凸轮机构的组成
内 燃 机 的 配 气 凸 轮 机 构
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高副接触,易于磨损,多用于传力不大的场合; 凸轮加工比较困难; 从动件行程不宜过大,否则会使凸轮尺寸过大。
18
机械原理
第五章 凸轮机构及其设计
第二节 凸轮机构的基本名词术语
1.基圆和偏距圆
基圆半径——r0 偏距—— e
2.推程和推程运动角()
3.远休止和远休止角(Φs ) 4.回程和回程运动角(Φ' ) 5.近休止和近休止角(Φ's ) 6.凸轮转角——φ 7.从动件位移—— s 8.从动件行程—— h
三、凸轮机构的类型
1.按凸轮的形状分
盘形凸轮
移动凸轮
圆柱凸轮
6
2.按从动件的结构形式分
(1)尖底从动件
这种从动件可实现任意 的运动规律。结构简单,但 尖底处极易磨损,只适用于 低速场合。
7
(2)滚子从动件
凸轮与从动件之间为滚动 摩擦,因此磨损较小,可用于 传递较大的动力,应用广泛。
8
(3)平底从动件
从动件运动规律的选择 受到一定的限制。
15
共轭凸轮机构
一个凸轮推动从动件完成 正行程运动,另一个凸轮推 动从动件完成反行程的运动。 这种凸轮机构又称为主回凸 轮机构。
16
机械原理
第五章 凸轮机构及其设计
反凸轮机构
摆杆为主动件, 凸轮为从动件
17
四、凸轮机构的特点
优点:
结构简单,紧凑; 应用灵活; 设计方便。
受力平稳,传动效 率高,常用于高速场合。 但与之相配合的凸轮轮 廓须全部外凸。
9
3.按从动件的运动形式分
(1)直动从动件
对心直动从动件
偏置直动从动件
10
(2)摆动从动件
11
4.按凸轮与从动件的接触方式分
(1)力封闭凸轮机构 ——利用从动件自身重力、回复弹 簧力或其它外力,使从动件与凸轮 廓线始终保持接触。
弹 簧 力 封 闭
12
(2)几何封闭凸轮机构 ——利用构成高副元素本身的 几何形状,使从动件与凸轮始 终接触。
通过其沟槽两侧的廓线始 终保持与从动件接触。
槽型凸轮机构
13
凸轮廓线上任意两条平 行切线间的距离都等于从 动件矩形框架内侧两个平 底之间的距离。
等宽凸轮机构
14
等径凸轮机构
过凸轮轴心所作任一径 向线上与凸轮相接触的两滚 子中心间的距离处处相等。
4
h/2
3
2
1O
1 2 34 5 6 7Φ
8
33
(2)摆线运动规律(推程)
位移方程:s R - Rsin
h 2 R
s h[ - 1 sin(2 )]
2
v h [1 - cos(2 )]
a 2h 2 sin(2 )
2
正弦加速度运动规律
34
(2)摆线运动规律(推程) 特点:无冲击 应用:高速、轻载
第一节 凸轮机构的类型
一、凸轮机构的组成
内 燃 机 的 配 气 凸 轮 机 构
1
自 动 机 床 的 进 刀 凸 轮 机 构
凸轮机构的组成
凸轮
从动件
高副机构
机架
2
二、凸轮机构的应用
绕线机构
1-凸轮 2-摆动从动件 3-线轴
3
自动送料机构
1-圆柱凸轮 2-直动从动件 3-毛坯
4
内燃机配气机构
5
35
位移曲线图绘制: s
s h - 1 sin 2 2
h
r=h/2π
123源自456θ=2πδ /φ
φ
36
组合运动规律
(1)改进等速运动规律
主运动:等速运动规律 组合运动:
等速运动的行程两端与正弦 加速度运动规律组合起来。
s
o
v
φ
o a
+∞
o
h
-∞
37
(2)改进梯形运动规律 主运动:等加速等减速运动规律 组合运动:在加速度突变处以正弦加速度曲线过渡。
位移方程: s h [1 - cos( )]
2
速度方程:
v h sin( )
2
加速度方程:a 2 h 2 cos( )
2 2
余弦加速度运动规律
31
(1)简谐运动规律(推程) 特点:有柔性冲击 应用:中速、中载
32
位移曲线图绘制:
s
h 2
1
-
cos
s 7 h8 6
5
38
二、从动件运动规律的选择
1.机器的工作过程只要求凸轮转过一角度时,推杆完成 一行程h或φ,对运动规律并无严格要求。
δ1
s=
mm
mm
s1
δ1
度
(
) mm
22
第三节 从动件的常用运动规律
一、从动件常用运动规律
1.多项式运动规律
多项式运动规律的一般表达式为
s C0 C1 C2 2 Cn n
工程中常用:n=1、2、5
24
(1)一次多项式运动规律(n=1)(推程)
位移方程的一般表达式
s
h
s C0 C1
速度方程: v h [30( )2 - 60( )3 30( )4 ]
加速度方程:a
h 2
2
[60( )
-180( )2
120( )3]
3-4-5多项式运动规律
29
3-4-5运动规律
s
v
s
a
v a
特点:无冲击 应用:高速、中载
30
2.三角函数运动规律
(1)简谐运动规律(推程)
s R - Rcos
偏置尖底直动从动件盘形
凸轮机构
20
9.从动件的运动线图
从动件的运动规律——从动件 的位移、速度和加速度与时间 或凸轮转角间的关系。
位移方程 s = f(φ)
速度方程
v
ds dt
ds d
d dt
ds d
加速度方程
a
d 2s dt 2
dv dt
dv d
d dt
2
d
2 s
d 2
21
M s1 M1
M’ s1
s
特点:有柔性冲击
h
柔性冲击:由有限的加速度 h/2 产生的惯性力引起的冲击。
应用:中速、轻载
O
Φ/2
v
回程位移曲线图绘制:
O
Φ/2
a
O
Φ/2
Φ
Φ
Φ
28
(3)五次多项式运动规律(n=5)(推程)
s C0 C1 C2 2 C3 3 C4 4 C5 5
位移方程: s h[10( )3 -15( )4 6( )5 ]
位移方程: s h
O
v
速度方程:v
O
加速度方程:a 0
a
+∞
等速运动规律
O
Φ
Φ
Φ
-∞
25
(1)一次多项式运动规律(n=1)(推程)
特点:有刚性冲击
s
h
刚性冲击:由理论上趋于无
穷大的加速度产生的惯性力
引起的冲击。
O
v
应用:低速、轻载
回程运动方程:
s
h(1 -
)
v
-h
ω
a0
O
a
+∞
O
Φ
Φ
Φ
-∞
26
(2)二次多项式运动规律(n=2)(推程)
s
s C0 C1 C2 2
h
0 / 2
s
2h
2
2
v
4h 2
4h 2 a 2
/ 2
h/2
s
h
-
2h
2
(
-
)2
O
v
v
4h 2
(
-)
a
-
4h 2
2
O
a
等加速等减速运动规律
O
Φ/2 Φ/2 Φ/2
Φ
Φ
Φ
27
(2)二次多项式运动规律(n=2)(推程)