场论与张量运算简介
1_场论与张量基础
张量表示法
张量表示法具有书写简洁,运算方便的优点。 在张量表示法中我们将坐标改写成 x1,x2,x3。 并引进以下 几种符号。 (1)ai 表示一个矢量, i 是自由指标,可取1,2,3,符号
a 可任取。
例如的 grad 张量表示法为
xi
18/72
第二节 张量
张量表示法
(2)约定求和法则。为书写简便,我们约定在同一
张量表示法
ijk
例如:
0 1
两个以上(含两个)下标相同 下标为偶排列或奇排列
a b ijk a j bk ak rota ijk x j
ijk ist js kt jt ks
20/72
第二节 张量
3. 二阶张量
二阶张量性质
(1)二阶张量的主值、主轴及不变量
场论中的奥高公式可以推广到张量中去。设 P 是 n 阶张量,则张量情形下的奥高公式可写为:
rotn a lim
S 0
a d r
L
S
11/72
第一节 场论
8.无旋场及其性质
环量与旋度
rota 0 的矢量场称为无旋场。
无旋场最重要的性质是无旋场和位势场的等价性。
即若 a 是位势场,则 a 必为无旋场。
a grad rota 0
反之,若矢量 a 是无旋场,则 a 必为位势场。
( 1) P的反对称性不因坐标转化而改变;
(2)反对称张量的三个分量 1 ,2 , 3 组成一矢量 ;
(3)反对称张量 P 和矢量 b 的内积等于矢量 和 b 的矢积,即:
P b aij bj ijk b jk ikjkb j b
场论与张量
lim
S 0
L
a dr S a dr S
定义矢量a的旋度矢量rota在n方向的投影为(微分形式的斯托克斯公式):
rot a lim
n S 0
L
1.6 矢量的环量、旋度、斯托克斯定理
证明上述极限存在。设矢量a的三个分量具有连续一级偏导数,利用斯托克斯 公式,有:
L
a dr
an a n ax cos(n, x) a y cos(n, y) az cos(n, z )
为a在法线方向的投影,定义矢量a通过面积元dS的通量为andS,则沿曲面S积 分,可得矢量a通过S面的通量:
dS dSn
S
an dS
定义面积矢量dS是大小为dS、方向为法线正方向的量,则通量表达式可表示为如 下形式:
S1 S
•
S1
an dS an dS
S
应该指出,该性质仅在特定的区域内成立,在此区域内,任一球面形曲面不 超出此区域而缩成一点。
1.6 矢量的环量、旋度、斯托克斯定理
给定一矢量场a,在场内任取一曲线L,作线积分:
a dr (a dx a dy a dz)
L L x y z
1.2 场的几何表示
例子:TTU模型屋盖的平均风压系数分布等值线图。
1.2 场的几何表示
现在研究矢量场的几何表示。包括方向和大小,更为复杂。 矢量的大小是一个标量,可以采用等位面的形式表示。 矢量的方向可采用矢量线来表示。矢量线的定义:线上每一点的切线方向与 该点矢量方向重合。 作出同一时刻通过场内任意一点M的矢量线(绘图表示)。 下面研究矢量线的方程。设dr是矢量线的切向元素,根据矢量线的定义,有:
0-场论与张量(数学基础)
(1)指标表示法和符号约定
哈密顿算子
利用哈密顿算子进行运算时,需分别进行微分和矢量两 种运算。
梯度
散度
ei ( ) ei xi xi
a j ai a j a ei x a j e j ei e j x ij x x i i i i
i j k (2) v w 1 2 5 i (2 1 1 5) j ( 3 5 1 1) k ( 1 1 2 3) 3 1 1 3 i 16 j 7 k
e1 e2 e3 a b a1 b1 a2 b2 a3 b3
26
ij ji
12 21, 31 13
ij a j ai
1 j a j 11a1 12a2 13a3 a1 , 2 j a j a2 , 3 j a j a3
ij 与 a j 相乘,相当于把 a j 的下标 j 置换为 i。
18
(2)笛卡尔张量
共轭张量、对称张量、反对称张量和张量的分解 张量分解定理 一个二阶张量可以唯一地分解为一个对称张量和一个反对 称张量之和
P 1 1 P Pc P Pc 2 2
容易验证上式右边第一项是对称张量,第二项是反对称张 量。
19
梯度、散度和旋度 2.1 哈密尔顿(Hamilton)算子 哈密尔顿(Hamilton)算子是矢量微分算子,其定义如下:
i, j, k 奇排列, 213,321,132
9
(1)指标表示法和符号约定
置换符号
ijk
ijk 有以下重要性质:
ijk ist js kt jt ks
张量与场论
标量场的方向导数和梯度
一、方向导数
设 M 0 为标量场 u uM 中的一点,从 M 0 出发引一条
射线 l ,在 l 上点 M 0 的邻近取一动点 M ,记 M0M
.若当 M M0 时比式 u uM u(M 0 ) 的极限存在,则
M0M
称它为函数 l u uM 在点 M 0 处沿 方向的方
29
(2)笛卡尔张量
二阶张量的代数运算 张量乘积 设 A aij 、B bkl ,分量相乘,
cijkl aijbkl
cijkl 是 4 阶张量。 可以证明一个 m 阶张量和一个 n 阶张量的乘积是 m + n 阶张量。
30
(2)笛卡尔张量
共轭张量、对称张量、反对称张量和张量的分解
对称张量
若二阶张量分量 sij 之间满足
一个自由指标每次可取整数1, 3, …, n,与哑标一样,无 特别说明总取n=3。于是,上式表示3个方程的缩写:
x1 a11x1 a12 x2 a13x3
x2 a21x1 a22 x2 a23x3
x3 a31x1 a32 x2 a33x3
在同一方程的所有项中出现的自由指标必须相同。
i, j, k 奇排列, 213,321,132
23
(1)指标表示法和符号约定
置换符号 ijk
ijk 有以下重要性质:
ijk ist js kt jt ks
ijk ijt 2 kt
ijk ijt jjkt jtkj 3kt kt 2kt
ijk ijk 2 kk 6
13
笛卡尔张量
14
§3 笛卡尔张量
一、张量
坐标旋转时能自身转换而保持不变的量,统称为张量
在三维空间和选定的坐标系中,需要用3n个数来 定义的量称为n阶张量
预备知识-场论与张量基础
张量基础知识
张量的简单例子 张量的数学定义 对称张量的性质 张量与对称性的关系
张量的简单例子-电导率
对于均匀导体,电流密度J与电场强度E同向,其大小成比例关系-欧姆 定律
J=sE 或 Ji=sEi (i=1,2,3)。此处,s为电导率,标量。
对于晶体而言,J与E将不再同向。欧姆定律变为
[定理] 任何一个张量总可以分解为一个对称张量和一个反对 称张量之和,并且分解的方法是唯一的。
共轭张量:若Tij(i,j=1,2,3)为张量,则可以证明, Tji(i,j=1,2,3) 也为张量。我们称它们互为共轭张量。
T11 T12 T13 T T21 T22 T23
T31 T32 T33
p
,je
, j
j1 i 1
j1
比较两边3系数,得
p
, j
a ji pi
(4)
i1
矢量的数学定义
同样可得
3
pi
a ij
p
, j
(5)
i 1
矢量的数学定义:若有一组数p1, p2, p3, 当坐标系变换后变为p1’, p2’, p3’, 并且满足(4)和(5)式的关系,则这一组数构成一个矢量。
T11 T21 T31
(13)
Tc T12 T22 T32
T13 T23 T33
张量分解定理之证明
设有一个张量T,我们假定它可以分解为对称张量S与反对 称张量A之和。即
T=S+A
(14)
两边取共轭,于是 Tc=Sc+Ac
而S=Sc, Ac=-Ac,所以
Tc=S-A
(15)
由式(14)与(15)解得
3
ei, aij ej
第03讲预备知识-场论1
e3
顺时针为负
置换符号说明: i、j 、k取值不同值时, εijk取1 或-1(6个),其余分量(21个)为零。即:
e2 e1 逆时针为正
ε 123 = ε 231 = ε 312 = 1
ε 132 = ε 213 = ε 321 = −1
置换法则:任意2个自由指标对换后差一个负号 正负取值规律:按右图中,逆时针取值为正,顺时针取值为负。
a = ax i + a y j + az k
任意一点M的矢径 矢径微分
r = xi + yj + z k
M z y o x
a
dr = dxi + dyj + dzk
dr × a = 0
r
叉积为零:
这就是向量线的微分方程(Differential Equation) 在直角坐标系(System Of Rectangular Coordinates)当中表示为
可以列表表示:
e1
′ e1
e2
e3
α 11 α12 α13 α 21 α22 α23
α 31 α 32 α 33
ei′ = α ij e j ei = α ji e ′j
e′ 2
′ e3
上述关系可简写为:
同理,老坐标的单位向量可用新坐标的单位向量表示:
根据上述单位向量的性质和关系可导出:
ei ⋅ e j = e′ ⋅ e′j i
a ⋅ bc = (a ⋅ b)c = (b ⋅ a )c = c (a ⋅ b)
ab ⋅ cd = a (b ⋅ c )d = (b ⋅ c )ad = ad (c ⋅ b) c ⋅ ab ⋅ d = (c ⋅ a )(b ⋅ d ) = (b ⋅ d )(c ⋅ a )
流体力学-第一讲 场论与张量分析初步
ax ay az
10.01.2021
18
所以有: (向量线方程)
dx dy dz
ax ay az
向量管:在场内取任一非向量的封闭曲线C,通过C上每一点 作矢(向)量线,则这些矢量曲线的区域为向量管。
流线方程 迹线方程
dx dy dz ux uy uz dx dy dz dt ux uy uz
迹线的描述 是从欧拉法
15
二、场的几何表示
变化快
变化慢
1、scalar field:
(1)用等值线(面)表示
令:
t0 f(r,t0)f0
t1 f(r,t1 )f1
等值线(等位面)图
(2)它的疏密反映了标量函数的变化情况
10.01.2021
16
二、场的几何表示
2、 vector field: 大小:标量. 可以用上述等位线(等位面)的概念来几何表示。
10.01.2021
12
数量三重积: c ab
ax ay az
a bc abc abc bx by bz
cx cy cz
a b c c a b b c a
abcacb
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
10.01.2021
③在任一方向的变形等于该方向的方向导数。
④梯度的方向是标量变化最快的方向。
10.01.2021
25
梯度的基本运算法则有:
C C
C( 为 常 数 )
1 2 1 2
1 2 1 2 2 1
f f
10.01.2021
26
四、向量的散度(divergence)
a ba xi a yj a zkb xi b yj b zk
流体力学-第一讲,场论与张量分析初步
x2 y2
方向导数
f l
li m 0 f(xx,yy)f(x,y)
方向 f导 fc 数 o sfsin
运动学 动力学
以实际流体为主
24.11.2020
h
2
主要内容:
第一章 场论与张量分析初步
第二章 流体运动学
第三章 流体力学基本方程组
第四章 粘性流动基础
第五章 Navier-Stokes 方程的解
第六章 边界层理论
第七章 流体的旋涡运动
第八章 湍流理论
24.11.2020
h
3
第一章 场论与张量分析初步
h
8
矢量的标量积(数量积)(点积)(内积):
功:当力F作用在质点上使之移动一无限小位移 ds,此力所做功定义为力在位移方向的投影乘以
位移的大小.
a b a b co a ,b s
coa ,sb axbxa yb yazbz ab
a ba xi a yj a zkb xi b yj b zk
cx cy cz
a a b b c c c a c a b b b c a
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
24.11.2020
h
13
数量三重积几何意义:作为平行六面体的体积 。
a b c
c a b = 0 , 是 a ,b ,c 共 面 的 充 分 条 件
矢量线的描述是从欧拉法引出
矢量线方程:
设
dr
是矢量线的切向元素,
则据矢量线的定义有
a d r0
直角坐标:
d r id x jd k y d z a ia x ja y k a z
则有:
第一章-场论及张量初步分析
全国范围内温度场分布
速度场
速度场
速度场
电场
磁场
均匀场:同一时刻场内各点 函数值都相等
定常场:场内函数值不随时 间t改变
均匀场
定常场
1.2 场的几何表示
等高线
等高线
根据等高线的相对位置、疏密程度 看出标量函数-高度的变化状况
矢量场的几何表示
矢量的大小是一个标量,可以用等位 面的概念来几何表示,矢量的方向则 采用矢量线来表示。
rotxa
az y
a y z
rot y a
ax z
az x
rot z a
a y x
ax y
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
i jk
rota
x y z
ax ay az
1.6 环量. 旋度. 斯托克斯定理
矢量线:线上每一点的切线方向与该 点的矢量方向重合
dr
r r
根据矢量定义有: a dr 0
直角坐标形式:
1.3 梯度-标量场不均匀性的量度
对于给定标量场 (r,t),用它的梯度
来表明在任一时刻标量场中每点邻域 内的函数变化。
函数在M点上沿曲线S方 向的方向导数:
表明函数φ(r,t)在M点上 沿曲线S方向的变化率
p31
p13
1 2
p23
p32
0
二阶反对称张量
2 1
0
张量分解定理
二阶张量可以唯一地分解成为一个对称张 量和一个反对称张量之和。
P
1 2
P
Pc
1 2
P
Pc
1第一章-场论与张量基本知识
(r), a(r)
1.1 标量、矢量、场
场的几何表示
标量场可用函数等值面(线)来表示。 可直观看出函数值的大小分布,以及变 化快慢
矢量场可用矢量线来表示。 任一点的矢量方向可由矢量线的切线方 向定出;也可以从矢量线的疏密程度估 计矢量在各点的大小。
1.2 标量场的梯度
方向导数(Directional Gradient)
1. 如果一个方程式或表达式的一项中,一种下标只出现一次,则 称之为自由指标,自由指标在表达式或方程的每一项中必须只 出现一次。 2. 如果在一个表达式或方程的一项中,一种指标正好出现两次, 则称之为哑指标,它表示从1到3求和。哑指标在其他任何项中 可以刚好出现两次,也可以不出现。 3. 如果在一个表达式或方程中的一项中,一种指标出现的次数多 于两次,则是错误的。
2 3
2
ij ij ij ij
i 1 j 1
3
3
1111 1212 1313 21 21 22 22 23 23 31 31 32 32 33 33
1.4 张量表示法
自由指标: 定义:凡在同一项内不重复出现的指标。如
i j k x y z
是一个矢性微分算子,即在运算中具有矢量和微分的双重性质, 其运算规则是:
u u u u i j k x y z
Ay Ax A A i j z k x y z
Az Ay Ax Az Ay Ax A y z i z x j x y k
2 ( ) ( ),ij xi x j
uk ,ij
2uk xi x j
1.5 坐标变换与张量定义
第一章场论及张量初步知识分享
证明:其他方向的方向导数可以由过M点的法 线方向上的方向导数来表示
lim(M1)(M)
n MM 1 0
MM 1
lim (M)(M)
s M M 0 M M
当M1无限接近M时,近 似为过M1点的切线
(M)(M 1)
M1 M M M co n,s s)(
MM MM1 cosn(,s)
(M)(M 1)
对于给定的矢量场a(r,t) ,在场内取一点M, 围绕M取无限小封闭曲线L,张于L上的曲面 为S,按右手螺旋法则定义S的法线方向n。
速度场
速度场
电场
磁场
均匀场:同一时刻场内各点 函数值都相等
定常场:场内函数值不随时 间t改变
均匀场
定常场
1.1 场的几何表示
等高线
等高线
根据等高线的相对位置、疏密程度 看出标量函数-高度的变化状况
矢量场的几何表示
矢量的大小是一个标量,可以用等位 面的概念来几何表示,矢量的方向则 采用矢量线来表示。
V a xx a yy a zz d V V a xx a yy a zz Q
函数在体积V上的积分
在积分体上Q点处的函数值
注意:Q点是积分体上的一个确定点
sandSVaxx
ay y
az z
Q
1.4 矢量的通量.散度.奥高定理
sandSVaxx
ay y
az z
Q
它来描述M点邻域内函数的变化状况,是标量 场不均匀性的量度。
g rad n
n
其他方向的方向导数可以由过M点的梯度 的大小来表示
g rad n
n
cosn,(s)
s
n
s•grad
梯度在直角坐标系中的表达式
场论和张量初步
w ∫∫ ρV ⋅ dS
Σ
K
K =− ∂ρ =单位体积空间内的质量变化率的负值, ∂t
δτ
即单位时间从单位体积空间流出的质量。为精确表述空间任意一点 M 0 处的质量变化率,可
对 δτ 取极限, lim
w ∫∫ ρV ⋅ dS
Σ
K
K =−
Σ→ M 0
δτ
K ∂ρ 。可见 div ( ρV ) 表示单位时间内从单位空间体积表 ∂t
δ ls
K
K M ( x + δ x, y + δ y , z + δ z , t ) ,密度沿方向 s 上的
变化率为
δ l →0
M ( x, y , z )
lim
ρ ( x + δ x, y + δ y, z + δ z , t ) − ρ ( x, y, z , t ) ∂ρ . = δl ∂l
K K 磁通量 w B ∫∫ ⋅ dS = 0
Σ
一般地,对于任意矢量场 m ,定义其散度 div m = lim 散度是标量。 3)散度计算公式(直角坐标系)
K
K
K K m w ∫∫ ⋅ dS
Σ
Σ→ M 0
Hale Waihona Puke τ。以体积通量为例。 以 M 0 ( x0 , y0 , z 0 ) 为中心取正六面体形状的闭合曲面 Σ , 边长分别为
⎛ ∂u ⎜ ∂x K ⎛ δ u ⎞ ⎛ gradu ⋅ δ r ⎞ ⎜ K ⎟ ⎜ ∂v ⎜ ⎟ ⎜ δ δ = ⋅ =⎜ v gradv r ⎜ ⎟ ⎜ K⎟ ⎜ δ w ⎟ ⎜ gradw ⋅ δ r ⎟ ⎜ ∂x ⎝ ⎠ ⎝ ⎠ ⎜∂ w ⎜ ∂x ⎝ ∂u ∂y ∂v ∂y ∂w ∂y ∂u ⎞ ⎟ ∂z ⎟ ⎛δ x ⎞ ∂v ⎟ ⎜ ⎟ ⎟ δ y⎟ ∂z ⎟ ⎜ ⎜δ z ⎟ ⎝ ⎠ ∂w ⎟ ∂z ⎟ ⎠
0 场论与张量基本知识
l 上的单位向量, 设e cos i sin j 是方向
由方向导数公式知
f f f f f cos sin { , } {cos , sin } x y l x y gradf ( x , y ) e | gradf ( x , y ) | cos , 其中 ( gradf ( x, y ), e ) f 当 cos( gradf ( x , y ), e ) 1时, 有最大值. l
如果已知区域 S 中的场,根据斯托克斯定理即可求出
边界 l 上的场,反之亦然。
1.2.6 基本运算公式列表
a、微分公式
(1) 1
(2) 1 (3) (4)
1 2 2 1 f f A B A B
数学中的高斯定理 (Gauss’s theorem) 将体积 积分与面积积分联系起来,在流体力学中,可以 利用这一定理将通量与散度联系在一起。 令 V 为一封闭曲面所包围的体积,在曲面上 考虑一微小面积 dS,其外法线方向为n, dS= ndS 是一向量 ( 其大小为 dS ,方向为 n) ,令 A 表示一个 标量场、向量场或张量场,则高斯公式为
1.2.2 向量场的散度
(2) 向量A的散度 在直角坐标系中,A=Ax i+Ay j+Az k
Ax Ay Az div A A x y z
散度等于零 (divA = 0) 的向量场称为无源场或管式 场。div u=0是不可压缩流体流动的连续性方程。 散度基本运算法则:
在向量场 A 中任取一点 M ,包围 M 作一微小体积 ΔV , 其界面的表面积为ΔS。考虑向量A通过ΔS面的通量,除以 体积ΔV,令体积ΔV向M点无限收缩,得极限
高等流体力学—场论及张量初步
Vz diva lim V 0 x y z Q
1.4 矢量的通量.散度.奥高定理
a x a y a z diva lim V 0 x y z Q
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
az a y rotx a y z a x a z rot y a z x a y ax rotz a x y
1.6 环量. 旋度. 斯托克斯定理
grad i j k x y x
dr dxi dyj dzk
梯度的主要性质
grad i j k x y z
dr dxi dyj dzk
dr grad
dx dy dz x y z
an:矢量a在法线方向的投影 an dS:矢量a通过面积元dS的通量
1.4 矢量的通量.散度.奥高定理
在整个曲面上积分,得矢量a通过S面的通量
a dS n
s
实质上相当于函数的面积分
1.4 矢量的通量.散度.奥高定理
当S面为封闭曲面时,通量为:
a dS n
s
1.4 矢量的通量.散度.奥高定理
S 0
a dr
L
S
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系
a dr a dx a dy a dz x y z
L L
a z a y cos(n, x) s z y
i rota x ax j y ay k i z x az x j y y k 0 z z
第二章 正交曲线坐标系中的张量分析与场论
第二章 正交曲线坐标系中的张量分析与场论上一章讨论了张量的代数运算,而连续介质力学要求研究连续介质微元体之间的关系,这就要求把微积分引入张量的运算中,从而形成了张量分析与场论。
本章我们将重点介绍正交曲线坐标系中的张量分析及一些有关场论的知识,关于一般曲线坐标系中张量分析的知识不在我们课程讲授的范围之内,我们在第三章中给出有关内容的简单介绍,供有兴趣者参考。
相对于一般曲线坐标系,有些文献和教科书上也把正交曲线坐标系称为非完整系物理标架。
2.1、矢量函数、及其导数与微分1).如果一个矢量A 随着某一参数q 在变化,则称这个矢量()q A为矢量函数,在直角坐标,也称笛卡尔坐标中()q A可表示为()()()()k q A j q A i q A q A z y x++=如果把矢量A 的起点放在原点,随着q 的变化,A的端点将在空间描述出一条曲线,这条曲线称为A的矢端曲线,矢端曲线是以参数形式给出的。
矢端曲线上一点M ,矢量叫做点M 的矢径,用r表示。
矢端曲线的参数方程为A r=,即其分量满足的方程为()q A x x =; ()q A y y =; ()q A z z = 例:圆柱螺旋线。
参数方程为:()k a j a i a rθθθθ++=sin cos其中θ为参数。
2).矢量函数的导数矢量函数的导数的定义为:如()()qq A q q A q A q q ∆-∆+=∆∆→∆→∆ 00lim lim存在,则称为()q A 在q 点的导数或导矢,记为qA ∆∆或A '。
在直角坐标中,由于i e是常矢量,因此导数的表达式为()()()()i i i i i q i i i i q q e qA e q q A q q A q e q A e q q A q Adq A d∂∂=∆-∆+=∆-∆+=∆∆=→∆→∆→∆000lim lim lim即k dqdA j dq dA i dq dA dq A d z y x++=s导矢()q A '的几何意义:如果导矢A ' 存在,且0≠'A ,则A '的方向表示矢端曲线的切线方向,并指向q 增加的方向。
《物理场论》标量矢量和张量
一个数量场可以用一个数性函数 u 来表示。通 常假定数性函数 u是单值、连续且有一阶连续的
偏导数。
数量场的等值面
等值面:数性函数 u 取相同值的点连接起来构
成的一个曲面,定义为:
u(x, y, z) C ( C 为常数)
比如温度场的等温面,电位场的等电位面等。
由隐函数存在定理可知,在函数 u 为单值,且
证明:将
C
D
看作一个矢量,由矢量混合积
的旋转法则可以得到:
( A B) (C D) A [B (C D]
A [C(B D) D(B C)]
( A C)(B D) ( A D)(B C)
P(x, y, z) r
o
xex
yey
y
x
矢量的点积
矢量点积的物理背景:广泛的应用。
W
F
s
常力
F
W
F
ds
O 变力
s
矢量的点积
矢量点积的矩阵表示:矢量可以用列矩阵表示。
A Axex Ayey Azez
Ax
A
P(x, y, z)
yj
y
矢量均可以表示为基的线性组合
r xi yj zk
r xex yey zez
矢量的概念
z
矢量的模:矢量的长度
r
r
x2 y2 z2
zez
r
o
xex
单位矢量:一个矢量与其模相除。 x
r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矢量的点乘 矢量的叉乘
(v • w ) = ∑∑ δij vi w j = ∑ vi wi
i j i
[v × w ] = [{∑ δ j v j } × {∑ δk wk }]
j k
= ∑ ∑ [ δ j × δk ]v j wk
j k
δ1 v1 w1
δ2 v2 w2
δ3 v3 w3
32
= ∑ ∑ ∑ ε ijk δi v j wk
4
流体力学基本概念
欧拉方法
着眼点:寻求空间中每个点上描述 流体运动随时间的变化状态
v = v (r , t )
5
流体力学基本概念
泰勒展开(Taylor Series)
一维:
1 df f ( x) = f ( x0 ) + ( x − x0 ) 1! dx
三维:
x = x0
2 3 1 1 2 d f 3 d f + ( x − x0 ) + ( x − x0 ) + ... 2 3 2! dx 3! dx
又记为:div v
37
矢量场的旋度(rotation )
定义:
∂ (∇ × v ) = ( ∑ δ j ) × ( ∑ δk v k ) ∂x j j k = =
[δi × δ j ] = ∑ ε ijk δk
k =1
30
3
矢量以分量方式展开
矢量以分量展开
v = δ1v1 + δ2 v2 + δ3v3 = ∑ δ i vi
i =1
3
矢量的量值
3
2 2 v = v = v12 + v2 + v3 =
vi2 ∑
i =1
31
以分量表示的矢量运算
矢量加减法
[v ± w ] = ∑ δi vi ± ∑ δi wi = ∑ δi (vi ± wi )
18
场论——标量、矢量和张量表示
s =标量(不加黑的斜体字母) v =矢量(加黑的斜体字母)
τ =张量(加黑的希腊字母)
19
矢量的定义
矢量定义:具有一定的量值和方向的量
v =v
矢量相等:量值相等、方向相同(可以是 非共线、非同一作用原点)
20
矢量加减法
矢量加减法
交换率 v + w = w + v 结合率 ( v + w )+u = v + ( w +u )
34
矢量的微分运算
哈密尔顿(Hamilton)算符(nabla/del)
直角坐标系中的表达
∂ ∂ ∂ ∂ ∇ = δ1 + δ2 + δ3 = ∑ δi ∂xi ∂x1 ∂x2 ∂x3 i
35
标量场的梯度(gradient )
定义:
∂s ∂s ∂s ∂s ∇s = δ1 + δ2 + δ3 = ∑ δi ∂x1 ∂x2 ∂x3 ∂xi i
1 ∂f ∂f ∂f f ( x, y , z ) = f ( x0 , y0 , z0 ) + ( x − x0 ) + ( y − y0 ) + ( z − z0 ) 1! ∂x ∂y ∂z ( x0 , y0 , z0 ) 1 ∂ ∂ ∂ + ∑ ( x − x0 ) + ( y − y0 ) + ( z − z0 ) f ( x0 , y0 , z0 ) ∂x ∂y ∂z j = 2 j!
1 i = j δ ij = 0 i ≠ j
交错单位量 εijk
ε ijk
ijk = 123,231,312 1 = − 1 ijk = 321,132,213 0 others
ε ijk = (i − j )( j − k )(k − i )
1 2
27
δij 和 εijk 的关系
∞ j
6
流体力学基本概念
欧拉方法表达加速度
dv v ( M ′, t + ∆t ) − v ( M , t ) = lim ∆t dt ∆t →0 dv v ( M ′, t + ∆t ) − v ( M ′, t ) v ( M ′, t ) − v ( M , t ) = lim + lim ∆t dt ∆t →0 ∆t ∆t →0
δij和εijk的关系
∑∑ ε
j =1 k =1
3
3
ijk
ε hjk =2δ ih
∑ε
k =1 =1
3
ijk
ε mnk =δ imδ jn − δ inδ jm
三阶行列式 的分量表示法
a11 a31 a12 a32 a23 = ∑∑∑ ε ijk a1i a2 j a3k a33
i =1 j =1 k =1
a13
3
3
3
a21 a22
28
单位矢量的点乘
右手坐标 单位矢量的点乘
(δ1 • δ2 ) = (δ1 • δ3 ) = (δ2 • δ3 ) = 1×1× cos( / 2) = 0 π (δ1 • δ1 ) = (δ2 • δ2 ) = (δ3 • δ3 ) = 1×1× cos(0) = 1
(δi • δ j ) = δ ij
交换率(NA): [v × w ] = −[ w × v ] 结合率(NA): [ u × [v × w ]] ≠ [[u × v ] × w ] 分配率(OK): [{u + v} × w ] = [ u × v ] + [v × w ]
[v × v ] = ?
几何意义?
24
张量乘的阶数计算
张量乘的阶数 乘法符号 无 x . : 结果的阶数 Σ Σ-1 Σ-2 Σ-4 例子 v,vw v×w, uv×uw × × v · w, uv · wv uv : wv
——传递过程原理
第3章 场论与张量运算简介
何险峰
2007年9月
本章内容
1. 2. 3. 4. 5. 6.
流体力学基本概念 一点的应力状态——应力张量 场论 二阶张量运算 流体力学本构方程 小结
2
流体力学基本概念
连续介质假设和微团
真实流体所占有的空间可近似看作是由“流体质点”连续地无 空隙地充满着的。
v 泰勒展开: v ( M ′, t ) = v ( M x + v x ∆ t , M y + v y ∆ t , M z + v z ∆ t , t )
= v (M x , M y , M z , t ) +
& a=v=
∂v ∂v ∂v v x ∆t + v y ∆t + v z ∆t ∂x ∂y ∂z
i j k
多重矢量的乘法——例1
(u • [v × w ]) = ∑ ui [[v × w ]]i
i
= ∑ ui [∑∑∑ ε ijk δi v j wk ]i
i i j k
= ∑∑∑ ε ijk ui v j wk
i j k
u1 v1 w1
u2 v2 w2
u3 v3 w3
几何意义:计算u,v,w 组 成平行六面体的体积
29
单位矢量的叉乘
单位矢量叉乘
(δ1 × δ2 ) = 1×1×sin( / 2)δ3 = δ3 π (δ3 × δ1) = 1×1×sin( / 2)δ2 = δ2 π
(δ2 × δ3 ) = 1×1×sin( / 2)δ1 = δ1 π
(δ2 × δ1) = −(δ1 × δ2 ) = −δ3 (δ1 × δ3 ) = −(δ3 × δ1) = −δ2 (δ3 × δ2 ) = −(δ2 × δ3 ) = −δ1
33
多重矢量的乘法——例2
[ u × [ v × w ]] i = = = =
∑∑ε
j k
ijk
u j [[ v × w ]] k
∑∑ε
j k j k
ijk
u j [ ∑ ∑ ∑ ε klm δ k v l w m ] k
k ijk l m
∑∑∑∑ε
l m il
ε lmk u j v l w m
∑ ∑ ∑ (δ
1. 空间尺度(microscope, mesoscope, macroscope)
2. 时间尺度(飞秒、皮秒 、纳秒、微秒、毫秒、秒)
3
流体力学基本概念
拉格朗日方法
着眼点:寻求质点位置变化规律
r = r ( x, y , z , t )
v= ∂r ( x, y, z , t ) ∂t
∂v ∂ 2 r ( x, y, z , t ) & a=v= = ∂t ∂t 2
张量的物理概念(Tensor)
1. 是矢量 2. 是面力,与作用面有关
标量、矢量、n 阶张量的关系
14
一点的应力状态——应力张量
压力张量
1. 面力 2. 各向同性
0 − p 0 0 − p 0 = − pE 0 0 − p 0 nx − pnx − p 0 pn = 0 − p 0 • n y = − pn y = − pn 0 0 − p nz − pnz
d v ∂v ∂v ∂v ∂v ∂v = + vx + vy + v z ∆t = + (v • ∇ )v d t ∂t ∂x ∂y ∂z ∂t
7
流体力学基本概念
流体速度分解定律——速度类型
1. 平移速度 2. 旋转速度 3. 变形速度 例子: A. 速度均匀的平移流动 B. 平行剪流 C. 简单的环形流动 D. 流线是圆形的无旋流动