甘肃省庆阳市环县2020年中考数学模拟试卷(含答案)
甘肃省庆阳市2019-2020学年中考数学模拟试题(1)含解析
![甘肃省庆阳市2019-2020学年中考数学模拟试题(1)含解析](https://img.taocdn.com/s3/m/0338058be87101f69f31950f.png)
甘肃省庆阳市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x 的分式方程230x x a +=-解为4x =,则常数a 的值为( ) A .1a = B .2a = C .4a = D .10a =2.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B→A→C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D . 3.如图,已知点 P 是双曲线 y =2x上的一个动点,连结 OP ,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ ,则经过点 Q 的双曲线的表达式为( )A .y = 3xB .y =﹣ 13xC .y = 13xD .y =﹣3x4.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )A .主视图B .俯视图C .左视图D .一样大5.tan45°的值等于( )A 3B .22C 3D .16.下列算式中,结果等于x 6的是( )A .x 2•x 2•x 2B .x 2+x 2+x 2C .x 2•x 3D .x 4+x 27.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( )A .28×109B .2.8×108C .2.8×109D .2.8×10108.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC ,OB=3OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD=1.8cm 时,则AB 的长为( )A .7.2 cmB .5.4 cmC .3.6 cmD .0.6 cm9.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是( )A .B .C .D .10.一次函数21y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限11. “a 是实数,20a ≥”这一事件是( )A .不可能事件B .不确定事件C .随机事件D .必然事件12.下列图形中一定是相似形的是( )A .两个菱形B .两个等边三角形C .两个矩形D .两个直角三角形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为_____. 14.函数2x y x =-中,自变量x 的取值范围是______. 15.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).16.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____. 17.已知:如图,△ABC 内接于⊙O ,且半径OC ⊥AB ,点D 在半径OB 的延长线上,且∠A=∠BCD=30°,AC=2,则由»BC,线段CD和线段BD所围成图形的阴影部分的面积为__.18.如图,直线y=kx与双曲线y=2x(x>0)交于点A(1,a),则k=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?20.(6分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图①所示,S与x的函数关系图象如图②所示:(1)图中的a=______,b=______.(2)求快车在行驶的过程中S关于x的函数关系式.(3)直接写出两车出发多长时间相距200km?21.(6分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.22.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?23.(8分)边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE ∥AB ,EC =23如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C ,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)24.(10分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ;拓展:用“转化”23x x +=的解;应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.25.(10分)计算:﹣22﹣12+|1﹣4sin60°| 26.(12分)如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径,OD ⊥AB ,与AC 交于点E ,与过点C 的⊙O 的切线交于点D .若AC=4,BC=2,求OE 的长.试判断∠A 与∠CDE 的数量关系,并说明理由.27.(12分)先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=1.经检验,a=1是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为2.2.B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.3.D【解析】【分析】过P,Q分别作PM⊥x轴,QN⊥x轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可.【详解】过P,Q分别作PM⊥x轴,QN⊥x轴,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋转可得OP=OQ,在△QON和△OPM中,90QNO OMP OQN POMOQ OP ====∠∠︒⎧⎪∠∠⎨⎪⎩, ∴△QON ≌△OPM (AAS ),∴ON=PM ,QN=OM ,设P (a ,b ),则有Q (-b ,a ),由点P 在y=3x上,得到ab=3,可得-ab=-3, 则点Q 在y=-3x 上. 故选D .【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.4.C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C .5.D【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:tan45°=1, 故选D .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.6.A【解析】试题解析:A 、x 2•x 2•x 2=x 6,故选项A 符合题意;B 、x 2+x 2+x 2=3x 2,故选项B 不符合题意;C 、x 2•x 3=x 5,故选项C 不符合题意;D 、x 4+x 2,无法计算,故选项D 不符合题意.故选A .7.D【解析】【分析】根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a (1≤a<10,n 为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D. 【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.8.B【解析】【分析】由已知可证△ABO ∽CDO,故CD OC AB OA = ,即1.813AB =. 【详解】由已知可得,△ABO ∽CDO, 所以,CD OC AB OA= , 所以,1.813AB =, 所以,AB=5.4故选B【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.9.A【解析】试题分析:主视图是从正面看到的图形,只有选项A 符合要求,故选A .考点:简单几何体的三视图.10.B【解析】【分析】由二次函数k 20b 10=>=-<,,可得函数图像经过一、三、四象限,所以不经过第二象限【详解】解:∵k 20=>,∴函数图象一定经过一、三象限;又∵b10=-<,函数与y轴交于y轴负半轴,∴函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响11.D【解析】a是实数,|a|一定大于等于0,是必然事件,故选D.12.B【解析】【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点睛】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】【分析】根据锐角的余弦值等于邻边比对边列式求解即可.【详解】∵∠C=90°,AB=6,∴2cos3BCBAB==,∴BC=23AB=4.【点睛】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中,sinAA∠=的对边斜边,cosAA∠=的邻边斜边,tanAAA∠=∠的对边的邻边.14.2x≠【解析】【分析】根据分式有意义的条件是分母不为2;分析原函数式可得关系式x−1≠2,解得答案.【详解】根据题意得x−1≠2,解得:x≠1;故答案为:x≠1.【点睛】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为2.15.甲【解析】【分析】根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从2014~2018年甲公司增长了500辆;乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从2014~2018年,乙公司中销售量增长了300辆.所以这两家公司中销售量增长较快的是甲公司,故答案为:甲.【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键;16.4 3【解析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.17.23π.【解析】试题分析:根据题意可得:∠O=2∠A=60°,则△OBC 为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=OCD 122S =⨯=V OBC 60423603S ππ⨯==扇形,则23S π=阴影. 18.1【解析】解:∵直线y=kx 与双曲线y=2x(x >0)交于点A (1,a ),∴a=1,k=1.故答案为1. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)销售单价应定为100元【解析】【分析】(1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可.【详解】(1)()()()80802320w x y x x =-=--+,2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-;(2)()2224802560021203200w x x x =-+-=--+,2080160x -<≤≤Q ,,∴当120x =时,w 有最大值.w 最大值为1.答:销售单价定为120元时,每天销售利润最大,最大销售利润1元.(3)当2400w =时,()2212032002400x --+=.解得:12100140x x ,.== ∵想卖得快, 2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.20.(1)a=6, b=154;(2)1516060004151606006460(610)x x S x x x x ⎧⎛⎫-+< ⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩……剟 ;(3)52h 或5h 【解析】【分析】(1)根据S 与x 之间的函数关系式可以得到当位于C 点时,两人之间的距离增加变缓,此时快车到站,指出此时a 的值即可,求得a 的值后求出两车相遇时的时间即为b 的值;(2)根据函数的图像可以得到A 、B 、C 、D 的点的坐标,利用待定系数法求得函数的解析式即可. (3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x 的值.【详解】解:(1)由s 与x 之间的函数的图像可知:当位于C 点时,两车之间的距离增加变缓,由此可以得到a=6,∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600, ∴15600(10060)4b =÷+=; (2)∵从函数的图象上可以得到A 、B 、C 、D 点的坐标分别为:(0,600)、(154,0)、(6,360)、(10,600),∴设线段AB 所在直线解析式为:S=kx+b , ∴6001504b k b =⎧⎪⎨+=⎪⎩ 解得:k=-160,b=600,设线段BC 所在的直线的解析式为:S=kx+b , ∴15046360k b k b ⎧+=⎪⎨⎪+=⎩解得:k=160,b=-600,设直线CD 的解析式为:S=kx+b ,636010600k b k b +=⎧⎨+=⎩解得:k=60,b=0∴1516060004151606006460(610)x xS x xx x⎧⎛⎫-+<⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩……剟(3)当两车相遇前相距200km,此时:S=-160x+600=200,解得:52x=,当两车相遇后相距200km,此时:S=160x-600=200,解得:x=5,∴52x=或5时两车相距200千米【点睛】本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围. 21.(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【解析】【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22.(1)20%;(2)能.【解析】【分析】(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.23.(1) 当MCND'是菱形,理由见解析;(2)①AD'=BE',理由见解析;②【解析】【分析】(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.【详解】(1)当MCND'是菱形.理由:由平移的性质得,CD∥C'D',DE∥D'E',∵△ABC是等边三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分线,∴∠D'E'C'=12∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四边形MCND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等边三角形,∴MC=CE',NC=CC',∵E'C'=23,∵四边形MCND'是菱形,∴CN=CM,∴CC'=12E'C'=3;(2)①AD'=BE',理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',当α=180°时,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',综上可知:AD'=BE'.②如图连接CP,在△ACP中,由三角形三边关系得,AP<AC+CP,∴当点A,C,P三点共线时,AP最大,如图1,在△D'CE'中,由P 为D'E 的中点,得AP ⊥D'E',3,∴CP=3,∴AP=6+3=9,在Rt △APD'中,由勾股定理得,22=221AP PD +'.【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A ,C ,P 三点共线时,AP 最大.24. (1)-2,1;(2)x=3;(3)4m.【解析】【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP 的长为xm ,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1)3220x x x +-=, ()220x x x +-=, ()()210x x x +-=所以0x =或20x +=或10x -=10x ∴=,22x =-,31x =;故答案为2-,1;(223x x +=,方程的两边平方,得223x x +=即2230x x --=()()310x x -+=30x ∴-=或10x +=13x ∴=,21x =-,当1x =-11==≠-,所以1-不是原方程的解.x =的解是3x =;(3)因为四边形ABCD 是矩形,所以90A D ∠=∠=︒,3AB CD m ==设AP xm =,则()8PD x m =-因为10BP CP +=,BP =CP∴ 10=∴ 10=两边平方,得()22891009x x -+=-+整理,得49x =+两边平方并整理,得28160x x -+=即()240x -=所以4x =.经检验,4x =是方程的解.答:AP 的长为4m .【点睛】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.25.-1【解析】【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【详解】解:原式=4412--⨯-=41--=﹣1.【点睛】 此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.26.(1;(2)∠CDE=2∠A . 【解析】【分析】(1)在Rt △ABC 中,由勾股定理得到AB 的长,从而得到半径AO .再由△AOE ∽△ACB ,得到OE 的长;(2)连结OC ,得到∠1=∠A ,再证∠3=∠CDE ,从而得到结论.【详解】(1)∵AB 是⊙O 的直径,∴∠ACB=90°,在Rt △ABC 中,由勾股定理得:==∴AO=12 ∵OD ⊥AB ,∴∠AOE=∠ACB=90°,又∵∠A=∠A ,∴△AOE ∽△ACB , ∴OE AO BC AC=,∴OE=BC AO AC ⋅==. (2)∠CDE=2∠A .理由如下:连结OC ,∵OA=OC ,∴∠1=∠A ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD ⊥AB ,∴∠2+∠3=90°,∴∠3=∠CDE .∵∠3=∠A+∠1=2∠A ,∴∠CDE=2∠A .考点:切线的性质;探究型;和差倍分.27.原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 【解析】试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可. 试题解析:原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 考点:分式的化简求值;一元二次方程的解.。
2020届中考模拟庆阳市中考数学模拟试题(含参考答案)(Word版)
![2020届中考模拟庆阳市中考数学模拟试题(含参考答案)(Word版)](https://img.taocdn.com/s3/m/b18c276f58fb770bf68a5508.png)
甘肃省庆阳市中考数学试卷(解析版)一、选择题(每小题3分,共10小题,合计30分) 1.下面四个手机应用图标中,属于中心对称图形的是( ).A B C D答案:B.解析:根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.故 选B .考点:中心对称图形2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃庆阳发射升空,与天宫 二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度, 393000用科学记数法可以表示为( ). A.439.310⨯B.83.9310⨯C.63.9310⨯D.60.39310⨯答案:B.解析:根据科学计数法的定义:把一个数字记为的形式(1≤|a |<10,n 为整数),这种记数法叫做科学记数法.故选B .考点:科学计数法. 3.4的平方根是( ) A.16B.2C.2±D.2±答案:C.解析:根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x =a ,则x 就是a 的平方根. ∵(±2)2=4,∴4的平方根是±2.故选C . 考点:平方根.4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( ).答案:D.解析:几何体的俯视图是指从上面看所得到的图形. 此题由上向下看是空心圆柱,看到的是一个圆A B CD第4题图环,中间的圆要画成实线.故选D . 考点:三视图.5.下列计算正确的是( ). A.224x x x += B.824x x x ÷= C.236x x x ⋅=D.()220x x --=答案:D.解析:根据合并同类项、同底数幂的乘法、除法等知识点进行判断, A 项错误,合并同类项应为22x ;B 项错误,根据同底数幂相除,底数不变,指数相减可知826x x x =¸;C 项错误,根据同底数幂相乘,底数不变,指数相加可知235x x x ?;D 项正确,()22220x x x x --=-=.故选D.考点:幂的运算法则.6.把一把直尺与一块三角板如图放置,若145=∠°,则2∠为( ). A.115°B.120°C.135°D.145°答案:C.解析:根据三角形外角性质得到∠3=∠C+∠1=135°,然后根据平行线的性质即可得到∠2=∠3=135°.故选C.考点:平行线的性质与三角形外角性质.7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( ). A.0,0k b >>B.0,0k b ><C.0,0k b <>D.0,0k b <<答案:A.解析:根据一次函数y kx b =+的图象经过二、三、四象限,由一次函数图象与系数的关系,即可得出12第6题图x yO 第7题图0,0k b >>.故选A .考点:一次函数的性质.8.已知,,a b c 是ABC △的三条边长,化简a b c c a b +----的结果为( ). A.222a b c +- B.22a b +C.2cD.0答案:D.解析:根据三角形三边满足的条件:两边和大于第三边,两边的差小于第三边,即可确定a b c +-> 0,c a b --<0,所以a b c c a b +----=a b c +-+c a b --=0,故选D . 考点:三角形三边的关系.9.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地 上种植草坪,使草坪的面积为2570m ,若设道路的宽为m x ,则下面所列方程正确的是( ). A.()()32220570x x --=B.32203220570x x +⨯=⨯-C.()()3220=3220570x x --⨯-D.2322202570x x x +⨯-=答案:A.解析:将两条纵向的道路向左平移,水平方向的道路向下平移,即可得草坪的长为()322x -米,宽为()20x -米,所以草坪面积为长与宽的乘积,即可列出方程()()32220570x x --=.故选A .考点:一元二次方程的应用.10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径 运动,到点C 停止,过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm)与点P 的运动时间x (秒)的函数图象如图②所示,当点P 运动2.5秒时,PQ 的长是( ).A.B.C.D.第9题图答案:B.解析:当点P 运动2.5秒时,如图所示:则PB =1 cm ,因为BC =4 cm ,所以PC =3 cm ;由题意可知,CQ =3 cm ,所以PQ =.故选:B. 考点:函数的图象.二、填空题:(每小题4分,共8小题,合计32分) 11.分解因式:221x x -+= .答案:2(1)x .解析:根据完全平方公式,分解因式即可.考点:因式分解. 12.与0.5 0.5.(填“>”或“=”或“<”)答案:>. 解析:∵0.5=122,1>1>12.故答案为>.考点:无理数的估算.13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式 201520172016m n c ++的值为 .答案:0.解析:∵m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,∴1m =-,0n ==0,c 1=,∴201520172016m n c ++=(﹣1)2015+2016×0+12017=0,故答案为0. 考点:有理数的有关概念.14.如图,ABC △内接于O ⊙,若32OAB =∠°,则C =∠ .(秒)第10题图答案:58°.解析:连接OB .在△OAB 中,OA =OB (⊙O 的半径),∴∠OAB =∠OBA ;又∵∠OAB =28°,∴∠OBA =28°;∴∠AOB =180°﹣2×28°=124°; 而∠C =∠AOB (同弧所对的圆周角是所对的圆心角的一半),∴∠C =62°; 故答案是:62°.考点:圆周角定理.15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是.答案:k ≤5且k ≠1.解析:∵关于x 的一元二次方程()21410k x x -++=有实数根,∴1k -≠0且24b ac ≥0,即42﹣4×(1k -)×1≥0,解得k ≤5且k ≠1.故答案为:k ≤5且k ≠1. 考点:一元二次方程根的判别式.16.如图,一张三角形纸片ABC ,90C =∠°,8cm AC =,6cm BC =,现将纸片折叠:使点A 与点B 重合,那么折痕长等于cm.答案:154.解析:在Rt △ABC 中,因为AC =6cm ,BC =8cm ,根据勾股定理,所以AB =10cm.设CE =x cm ,由 折叠的性质得:BD =AD =5x cm , BE =AE =(8﹣x )cm ,在Rt △BCE 中,根据勾股定理可知:AC 2+CD 2=AD 2,即62+(8﹣x )2=x 2,解方程得x =154.故答案为154. 第14题图 A B 第16题图8cm ABD E考点:图形折叠与勾股定理.17.如图,在ABC △中,90ACB =∠°,1AC =,2AB =,以点A 为圆心,AC 的长为半径画弧,交 AB 边于点D ,则»CD的长等于 .(结果保留p )答案:3π.解析:在Rt △ABC 中,AC =1,AB =2,∴cos ∠A =12AC AB =,∴∠A=60°,∴¼CD 的长为6011803ππ⨯=. 考点:弧长公式.18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图 形的周长为,第2017个图形的周长为.答案:8,6053.解析:根据图形变化规律可知:图形个数是奇数个梯形时,构成的图形是梯形;当图形的个数时偶数个时,正好构成平行四边形,这个平行四边形的水平边是3,两斜边长是1,则周长是8.第2017个图形构成的图形是梯形,这个梯形的上底是3025,下底是3026,两腰长是1,故周长是6053. 考点:规律探索.三、解答题(一):本大题共5个小题,共38分. 19.计算:o11123tan 30(4)()2π--+--思路分析:会正确化简二次根式、零指数、负指数幂. 解:原式=323312-⨯+- =23312-+-=31-. 第17题图 (12)11第1个图形第2个图形第3个图形第18题图20.解不等式组()111212x x ⎧-≤⎪⎨⎪-<⎩,并写出该不等式组的最大整数解.思路分析:先求出不等式组的解集,再找出解集中的最大整数解。
2020年甘肃省中考数学全真模拟试卷 (含解析)
![2020年甘肃省中考数学全真模拟试卷 (含解析)](https://img.taocdn.com/s3/m/48415b8ff8c75fbfc77db2bb.png)
2020年甘肃省中考数学全真模拟试卷(五)数学试卷注意事项:1.本试题满分150分,考试时间120分钟。
2.试卷由四部分组成。
3.所有学生必须按题目要求答题.一、单选题(共10题;共30分)1.下列计算正确的是()A.3a+2b=5abB.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b2【答案】B【解析】【解答】A、3a与2b不是同类项,故不能合并,A不合题意;B、(a3)2=a6,B符合题意;C、a6÷a3=a3,C不符合题意;D、(a+b)2=a2+2ab+b2,D不合题意.故答案为:B.2.下列说法中正确的是()1√2化简后的结果是√22B.9的平方根为3C.√8是最简二次根式D.﹣27没有立方根【答案】 A【解析】【解答】解:A、√2= √22,故正确.B、9的平方根为±3,故错误.C、√8=2 √2,√8不是最简二次根式,故错误.D、﹣27的立方根为﹣3,故错误.故选A.3..如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A. B. C. D.【答案】A【解析】【解答】解:从上面看,是正方形右边有一条斜线,故选:A.4.函数y=1x+1−√2−3x中,自变量x的取值范围是()A.x≤23B.x≥23C.x<23且x≠−1 D.x≤23且x≠−1【答案】 D【解析】【解答】解:∵ y=1x+1−√2−3x有意义,∵x+1≠0,2-3x≥0,解得:x≤23且x≠−1.故答案为:D.5.若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)的值是()A.4B.2C.1D.﹣2【答案】A【解析】【解答】解:根据题意得x1+x2=1,x1x2=﹣2,所以(1+x1)+x2(1﹣x1)=1+x1+x2﹣x1x2=1+1﹣(﹣2)=4。
故答案为:A。
6.一次函数y=x+2的图象与x轴的交点坐标为()A.(0,2)B.(0,﹣2)C.(2,0)D.(﹣2,0)【答案】D【解析】【解答】解:当y=0时,x+2=0,解得x=−2,所以一次函数的图象与x轴的交点坐标为(−2,0).故答案为:D.7.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元【答案】C【解析】【解答】解:设这种衬衫的原价是x元,依题意,得:0.6x+40=0.9x-20,解得:x=200.故答案为:C.8.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',以下说法中错误的是()A.△ABC∽△A'B'C'B.点C,点O、点C′三点在同一直线上C.AO:AA'=1:2D.AB∥A'B'【答案】C【解析】【解答】∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',∵ △ABC∽△A'B'C',点C、点O、点C′三点在同一直线上,AB∥A'B',AO:AA'=1:3,∵C符合题意.故答案为:C.9.一块圆形宣传标志牌如图所示,点A,B,C在∵O上,CD垂直平分AB于点D,现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dmB.5dmC.4dmD.3dm【答案】B【解析】解:连结OD,OA,如图,设半径为r,∵AB=8,CD∵AB,∵AD=4,点O、D、C三点共线,∵CD=2,∵OD=r-2,在Rt∵ADO中,∵AO2=AD2+OD2,,即r2=42+(r-2)2,解得:r=5,故答案为:B.10.如图,菱形ABCD的边长是4厘米, ∠B=60∘,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止若点P,Q同时出发运动了t秒,记ΔBPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A. B.C. D.【解析】【解答】当0≤t <2时,S=2t× √32×(4-t )=- √3 t 2+4 √3 t ;当2≤t <4时,S=4×√32×(4-t )=-2√32t+8 √32;只有选项D 的图形符合. 故答案为:D .二、填空题:本大题共8小题(每小题4分;共32分)11.√81的平方根是________ . 【答案】 ±3【解析】【解答】解:√81=9, 9的平方根是±3, 故答案为:±3.12.若 2x =3 , 2y =5 ,则 2x+y = ________. 【答案】 15【解析】【解答】∵ 2x =3 , 2y =5 , ∵ 2x+y =2x ⋅2y =3×5=15 , 故答案为:15.13.如图,该硬币边缘镌刻的正九边形每个内角的度数是________.【答案】 140°【解析】【解答】该正九边形内角和 =180°×(9−2)=1260° , 则每个内角的度数 =1260°9=140° .故答案为:140°.14.在平面直角坐标系 xOy 中,点 A (a ,b) (a >0,b >0) 在双曲线 y =k 1x上.点 A 关于 x 轴的对称点 B 在双曲线 y =k 2x上,则 k 1+k 2 的值为________.【解析】【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=k1x上,∵k1=ab;又∵点A与点B关于x轴的对称,∵B(a,-b)∵点B在双曲线y=k2x上,∵k2=-ab;∵k1+k2=ab+(-ab)=0;故答案为:0.15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120∘,则该圆锥的母线长l为________ cm.【答案】 6【解析】【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:120π×R180=4π,解得R=6。
甘肃省庆阳市2020届中考数学仿真模拟试卷 (含解析)
![甘肃省庆阳市2020届中考数学仿真模拟试卷 (含解析)](https://img.taocdn.com/s3/m/d43eefa06c175f0e7dd13761.png)
甘肃省庆阳市2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.下列实数中:无理数有()A. 5个B. 4个C. 3个D. 2个2.已知∠A=70∘,则∠A的补角为()A. 110∘B. 70∘C. 30∘D. 20∘3.有一个边长为9cm的正方形和一个长为24cm,宽为6cm的长方形,作一个面积为这两个图形的面积之和的正方形,则该正方形的边长为()A. 15cmB. 10cmC. 5cmD. 25cm4.下列四个立体图形中,主视图、左视图、俯视图都相同的是()A. B. C. D.5.下列计算结果等于x3的是()A. x6÷x2B. x4−xC. x+x2D. x2·x6.一条线段的黄金分割点有()A. 1个B. 2个C. 3个D. 无数个7.关于x的一元二次方程(a−1)x2+x+a2−1=0的一个根是0,则a的值为A. 1B. –1C. 1或–1D. 08.如图,在菱形ABCD中,AB=5,,则对角线AC的长等于()A. 5B. 10C. 15D.209.如图,BD是⊙O的直径,点A,C在⊙O上,AB⏜=BC⏜∠AOB=60°,则∠BDC的度数是()A. 60°B. 45°C. 35°D. 30°10.如图 ①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ//BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数图象如图 ②所示.当点P运动2.5s时,PQ的长是()A. 2√2cmB. 3√2cmC. 4√2cmD. 5√2cm二、填空题(本大题共8小题,共24.0分)11.如果盈利150元记为+150元,那么亏损80元记为______.12.分解因式:a−4ab=______. 13.某商场的电视机以原价的八折销售,售价2000元,则原价为______元.14.若分式x2−x有意义,即x满足的条件是______.15.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,把它放回袋中,搅匀后,再摸出一球,…通过多次试验后,发现摸到黑球的频率稳定于0.5,则n的值大约是________.16.将点A(−1,3)先沿x轴向左平移5个单位,再沿y轴向下平移2个单位,则平移后,所得点的坐标是______.17.圆心角为120°的扇形的弧长为23π,这个扇形的面积为______ .18.若x<1,且y=√(x−1)2x−1+3,化简y⋅√3y÷√1y4.√1y=.三、解答题(本大题共10小题,共66.0分)19.计算:(1)(√3−1)0−|−√2|+√8(2)32√2+(1−√2)2−√12tan30°20.解不等式组请结合题意,完成本题的解答.(1)解不等式①,得__________.(2)解不等式③,得__________.(3)把不等式①②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式的解集的公共部分,得不等式组的解集为____________.21.在Rt△ABC中,∠C=90°.(1)求作:∠A的平分线AD,AD交BC于点D;(保留作图痕迹,不写作法)(2)若点D恰好在线段AB的垂直平分线上,求∠A的度数.22.周末,乐乐所在的数学兴趣小组到中心广场测量一雕塑的高度,如图,在坡底A处测得雕塑顶端D的仰角为37°,沿斜坡朝着雕塑的方向走到坡顶B处,测得雕塑顶端D的仰角为45°。
甘肃省庆阳市2019-2020学年中考数学模拟试题(3)含解析
![甘肃省庆阳市2019-2020学年中考数学模拟试题(3)含解析](https://img.taocdn.com/s3/m/9faefbab0722192e4436f643.png)
甘肃省庆阳市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( )A .1201806x x =+B .1201806x x =-C .1201806x x =+D .1201806x x=- 2.小明解方程121x x x --=的过程如下,他的解答过程中从第( )步开始出现错误. 解:去分母,得1﹣(x ﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x =﹣2④系数化为1,得x =2⑤A .①B .②C .③D .④3.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x =4.如图,在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,分别以点A ,B 为圆心,大于线段AB 长度的一半为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则△ACD 的周长为( )A .13B .17C .18D .255.如图,△ABC 为直角三角形,∠C=90°,BC=2cm ,∠A=30°,四边形DEFG 为矩形,3, EF=6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt △ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt △ABC 与矩形DEFG 的重叠部分的面积为ycm 2,运动时间xs .能反映ycm 2与xs 之间函数关系的大致图象是( )A .B .C .D .6.如图所示的几何体,它的左视图与俯视图都正确的是( )A .B .C .D .7.下列命题正确的是( )A .对角线相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的平行四边形是菱形D .对角线互相垂直且相等的四边形是正方形8.计算23(1)x -﹣23(1)x x -的结果为( )A .31x -B .31x -C .23(1)x - D .23(1)x -9.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是()A .3B .6C .12D .510.下列四个几何体中,左视图为圆的是( )A .B .C .D .11.已知e →为单位向量,a r=-3e →,那么下列结论中错误..的是( )A .a r ∥e →B .3a =rC .a r与e →方向相同 D .a r 与e →方向相反12.下列说法错误的是( )A .2-的相反数是2B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .14.计算:31-22的结果是_____. 15.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a (a >10),则应付票价总额为_____元.(用含a 的式子表示)16.已知x 1,x 2是方程x 2+6x+3=0的两实数根,则2112x x x x +的值为_____. 17.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.18.已知在Rt △ABC 中,∠C =90°,BC =5,AC =12,E 为线段AB 的中点,D 点是射线AC 上的一个动点,将△ADE 沿线段DE 翻折,得到△A′DE ,当A′D ⊥AB 时,则线段AD 的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)现有一次函数y =mx+n 和二次函数y =mx 2+nx+1,其中m≠0,若二次函数y =mx 2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y =mx+n 经过点(2,0),且图象经过第一、三象限.二次函数y =mx 2+nx+1经过点(a ,y 1)和(a+1,y 2),且y 1>y 2,请求出a 的取值范围.若二次函数y =mx 2+nx+1的顶点坐标为A (h ,k )(h≠0),同时二次函数y =x 2+x+1也经过A 点,已知﹣1<h <1,请求出m 的取值范围.20.(6分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为 ,图①中m 的值为 ;(2)求统计的这组销售额数据的平均数、众数和中位数.21.(6分)(1)如图1,正方形ABCD 中,点E ,F 分别在边CD ,AD 上,AE ⊥BF 于点G ,求证:AE=BF ; (2)如图2,矩形ABCD 中,AB=2,BC=3,点E ,F 分别在边CD ,AD 上,AE ⊥BF 于点M ,探究AE 与BF 的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m ,BC=n ,其他条件不变,请直接写出AE 与BF 的数量关系; .22.(8分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A :大雁塔 B :兵马俑 C :陕西历史博物馆 D :秦岭野生动物园 E :曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.23.(8分)先化简,再求值:(1a ﹣a )÷(1+212a a +),其中a 2 <a 2的整数解. 24.(10分)如图,O e 是ABC V 的外接圆,AC 是O e 的直径,过圆心O 的直线PF AB ⊥于D ,交O e 于,E F ,PB 是O e 的切线,B 为切点,连接AP ,AF .(1)求证:直线PA 为O e 的切线;(2)求证:24EF OD OP =⋅;(3)若6BC =,1tan 2F ∠=,求AC 的长. 25.(10分)先化简,再求值:(x ﹣3)÷(21x -﹣1),其中x=﹣1. 26.(12分)为上标保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A 港口的物资为x 吨,求总运费y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;求出最低费用,并说明费用最低时的调配方案.27.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示: 本数(本)频数(人数) 频率 5a 0.2 618 0.36 714 b 88 0.16 合计 c1 (1)统计表中的a =________,b =________,c =________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】解:因为设小明打字速度为x 个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等, 可列方程得1201806x x =+, 故选C .【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.2.A【解析】【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【详解】 12x x x--=1, 去分母,得1-(x-2)=x ,故①错误,故选A .【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.3.B【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=3x的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−1x的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.4.C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C. 5.A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=23,∵四边形DEFG为矩形,∠C=90,∴DE=GF=23,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴EH BE AC BC=,223x=,解得:3x,所以y=12•332,∵x 、y之间是二次函数,所以所选答案C错误,答案D错误,∵a=32>0,开口向上;(2)当2≤x≤6时,如图,此时y=12×2×23=23,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求3﹣3∴y=s1﹣s2,=12×2×312×(x﹣6)×3﹣3,=323﹣3,30,∴开口向下,所以答案A正确,答案B错误,故选A.点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.6.D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.考点:D.7.C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C 正确;对角线互相垂直且相等的平行四边形是正方形;故选:C .点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A【解析】【分析】根据分式的运算法则即可【详解】解:原式=23(1)3(1)1x x x -=--, 故选A.【点睛】本题主要考查分式的运算。
甘肃省庆阳市2019-2020学年第二次中考模拟考试数学试卷含解析
![甘肃省庆阳市2019-2020学年第二次中考模拟考试数学试卷含解析](https://img.taocdn.com/s3/m/de7d8b3d69dc5022abea0011.png)
甘肃省庆阳市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.点A (-2,5)关于原点对称的点的坐标是 ( )A .(2,5)B .(2,-5)C .(-2,-5)D .(-5,-2)2. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°3.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣4B .bd >0C .|a|>|b|D .b+c >04.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表: 尺码/cm 21.5 22.0 22.5 23.0 23.5 人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm 的女式运动鞋,商店经理的这一决定应用的统计量是( ) A .平均数B .加权平均数C .众数D .中位数5.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0,1<x 2<2,下列结论:4a+2b+c <0,2a+b <0,b 2+8a >4ac ,a <﹣1,其中结论正确的有( )A .1个B .2个C .3个D .4个6.如图,AOB V 是直角三角形,90AOB ∠=o ,2OB OA =,点A 在反比例函数1y x=的图象上.若点B 在反比例函数ky x=的图象上,则k 的值为( )A.2 B.-2 C.4 D.-47.若一组数据1、a、2、3、4的平均数与中位数相同,则a不可能...是下列选项中的()A.0 B.2.5 C.3 D.58.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.88152.5x x+=B.8184 2.5x x+=C.88152.5x x=+D.8812.54x x=+9.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A.45o B.60o C.120o D.135o10.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.11.下列图形中,是轴对称图形但不是中心对称图形的是()A.直角梯形B.平行四边形C.矩形D.正五边形12.如图,在矩形ABCD中,AB=2,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()A .2213π--B .2212π--C .2222π--D .2214π--二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.14.如图,在矩形ABCD 中,AB=3,AD=1,把该矩形绕点A 顺时针旋转α度得矩形AB′C′D′,点C′落在AB 的延长线上,则图中阴影部分的面积是_____.15.在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为23,则a 的值是_____.16.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有__________白色纸片,第n 个图案中有__________张白色纸片.17.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.18.如图,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点的距离之和PA+PB 的最小值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a 元(a 为常数,且40<a <100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x 万件乙产品时需上交0.5x 2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?20.(6分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=2时,直接写出BC的值.21.(6分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.22.(8分)如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P 点的坐标.23.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15) 3 0.15第二组(15≤x<30) 6 a第三组(30≤x<45)7 0.35第四组(45≤x<60) b 0.20 (1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?24.(10分)我们来定义一种新运算:对于任意实数x、y,“※”为a※b=(a+1)(b+1)﹣1.(1)计算(﹣3)※9(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断(正确、错误)(3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.25.(10分)在Rt ABC ∆中,90ACB ∠=o ,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=o ①如图1,DCB ∠=o②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60o ,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论; (2)如图3,若点P 在线段CB 的延长线上,且()090A αα∠=<<o o,连结DP ,将线段DP 绕点逆时针旋转2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明) 26.(12分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?27.(12分)求不等式组()7153x 3x 134x x ⎧+≥+⎪⎨-->⎪⎩的整数解.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).【详解】根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2, −5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).2.C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.3.C【解析】【分析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【详解】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A 、a <﹣4,故A 不符合题意;B 、bd <0,故B 不符合题意;C 、∵|a|>4,|b|<2,∴|a|>|b|,故C 符合题意;D 、b+c <0,故D 不符合题意; 故选:C . 【点睛】本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键 4.C 【解析】 【分析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数. 【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm 的女式运动鞋,就说明穿23.0cm 的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用. 5.D 【解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0, 对称轴为x=2ba-<1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0, 当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac ,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0. 由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8, 上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点. 6.D 【解析】 【分析】要求函数的解析式只要求出B 点的坐标就可以,过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,根据条件得到ACO ODB ~V V ,得到:2BD OD OBOC AC OA===,然后用待定系数法即可. 【详解】过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,设点A 的坐标是(),m n ,则AC n =,OC m =,Q 90AOB ∠=︒,∴90AOC BOD ∠+∠=︒, Q 90DBO BOD ∠+∠=︒,∴DBO AOC ∠=∠, Q 90BDO ACO ∠=∠=︒,∴BDO OCA ~V V , ∴BD OD OBOC AC OA==, Q 2OB OA =,∴2BD m =,2OD n =,因为点A 在反比例函数1y x=的图象上,则1mn =, Q 点B 在反比例函数ky x=的图象上,B 点的坐标是()2,2n m -, ∴2244k n m mn =-⋅=-=-.故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.7.C【解析】【详解】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.8.D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.详解:设乘公交车平均每小时走x千米,根据题意可列方程为:881=+.x x2.54故选D.点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.9.A【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.10.A【解析】【分析】画出从正面看到的图形即可得到它的主视图.【详解】这个几何体的主视图为:故选:A.【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.11.D【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误;B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误;C.矩形是轴对称图形,也是中心对称图形,故此选项错误;D.正五边形是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.12.B【分析】先利用三角函数求出∠BAE=45°,则,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 进行计算即可.【详解】解:∵AE=AD=2,而,∴cos ∠BAE=AB AE =2,∴∠BAE=45°,∴,∠BEA=45°.∵AD ∥BC ,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 12﹣2452360π⋅⋅1﹣2π. 故选B .【点睛】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.14.24π- 【解析】【分析】【详解】∵在矩形ABCD 中,,∠DAC=60°,∴AD=1.由旋转的性质可知:AD′=1,∴tan ∠D′AC′=1 ∴∠D′AC′=60°.∴∠BAB′=30°,∴S △AB′C′=12×S 扇形BAB′4π.S 阴影=S △AB′C′-S 扇形BAB′4π.故答案为2-4π. 【点睛】 错因分析 中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出α的值.15.【解析】【分析】【详解】试题分析:过P 点作PE ⊥AB 于E ,过P 点作PC ⊥x 轴于C ,交AB 于D ,连接PA .∵PE ⊥AB ,,半径为2,∴AE=12PA=2, 根据勾股定理得:PE=1, ∵点A 在直线y=x 上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD 是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴∵⊙P 的圆心是(2,a ),∴.【点睛】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.16.13 3n+1【解析】分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可.详解:∵第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,∴第4个图案中有白色纸片3×4+1=13张第n个图案中有白色纸片3n+1张,故答案为:13、3n+1.点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.17.15【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π.故答案为15π.考点:圆锥的计算.18.2【解析】分析:首先由S△PAB=13S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.详解:设△ABP中AB边上的高是h.∵S△PAB=13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴2222=44=42AB AE++即PA+PB的最小值为2.故答案为2.点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a (万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.【解析】【分析】(1)根据题意直接得出y1与y2与x的函数关系式即可;(2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;(3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>1以及2000﹣200a<1.【详解】解:(1)由题意得:y1=(120﹣a)x(1≤x≤125,x为正整数),y2=100x﹣0.5x2(1≤x≤120,x为正整数);(2)①∵40<a<100,∴120﹣a>0,即y1随x的增大而增大,∴当x=125时,y1最大值=(120﹣a)×125=110﹣125a(万元)②y2=﹣0.5(x﹣100)2+10,∵a=﹣0.5<0,∴x=100时,y2最大值=10(万元);(3)∵由110﹣125a>10,∴a<80,∴当40<a<80时,选择方案一;由110﹣125a=10,得a=80,∴当a=80时,选择方案一或方案二均可;由110﹣125a<10,得a>80,∴当80<a<100时,选择方案二.考点:二次函数的应用.20.(1)相等或互补;(2)①BD+AB=BC;②AB﹣BD BC;(3)BC11. 【解析】【分析】(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;当点C,D在直线MN两侧时,如图2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D与∠MAC之间的数量是相等或互补;(2)①猜想:BD+AB=2BC如图3,在射线AM上截取AF=BD,连接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=2BC∵AF+AB=BF=2BC∴BD+AB=2BC;②如图2,在射线AM上截取AF=BD,连接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=2BC∵AB﹣AF=BF=2BC∴AB﹣BD=2BC;(3)①当点C,D在直线MN同侧时,如图3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,过点D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=2,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=3,DG=3,∴BC=CG+BG=3+1,②当点C,D在直线MN两侧时,如图2﹣1,过点D作DG⊥CB交CB的延长线于G,同①的方法得,BG=1,CG3∴BC =CG ﹣BG =3﹣1即:BC =31+ 或31-,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键. 21.到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】【分析】利用作法和线段垂直平分线定理的逆定理可得到BC 垂直平分AE,然后根据三角形高的定义得到AD 为高【详解】解:由作法得BC 垂直平分AE ,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线. 故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.【点睛】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解. 22.(1)a=12;(2)OP+AQ 的最小值为5P 的坐标为(﹣1,12);(3)P (﹣4,8)或(4,8),【解析】【分析】(1)利用待定系数法求出直线AB 解析式,根据旋转性质确定出C 的坐标,代入二次函数解析式求出a 的值即可;(2)连接BQ ,可得PQ 与OB 平行,而PQ=OB ,得到四边形PQBO 为平行四边形,当Q 在线段AB 上时,求出OP+AQ 的最小值,并求出此时P 的坐标即可;(3)存在这样的点P ,使得∠QPO=∠OBC ,如备用图所示,延长PQ 交x 轴于点H ,设此时点P 的坐标为(m,1 2 m2),根据正切函数定义确定出m的值,即可确定出P的坐标.【详解】解:(1)设直线AB解析式为y=kx+b,把A(﹣4,0),B(0,﹣2)代入得:402k bb-+=⎧⎨=-⎩,解得:122kb⎧=-⎪⎨⎪=-⎩,∴直线AB的解析式为y=﹣12x﹣2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=12;(2)连接BQ,则易得PQ∥OB,且PQ=OB,∴四边形PQBO是平行四边形,∴OP=BQ,∴5(等号成立的条件是点Q在线段AB上),∵直线AB的解析式为y=﹣12x﹣2,∴可设此时点Q的坐标为(t,﹣12t﹣2),于是,此时点P的坐标为(t,﹣12t),∵点P在抛物线y=12x2上,∴﹣12t=12t2,解得:t=0或t=﹣1,∴当t=0,点P与点O重合,不合题意,应舍去,∴OP+AQ的最小值为5P的坐标为(﹣1,12);(3)P(﹣4,8)或(4,8),如备用图所示,延长PQ 交x 轴于点H ,设此时点P 的坐标为(m ,12m 2), 则tan ∠HPO=2212m OH PH m m ==, 又,易得tan ∠OBC=12, 当tan ∠HPO=tan ∠OBC 时,可使得∠QPO=∠OBC , 于是,得212m =, 解得:m=±4, 所以P (﹣4,8)或(4,8).【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.23.0.3 4【解析】【分析】(1)由统计图易得a 与b 的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【详解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:312=14.【点睛】本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)-21;(2)正确;(3)运算“※”满足结合律【解析】【分析】(1)根据新定义运算法则即可求出答案.(2)只需根据整式的运算证明法则a※b=b※a即可判断.(3)只需根据整式的运算法则证明(a※b)※c=a※(b※c)即可判断.【详解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a※b=(a+1)(b+1)-1b※a=(b+1)(a+1)-1,∴a※b=b※a,故满足交换律,故她判断正确;(3)由已知把原式化简得a※b=(a+1)(b+1)-1=ab+a+b∵(a※b)※c=(ab+a+b)※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c∴(a ※b )※c=a ※(b ※c )∴运算“※”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.25.(1)①60;②CP BF =.理由见解析;(2)2tan BF BP DE α-=⋅,理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合30A ∠=o ,只要证明CDB ∆是等边三角形即可; ②根据全等三角形的判定推出DCP DBF ∆≅∆,根据全等的性质得出CP BF =,(2)如图2,求出DC DB AD ==,DE AC P ,求出2FDB CDP PDB α∠=∠=+∠,DP DF =,根据全等三角形的判定得出DCP DBF ∆≅∆,求出CP BF =,推出BF BP BC -=,解直角三角形求出tan CE DE α=即可.【详解】解:(1)①∵30A ∠=o ,90ACB ∠=o ,∴60B ∠=o ,∵AD DB =,∴CD AD DB ==,∴CDB ∆是等边三角形,∴60DCB ∠=o .故答案为60.②如图1,结论:CP BF =.理由如下:∵90ACB ∠=o ,D 是AB 的中点,DE BC ⊥,A α∠=,∴DC DB AD ==,DE AC P ,∴A ACD α∠=∠=,EDB A α∠=∠=,2BC CE =,∴2BDC A ACD α∠=∠+∠=,∵2PDF α∠=,∴2FDB CDP PDB α∠=∠=-∠,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP DF =,在DCP ∆和DBF ∆中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴DCP DBF ∆≅∆,∴CP BF =.(2)结论:2tan BF BP DE α-=⋅.理由:∵90ACB ∠=o ,D 是AB 的中点,DE BC ⊥,A α∠=,∴DC DB AD ==,DE AC P ,∴A ACD α∠=∠=,EDB A α∠=∠=,2BC CE =,∴2BDC A ACD α∠=∠+∠=,∵2PDF α∠=,∴2FDB CDP PDB α∠=∠=+∠,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP DF =,在DCP ∆和DBF ∆中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴DCP DBF ∆≅∆,∴CP BF =,而CP BC BP =+,∴BF BP BC -=,在Rt CDE ∆中,90DEC ∠=o , ∴tan DE DCE CE∠=, ∴tan CE DE α=,∴22tan BC CE DE α==,即2tan BF BP DE α-=.【点睛】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出DCP DBF ∆≅∆是解此题的关键,综合性比较强,证明过程类似.26.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米, 根据题意得:360360332x x -=, 解得:x=40,经检验,x=40是原分式方程的解,且符合题意, ∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.27.-1,-1,0,1,1【解析】分析:先求出不等式组的解集,然后求出整数解. 详解:()715331?34x x x x ⎧+≥+⎪⎨-->⎪⎩①②,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式组的解集是﹣1≤x<3,∴不等式组71533134x xx x+≥+⎧⎪-⎨-⎪⎩()>的整数解是:﹣1、﹣1、0、1、1.点睛:本题考查了解一元一次不等式的整数解,解答本题的关键是明确解一元一次不等式组的方法.。
【附20套中考模拟试题】甘肃省庆阳市2019-2020学年中考数学模拟试卷含解析
![【附20套中考模拟试题】甘肃省庆阳市2019-2020学年中考数学模拟试卷含解析](https://img.taocdn.com/s3/m/b11a8e79e009581b6bd9ebf4.png)
率是多少?
21.(6 分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,
食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四
样食品.按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或
16.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第 10 个图形有_______个五角星.
17.某种商品每件进价为 20 元,调查表明:在某段时间内若以每件 x 元(20≤x≤30,且 x 为整数)出售, 可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.
18.如图,点 A(m,2),B(5,n)在函数 y k (k>0,x>0)的图象上,将该函数图象向上平移 2 x
A.﹣3
B.﹣5
C.1 或﹣3
D.1 或﹣5
7.把不等式组
x x
2…0 1 0
的解集表示在数轴上,正确的是(
)
A.
B.
C.
D.
8.如图,在 Rt△ ABC 中,∠BAC=90°,将△ ABC 绕点 A 顺时针旋转 90°后得到△ AB′C′(点 B 的对应点
是点 B′,点 C 的对应点是点 C′,连接 CC′.若∠CC′B′=32°,则∠B 的大小是(
C.2≤k≤16
二、填空题:(本大题共 6 个小题,每小题 4 分,共 24 分.)
13.若 a2 b2 1 , a b 1 ,则 a b 的值为 ________ .
6
3
D.8≤k≤16
14.若点( a ,1)与(﹣2,b)关于原点对称,则 ab =_______.
15.如图,AE 是正八边形 ABCDEFGH 的一条对角线,则∠BAE= °.
甘肃省庆阳市2019-2020学年第四次中考模拟考试数学试卷含解析
![甘肃省庆阳市2019-2020学年第四次中考模拟考试数学试卷含解析](https://img.taocdn.com/s3/m/1865eca5856a561252d36f8b.png)
甘肃省庆阳市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=k x(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣362.如图所示几何体的主视图是( )A.B.C.D.3.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有()A.4 个B.3 个C.2 个D.1 个4.在以下四个图案中,是轴对称图形的是()A.B.C.D.5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为().A.100︒B.90︒C.80︒D.70︒6.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3 B.2.5 C.2 D.57.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<29.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上10.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°11.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.712.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A 地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____.14.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.15.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).16.如图,线段AB 的长为4,C 为AB 上一个动点,分别以AC、BC 为斜边在AB 的同侧作两个等腰直角三角形ACD 和BCE,连结DE,则DE 长的最小值是_____.17.若反比例函数y=2kx的图象位于第一、三象限,则正整数k的值是_____.18.阅读理解:引入新数i ,新数i 满足分配律、结合律、交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )的平方根是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?20.(6分)如图,已知抛物线21322y x x n =--(n >0)与x 轴交于A ,B 两点(A 点在B 点的左边),与y 轴交于点C 。
〖8套试卷汇总〗甘肃省庆阳市2020年中考数学最后模拟卷
![〖8套试卷汇总〗甘肃省庆阳市2020年中考数学最后模拟卷](https://img.taocdn.com/s3/m/edc8149c81c758f5f61f6796.png)
2020年数学中考模拟试卷一、选择题1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A.1个B.2个C.3个D.4个2.如图,不等式组315215xx--⎧⎨-<⎩…的解集在数轴上表示为()A. B.C. D.3.下列运算正确的是()A.a2×a3=a6B.a2+a2=2a4C.a8÷a4=a4D.(a2)3=a54.如图示,用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则ABBC的值是( )A.2BC.14D5.图为某班35名学生投篮成绩的条型统计图,其中上面部分数据缺损导致数据不完全.已知此班学生投篮成绩的中位数是5,则根据统计图的数据,无法..确定下列哪一选项中的数值()A.4球(不含4球)以下的人数B.5球(不含5球)以下的人数C.6球(不含6球)以下的人数D.7球(不含7球)以下的人数62的值应在( )A.4和5之间B.5和6之间C.6和7之间D.7和9之间7.下列运算正确的是()A.2a+3b=5ab B.2(2a﹣b)=4a﹣bC .(a+b )(a ﹣b )=a 2﹣b 2D .(a+b )2=a 2+b 28.据池州市统计局发布,2018年我市全年生产总值684.9亿元,比上年增长5.7%,若今、明两年年增长率保持不变,则2020年全年生产总值为( ) A .(1+5.7%×2)×684.9亿元 B .(1+5.7%)2×684.9亿元 C .2×(1+5.7%)×684.9亿元 D .2×5.7%(1+5.7%)×684.9亿元9.已知7x =是方程27x ax -=的解,则a =( ) A .1 B .2C .3D .710.如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠二、填空题11.如图,直线y 1=kx+b 与直线y 2=mx 交于点P (1,m ),则不等式mx >kx+b 的解集是 ______12.当a <0,b >0_____.13.一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数是__.14.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8.线段AD 由线段AB 绕点A 按逆时针方向旋转90°得到,△EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点D .则CG =_____.15.因式分解:27a 3﹣3a =_____.16.如图,四边形ABCD 内接于⊙O ,E 为CD 的延长线上一点.若110B ∠=°,则ADE ∠的大小为____________.17.2019年4月29日中国北京世界园艺博览会在北京延庆开幕,大会以“绿色生活,美丽家园”为主题.如图,是北京世界园艺博览会部分导游图,若国际馆的坐标为(4,2),植物馆的坐标为(﹣4,﹣1),则中国馆的坐标为_____.18.若方程x 2+x ﹣2019=0的一个根是a ,则a 2+a+1的值为_____. 19.函数y= +(x ﹣2)0中,自变量x 的取值范围是____________三、解答题20.如图,在菱形ABCD 中,点P 在对角线AC 上,且PA=PD ,⊙O 是△PAD 的外接圆. ⑴求证:AB 是⊙O 的切线; ⑵若AC=8,tan ∠BAC=12,求⊙O 的直径.21.先化简,再求值:(31a +﹣a+1)÷2441a a a -+++42a -﹣a ,并从﹣1,0,2中选一个合适的数作为a 的值代入求值.22.计算:|1﹣2﹣2sin60°23.先化简,再求值:(a+22ab b a +)÷222a b a ab--,其中a =﹣2,b =3.24.(本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90B ∠=︒,30A ∠=︒,6BC cm =;图②中,90D ∠=︒,45E ∠=︒,4DE cm =.图③是刘卫同学所做的一个实验:他将DEF ∆的直角边DE 与ABC ∆的斜边AC 重合在一起,并将DEF ∆沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在DEF ∆沿AC 方向移动的过程中,刘卫同学发现:F 、C 两点间的距离逐渐 ▲ .(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF ∆移动至什么位置,即AD 的长为多少时,F 、C 的连线与AB 平行?问题②:当DEF ∆移动至什么位置,即AD 的长为多少时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形?问题③:在DEF ∆的移动过程中,是否存在某个位置,使得15FCD ∠=︒?如果存在, 求出AD 的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.25.(1)关于x,y的方程组2231x y mx y m+=⎧⎨+=+⎩满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求1211+x x的值.26.某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件,设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【参考答案】***一、选择题1.C2.C3.C4.C5.C6.A7.C8.B9.A10.B二、填空题11.x>112.-13.314.515.3a(3a+1)(3a﹣116.110°17.(0,0)18.202019.x≥1且x≠2三、解答题20.(1)见解析;(2)⊙O.【解析】【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠BAC=12,得到DF=BF=2,根据勾股定理得到PE=AE·tan∠DAC= AE·tan∠设⊙O的半径为R,则OE=R-2OA=R,根据勾股定理列方程即可得到结论.【详解】(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP.∴OP⊥AD,AE=DE.∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA.∴∠1+∠OAP=90°.∵四边形ABCD为菱形,∴∠1=∠2.∴∠2+∠OAP=90°.∴OA⊥AB.∴直线AB与⊙O相切.(2)连结BD,交AC于点F,如上图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分.∵AC=8,tan∠BAC=12,∠BAC=∠DAC,∴AF=4,tan∠DAC= tan∠BAC=1 2∴DF=2.AD∴==∴在Rt△PAE中,tan∠DAC= tan∠BAC=12,∴PE= PE=AE·tan∠DAC= AE·tan∠BAC=2设⊙O 的半径为R ,则OE=R ﹣2,OA=R , 在Rt △OAE 中,∵OA 2=OE 2+AE 2,∴R 2=(R 2+2,∴R=4.⊙O . 【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理 21.-a-1,-1. 【解析】试题分析:根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.试题解析:解:原式=23(1)(1)141(2)2a a a a a a a --++⋅+-+--=2(2)(2)4(2)2a a a a a -+-+--- =2422a a a a --+---=(2)2a a a ----=﹣a ﹣1 ∵a=-1或a=2时,原分式无意义,∴a=0. 当a=0时,原式=﹣0﹣1=﹣1. 22.-34【解析】 【分析】本题涉及绝对值、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【详解】解:原式1124=+- 114=-+3.4=-【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的三角函数值等考点的运算. 23.a+b ,1. 【解析】 【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 与b 的值代入计算即可求出值.【详解】原式=2222()()()()()()()a ab b a a b a b a a b a a b a b a a b a b ++-+-⋅=⋅+-+-=a+b ,当a =﹣2,b =3时,原式=1. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 24.(1)变小 (2)①12AD =-时,//FC AB ②当316x =时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形 ③不存在这样的位置,使得15FCD ∠=︒ 【解析】 (1)变小(2)问题①:解:∵90B ∠=︒,30A ∠=︒,6BC cm =, ∴12AC =.∵90FDE ∠=︒,45,4DEF DE ∠=︒=, ∴4DF =.连结FC ,设//FC AB .∴30FCD A ∠=∠=︒,在Rt FDC ∆中,DC=4. ∴AD AC DC =-=12-4.即12AD =-时,//FC AB 问题②:解:设当AD x =,在Rt FDC ∆中,2222(12)16FC DC FD x =+=-+.(Ⅰ)当FC 为斜边时,由222AD BC FC +=得,2226(12)16x x +=-+,316x =. (Ⅱ)当AD 为斜边时,由222FC BC AD +=得,222(12)166x x -++=,4986x =>(不符合题意,舍去).(Ⅲ)当BC 为斜边时,由222AD FC BC +=得,222(12)166x x +-+=,212620x x -+=,∆=144-248<0,∴方程无解.∴由(Ⅰ)、(Ⅱ)、(Ⅲ)得, 当316x =时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形. 问题③不存在这样的位置,使得15FCD ∠=︒.假设15FCD ∠=︒,由45FED ∠=︒,得30EFC ∠=︒.作EFC ∠的平分线,交AC 于P , 则15EFP CFP FCP ∠=∠=∠=︒,∴,60PF PC DFP DFE EFP =∠=∠+∠=︒.∴PD =,28PC PF FD ===.∴812PC PD +=+>.∴不存在这样的位置,使得15FCD ∠=︒.25.(1)m =72;(2)12-或32-. 【解析】 【分析】(1)先对方程组进行化简,求出x+y 的值,再把x+y =5代入,即可解答;(2)根据韦达定理用m 表示x 1+x 2和x 1x 2的值,利用完全平方公式的变形得到x 12+x 22的式子,进而得到关于m 的方程. 【详解】解:(1)根据题意把方程组两式相加得: 2x+y+x+2y =m+3m+1 3(x+y )=4m+1 ∴x+y =413m + 又∵x+y =5 ∴413m +=5 解得:m=72(2)∵a =1,b =﹣(m ﹣1),c =﹣m∴△=[﹣(m ﹣1)]2﹣4•(﹣m )=m 2﹣2m+1+4m =m 2+2m+1=(m+1)2≥0 ∴无论m 为何值时,方程一定有实数根. ∵x 1+x 2=-b a=m ﹣1,x 1x 2=ca=﹣m ∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(m ﹣1)2+2m ∵x 12+x 22=5 ∴(m ﹣1)2+2m =5 解得:m =±2 当m =2时,1212121121122x x x x x x +-+===-- 当m =﹣2时,12121211-21322x x x x x x +-+===- ∴1211+x x 的值为12-或32-. 【点睛】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的运算.26.(1)y =﹣x 2+200x ﹣6400(50≤x≤60且x 为整数),y =﹣2x 2+300x ﹣8800(60<x≤80且x 为整数);(2)每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元. 【解析】 【分析】(1)由于售价为60时,每个月卖100件,售价上涨或下调影响销量,因此分为50≤x≤60和60<x≤80两部分求解;(2)由(1)中求得的函数解析式来根据自变量x 的范围求利润的最大值. 【详解】解:(1)当50≤x≤60时,y =(x ﹣40)(100+60﹣x )=﹣x 2+200x ﹣6400; 当60<x≤80时,y =(x ﹣40)(100﹣2x+120)=﹣2x 2+300x ﹣8800;∴y=﹣x2+200x﹣6400(50≤x≤60且x为整数)y=﹣2x2+300x﹣8800(60<x≤80且x为整数);(2)当50≤x≤60时,y=﹣(x﹣100)2+3600;∵a=﹣1<0,且x的取值在对称轴的左侧,∴y随x的增大而增大,∴当x=60时,y有最大值2000;当60<x≤80时,y=﹣2(x﹣75)2+2450;∵a=﹣2<0,∴当x=75时,y有最大值2450.综上所述,每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.【点睛】本题考查的是函数方程和实际结合的问题,同学们需掌握最值的求法.2020年数学中考模拟试卷一、选择题1.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?” 如图所示,请根据所学知识计算:圆形木材的直径AC 是( )A.13寸B.20寸C.26寸D.28寸2.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A. B. C. D.3.如图,已知抛物线y =x 2﹣2x ﹣3与x 轴相交于点A ,B ,若在抛物线上有且只有三个不同的点C 1,C 2,C 3,使得△ABC 1,△ABC 2,△ABC 3的面积都等于a ,则a 的值是( )A .6B .8C .12D .164.如图,已知⊙O 的半径为2,点A 、B 、C 在⊙O 上,若四边形OABC 是菱形,则图中阴影部分的面积为( )A.π-B.π-C.π-D.π-5.已知反比例函数(为常数,)的图象经过点,则当-3<x<-2时,函数值的取值范围是( )A.B.C.D.6.如图,直线y =﹣x+b 与双曲线(0)ky x x=> 交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于点M ,BN ⊥x 轴于点N ,有以下结论:①S △AOM =S △BON ;②OA =OB ;③五边形MABNO 的面积22MABNOb S 五边形;④若∠AOB=45°,则S △AOB =2k ,⑤当AB时,ON ﹣BN =1;其中结论正确的个数有( )A .5个B .4个C .3个D .2个7.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y k y ++的解为正数,则符合条件的所有整数k 的积为( ) A .2B .0C .﹣3D .﹣68.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A.a =32b B.a =2b C.a =52b D.a =3b9.如图,要使□ABCD 成为矩形,需添加的条件是()A .AB=BCB .∠ABC=90°C .AC ⊥BD D .∠1=∠210.据报道,截至2018年12月,天津轨道交通运营线路共有6条,线网覆盖10个市辖区,运营里程215000米,共设车站154座.将215000用科学计数法表示应为( )A .321510⨯B .421.510⨯C .52.1510⨯D .60.21510⨯二、填空题11.如图,在▱ABCD 中,∠A =60°,AB =8,AD =6,点 E 、F 分别是边 AB 、CD 上的动点,将该四边形沿折痕 EF 翻折,使点 A 落在边 BC 的三等分点处,则 AE 的长为 .12.若反比例函数ky x=的图象经过点()1,2-,则k 的值是__________. 13.一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米,此时标杆旁边一棵杨树的影长为10.5米,则这棵杨树高为_____米. 14.因式分解:1﹣4a 2=_____.15.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成,根据如图所反映的规律,猜想第n 个图形中火柴棒的根数是_____(n 是正整数且n≥1).16.不等式1﹣x≥2的解集是_____.17.计算12﹣_____.18.在Rt △ABC 中,∠C =90°,AB =2,BC sin 2A=_____. 19.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形. ②当m >0时,y =﹣mx+1与y =x两个函数都是y 随着x 的增大而减小. ③甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S 2甲=4,S 2乙=9,这个过程中乙发挥比甲更稳定.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为18. 其中正确的命题是_____(只需填正确命题的序号) 三、解答题20.如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C1沿x 轴翻折,得到抛物线C 2 (1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.21.如图所示,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上. (1)若∠AOD=52°,求∠DEB 的度数; (2)若OC=3,OA=5,求AB 的长.22.近年来,体育分数在中招考试中占分比重越来越大,不少家长、考生也越来越重视;某中学计划购买一批足球、跳绳供学生们考前日常练习使用,负责此次采购的老师从商场了解到:购买7个足球和4条跳绳共需510元;购买3个足球比购买5条跳绳少50元. (1)求足球和跳绳的单价;(2)按学校规划,准备购买足球和跳绳共200件,且足球的数量不少于跳绳的数量的12,请设计出最省钱的购买方案,并说明理由.23.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm ,箱底端点E 与墙角G 的距离为65cm ,∠DCG=60°.(1)箱盖绕点A 转过的角度为______,点B 到墙面的距离为______cm ;(2)求箱子的宽EF =1.41=1.73)24.如图是小亮晚上在广场散步的示意图,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)在小亮由B 沿OB 所在的方向行走的过程中,他在地面上的影子的变化情况为______; (2)请你在图中画出小亮站在AB 处的影子;(3)当小亮离开灯杆的距离 4.2OB m =时,身高(AB )为1.6m 的小亮的影长为1.6m ,问当小亮离开灯杆的距离6OD m =时,小亮的影长是多少m ?25.如图:AB 是⊙O 的直径,AC 交⊙O 于G ,E 是AG 上一点,D 为△BCE 内心,BE 交AD 于F ,且∠DBE =∠BAD .(1)求证:BC 是⊙O 的切线; (2)求证:DF =DG .26.如图,在△ABC 中,AB =AC ,以AB 为直径的圆O 交AC 于点D ,交BC 于点E ,以点B 为顶点作∠CBF ,使得∠CBF =12∠BAC ,交AC 延长线于点F 连接BD 、AE ,延长AE 交BF 于点G ,(1)求证:BF为⊙O的切线;(2)求证:AC•BC=BD•AG;(3)若BC=,CD:CF=4:5,求⊙O的半径.【参考答案】***一、选择题1.C2.C3.B4.C5.D6.B7.A8.B9.B10.C二、填空题11.143或28512.-213.514.(1﹣2a)(1+2a).15.3n+116.x≥317.-318.1 219.①三、解答题20.(1)y=x2﹣4(2)当m=3时,以点A,N,E,M为顶点的四边形是矩形【解析】【分析】(1)抛物线翻折前后顶点关于x轴对称,a互为相反数;(2)连接AN,NE,EM,MA,M,N关于原点O对称OM=ON,A,E关于原点O对称OA=OE,可得四边形ANEM为平行四边形;若AM2+ME2=AE2,解得m=3,即可求解;【详解】解:(1)∵抛物线C1的顶点为(0,4),∴沿x轴翻折后顶点的坐标为(0,﹣4),∴抛物线C2的函数表达式为y=x2﹣4;(2)存在连接AN,NE,EM,MA,依题意可得:M(﹣m,4),N(m,﹣4),∴M,N关于原点O对称OM=ON,原C1、C2抛物线与x轴的两个交点分别(﹣2,0),(2,0),∴A(﹣2﹣m,0),E(2+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形,∴AM2=22+42=20,ME2=(2+m+m)2+42=4m2+8m+20,AE2=(2+m+2+m)2=4m2+16m+16,若AM2+ME2=AE2,∴20+4m2+8m+20=4m2+16m+16,解得m=3,此时△AME是直角三角形,且∠AME=90,∴当m=3时,以点A,N,E,M为顶点的四边形是矩形.【点睛】本题考查二次函数的性质,平行四边形的判定,矩形的判定和性质.找准二次函数图象变化后对应的点是解决翻折后函数图象的关键;能够在平面直角坐标系中,通过坐标点的特点判定平行四边形,利用勾股定理判定矩形是解决本题的关键.21.(1)26°;(2)8.【解析】试题分析:(1)根据垂径定理,得到AD DB=,再根据圆周角与圆心角的关系,得知∠E=12∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,∴AD DB=,∴∠DEB=12∠AOD=12×52°=26°; (2)∵AB 是⊙O 的一条弦,OD ⊥AB , ∴AC=BC ,即AB=2AC ,在Rt △AOC 中,, 则AB=2AC=8.考点:垂径定理;勾股定理;圆周角定理.22.(1)足球的单价为50元/个,跳绳的单价为40元/条;(2)最省钱的购买方案是:购买足球67个,跳绳133条. 【解析】 【分析】(1)设足球的单价为x 元/个,跳绳的单价为y 元/条,根据题意可列出二元一次方程组745105350x y y x +=⎧⎨-=⎩,解方程即可得出答案. (2)设购买足球m 个,总费用为w 元,则购买跳绳(200﹣m )条,依题意,得:5040200108000w m m m =++(﹣)= .由足球的数量不少于跳绳的数量的12,可得:1(200)2m m ≥- ,解得:2003m ≥ .再利用一次函数的性质即可解决最值问题.【详解】解:(1)设足球的单价为x 元/个,跳绳的单价为y 元/条, 依题意,得:745105350x y y x +=⎧⎨-=⎩ ,解得:5040x y =⎧⎨=⎩ .答:足球的单价为50元/个,跳绳的单价为40元/条.(2)设购买足球m 个,总费用为w 元,则购买跳绳(200﹣m )条, 依题意,得:5040200108000w m m m =++(﹣)= . ∵足球的数量不少于跳绳的数量的12, ∴1(200)2m m ≥- , 解得:2003m ≥. ∵m 为整数, ∴m≥67. ∵10>0,∴w 值随m 值的增大而增大,∴当m =67时,w 取得最小值,此时200﹣m =133. 答:最省钱的购买方案是:购买足球67个,跳绳133条. 【点睛】本题主要考查了二元一次方程的应用,一元一次不等式以及一次函数的最值问题,找准等量关系,正确列出方程和不等式是解题关键.23.(1)150°;5(2)32.4cm 【解析】 【分析】(1)如图,过点B 作BH ⊥CG 于H ,过点D 作CG 的垂线MN 交AF 于M ,交HG 于N .利用矩形的性质、直角三角形的性质以及等角的余角相等得到∠MAD=30°,根据周角的定义易求箱盖绕点A 转过的角度;通过解直角△BHC 来求BH 的长度;(2)通过解直角△AMD 得到线段MD 的长度,则DN=65-EF-DM ,利用解直角△DCN 来求CD 的长度,即EF 的长度即可. 【详解】(1)如图,过点B 作BH ⊥CG 于H ,过点D 作CG 的垂线MN 交AF 于M ,交HG 于N .∵∠DCG=60°, ∴∠CDN=30°.又∵四边形ABCD 是矩形, ∴∠ADC=∠BCD=90°,∴∠MAD=∠CDN=30°(同角的余角相等),∴箱盖绕点A 转过的角度为:360°-90°-30°-90°=150°. 在直角△BCH 中,∠BCH=30°,BC=10cm ,则BH=12BC=5cm . 故答案是:150°;5;(2)在直角△AMD 中,AD=BC=10cm ,∠MAD=30°,则MD=AD •sin30°=12×10=5(cm ). ∵∠CDN=30°,∴cos ∠CDN=cos30°=655DN EF DC EF --=,即655EF EF --= 解得EF=32.4.即箱子的宽EF 是32.4cm . 【点睛】本题考查了解直角三角形的应用.主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算. 24.(1)逐渐变短;(2)详见解析;(3)167【解析】 【分析】(1)根据光是沿直线传播的道理可知在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,他在地面上的影子长度的变化情况为变短(2)连接PA 并延长交直线BO 于点E,则线段BE 即为小亮站在AB 处的影子 (3)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可 【详解】(1)因为光是沿直线传播的,所以当小亮由B 处沿BO 所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE即为所求(3)先设OP=x,则当OB=4.2米时,BE=1.6米,∴1.6 1.6,4.2 1.6 AB BEOP OE x==+即∴x=5.8米当OD=6米时,设小亮的影长是y米,∴DF CD DF OD OP=+∴1.6 6 5.8 yy=+y=167(米)即小亮的影长是167米。
2020年甘肃省中考数学模拟试卷一(含解析)
![2020年甘肃省中考数学模拟试卷一(含解析)](https://img.taocdn.com/s3/m/44bcd40684254b35effd348c.png)
2020年甘肃省中考数学模拟试卷一一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 在实数|﹣3|,﹣2,0,π中,最小的数是( )A. |﹣3|B. ﹣2C. 0D. π2. 要使式子1x-在实数范围内有意义,则x 的取值范围是( )A . x ≥1 B. x <1 C. x ≤1D. x ≠1 3. 下列运算正确的是( )A. 2a-a=1B. 2a+b=2abC. ()347a a =D. ()()325•a a a --=- 4. 若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A. ﹣5B. ﹣3C. 3D. 15. 六个大小相同的正方体搭成的几何体如图所示,其俯视图是( ) A. B. C. D.6. 关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A. a 1> B. a 1< C. a 1<且a 2≠- D. a 1>且a 2≠7. 如图,在平面直角坐标系中,函数 y = kx 与 y = -2x 图象交于 A 、B 两点,过 A 作 y 轴的垂线,交函数4y x=的图象于点 C ,连接 BC ,则△ABC 的面积为( )A. 2B. 4C. 6D. 88. 如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A. 2B. 2C. 22D. 39. 如图,在ABC∆中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连接DE.下列结论:①OE ODOB OC=;②12DEBC=;③12DOEBOCSS∆∆=;④13DOEDBESS∆∆=.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10. 如图,扇形OAB动点P从点A出发,沿AB、线段BO、OA匀速运动到点A,则OP的长度y与运动时间t之间的函数图象大致是()A. B. C. D.二、填空题:本大题共8小题,每小题3分,共24分.11. 计算:212⎛-=⎝⎭__________.12. 因式分解:2ab a- =___.13. 不等式组()2x15x742x31x33⎧+>-⎪⎨+>-⎪⎩的解集为______14. 对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2=_____.15. 如图,PA,PB分别切⊙O于点A、B,点C在⊙O上,且∠ACB=50°,则∠P=__.16. 用半径为6,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为_____.17. 如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为___.18. 把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=_____.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19. 计算|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;20. 先化简再求值:(a﹣22ab ba-)÷22a ba-,其中2,b=1221. 尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.22. 小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,3≈1.73)23. 在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.四、解答题(二):本大题共5小题,共10分,解答应写出必要的文字说明,证明过程或演算步骤.24. 近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度.(3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?25. 如图,在平行四边形ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且AE=CF ,连接EF 交BD 于点O .求证:OB=OD .26. 如图,在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象与反比例函数m y x=(0m ≠)的图象交于第二、四象限内的A ,B 两点,与x 轴交于C 点,点B 的坐标为(6,)n ,线段5OA =,E 为x 轴负半轴上一点,且4sin 5AOE ∠=.(1)求该反比例函数和一次函数的解析式.(2)求AOC ∆的面积.27. 如图,AB 是O 的直径,经过圆上点D 的直线CD 恰使ADC B ∠=∠.(1)求证:直线CD 是O 的切线. (2)过点A 作直线AB 垂线交BD 的延长线于点E ,且5AB =,2BD =,求线段AE 的长.28. 如图1,抛物线2y x bx c =++与x 轴交于A ,B 两点,与y 轴交于点(0,2)C ,连接AC ,若2OC OA =. (1)求抛物线的解析式.(2)抛物线对称轴l 上有一动点P ,当PC PA +最小时,求出点P 的坐标,(3)如图2所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点.过点M 作直线l l ',交抛物线于点N ,连接CN ,BN ,设点M 的横坐标为t .当t 为何值时,BCN ∆的面积最大?最大面积为多少?2020年甘肃省中考数学模拟试卷一一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 在实数|﹣3|,﹣2,0,π中,最小的数是( )A. |﹣3|B. ﹣2C. 0D. π 【答案】B【解析】【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-2,0,π中,|-3|=3,则-2<0<|-3|<π,故最小的数是:-2.故选B .【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2. x 的取值范围是( )A. x ≥1B. x <1C. x ≤1D. x ≠1 【答案】A【解析】【分析】根据被开方数大于等于0,列式得,x ﹣1≥0,解不等式即可.【详解】解:根据被开方数大于等于0,列式得,x ﹣1≥0,解得x ≥1.故选A .【点睛】本题考查二次根式有意义的条件,掌握被开方数为非负数是本题的解题关键.3. 下列运算正确的是( )A. 2a-a=1B. 2a+b=2abC. ()347a a =D. ()()325•a a a --=- 【答案】D【解析】【分析】根据合并同类项的法则、幂的乘方和同底数幂的乘法法则进行判断即可【详解】解:A. 2a-a=a ,故原选项错误;B. 2a 与b 不能合并,故原选项错误;C. ()1342=a a ,故原选项错误;D.()()325•a a a --=-, 故原选项正确;故选:D【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,掌握相关的运算法则是解题的关键4. 若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A. ﹣5B. ﹣3C. 3D. 1 【答案】D【解析】【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m 、n 的值,代入计算可得.【详解】∵点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D .【点睛】本题考查了关于y 轴对称的点,熟练掌握关于y 轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.5. 六个大小相同的正方体搭成的几何体如图所示,其俯视图是( )A. B. C. D.【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.6. 关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A. a 1>B. a 1<C. a 1<且a 2≠-D. a 1>且a 2≠ 【答案】D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围.【详解】分式方程去分母得:x 12x a +=+,即x 1a =-,因为分式方程解为负数,所以1a 0-<,且1a 1-≠-,解得:a 1>且a 2≠,故选D .【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.7. 如图,在平面直角坐标系中,函数 y = kx 与 y = -2x 的图象交于 A 、B 两点,过 A 作 y 轴的垂线,交函数4y x=的图象于点 C ,连接 BC ,则△ABC 的面积为( )A. 2B. 4C. 6D. 8【答案】C【解析】【分析】 连接OC ,根据图象先证明△AOC 与△COB 的面积相等,再根据题意分别计算出△AOD 与△ODC 的面积即可得△ABC 的面积.【详解】连接OC ,设AC ⊥y 轴交y 轴为点D ,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S△AOD=12×OD×AD=12xy=1;S△COD=12×OC×OD=12xy=2;S△AOC= S△AOD+ S△COD=3,∴S△ABC= S△AOC+S△COB=6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.8. 如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()2 B. 2 2 D. 3【答案】C【解析】【分析】直接利用垂径定理进而结合圆周角定理得出△ODB是等腰直角三角形,进而得出答案.【详解】解:∵半径OC⊥弦AB于点D,∴AC BC=,∴∠E=12∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=4,∴DB=OD=2,则半径OB等于:222222+=.故选C.【点睛】此题主要考查了垂径定理和圆周角定理,正确得出△ODB是等腰直角三角形是解题关键.9. 如图,在ABC∆中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连接DE.下列结论:①OE ODOB OC=;②12DEBC=;③12DOEBOCSS∆∆=;④13DOEDBESS∆∆=.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】由点D,E分别是边AC,AB的中点知DE是△ABC的中位线,据此知DE∥BC且12DEBC=,从而得△ODE∽△OBC,根据相似三角形的性质逐一判断可得.【详解】解:∵点D,E分别是边AC,AB的中点,∴DE是△ABC的中位线,∴DE∥BC且12DEBC=,②正确;∴∠ODE=∠OBC、∠OED=∠OCB,∴△ODE∽△OBC,∴12OE OD DEOC OB BC===,①错误;214DOE BOC S DE SBC ⎛⎫== ⎪⎝⎭,③错误; ∵112122DOE BOEOD h S OD S OB OB h ⋅===⋅, ∴13DOE BDE S S =△△,④正确; 故选:B .【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的判定与性质.10. 如图,扇形OAB 动点P 从点A 出发,沿AB 、线段BO 、OA 匀速运动到点A ,则OP 的长度y 与运动时间t 之间的函数图象大致是( )A. B. C. D.【答案】D【解析】试题分析:点P 在弧AB 上时,OP 的长度y 等于半径的长度,不变;点P 在BO 上时,OP 的长度y 从半径的长度逐渐减小至0;点P 在OA 上时,OP 的长度从0逐渐增大至半径的长度.按照题中P 的路径,只有D 选项的图象符合.故选D .考点:函数图象(动点问题)二、填空题:本大题共8小题,每小题3分,共24分.11. 计算:0212⎛-= ⎝⎭__________.【答案】0【解析】【分析】根据零指数幂化简,再相减即可.【详解】解:01-=⎝⎭1-1=0,故答案为:0.【点睛】本题考查了零指数幂,解题的关键是掌握任何一个不为零的数的零次幂为1.12. 因式分解:2ab a - =___.【答案】()()a b 1b 1+-.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a 后继续应用平方差公式分解即可:()()()22ab a a b 1a b 1b 1-=-=+-. 13. 不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______ 【答案】1x 3-<<【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩①②, 解不等式①得:x<3,解不等式②得:x 1>-, ∴不等式组的解集为1x 3-<<,故答案为1x<3-<.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找出不等式组的解集是解此题的关键.14. 对于任意实数a 、b ,定义:a ◆b=a 2+ab+b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则m 2+n 2=_____.【答案】6.【解析】【分析】根据新定义可得出m、n为方程x2+2x﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m2+n2=(m+n)2﹣2mn中即可得出结论.【详解】解:∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m2+n2=(m+n)2﹣2mn=6.故答案为6.【点睛】本题考查了根与系数的关系,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.15. 如图,PA,PB分别切⊙O于点A、B,点C在⊙O上,且∠ACB=50°,则∠P=__.【答案】80°【解析】试题分析:连接OA、OB,∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵PA,PB分别切⊙O于点A、B,点C在⊙O上,∴∠OAP=∠OBP=90°,∴∠P=360°﹣90°﹣100°﹣90°=80°,故答案为80°.考点:切线的性质16. 用半径为6,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为_____.【答案】2【解析】【分析】根据图形可知,圆锥的侧面展开图为扇形,且其弧长等于圆锥底面圆的周长.【详解】解:设这个圆锥的底面半径是r则有120π62πr180⨯=,解得:r=2.故答案为:2.【点睛】本题考查圆锥的侧面展开图.掌握圆锥的侧面展开图和圆锥底面圆的关系,关键是圆锥底面圆的周长=侧面展开图中扇形的弧长.17. 如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为___.【答案】2【解析】【分析】【详解】试题分析:∵AB⊥x轴,∴S△AOB=×|6|=3,S△COB=×|2|=1,∴S△AOC=S△AOB﹣S△COB=2.故答案为2.考点:反比例函数系数k的几何意义18. 把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若2,则CD=_____.【答案】31-【解析】【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴2AB=2,BF=AF=22AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,22AD AF-3∴33,3-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19. 计算|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;【答案】1 【解析】【分析】首先计算乘方,特殊角的三角函数值,去掉绝对值符号,然后进行加减运算即可求解.【详解】|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°=2-1-12+12 =1 【点睛】考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 20. 先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中a=1+2,b=1﹣2. 【答案】原式=2a b a b-=+ 【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+, 当a=1+2,b=1﹣2时,原式=12121212+-+++-=2. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.21. 尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a ,求作△ABC ,使∠A=∠α,∠C=90°,AB=a .【答案】作图见解析.【解析】【分析】根据作一个角等于已知角,线段截取以及垂线的尺规作法即可求出答案.【详解】如图所示,△ABC所求作.【点睛】本题考查了尺规作图——基本作图,熟练掌握作一个角等于已知角、过直线外一点作已知直线的垂线的方法是解题的关键.22. 小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,3≈1.73)【答案】标语牌CD的长为6.3m.【解析】分析:如图作AE⊥BD于E.分别求出BE、DE,可得BD的长,再根据CD=BD-BC计算即可;详解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=12AB=5(m),3(m),Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD-BC=12.79-6.5≈6.3(m),答:标语牌CD的长为6.3m.点睛:本题考查解直角三角形的应用-仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.23. 在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【答案】(1)详见解析;(2)14.【解析】【分析】【详解】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:41 164.考点:列表法与树状图法.四、解答题(二):本大题共5小题,共10分,解答应写出必要的文字说明,证明过程或演算步骤.24. 近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【答案】(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应圆心角为:360°×60200=108°,(3)1600×60+56200=928(名), 答:使用A 和B 两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.25. 如图,在平行四边形ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且AE=CF ,连接EF 交BD 于点O .求证:OB=OD .【答案】见解析【解析】【分析】根据平行四边形的性质,只要证明△EOD ≌△FOB ,即可得到结论成立.【详解】证明:∵平行四边形ABCD 中,∴AD =BC ,AD ∥BC .∴∠ADB =∠CBD .又∵AE =CF ,∴AE+AD =CF+BC .∴ED =FB .又∵∠EOD =∠FOB ,∴△EOD ≌△FOB .∴OB =OD .【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.26. 如图,在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象与反比例函数m y x=(0m ≠)的图象交于第二、四象限内的A ,B 两点,与x 轴交于C 点,点B 的坐标为(6,)n ,线段5OA =,E 为x 轴负半轴上一点,且4sin 5AOE ∠=.(1)求该反比例函数和一次函数的解析式.(2)求AOC∆的面积.【答案】(1)12yx=-;223y x=-+;(2)6【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(-3,4),再把A点坐标代入myx=可求得m=-12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;【详解】解:(1)作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD=4=5 ADOA,∴AD=45OA=4,∴223OA AD-=,∴A(-3,4),把A(-3,4)代入myx=得m=-4×3=-12,所以反比例函数解析式为12 yx=-;把B(6,n)代入12yx=-得6n=-12,解得n=-2,把A(-3,4)、B(6,-2)分别代入y=kx+b得34 62k bk b-+=⎧⎨+=-⎩,解得:232kb⎧=-⎪⎨⎪=⎩,所以一次函数解析式为223y x =-+; (2)当y=0时,2203x -+=,解得x=3,则C (3,0), 所以S △AOC =12×4×3=6;【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.27. 如图,AB 是O 的直径,经过圆上点D 的直线CD 恰使ADC B ∠=∠.(1)求证:直线CD 是O 的切线.(2)过点A 作直线AB 的垂线交BD 的延长线于点E ,且5AB =,2BD =,求线段AE 的长.【答案】(1)见解析;(2521【解析】【分析】(1)连结OD ,由OD=OB 得∠ODB=∠B ,而∠ADC=∠B ,则∠ODB=∠ADC ;再根据圆周角定理得∠ADB=90°,则∠ADO+∠ADC=90°,即∠ODC=90°,然后根据切线的判定定理即可得到直线CD 是⊙O 的切线;(2)先根据勾股定理计算出21EAB ∽△ADB ,然后利用相似比即可计算出AE 的长.【详解】解:(1)证明:连结OD ,如图,∵OD=OB ,∴∠ODB=∠B ,∵∠ADC=∠B ,∴∠ODB=∠ADC ;∵AB 是⊙O 的直径,∴∠ADB=∠ADO+∠ODB=90°,∴∠ADO+∠ADC=90°,即∠ODC=90°,∴OD ⊥CD ,∴直线CD 是⊙O 的切线;(2)在Rt △ABD 中,AB=5,BD=2,∴2221AB BD -=∵AE ⊥AB ,∴∠EAB=90°,∵∠ABE=∠DBA ,∴△EAB ∽△ADB , ∴AE AB DB DB=5221=, ∴521 【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、相似三角形的判定与性质.28. 如图1,抛物线2y x bx c =++与x 轴交于A ,B 两点,与y 轴交于点(0,2)C ,连接AC ,若2OC OA =.(1)求抛物线的解析式.(2)抛物线对称轴l上有一动点P,当PC PA+最小时,求出点P的坐标,(3)如图2所示,连接BC,M是线段BC上(不与B、C重合)的一个动点.过点M作直线l l',交抛物线于点N,连接CN,BN,设点M的横坐标为t.当t为何值时,BCN∆的面积最大?最大面积为多少?【答案】(1)y=x2-3x+2;(2)(32,12);(3)当t=1时,S△BCN的最大值为1.【解析】【分析】(1)已知C点的坐标,即可得到OC的长,根据OC=2OA即可求出OA的长,由此可得到A点的坐标,将A、C的坐标代入抛物线中,即可确定该二次函数的解析式;(2)连接BC,与直线l交于点P′,由点A和点B关于直线l对称,可知PA+PC的最小值为P′B+P′C=BC,求出点B坐标,再求出直线BC的解析式,令x=32即可得到结果;(3)已知点M的横坐标为t,根据直线BC和抛物线的解析式,即可用t表示出M、N的纵坐标,由此可求得MN的长,以MN为底,B点横坐标的绝对值为高,即可求出△BNC的面积(或者理解为△BNC的面积是△CMN和△MNB的面积和),由此可得到关于△BNC的面积S和t的函数关系式,根据所得函数的性质即可求得S的最大值及对应的t的值.【详解】解:(1)∵抛物线y=x2+bx+c过点C(0,2),∴c=2;又∵OC=2OA,∴OA=1,即A(1,0);又∵点A在抛物线y=x2+bx+2上,∴0=12+b×1+2,b=-3;∴抛物线对应的二次函数的解析式为y=x2-3x+2;(2)由题意可得:点A和点B关于直线l对称,连接BC,与直线l交于点P′,则PA+PC的最小值为P′B+P′C=BC,设BC的解析式为y=mx+n,令x2-3x+2=0,解得:x=1或2,∴B(2,0),又C(0,2),∴202m nn+=⎧⎨=⎩,解得:12mn=-⎧⎨=⎩,∴直线BC的解析式为:y=-x+2,令x=32,代入,得:y=12,∴当PC+PA最小时,点P的坐标为(32,12);(3)如图所示,∵点M是直线l′和线段BC的交点,∴M点的坐标为(t,-t+2)(0<t<2),∴MN=-t+2-(t2-3t+2)=-t2+2t,∴S△BCN=S△MNC+S△MNB=12MN▪t+12MN▪(2-t)=12MN▪(t+2-t)=MN=-t2+2t(0<t<2),∴S△BCN=-t2+2t=-(t-1)2+1,∴当t=1时,S△BCN的最大值为1.【点睛】此题是二次函数的综合题,主要考查了二次函数解析式的确定、最短路径、函数图象交点以及图形面积的求法等重要知识点;能够将图形面积最大(小)问题转换为二次函数的最值问题是解答(3)题的关键.。
甘肃省庆阳市2019-2020学年中考第五次模拟数学试题含解析
![甘肃省庆阳市2019-2020学年中考第五次模拟数学试题含解析](https://img.taocdn.com/s3/m/c7fcc959360cba1aa911da1f.png)
甘肃省庆阳市2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的几何体的主视图正确的是()A.B.C.D.2.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上3.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=4.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.55.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC= ()A.3B.2C.3 D .3+26.将抛物线y=12x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=12(x﹣8)2+5 B.y=12(x﹣4)2+5 C.y=12(x﹣8)2+3 D.y=12(x﹣4)2+37.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.18×108B.1.8×108C.1.8×109D.0.18×10108.用加减法解方程组323415x yx y-=⎧⎨+=⎩①②时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①9.已知函数2(3)21y k x x=-++的图象与x轴有交点.则k的取值范围是( )A.k<4 B.k≤4C.k<4且k≠3D.k≤4且k≠310.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如右图所示,则该封闭图形可能是( )A.B.C.D.11.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A.13B.23C.34D.4512.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.四张背面完全相同的卡片上分别写有0、·3、9、2、227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.14.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.15.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是________.16.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.17.用科学计数器计算:2×sin15°×cos15°= _______(结果精确到0.01).18.如图,点A(3,n)在双曲线y=3x上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式:233x-﹣12x-≤120.(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?21.(6分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM 于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.22.(8分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?23.(8分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.24.(10分)如图,在△ABC中,AB AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.25.(10分)已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.26.(12分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.27.(12分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=kx(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.(1)如图,若m=﹣52,n=152,点B的纵坐标为52,①求k的值;②作线段CD,使CD∥AB且CD=AB,并简述作法;(2)若四边形ABCD为矩形,A的坐标为(1,5),①求m,n的值;②点P(a,b)是双曲线y=kx第一象限上一动点,当S△APC≥24时,则a的取值范围是.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.2.B【解析】【分析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是13,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是16≈0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是14,故C选项错误,抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是18,故D选项错误,故选B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.3.A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.4.C【解析】试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.5.C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB 为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.6.D【解析】【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【详解】y=12x2﹣6x+21=12(x2﹣12x)+21=12[(x﹣6)2﹣16]+21=12(x﹣6)2+1,故y=12(x﹣6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=12(x﹣4)2+1.故选D.【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.7.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:1800000000=1.8×109, 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D【解析】试题解析:用加减法解方程组323415x y x y -=⎧⎨+=⎩①②时,如果消去y ,最简捷的方法是②×2+①, 故选D.9.B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点.10.A【解析】【分析】【详解】解:分析题中所给函数图像, O E -段,AP 随x 的增大而增大,长度与点P 的运动时间成正比.E F -段,AP 逐渐减小,到达最小值时又逐渐增大,排除C 、D 选项,F G -段,AP 逐渐减小直至为0,排除B 选项.故选A .【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.11.C【解析】【分析】易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB = DF DB ,EF CD =BF BD ,从而可得EF AB +EF CD =DF DB +BF BD=1.然后把AB=1,CD=3代入即可求出EF 的值. 【详解】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB,△BEF ∽△BCD ,∴EF AB= DF DB ,EF CD =BF BD , ∴EF AB +EF CD =DF DB +BF BD =BD BD =1. ∵AB=1,CD=3,∴1EF +3EF =1, ∴EF=34. 故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.12.A【解析】【分析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE ,如图所示:∵∠ACB=∠AEB ,∠AEB >∠D ,∴∠C >∠D .故选:A .【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.34【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】∵在0.·3、227这四个实数种,有理数有0.·3227这3个, ∴抽到有理数的概率为34, 故答案为34. 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 14.4.4×1【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:44000000=4.4×1, 故答案为4.4×1. 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.8【解析】【分析】如图,连接OC ,在在Rt △ACO 中,由tan ∠OAB=OC AC ,求出AC 即可解决问题. 【详解】解:如图,连接OC .∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=OC AC,∴122AC ,∴AC=4,∴AB=2AC=8,故答案为8【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.16.﹣1【解析】【分析】根据一元二次方程的解的定义把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=−1,然后利用整体代入的方法进行计算.【详解】∵1(n≠0)是关于x的一元二次方程x1+mx+1n=0的一个根,∴4+1m+1n=0,∴n+m=−1,故答案为−1.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.17.0.50【解析】【分析】直接使用科学计算器计算即可,结果需保留二位有效数字.用科学计算器计算得0.5,故填0.50,【点睛】此题主要考查科学计算器的使用,注意结果保留二位有效数字.18.2.【解析】【分析】先求出点A 的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB ,由此推出△ABC 的周长=OC+AC .【详解】由点A(3,n)在双曲线y=3x上得,n=2.∴A(3,2). ∵线段OA 的垂直平分线交OC 于点B ,∴OB=AB .则在△ABC 中, AC=2,AB +BC=OB +BC=OC=3,∴△ABC 周长的值是2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.x≥19. 【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】231132x x ---≤ 2(2﹣3x )﹣3(x ﹣1)≤6,4﹣6x ﹣3x+3≤6,﹣6x ﹣3x≤6﹣4﹣3,﹣9x≤﹣1, x≥19. 【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.20.(1)10,144;(2)详见解析;(3)96【解析】(1)依据C 类型的人数以及百分比,即可得到该班留守的学生数量,依据B 类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D 类型留守学生的数量,即可将条形统计图补充完整;(3)依据D 类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人), 410×100%×360°=144°, 故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人), 答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(1)证明见解析;(2)AB 、AD 的长分别为2和1.【解析】【分析】(1)证Rt △ABO ≌Rt △DEA (HL )得∠AOB=∠DAE ,AD ∥BC .证四边形ABCD 是平行四边形,又90ABC ∠=︒,故四边形ABCD 是矩形;(2)由(1)知Rt △ABO ≌Rt △DEA ,AB=DE=2.设AD=x ,则OA=x ,AE=OE -OA=9-x .在Rt △DEA 中,由222AE DE AD +=得:()22293x x -+=.【详解】(1)证明:∵AB ⊥OM 于B ,DE ⊥ON 于E ,∴90ABO DEA ∠=∠=︒.在Rt △ABO 与Rt △DEA 中,∵AO AD OB AE=⎧⎨=⎩∴Rt △ABO ≌Rt △DEA (HL ). ∴∠AOB=∠DAE .∴AD ∥BC .又∵AB ⊥OM ,DC ⊥OM ,∴AB ∥DC .∴四边形ABCD 是平行四边形.∵90ABC ∠=︒,∴四边形ABCD 是矩形;(2)由(1)知Rt △ABO ≌Rt △DEA ,∴AB=DE=2.设AD=x ,则OA=x ,AE=OE -OA=9-x .在Rt △DEA 中,由222AE DE AD +=得:()22293x x -+=,解得5x =.∴AD=1.即AB 、AD 的长分别为2和1.【点睛】矩形的判定和性质;掌握判断定证三角形全等是关键.22.甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【解析】【分析】设甲广告公司每天能制作x 个宣传栏,则乙广告公司每天能制作1.2x 个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.【详解】解:设甲广告公司每天能制作x 个宣传栏,则乙广告公司每天能制作1.2x 个宣传栏.根据题意得:解得:x=1.经检验:x=1是原方程的解且符合实际问题的意义.∴1.2x=1.2×1=2.答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键. 23.(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到∠OBP=90°,进而得到∠BOP=60°,由OC=BO ,得到∠OBC=∠OCB=30°,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可.试题解析:证明:(1)∵PB是⊙O的切线,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;(2)连接OD交BC于点M.∵D是弧BC的中点,∴OD垂直平分BC.在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四边形BOCD是菱形.24.(1)证明见解析;(2)32;(3)1.【解析】【分析】(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=12BC=2,再证明△AOM∽△ABE,则利用相似比得到626r r-=,然后解关于r的方程即可;(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=32,所以BH=BE-HE=12,再根据垂径定理得到BH=HG=12,所以BG=1.【详解】解:(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=12BC=2,∵OM∥BE,∴△AOM∽△ABE,∴OM AOBE AB=,即626r r-=,解得r=32,即设⊙O的半径为32;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=32,∴BH=BE﹣HE=2﹣32=12,∵OH⊥BG,∴BH=HG=12,∴BG=2BH=1.25.(1)12,32-;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可. (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x1,∵该方程的一个根为1,∴1111{211ax a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根. 考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.26.甲、乙获胜的机会不相同.【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.∴∴甲、乙获胜的机会不相同.考点:可能性大小的判断 点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.27.(1)①k= 5;②见解析,由此AO 交双曲线于点C ,延长BO 交双曲线于点D ,线段CD 即为所求;(2)①16m n =-⎧⎨=⎩;②0<a <1或a >5 【解析】【分析】(1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO 交双曲线于点C ,延长BO 交双曲线于点D ,线段CD 即为所求;(2)①求出A ,B 两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC 的面积=24时a 的值,即可判断.【详解】(1)①∵52m =-,152n =, ∴直线的解析式为51522y x =-+, ∵点B 在直线上,纵坐标为52,∴5515222x =-+, 解得x =2 ∴5(2)2B ,,∴5k =;②如下图,由此AO 交双曲线于点C ,延长BO 交双曲线于点D ,线段CD 即为所求;(2)①∵点(15)A ,在k y x=上, ∴k =5,∵四边形ABCD 是矩形,∴OA =OB =OC =OD , ∴A ,B 关于直线y =x 对称,∴(51)B ,, 则有:551m n m n +=⎧⎨+=⎩,解得16m n =-⎧⎨=⎩; ②如下图,当点P 在点A 的右侧时,作点C 关于y 轴的对称点C′,连接AC ,AC′,PC ,PC′,PA .∵A ,C 关于原点对称,(15)A ,, ∴(1,5)C --,∵PAC ACC AC P PCC S S S S '''+-V V V V =,当24PAC S V =时,∴111521010(1)2(5)24222a a⨯⨯+⨯⨯--⨯⨯+=, ∴252450a a --=,∴a =5或1-(舍弃),当点P 在点A 的左侧时,同法可得a =1,∴满足条件的a 的范围为01a <<或5a >.【点睛】本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.。
庆阳市2020年5月中考数学模拟试题有答案精析
![庆阳市2020年5月中考数学模拟试题有答案精析](https://img.taocdn.com/s3/m/bfe7b5a87375a417876f8f53.png)
甘肃省庆阳市2020年中考数学模拟试卷(5月份)(解析版)一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内.1.8的立方根是()A.2 B.﹣2 C.±2 D.22.方程x2﹣4=0的根是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=43.如图,不是中心对称图形的是()A. B. C. D.4.下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天5.将抛物线y=2x2向下平移1个单位,得到的抛物线是()A.y=2(x+1)2B.y=2(x﹣1)2C.y=2x2+1 D.y=2x2﹣16.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短 B.先变短后变长 C.先变长后变短 D.逐渐变长7.如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米8.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5 B.m=4 C.m=3 D.m=109.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A.2 B.3 C.4 D.510.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2二、填空题:本大题共10小题,每小题4分,共40分.把答案填在题中的横线上.11.使在实数范围内有意义的x应满足的条件是.12.若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=.13.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是度.14.若100个产品中有95个正品,5个次品,从中随机抽取一个,恰好是次品的概率是.15.如图,直线AB与⊙O相切于点B,BC是⊙O的直径,AC交⊙O于点D,连接BD,则图中直角三角形有个.16.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)的函数关系式是h=9.8t﹣4.9t2,高度为米.17.如图,菱形ABCD的边长为10cm,DE⊥AB,sinA=,则这个菱形的面积=cm2.18.如图,两个等圆⊙O与⊙O′外切,过点O作⊙O′的两条切线OA、OB,A、B是切点,则∠AOB=度.19.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是.20.图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程x2+bc+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3.其中正确的说法有.(请写出所有正确说法的序号)三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.21.计算: +2sin45°.22.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).23.如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形;(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积).24.某企业2020年盈利1500万元,2020年克服全球金融危机的不利影响,仍实现盈利2160万元.从2020年到2020年,如果该企业每年盈利的年增长率相同,求:(1)该企业2020年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2020年盈利多少万元?25.一只不透明的袋子中,装有2个白球(标有号码1,2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.四、解答题(二):本大题共4小题,共42分.解答时,应写出必要的文字说明、证明过程或演算步骤.26.(10分)(2020•庆阳)如图1,一扇窗户打开后用窗钩AB可将其固定.(1)这里所运用的几何原理是()(A)三角形的稳定性(B)两点之间线段最短;(C)两点确定一条直线(D)垂线段最短;(2)图2是图1中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(≈1.7,结果精确到整数)27.(10分)(2020•庆阳)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.28.(10分)(2020•庆阳)如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.(1)∠E=度;(2)写出图中现有的一对不全等的相似三角形,并说明理由;(3)求弦DE的长.29.(12分)(2020•庆阳模拟)如图,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B 在抛物线y=ax2+ax﹣2上.(1)点A的坐标为,点B的坐标为;(2)抛物线的关系式为;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C的位置.请判断点B′C′是否在(2)中的抛物线上,并说明理由.附加题:如果你的全卷得分不足150分,则本题的得分记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.30.(2020•庆阳模拟)如图是二次函数y=﹣的图象在x轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S,试求出S取值的一个范围.2020年甘肃省庆阳市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内.1.8的立方根是()A.2 B.﹣2 C.±2 D.2【考点】立方根.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵2的立方等于8,∴8的立方根等于2.故选:A.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.方程x2﹣4=0的根是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4【考点】解一元二次方程-直接开平方法.【分析】先移项,然后利用数的开方解答.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选C.【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b 同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;(2)运用整体思想,会把被开方数看成整体;(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.3.如图,不是中心对称图形的是()A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念即可求解.【解答】解:根据中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,可知A、B、C是中心对称图形;D不是中心对称图形.故选D.【点评】掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天【考点】概率的意义.【分析】根据概率的意义分析各个选项,找到正确选项即可.【解答】解:A、“明天降雨的概率是80%”表示明天有降雨的可能性,故错误;B、“抛一枚硬币正面朝上的概率是0.5”表示抛一枚硬币正面朝上与反面朝上的机会是一样的,故错误;C、“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故错误;D、在同一年出生的367名学生,而一年中至多有366天,因而至少有两人的生日是同一天.故选:D.【点评】本题解决的关键是理解概率只是反映事件发生机会的大小.5.将抛物线y=2x2向下平移1个单位,得到的抛物线是()A.y=2(x+1)2B.y=2(x﹣1)2C.y=2x2+1 D.y=2x2﹣1【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律.【解答】解:将抛物线y=2x2向下平移1个单位抛物线变为y=2x2﹣1.故选D.【点评】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.6.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短 B.先变短后变长 C.先变长后变短 D.逐渐变长【考点】中心投影.【分析】小亮由A处径直路灯下,他得影子由长边短,再从路灯下到B处,他的影子则由短变长.【解答】解:晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.7.如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米【考点】一元二次方程的应用.【分析】要求修建的路宽,就要设修建的路宽应为x米,根据题意可知:矩形地面﹣所修路面积=耕地面积,依此列出等量关系解方程即可.【解答】解:设修建的路宽应为x米根据等量关系列方程得:20×30﹣(20x+30x﹣x2)=551,解得:x=49或1,49不合题意,舍去,故选A.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意:矩形面积在减路的面积时,20x+30x中有一个小正方形的面积是重复计算的,所以要再减去x×x面积.8.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5 B.m=4 C.m=3 D.m=10【考点】相似三角形的判定与性质;平行四边形的性质.【分析】先根据平行四边形的性质求出△OCD∽△OEB,再根据相似三角形的性质解答即可.【解答】解:∵AB∥CD,∴△OCD∽△OEB,又∵E是AB的中点,∴2EB=AB=CD,∴=()2,即,解得m=4,故选B.【点评】本题考查的是相似三角形的判定与性质,涉及到平行四边形的性质等知识,熟练掌握相似三角形的判定和性质是解决问题的关键.9.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A.2 B.3 C.4 D.5【考点】垂径定理;勾股定理.【分析】OM最长边应是半径长,根据垂线段最短,可得弦心距最短,分别求出后即可判断.【解答】解:①M与A或B重合时OM最长,等于半径5;②∵半径为5,弦AB=8∴∠OMA=90°,OA=5,AM=4∴OM最短为=3,∴3≤OM≤5,因此OM不可能为2.故选A.【点评】解决本题的关键是:知道OM最长应是半径长,最短应是点O到AB的距离长.然后根据范围来确定不可能的值.10.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.二、填空题:本大题共10小题,每小题4分,共40分.把答案填在题中的横线上.11.使在实数范围内有意义的x应满足的条件是x>1.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x﹣1>0,再解即可.【解答】解:由题意得:x﹣1>0,解得:x>1.故答案为:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.12.若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=1.【考点】根与系数的关系.【分析】欲求k的值,将该方程的已知根0代入两根之积公式即可求出k值.【解答】解:设方程的另一根为x1,又∵x2+2x+k﹣1=0的一个根是0,∴x1•0=k﹣1,解得k=1.【点评】本题考查了一元二次方程根与系数的关系.如何根据待求量确定利用哪一个根与系数的关系式是解决此类题目的关键.13.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是60度.【考点】旋转对称图形.【分析】本题考查旋转对称图形的概念,旋转的最小度数是解决本题的关键.【解答】解:将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是=60度.【点评】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.14.若100个产品中有95个正品,5个次品,从中随机抽取一个,恰好是次品的概率是0.05.【考点】概率公式.【分析】本题只要用次品的个数除以总的产品的个数即可得出次品的概率.【解答】解:依题意得:取出次品的概率为==0.05.故本题答案为:0.05.【点评】本题考查的是概率的公式,用满足条件的个数除以总个数可得出概率的值.15.如图,直线AB与⊙O相切于点B,BC是⊙O的直径,AC交⊙O于点D,连接BD,则图中直角三角形有3个.【考点】圆周角定理;勾股定理的逆定理;切线的性质.【分析】根据圆周角定理及切线的性质进行分析,从而得到直角三角形的个数.【解答】解:∵BC是⊙O的直径,∴BD⊥AC,∵直线AB与⊙O相切于点B,∴AB⊥CB,∴△ABD,△ABC,△BDC都是直角三角形,∴共三个直角三角形.【点评】本题利用了直径对的圆周角是直角和切线的性质求解.16.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)的函数关系式是h=9.8t﹣4.9t2,高度为 4.9米.【考点】二次函数的应用.【分析】把抛物线解析式化成顶点式,即可解答.【解答】解:h=9.8t﹣4.9t2=4.9[﹣(t﹣1)2+1]=﹣4.9(x﹣1)2+4.9,当t=1时,函数的最大值为4.9米,这就是小球运动最大高度,故答案为:4.9.【点评】本题涉及二次函数的实际应用,难度中等,熟练掌握求二次函数的最值是解题的关键.17.如图,菱形ABCD的边长为10cm,DE⊥AB,sinA=,则这个菱形的面积=60cm2.【考点】菱形的性质;锐角三角函数的定义.【分析】根据已知可求得DE的长,再根据面积公式求得菱形的面积.【解答】解:∵AD=10cm,sinA==,∴DE=×10=6cm.∴菱形的面积=DE•AB=6×10=60(cm2).【点评】本题考查了锐角三角函数的定义和菱形的性质的运用.18.如图,两个等圆⊙O与⊙O′外切,过点O作⊙O′的两条切线OA、OB,A、B是切点,则∠AOB=60度.【考点】切线的性质;切线长定理.【分析】根据切线的性质得O′A⊥OA,再解直角三角形即可.【解答】解:连接OO′和O′A,根据切线的性质,得O′A⊥OA,根据题意得OO′=2O′A,则∠AOO′=30°,再根据切线长定理得∠AOB=2∠AOO′=60°.故答案是:60.【点评】本题综合运用了切线的性质定理、切线长定理以及借助锐角三角函数进行解答.19.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是(﹣2,0)或(,).【考点】位似变换.【分析】两个位似图形的主要特征是:每对位似对应点与位似中心共线,不经过位似中心的对应线段平行.则位似中心就是两对对应点的延长线的交点.【解答】解:两个图形位似时,位似中心就是CF与x轴的交点,设直线CF解析式为y=kx+b,将C(4,2),F(1,1)代入,得,解得,即y=x+,令y=0得x=﹣2,∴O′坐标是(﹣2,0).当OC是对应点时,BG是对应点,则OC和NG的交点就是对称中心.设OC的解析式是y=mx,则4m=3,解得:m=,则OC的解析式是y=x.设BG的解析式是y=nx+d,则,解得:,则直线BG的解析式是y=﹣x+1,则,解得:,则交点是(,).故答案是(﹣2,0)或(,).【点评】本题主要考查位似图形的性质,每对位似对应点与位似中心共线.20.图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程x2+bc+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3.其中正确的说法有①②④.(请写出所有正确说法的序号)【考点】二次函数图象与系数的关系.【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【解答】解:∵对称轴是x=﹣=1,∴ab<0,①正确;∵二次函数y=ax2+bx+c的图象与x轴的交点坐标为(﹣1,0)、(3,0),∴方程x2+bc+c=0的根为x1=﹣1,x2=3,②正确;∵当x=1时,y<0,∴a+b+c<0,③错误;由图象可知,当x>1时,y随x值的增大而增大,④正确;当y>0时,x<﹣1或x>3,⑤错误,故答案为:①②④.【点评】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.21.计算: +2sin45°.【考点】实数的运算;特殊角的三角函数值.【分析】根据特殊角的三角函数值计算.【解答】解:原式=(4分)=0.(6分)【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=.sin45°=,cos45°=,tan45°=1,cot45°=1.sin60°=,cos60°=,tan60°=,cot60°=.22.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).【考点】作图-三视图.【分析】认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个三角形,俯视图为正方形中间一个有圆心的圆.【解答】解:正确的三视图如图所示:主视图正确;(2分)左视图正确;(2分)俯视图正确.(3分)说明:俯视图中漏掉圆心的黑点扣(1分).【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.23.如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形;(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积).【考点】扇形面积的计算;作图-旋转变换.【分析】(1)由图知,OA=2,OB=4,由题意知,点E(4,0)是点B旋转90度后到达的点,作OD⊥OA,且OD=OA;(2)OB扫过的图形为圆心角为90度的扇形,根据扇形面积公式求解即可.【解答】解:(1)画图正确(如图);(2)所扫过部分图形是扇形,它的面积是:π×42=4π.【点评】本题利用了等腰直角三角形的性质和扇形的面积公式.24.某企业2020年盈利1500万元,2020年克服全球金融危机的不利影响,仍实现盈利2160万元.从2020年到2020年,如果该企业每年盈利的年增长率相同,求:(1)该企业2020年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2020年盈利多少万元?【考点】一元二次方程的应用.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率).(1)可先求出增长率,然后再求2020年的盈利情况.(2)有了2020年的盈利和增长率,求出2020年的就容易了.【解答】解:(1)设每年盈利的年增长率为x,根据题意,得1500(1+x)2=2160.解得x1=0.2,x2=﹣2.2(不合题意,舍去).∴1500(1+x)=1500(1+0.2)=1800.答:2020年该企业盈利1800万元.(2)2160(1+0.2)=2592.答:预计2020年该企业盈利2592万元.【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.25.一只不透明的袋子中,装有2个白球(标有号码1,2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】根据概率的求法,找准两点:1,符合条件的情况数目;2全部情况的总数.二者的比值就是其发生的概率.【解答】解:(1)袋子中,装有2个白球,1个红球,共3个球,从中摸出一个球,摸到白球的概率是P(一个球是白球)=;(3分)(2)树状图如下(列表略):(6分)∴P(两个球都是白球)=.(9分)【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,互为对立事件的两个事件概率之和为1.四、解答题(二):本大题共4小题,共42分.解答时,应写出必要的文字说明、证明过程或演算步骤.26.(10分)(2020•庆阳)如图1,一扇窗户打开后用窗钩AB可将其固定.(1)这里所运用的几何原理是()(A)三角形的稳定性(B)两点之间线段最短;(C)两点确定一条直线(D)垂线段最短;(2)图2是图1中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(≈1.7,结果精确到整数)【考点】解直角三角形的应用;三角形的稳定性.【分析】(1)加上窗钩AB后,原图形中具有△AOB了,故这种做法根据的是三角形的稳定性;(2)点到直线的距离是指点到直线的垂线段的长度,解直角三角形求解即可.【解答】解:(1)A.(2)如图,过点B作BC⊥OA于点C.∵∠AOB=45°,∴∠CBO=45°,BC=OC.设BC=OC=x,∵∠OAB=30°,∴AC=BC×tan60°=x.∵OC+CA=OA,∴x+x=60,∴x===30﹣30≈21.即点B到OA边的距离是21cm.【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.27.(10分)(2020•庆阳)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.【考点】相似三角形的判定与性质;三角形内角和定理.【分析】(1)从图中得到AC=3,CD=2,BC=6,CE=4,∠ACB=∠DCE=90°,故有,所以△ACB∽△DCE;(2)由1知,∠B=∠E,可得∠B+∠A=∠E+A=180°﹣∠AFE=90°,即∠EFA=90°,故EF ⊥AB.【解答】证明:(1)∵,,∴.又∵∠ACB=∠DCE=90°,∴△ACB∽△DCE.(2)∵△ACB∽△DCE,∴∠ABC=∠DEC.又∵∠ABC+∠A=90°,∴∠DEC+∠A=90°.∴∠EFA=90°.∴EF⊥AB.【点评】本题利用了对应边的夹角相等,且对应边成比例的两个三角形相似的判定三角形相似的方法,及三角形内角和定理求解.28.(10分)(2020•庆阳)如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.(1)∠E=45度;(2)写出图中现有的一对不全等的相似三角形,并说明理由;(3)求弦DE的长.【考点】相似三角形的判定与性质;圆周角定理.【分析】由“同弧所对的圆周角相等”可知∠E=∠ACD=45°,∠CAE=∠EDC,所以△ACP∽△DEP;求弦DE的长有两种方法:一,利用△ACP∽△DEP的相似比求DE的长;二、过点D作DF⊥AE于点F,利用Rt△DFE中的勾股定理求得DE的长.【解答】解:(1)∵∠ACD=45°,∠ACD=∠E,∴∠E=45°.(2分)(2)△ACP∽△DEP,(4分)理由:∵∠AED=∠ACD,∠APC=∠DPE,∴△ACP∽△DEP.(6分)(3)方法一:∵△ACP∽△DEP,∴.(7分)∵P为CD边中点,∴DP=CP=1∵AP=,AC=,(9分)∴DE=.(10分)方法二:如图2,过点D作DF⊥AE于点F,在Rt△ADP中,AP=.(7分)又∵S△ADP=AD•DP=AP•DF,(8分)∴DF=.(9分)∴DE=DF=.(10分)【点评】此题主要考查相似三角形的判定及圆周角定理的运用.29.(12分)(2020•庆阳模拟)如图,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B 在抛物线y=ax2+ax﹣2上.(1)点A的坐标为(0,2),点B的坐标为(﹣3,1);(2)抛物线的关系式为y=x2+x﹣2;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C的位置.请判断点B′C′是否在(2)中的抛物线上,并说明理由.【考点】二次函数综合题.【分析】1)先利用勾股定理计算出OA得到A(0,2),作BH⊥x轴于H,如图1,通过证明△ACO≌△CBH得到OC=BH=1,AO=CH=2,则可得到B点坐标;(2)直接把B点坐标代入y=ax2+ax﹣2中求出a即可得到抛物线解析式;(3)先把(2)值的一般式配成顶点式得到D(﹣,﹣),再利用待定系数法求出BD的关系式为y=﹣x﹣;直线BD和x轴交点为E,如图1,则可得到E(﹣,0),然后根据三角形面积公式,利用S△BCD=S△BCE+S△DCE进行计算即可;(4)如图2,过点B′作B′N⊥y轴于点N,过点B作BF⊥y轴于点F,过点C′作C′M⊥y 轴于点M,先利用旋转的性质得到∠CAC′=90°,∠BAB′=90°,AC=AC′,AB=AB′,再证明。
甘肃省庆阳市2019-2020学年中考数学仿真第四次备考试题含解析
![甘肃省庆阳市2019-2020学年中考数学仿真第四次备考试题含解析](https://img.taocdn.com/s3/m/3bdb3504fe4733687f21aa15.png)
甘肃省庆阳市2019-2020学年中考数学仿真第四次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中比﹣1小的数是()A.﹣2 B.﹣1 C.0 D.12.小明解方程121xx x--=的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④3.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A.0.286×105B.2.86×105C.28.6×103D.2.86×1044.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开.若不考虑接缝,它是一个半径为12cm,圆心角为60o 的扇形,则()A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为235cmD.圆锥形冰淇淋纸套的高为63cm5.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)7.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )A .B .C .D .8.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( )A .36°B .54°C .72°D .108°9.下列计算中,错误的是( )A .020181=;B .224-=;C .1242=;D .1133-=. 10.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-211.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )A .6.5千克B .7.5千克C .8.5千克D .9.5千克12.已知一个正n 边形的每个内角为120°,则这个多边形的对角线有( )A .5条B .6条C .8条D .9条二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,若∠1+∠2=180°,∠3=110°,则∠4= .14.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=_____度.15.有一组数据:3,a ,4,6,7,它们的平均数是5,则a =_____,这组数据的方差是_____. 16.如图,已知正方形边长为4,以A 为圆心,AB 为半径作弧BD ,M 是BC 的中点,过点M 作EM ⊥BC 交弧BD 于点E ,则弧BE 的长为_____.17.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=_____.18.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”(1)⊙O的半径为6,OP=1.①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=3x+b上存在点P,使得点P 关于⊙C的“幂值”为6,请直接写出b的取值范围_____.20.(6分)已知:如图,在半径为2的扇形AOB中,90∠=°,点C在半径OB上,AC的垂直平AOB︒、.分线交OA于点D,交弧AB于点E,联结BE CD(1)若C 是半径OB 中点,求OCD ∠的正弦值;(2)若E 是弧AB 的中点,求证:2•BE BO BC =;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.21.(6分)如图,己知AB 是的直径,C 为圆上一点,D 是的中点,于H ,垂足为H ,连交弦于E ,交于F ,联结. (1)求证:. (2)若,求的长.22.(8分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C 距守门员多少米?(取437=)运动员乙要抢到第二个落点D ,他应再向前跑多少米? 23.(8分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是 ;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.24.(10分)在“双十二”期间,,A B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)25.(10分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.26.(12分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.27.(12分)(182sin45°+(2﹣π)0﹣(13)﹣1;(2)先化简,再求值2a a ab-•(a 2﹣b 2),其中a ,b =﹣.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【详解】解:A 、﹣2<﹣1,故A 正确;B 、﹣1=﹣1,故B 错误;C 、0>﹣1,故C 错误;D 、1>﹣1,故D 错误;故选:A .【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.2.A【解析】【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【详解】12x x x--=1, 去分母,得1-(x-2)=x ,故①错误,故选A .【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.3.D【解析】用科学记数法表示较大的数时,一般形式为a×10﹣n ,其中1≤|a|<10,n 为整数,据此判断即可 【详解】28600=2.86×1.故选D .【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n ,其中1≤|a|<10,确定a 与n 的值是解题的关键4.C【解析】【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.【详解】解:半径为12cm ,圆心角为60o 的扇形弧长是:()60π124πcm 180⨯=, 设圆锥的底面半径是rcm ,则2πr 4π=,解得:r 2=.即这个圆锥形冰淇淋纸套的底面半径是2cm .)cm =.故选:C .【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系: ()1圆锥的母线长等于侧面展开图的扇形半径;()2圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.5.B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥1.即最多打1折.故选B .本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.6.A【解析】【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.7.C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.8.C【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度, 故选C .9.B【解析】 分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确;B .224-=-,故B 错误;C .1242=.故C 正确;D .1133-=,故D 正确; 故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.10.A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x-b>0恰有两个负整数解,可得x 的负整数解为-1和-2 0x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.11.C【解析】【分析】设每个小箱子装洗衣粉x 千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x 千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C .【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.12.D【解析】【分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有12(6×3)=9条,故选:D.【点睛】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.110°.【解析】【分析】【详解】解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案为110°.14.30°【解析】【分析】根据旋转的性质得到∠BOD=45°,再用∠BOD减去∠AOB即可.【详解】∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD -∠AOB=45°-15°=30°. 故答案为30°. 15.5 1.【解析】∵一组数据:3,a ,4,6,7,它们的平均数是5,∴346755a ++++=⨯,解得,5a =, ∴2222221[(35)(55)(45)(65)(75)]5s =-+-+-+-+-=1. 故答案为5,1.16.23π 【解析】【分析】延长ME 交AD 于F ,由M 是BC 的中点,MF ⊥AD ,得到F 点为AD 的中点,即AF=12AD ,则∠AEF=30°,得到∠BAE=30°,再利用弧长公式计算出弧BE 的长.【详解】延长ME 交AD 于F ,如图,∵M 是BC 的中点,MF ⊥AD ,∴F 点为AD 的中点,即AF=12AD . 又∵AE=AD ,∴AE=2AF ,∴∠AEF=30°,∴∠BAE=30°,∴弧BE 的长=304180π⋅⋅=23π. 故答案为23π.【点睛】本题考查了弧长公式:l=180n R π⋅⋅.也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度.1731【解析】【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF ,即可得出结论.如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴2AB=2,BF=AF=22AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,22AD AF3∴33,3-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.18.2.【解析】【分析】设第n层有a n个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n=2n﹣2”,再代入n=2029即可求出结论.【详解】设第n层有a n个三角形(n为正整数),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴a n=2(n﹣2)+2=2n﹣2.∴当n=2029时,a2029=2×2029﹣2=2.故答案为2.【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n=2n﹣2”是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明见解析;(2)点P关于⊙O 的“幂值”为r2﹣d2;(3)﹣33.【详解】(1)①如图1所示:连接OA、OB、OP.由等腰三角形的三线合一的性质得到△PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;②过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′.先证明△APA′∽△B′PB,依据相似三角形的性质得到PA•PB=PA′•PB′从而得出结论;(2)连接OP、过点P作AB⊥OP,交圆O与A、B两点.由等腰三角形三线合一的性质可知AP=PB,然后在Rt△APO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CP⊥AB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围.【详解】(1)①如图1所示:连接OA、OB、OP,∵OA=OB,P为AB的中点,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB=222-=-=25,OB OP64∴PA=PB=25,∴⊙O的“幂值”=25×25=20,故答案为:20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明如下:如图,AB为⊙O中过点P的任意一条弦,且不与OP垂直,过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴PA PA PB PB='',∴PA•PB=PA′•PB′=20,∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值;(2)如图3所示;连接OP、过点P作AB⊥OP,交圆O与A、B两点,∵AO=OB,PO⊥AB,∴AP=PB,∴点P关于⊙O的“幂值”=AP•PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴关于⊙O的“幂值”=r2﹣d2,故答案为:点P关于⊙O的“幂值”为r2﹣d2;(3)如图1所示:过点C作CP⊥AB,,∵CP⊥AB,AB的解析式为3,∴直线CP的解析式为y=33联立AB与CP,得333y x by x⎧=+⎪⎨=+⎪⎩,∴点P的坐标为(﹣34﹣34b,34+14b),∵点P关于⊙C的“幂值”为6,∴r2﹣d2=6,∴d2=3,即(﹣343)2+(314b)2=3,整理得:b2b﹣9=0,解得b=﹣或∴b的取值范围是﹣,故答案为:﹣【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键.20.(2)3sin CD5O∠=;(2)详见解析;(2)当DCEV是以CD为腰的等腰三角形时,CD的长为2或2.【解析】【分析】(2)先求出OC12=OB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出结论;(2)先判断出¶¶AE BE=,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;(3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D 和点O重合,即可得出结论.【详解】(2)∵C是半径OB中点,∴OC12=OB=2.∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x34=,∴CD54=,∴sin∠OCD35ODCD==;(2)如图2,连接AE,CE.∵DE是AC垂直平分线,∴AE=CE.∵E是弧AB的中点,∴¶¶AE BE=,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴BE OBBC BE=,∴BE2=BO•BC;(3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣23-2(舍)或a=232-;∴CD=232-;②当CD=DE时.∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B 重合,∴CD=2.-.综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或232【点睛】本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.21.(1)证明见解析;(2)【解析】【分析】(1)由题意推出再结合,可得△BHE~△BCO.(2)结合△BHE~△BCO ,推出带入数值即可.【详解】(1)证明:∵为圆的半径,是的中点,∴,,∵,∴, ∴, ∵, ∴, ∴, 又∵, ∴∽. (2)∵∽, ∴, ∵,, ∴得, 解得, ∴.【点睛】 本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.22.(1)21(6)412y x =--+.(或21112y x x =-++)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.【解析】【分析】(1)依题意代入x 的值可得抛物线的表达式.(2)令y=0可求出x 的两个值,再按实际情况筛选.(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD ,相当于将抛物线AEMFC 向下平移了2个单位可得解得x 的值即可知道CD 、BD .【详解】解:(1)如图,设第一次落地时,由已知:当0x =时1y =. 即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)令210(6)4012y x =--+=,. 212(6)48436134360x x x ∴-==≈=-<.,(舍去). ∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得12626626x x =-=+,. 124610CD x x ∴=-=≈.1361017BD ∴=-+=(米). 答:他应再向前跑17米.23.(1)10;(2)87;(3)9环 【解析】【分析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;(2)嘉淇射击成绩的平均数为:()1107101098997++++++=, 方差为:()()()()22221[109791091097-+-+-+- ()()()2228998999]7+-+-+-=. (3)原来7次成绩为7 8 9 9 10 10 10,当第8次射击成绩为10时,得到8次成绩的中位数为9.5,当第8次射击成绩小于10时,得到8次成绩的中位数均为9,因此第8次的射击成绩的最大环数为9环.【点睛】本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.24.(1)这种篮球的标价为每个50元;(2)见解析【解析】【分析】(1)设这种篮球的标价为每个x 元,根据题意可知在B 超市可买篮球42000.8x个,在A 超市可买篮球42003000.9x+个,根据在B 商场比在A 商场多买5个列方程进行求解即可; (2)分情况,单独在A 超市买100个、单独在B 超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x 元, 依题意,得4200420030050.80.9x x+-=, 解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A 超市一次买100个,则需要费用:100×50×0.9-300=4200元, 在A 超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元, 单独在B 超市购买:100×50×0.8=4000元, 在A 、B 两个超市共买100个,根据A 超市的方案可知在A 超市一次购买:20000.950⨯=4449,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B 超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元, 综上可知最少费用的购买方案:在A 超市分两次购买,每次购买45个篮球,费用共为3450元;在B 超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.25.(1)证明见解析;(2)AG=;(3)证明见解析.【解析】【分析】(1)根据正方形的性质得到AD∥BC,AB∥CD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到GF FHBE BM=,由于BM=BE,得到GF=FH,由GF∥AD,得到EF GFED AD=,FH FOAD OD=等量代换得到EF FHED AD=,即EF GFED AD=,于是得到结论.【详解】解:(1)∵四边形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴GF EF AD ED=,∵AB∥CD,BF EFCD ED=,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴DF BCFE EB==4,AE=2217EB AB+=,∴AG DFGE FE==4,∴AG=417;(3)延长GF交AM于H,∵GF∥BC,∴GF AF BE AB=,∴GF FH BE BM=,∵BM=BE,∴GF=FH,∵GF∥AD,∴EF GFED AD=,FH FOAD OD=,∴EF FH ED AD=,∴EF GF ED AD=,∴FO•ED=OD•EF.【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.26.(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.【解析】:(1)原来一天可获利:20×100=2000元;(2)①y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,∴每件商品应降价2或8元;②观察图像可得27.(1)2-2 (2)-2【解析】试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;(2)先把2a ab-和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3=2﹣+1﹣3=﹣2;(2)•(a2﹣b2)=•(a+b)(a﹣b)=a+b,当a=,b=﹣2时,原式=+(﹣2)=﹣.。
2020年甘肃省庆阳市中考数学模拟试卷
![2020年甘肃省庆阳市中考数学模拟试卷](https://img.taocdn.com/s3/m/b8766d960975f46526d3e158.png)
中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.下列图形是中心对称图形的是()A. B. C. D.2.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A. 55×105B. 5.5×104C. 0.55×105D. 5.5×1053.9的平方根是()A. 3B. 81C. ±3D. ±814.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A. B. C. D.5.下列计算正确的是()A. a3+a2=a5B. a3•a2=a5C. (2a2)3=6a6D. a6÷a2=a36.如图:有一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°7.已知:一次函数y=kx+b(k≠0)的图象经过第二、三、四象限,则一次函数y=-bx+kb的图象可能是()A. B.C. D.8.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.B.C.D.9. 用一张半径为20的扇形纸片制成一个圆锥(接缝忽略不计),如果圆锥底面的半径为10,那么扇形的圆心角为( )A. 60°B. 90°C. 135°D. 180°10. 如图1,四边形ABCD 中,AB ∥CD ,∠B =90°,AC =AD .动点P 从点B 出发沿折线B -A -D -C 方向以1单位/秒的速度运动,在整个运动过程中,△BCP 的面积S 与运动时间t (秒)的函数图象如图2所示,则AD 等于( )A. 10B.C. 8D.二、填空题(本大题共8小题,共32.0分)11. 把a 2-16分解因式,结果为______.12. 比较大小:______4. 13. 请你任意写出一条线段,使它可以和3cm 、7cm 构成一个三角形,则这条线段的长度可以是______cm .14. 如图,AB 是⊙O 的直径,点C 、D 在圆上,∠D =65°,则∠BAC 等于______度. 15. 已知关于x 的方程x 2-(m -3)x +m 2=0有两个不相等的实数根,则m 的最大整数值是______.16. 如图,将三角形纸片ABC 沿AD 折叠,使点C 落在BD 边上的点E 处.若BC =10,BE =2,则AB 2-AC 2的值为______.17.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为______.18.观察下列图形:它们是按一定的规律排列,依照此规律第n个图形共有______个.三、计算题(本大题共2小题,共16.0分)19.化简(-)÷20.在街头巷尾会遇到一类“摸球游戏”,摊主把分别标有数字1,2,3的3个白球和标有数字4,5,6的3个黑球放在口袋里(球除颜色外,其他均相同),让你摸球.规定:每付3元钱就玩一局,每局连续摸两次,每次只能摸一个,第一次摸完后把球放回口袋里搅匀后再摸一次,若前后两次摸得的都是白球,摊主就送你10元钱的奖品.(1)用列表法或树状图表示摸出的两个球可能出现的所有结果;(2)求获奖的概率.四、解答题(本大题共8小题,共72.0分)21.计算:2sin60°+2-1-20190-|1-|22.如图,已知四边形ABCD是矩形,请用直尺和圆规在边AD上作点E,使得EB=EC.(1)请在图中按要求作出图形(不要求写作法,保留作图痕迹);(2)若∠AEB=50°,求∠BEC的大小.23.如图,从A地到B地的公路需经过C地,AC=10千米,∠CAB=38°,∠ABC=45°.因城市规划的需要,将在A、B两地之间修建一条笔直的公路.求改直后的公路AB的长(精确到1千米).(参考数据:sin38°=0.62,cos38°=0.79,tan38°=0.78)24.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 74537446 6754 7638 6834 7326 6830 8648 87539450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m=______,n=______;(2)补全频数分布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在______组;(4)若该团队共有140人,请估计其中一天行走步数不少于7500步的人数.25.如图,A(3,m)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,连接OB,交反比例函数y=的图象于点P(2,).(1)求m的值和点B的坐标;(2)连接AP,求△OAP的面积.26.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形.(2)若四边形AFCE是菱形,求菱形AFCE的边长.27.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.28.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴交于点C(0,4).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC 于点N,当MN的值最大时,求△BMN的周长.(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN 的面积为S2,且S1=4S2,求点P的坐标.答案和解析1.【答案】B【解析】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据55000用科学记数法表示为5.5×104.故选B.3.【答案】C【解析】解:9的平方根是±3,故选:C.直接利用平方根的性质求解.此题主要考查了平方根,正确把握定义是解题关键.4.【答案】C【解析】解:由立体图形可得其俯视图为:.故选:C.俯视图就是从物体的上面看物体,从而得到的图形.此题主要考查了简单组合体的三视图,正确把握三视图的观察角度是解题关键.5.【答案】B【解析】解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.6.【答案】B【解析】解:∵AB∥CD,∴∠AFE=∠2,∵∠GFE=45°,∠1=20°,∴∠AFE=25°,∴∠2=25°,故选:B.直接利用平行线的性质进而结合等腰直角三角形的性质得出答案.此题主要考查了平行线的性质以及等腰直角三角形的性质,正确应用平行线的性质是解题关键.7.【答案】A【解析】解:∵一次函数y=kx+b经过第二,三,四象限,∴k<0,b<0,∴-b>0,kb>0,所以一次函数y=-bx+kb的图象经过一、二、三象限,故选:A.首先根据一次函数的性质确定k,b的符号,本题考查了一次函数的性质,先利用一次函数的性质确定k,b的取值是关键.8.【答案】A【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.设甲的钱数为x,乙的钱数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选A.9.【答案】D【解析】解:∵圆锥底面的半径为10,∴圆锥底面圆的周长为20π,即扇形的弧长=20π,设扇形的圆心角为n°,则=20π,解得n=180,故选:D.先求出圆锥底面圆的周长,即为扇形的弧长,再根据弧长公式即可求出扇形的圆心角.本题考查了圆锥的计算及弧长的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.10.【答案】B【解析】解:当t=5时,点P到达A处,即AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=CD,当s=40时,点P到达点D处,则S=CD•BC=(2AB)•BC=5×BC=40,则BC=8,AD=AC==,故选:B.当t=5时,点P到达A处,即AB=5;当s=40时,点P到达点D处,即可求解.本题以动态的形式考查了函数的基本知识和等腰三角形,具有很强的综合性.11.【答案】(a+4)(a-4)【解析】解:a2-16=(a+4)(a-4).故答案是:(a+4)(a-4).利用平方差公式进行因式分解.考查了因式分解-运用公式法.能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.12.【答案】>【解析】解:∵=4,∴>4.故答案为>.先把带根号的化简,再比较大小即可.本题考查了实数大小的比较,要注意实数比较大小时有根号的要先去根号,再化简求值比较大小.13.【答案】(4<a<10的任意实数均可)【解析】解:3+7=10(厘米)7-3=4(厘米)4<第三条边<10厘米,故答案为:(4<a<10的任意实数均可)根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;找出第三条边的范围,从而解决问题.此题考查三角形的三边关系,解答此题的关键是根据三角形的特性进行分析、解答即可.14.【答案】25【解析】【分析】此题考查了圆周角定理.解题的关键是掌握半圆(或直径)所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可求得∠ACB的度数,又由∠D=65°,即可求得∠B 的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BAC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=65°,∠B与∠D是对的圆周角,∴∠D=∠B=65°,∴∠BAC=90°-∠B=25°.故答案为25.15.【答案】1【解析】解:∵a=,b=-(m-3),c=m2,方程有两个不相等的实数根,∴△=b2-4ac=(m-3)2-m2=9-6m>0,∴m<,即满足m的最大整数为1.根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围,取最大整数.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16.【答案】20【解析】解:∵将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处,∴∠ADC=∠ADE=90°,DE=CD=CE,∵BC=10,BE=2∴CE=8,∴CD=DE=4,BD=6,在Rt△ABD中,AB2=AD2+BD2,在Rt△ACD中,AC2=AD2+CD2,∴AB2-AC2=BD2-CD2=20,故答案为:20由折叠的性质可得∠ADC=∠ADE=90°,DE=CD=CE,可得DE=4,BD=6,根据勾股定理可求AB2-AC2的值.本题考查了翻折变换,勾股定理,熟练运用折叠的性质是本题的关键.17.【答案】【解析】解:连接AE,在Rt三角形ADE中,AE=4,AD=2,∴∠DEA=30°,∵AB∥CD,∴∠EAB=∠DEA=30°,∴的长度为:=,故答案为:.连接AE,根据直角三角形的性质求出∠DEA的度数,根据平行线的性质求出∠EAB的度数,根据弧长公式求出的长度.本题考查的是弧长的计算和直角三角形的性质,掌握在直角三角形中,30°所对的直角边是斜边的一半和弧长公式是解题的关键.18.【答案】1+3n【解析】【分析】仔细观察图形发现:每一个图形的最上面有一个星星,下面是图形个数的三倍,利用这一规律解题即可.本题考查了图形的变化类问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.【解答】解:根据规律可知:第一个图形中有1+1×3=4个☆,第二个图形中有1+2×3=7个☆,第三个图形中有1+3×3=10个☆,…第n个图形共有1+3n个☆.故答案为:3n+1.19.【答案】解:(-)÷==(a+b)-(a-b)=a+b-a+b=2b.【解析】根据分式的减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.20.【答案】解:(1)画树状图为:共有36种等可能的结果数;(2)摸出两次都为白球的情况有9种,所以P(两次都为白球)=,即获奖的概率是.【解析】(1)画树状图展示所有36种等可能的结果数;(2)找出摸出两次都为白球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.【答案】解:原式=2×+-1-(-1)=+-1-+1=.【解析】直接利用特殊角的三角函数值以及零指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】解:(1)如图,点E为所作;(2)∵四边形ABCD为矩形,∴AD∥BC,∴∠EBC=∠AEB=50°,∵EB=EC,∴∠ECB=∠EBC=50°,∴∠BEC=180°-50°-50°=80°.【解析】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)作BC的垂直平分线交AD于E;(2)根据矩形的性质得AD∥BC,利用平行线的性质得∠EBC=∠AEB=50°,然后根据等腰三角形的性质和三角形内角和计算∠BEC的度数即可.23.【答案】解:如图,过点C作CD⊥AB于点D.在Rt△ACD中,∠ADC=90°,,.∴CD=10×0.62=6.2,AD=10×0.79=7.9.∵∠ABC=45°,∴BD=CD=6.2.∴AB=AD+BD=7.9+6.2=14.1≈14(千米).答:改直后的公路AB的长约为14千米.【解析】过点C作CD⊥AB于点D.在Rt△ACD中根据CD=AC•sin∠CAB求出CD的长,由AD=AC•cos∠CAB求出AH的长,同理可得出BD的长,根据AB=AD+BD可得出结论本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.【答案】(1)4,1 ;(2)补全图形如下:(3)B;(4)140×=56(人),答:估计其中一天行走步数不少于7500步的人数约为56人.【解析】解:(1)由原始数据可得7500≤x<8500的人数m=4、9500≤x<10500的人数n=1,故答案为:4、1;(2)见答案;(3)∵共有20个数据,其中位数为第10、11个数据的平均数,而第10、11个数据均落在B组,∴这20名“健步走运动”团队成员一天行走步数的中位数落在B组,故答案为:B;(4)见答案.【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.【答案】解:(1)将P(2,)代入y═,得:k=12,则反比例函数解析式为y=,把A(3,m)代入y=得m=4,如图,过点A作AC⊥x轴于点C,则OC=3、AC=4,∴OA==5,∵直线OP的解析式为y=x,∵AB∥x轴,∴B点的纵坐标为4,把y=4代入y=x得x=8,∴AB=5,∴点B的坐标为(8,4);(2)如图,过A作AC⊥x轴于C,则OC=3,AC=4,∴OA=5,∵AB∥x轴,且AB=OA=5,∴B(8,4),于是得到直线OB的解析式为y=x,∴D(3,),∴AD=,解得P(2,),∴S△OAP=××2=.【解析】(1)将点P的坐标代入解析式求解可得解析式,再把A点的坐标代入得到m 的值,利用等腰三角形的性质求得AB=OA=5,由AB∥x轴即可得点B的坐标;(2)过A作AC⊥x轴于C,求得OC=3,AC=4,根据勾股定理得到OA=5,得到B(8,4),于是得到直线OB的解析式为y=x,求得P(2,),于是得到结论.本题考查了反比例函数系数k的几何意义,解题的关键是用割补法求三角形的面积.26.【答案】解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8-x,则=8-x,化简有16x-28=0,解得:x=,将x=代入原方程检验可得等式两边相等,即x=为方程的解.则菱形的边长为:8-=.【解析】(1)首先根据矩形的性质可得AB平行且等于CD,然后根据DE=BF,可得AF平行且等于CE,即可证明四边形AFCE是平行四边形;(2)根据四边形AFCE是菱形,可得AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.本题考查了矩形的性质和菱形的性质,解答本题的关键是则矩形对边平行且相等的性质以及菱形四条边相等的性质.27.【答案】(1)证明:连接OD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴EF是⊙O的切线;(2)解:∵∠DAC=∠DAB,∴∠ADE=∠ABD,在Rt△ADB中,sin∠ADE=sin∠ABD==,而AB=10,∴AD=8,在Rt△ADE中,sin∠ADE==,∴AE=,∵OD∥AE,∴△FDO∽△FEA,∴=,即=,∴BF=.【解析】(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、圆周角定理和解直角三角形.28.【答案】解:(1)设直线BC的解析式为y=mx+n,将B(4,0),C(0,4)两点的坐标代入,得,,∴所以直线BC的解析式为y=-x+4;将B(4,0),C(0,4)两点的坐标代入y=x2+bx+c,得,,∴所以抛物线的解析式为y=x2-5x+4;(2)如图1,设M(x,x2-5x+4)(1<x<4),则N(x,-x+4),∵MN=(-x+4)-(x2-5x+4)=-x2+4x=-(x-2)2+4,∴当x=2时,MN有最大值4;∵MN取得最大值时,x=2,∴-x+4=-2+4=2,即N(2,2).x2-5x+4=4-5×2+4=-2,即M(2,-2),∵B(4.0)可得BN=2,BM=2∴△BMN的周长=4+2+2=4+4(3)令y=0,解方程x2-5x+4=0,得x=1或4,∴A(1,0),B(4,0),∴AB=4-1=3,∴△ABN的面积S2=×3×2=3,∴平行四边形CBPQ的面积S1=4S2=12.如图2,设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=4,∴BC•BD=12,∴BD=.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,连接CQ,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,由勾股定理可得BE=BD=3,∵B(4,0),∴E(1,0),设直线PQ的解析式为y=-x+t,将E(1,0),代入,得-1+t=0,解得t=1∴直线PQ的解析式为y=-x+1.解方程组,,得,或,∵点P是抛物线在x轴下方图象上任意一点,∴点P的坐标为P(3,-2)【解析】(1)直接用待定系数法求出直线和抛物线解析式;(2)先求出最大的MN,再求出M,N坐标即可求出周长;(3)先求出△ABN的面积,进而得出平行四边形CBPQ的面积,从而求出BD,联立方程组求解即可.此题是二次函数综合题,主要考查了待定系数法,函数的极值,三角形的周长,三角形的面积,方程组的求解,解本题的关键是建立MN的函数关系式.。
2020年甘肃省中考数学模拟试卷(解析版)
![2020年甘肃省中考数学模拟试卷(解析版)](https://img.taocdn.com/s3/m/df20261e2e3f5727a5e9626d.png)
2020年中考数学模拟试卷一.选择题(共10小题)1.下列各组线段中,成比例的是()A.2cm,3cm,4cm,5cm B.2cm,4cm,6cm,8cmC.3cm,6cm,8cm,12cm D.1cm,3cm,5cm,15cm2.如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sin A的值为()A.B.C.D.3.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为()A.20米B.18米C.16米D.15米4.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DEC.AD2=BD•CD D.AD•AB=AC•BD5.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF ⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.6.如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.7.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i =1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米8.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2cm2B.4cm2C.8cm2D.16cm29.已知A为锐角,且cos A≤,那么()A.0°≤A≤60°B.60°≤A<90°C.0°<A≤30°D.30°≤A<90°10.在Rt△ABC中,∠C=90°,tan A=3,AC=10,则S△ABC等于()A.3B.300C.D.150二.填空题(共5小题)11.sin30°+cos60°=,tan45°+cos60°=.12.为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为7.3米,则电线杆的高为米.13.已知∠A是锐角,且tan A=,则sin=.14.如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是.15.如图,D、E分别是△ABC的边AB、AC上的中点,则S△ADE:S△ABC=.三.解答题(共5小题)16.计算下列各题;(1)sin230°+cos245°+sin60°•tan45°;(2)(+1)0+(﹣)﹣1﹣|﹣2|﹣2sin45°.17.如图,在△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.18.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.19.如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan C的值.20.如图所示,某船以每小时40海里的速度向正东方向航行,在点A测得岛C在北偏东60°方向上,航行半小时后到达点B,测得该岛C在北偏东30方向上,已知该岛周围18海里内有暗礁.(1)试说明点B是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列各组线段中,成比例的是()A.2cm,3cm,4cm,5cm B.2cm,4cm,6cm,8cmC.3cm,6cm,8cm,12cm D.1cm,3cm,5cm,15cm【分析】分别计算各组数中最大与最小数的积和另外两数的积,然后根据比例线段的定义进行判断即可得出结论.【解答】解:A、∵2×5≠3×4,∴选项A不成比例;B、∵2×8≠4×6,∴选项B不成比例;C、∵3×12≠6×8,∴选项C不成比例;D、∵1×15=3×5,∴选项D成比例.故选:D.2.如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sin A的值为()A.B.C.D.【分析】直角三角形中,正弦值是角的对边与斜边的比值;先求出斜边AB的值,然后,即可解答.【解答】解:∵Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB=5;∴sin A==.故选:C.3.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为()A.20米B.18米C.16米D.15米【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】根据题意解:=,即,∴旗杆的高==18米.故选:B.4.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DEC.AD2=BD•CD D.AD•AB=AC•BD【分析】利用有两组角对应相等的两个三角形相似可对A进行判定;先利用等腰三角形的性质和圆周角定理得到∠DAC=∠B,然后利用有两组角对应相等的两个三角形相似可对B进行判定;利用两组对应边的比相等且夹角对应相等的两个三角形相似可对C、D 进行判定.【解答】解:A、因为∠ADC=∠BDA,∠ACD=∠DAB,所以△DAC∽△DBA,所以A 选项添加的条件正确;B、由AD=DE得∠DAC=∠E,而∠B=∠E,所以∠DAC=∠B,加上∠ADC=∠BDA,所以△DAC∽△DBA,所以B选项添加的条件正确;C、由AD2=DB•CD,即AD:DB=DC:DA,加上∠ADC=∠BDA,所以△DAC∽△DBA,所以C选项添加的条件正确;D、由AD•AB=AC•BD得=,而不能确定∠ABD=∠DAC,即不能确定点D为弧AE的中点,所以不能判定△DAC∽△DBA,所以D选项添加的条件错误.故选:D.5.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF ⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.【分析】tan∠CFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF 就可以用x表示出来.就可以求解.【解答】解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=x.∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==.故选:C.6.如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选A.7.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i =1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米【分析】先根据坡比求得AE的长,已知CB=10m,即可求得AD.【解答】解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选:D.8.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2cm2B.4cm2C.8cm2D.16cm2【分析】利用相似多边形的对应边的比相等,对应角相等分析.【解答】解:长为8cm、宽为4cm的矩形的面积是32cm2,留下的矩形(图中阴影部分)与原矩形相似,相似比是4:8=1:2,因而面积的比是1:4,因而留下矩形的面积是32×=8cm2.故选:C.9.已知A为锐角,且cos A≤,那么()A.0°≤A≤60°B.60°≤A<90°C.0°<A≤30°D.30°≤A<90°【分析】首先明确cos60°=,再根据余弦函数值随角增大而减小进行分析.【解答】解:∵cos60°=,余弦函数值随角增大而减小,∴当cos A≤时,∠A≥60°.又∠A是锐角,∴60°≤A<90°.故选:B.10.在Rt△ABC中,∠C=90°,tan A=3,AC=10,则S△ABC等于()A.3B.300C.D.150【分析】tan A==3,已知AC,即可求得BC的长从而求出面积.【解答】解:∵tan A==3,∴BC=AC•tan A=10×3=30,∴S△ABC=AC•BC=×10×30=150,故选:D.二.填空题(共5小题)11.sin30°+cos60°=1,tan45°+cos60°=.【分析】把特殊角的三角函数值代入计算,得到答案.【解答】解:sin30°+cos60°=+=1,tan45°+cos60°=1+=,故答案为:1;.12.为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为7.3米,则电线杆的高为14.6米.【分析】根据相似的三角形,然后根据对应边成比例列出方程求解即可.【解答】解:根据题画出图形可知,DE=2m,AE=1m,AC=7.3m,由图形可知△AED∽△ACB,=,即=,解得BC=14.6m.电线杆的高为14.6米.13.已知∠A是锐角,且tan A=,则sin=.【分析】先根据tan A=,求出∠A的度数,然后代入求解.【解答】解:∵tan A=,∴∠A=60°,则sin=sin30°=.故答案为:.14.如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是圆锥.【分析】根据已知三视图的特点,发挥空间想象能力,判断几何体的形状.【解答】解:几何体的主视图、左视图都是等腰三角形,俯视图为圆,符合这样条件的几何体是圆锥.15.如图,D、E分别是△ABC的边AB、AC上的中点,则S△ADE:S△ABC=1:4.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE =BC,再求出△ADE和△ABC相似,根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵D、E是边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC且DE=BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=(1:2)2=1:4.故答案为:1:4.三.解答题(共5小题)16.计算下列各题;(1)sin230°+cos245°+sin60°•tan45°;(2)(+1)0+(﹣)﹣1﹣|﹣2|﹣2sin45°.【分析】(1)先代入各特殊锐角的三角函数值,再计算乘法和乘方,最后计算加减可得;(2)先计算零指数幂和负整数指数幂、去绝对值符号、代入三角函数值,再去括号、计算乘法,最后计算加减可得.【解答】解:(1)原式===;(2)原式=1﹣3﹣(2﹣)﹣2×=1﹣3﹣2+﹣=﹣4.17.如图,在△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【分析】根据已知得出∠C=∠ADE,进而利用相似三角形的判定方法得出答案.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.18.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.【分析】有三视图可看出这个图形是个四棱柱,然后根据底面菱形的对角线求出菱形的边长,然后求出侧面积.【解答】解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm,∴菱形的边长==cm,棱柱的侧面积=×8×4=80(cm2).19.如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan C的值.【分析】(1)由BD⊥AC得到∠ADB=90°,在Rt△ADB中,根据含30度的直角三角形三边的关系先得到BD=AB=3,再得到AD=BD=3;(2)先计算出CD=2,然后在Rt△BCD中,利用正切的定义求解.【解答】解:(1)∵BD⊥AC,∴∠ADB=90°,在Rt△ADB中,AB=6,∠A=30°,∴BD=AB=3,∴AD=BD=3;(2)CD=AC﹣AD=5﹣3=2,在Rt△BCD中,tan∠C===.20.如图所示,某船以每小时40海里的速度向正东方向航行,在点A测得岛C在北偏东60°方向上,航行半小时后到达点B,测得该岛C在北偏东30方向上,已知该岛周围18海里内有暗礁.(1)试说明点B是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由.【分析】(1)过点C作CM⊥AB于M,设CM=x,根据题意和特殊角的三角函数值求出AM和BM的值,从而求出x的值,再与18海里进行比较即可得出答案.(2)根据(1)求出CM的值,再与18进行比较,即可得出答案.【解答】解:(1)过点C作CM⊥AB于M,设CM=x,∵∠CAM=30°∠CBM=60°,∴AM=x,BC=x,BM=x,由题意知:x﹣x=×40,即x﹣x=20,解得:x=10(海里),∴BC=×10=20>18,∴点B在暗礁区域之外;(2)由(1)知:CM=x=10≈17.32<18,故继续向东航行有触礁的危险.1、只要朝着一个方向奋斗,一切都会变得得心应手。
甘肃省庆阳市2019-2020学年中考数学模拟试题含解析
![甘肃省庆阳市2019-2020学年中考数学模拟试题含解析](https://img.taocdn.com/s3/m/b0912c42a1c7aa00b42acb79.png)
甘肃省庆阳市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算()15-3÷的结果等于( )A .-5B .5C .1-5D .15 2.下列运算正确的是( )A .5ab ﹣ab=4B .a 6÷a 2=a 4C .112a b ab+= D .(a 2b )3=a 5b 3 3.如图,△ABC 中,D 为BC 的中点,以D 为圆心,BD 长为半径画一弧交AC 于E 点,若∠A=60°,∠B=100°,BC=4,则扇形BDE 的面积为何?( )A .13π B .23π C .49π D .59π 4.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=( )A .52°B .38°C .42°D .60°5.如图,某厂生产一种扇形折扇,OB=10cm ,AB=20cm ,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为10003π cm 2,则扇形圆心角的度数为( )A .120°B .140°C .150°D .160°6.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( )A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)27.下面计算中,正确的是( )A .(a+b )2=a 2+b 2B .3a+4a=7a 2C .(ab )3=ab 3D .a 2•a 5=a 78.如图,一张半径为1的圆形纸片在边长为4的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )A .4π-B .πC .12π+D .π154+ 9.一艘轮船和一艘渔船同时沿各自的航向从港口O 出发,如图所示,轮船从港口O 沿北偏西20°的方向行60海里到达点M 处,同一时刻渔船已航行到与港口O 相距80海里的点N 处,若M 、N 两点相距100海里,则∠NOF 的度数为( )A .50°B .60°C .70°D .80°10.如图,两个等直径圆柱构成如图所示的T 形管道,则其俯视图正确的是( ) A .B .C .D .11.关于x 的正比例函数,y=(m+1)23m x -若y 随x 的增大而减小,则m 的值为 () A .2 B .-2 C .±2 D .-1212.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C . D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果一个三角形两边为3cm ,7cm ,且第三边为奇数,则三角形的周长是_________. 14.如图,在正方形ABCD 中,等边三角形AEF 的顶点E ,F 分别在边BC 和CD 上,则∠AEB =__________.15.若关于x 的一元二次方程240x x m +﹣=有两个不相等的实数根,则m 的取值范围为__________. 16.若a+b =3,ab =2,则a 2+b 2=_____.17.将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为____.18.计算2(252)-的结果等于__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.20.(6分)如图,AB 是⊙O 的直径,点E 是»AD 上的一点,∠DBC=∠BED .求证:BC 是⊙O 的切线;已知AD=3,CD=2,求BC 的长.21.(6分)解不等式组()()303129x x x -≥⎧⎨->+⎩. 22.(8分)如图,在平面直角坐标系xOy 中,一次函数y =x 与反比例函数()0k y k x =≠的图象相交于点()3,A a .(1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y =x 、反比例函数k y x=的图象相交于点M 、N ,当MN =2时,画出示意图并直接写出b 的值.23.(8分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30°,看这栋高楼底部 C 的 俯角为 60°,热气球 A 与高楼的水平距离为 120m ,求这栋高楼 BC 的高度.24.(10分)如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C .求抛物线y=ax 2+2x+c 的解析式:;点D 为抛物线上对称轴右侧、x 轴上方一点,DE ⊥x 轴于点E ,DF ∥AC 交抛物线对称轴于点F ,求DE+DF 的最大值;①在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;②点Q 在抛物线对称轴上,其纵坐标为t ,请直接写出△ACQ 为锐角三角形时t 的取值范围. 25.(10分)在平面直角坐标系xOy 中,二次函数y =ax 2+bx+c (a≠0)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B . ①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.26.(12分)解方程式:1x2-- 3 =x12x--27.(12分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据有理数的除法法则计算可得.【详解】解:15÷(-3)=-(15÷3)=-5,故选:A.【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2.B【解析】【分析】由整数指数幂和分式的运算的法则计算可得答案.【详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a b a b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误;故本题正确答案为B.【点睛】幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数)(2)幂的乘方:()m n mn a a =(m 、n 都是正整数)(3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n)(5)零次幂:01a =(a≠0)(6) 负整数次幂: 1p paa -=(a≠0, p 是正整数). 3.C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC ,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°, ∴S 扇形DBE =24024=3609ππ⋅⋅. 故选C .点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=2360n r π⋅⋅. 4.A【解析】试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A .考点:平行线的性质.5.C【解析】【分析】根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为10003π cm2,∴22301010003603603a aπππ⋅⨯⋅⨯-=,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=2 360n Rπ.6.A【解析】【分析】根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.故选A.【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.7.D【解析】【分析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A. (a+b)2=a 2+b 2+2ab ,故此选项错误;B. 3a+4a=7a ,故此选项错误;C. (ab)3=a 3b 3,故此选项错误;D. a 2⋅a 5=a 7,正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省庆阳市环县中考数学模拟试卷(1月份)一、选择题(本题共60分,每小题6分)1.二次函数y=x2﹣2x+3的图象的顶点坐标是()A.(1,2) B.(1,6) C.(﹣1,6)D.(﹣1,2)2.下面的几何体中,主视图为三角形的是()A.B.C.D.3.若△ABC∽△DEF,相似比为1:3,则△ABC与△DEF的面积比为()A.1:9 B.1:3 C.1:2 D.1:4.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.1 B.C. D.5.已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为()A. B. C.D.6.已知关于x的方程2x2﹣(4k+1)x+2k2﹣1=0有两个不相等的实数根,则k的取值范围是()A.k=﹣B.k≥﹣C.k>﹣D.k<﹣7.如图是一个用于防震的L形的包装用泡沫塑料,当俯视它时看到的图形形状是()A.B.C.D.8.如果两圆的半径是3cm和4cm,圆心距是1cm,那么这两个圆的位置关系为()A.外切 B.内切 C.相交 D.内含9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为()A.B.C.D.10.如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()A.1 B.2 C.1+D.2﹣二、填空题(本题共20分,每小题4分)11.已知两个相似三角形相似比是3:4,那么它们的面积比是.12.如果双曲线经过点(2,﹣1),那么m=.13.已知在Rt△ABC中,∠C=90°,tanA=,则sinA=.14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门步而见木.15.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为.三、解答题(本题共70分)16.计算:cos45°﹣tan30°•sin60°.17.解方程:(1)x2﹣3x﹣1=0.(2)x2+4x﹣2=0.18.如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△ACD∽△ABC;(2)如果BC=,AC=3,求CD的长.19.如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.20.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.21.如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果保留根号)22.如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b﹣<0的解集.(直接写出答案)甘肃省庆阳市环县中考数学模拟试卷(1月份)参考答案与试题解析一、选择题(本题共60分,每小题6分)1.二次函数y=x2﹣2x+3的图象的顶点坐标是()A.(1,2) B.(1,6) C.(﹣1,6)D.(﹣1,2)【考点】二次函数的性质.【分析】利用配方法把抛物线的一般式写成顶点式,求顶点坐标;或者用顶点坐标公式求解.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).故选A.【点评】此题考查了二次函数的性质,通过配方法求顶点式是解题的关键.2.下面的几何体中,主视图为三角形的是()A.B.C.D.【考点】简单几何体的三视图.【专题】常规题型.【分析】主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.若△ABC∽△DEF,相似比为1:3,则△ABC与△DEF的面积比为()A.1:9 B.1:3 C.1:2 D.1:【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方解答即可.【解答】解:∵△ABC∽△DEF,相似比为1:3,∴△ABC与△DEF的面积比为1:9,故选:A.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积的比等于相似比的平方是解题的关键.4.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.1 B.C. D.【考点】锐角三角函数的定义.【专题】网格型.【分析】根据网格结构,找出合适的直角三角形,根据正切的定义计算即可.【解答】解:在Rt△ABD中,BD=4,AD=3,∴tan∠ABC==,故选:D.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为()A. B. C.D.【考点】反比例函数的应用.【分析】首先设I=,再把点(4,8)代入可得k的值,进而可得函数解析式.【解答】解:设I=,∵图象经过点(4,8),∴8=,解得:k=32,∴电流I关于电阻R的函数解析式为I=.故选:C.【点评】此题主要考查了反比例函数的应用,关键是掌握反比例函数的图象是双曲线,凡是函数图象经过的点必能满足解析式.6.已知关于x的方程2x2﹣(4k+1)x+2k2﹣1=0有两个不相等的实数根,则k的取值范围是()A.k=﹣B.k≥﹣C.k>﹣D.k<﹣【考点】根的判别式.【专题】计算题.【分析】由于关于x的方程2x2﹣(4k+1)x+2k2﹣1=0有两个不相等的实数根,根据△的意义得到∴△>0,即(4k+1)2﹣4×2×(2k2﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的方程2x2﹣(4k+1)x+2k2﹣1=0有两个不相等的实数根,∴△>0,即(4k+1)2﹣4×2×(2k2﹣1)>0,解得k>﹣,∴k的取值范围是k>﹣.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个,相等的实数根;当△<0,方程没有实数根.7.如图是一个用于防震的L形的包装用泡沫塑料,当俯视它时看到的图形形状是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到两个左右相邻的矩形,故选B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.如果两圆的半径是3cm和4cm,圆心距是1cm,那么这两个圆的位置关系为()A.外切 B.内切 C.相交 D.内含【考点】圆与圆的位置关系.【专题】计算题.【分析】由于两圆的半径是3cm和4cm,圆心距是1cm,易得两圆半径之差等于圆心距,根据圆与圆的位置关系的判定方法可得到这两个圆内切.【解答】解:∵两圆的半径是3cm和4cm,圆心距是1cm,∴4cm﹣3cm=1cm,即两圆半径之差等于圆心距,∴这两个圆内切.故选B.【点评】本题考查了圆与圆的位置关系:设两圆的半径是r和R,圆心距是d,当d>r+R,两圆外离;当d=r+R,两圆外切;当R﹣r<d<r+R(R≥r),两圆相交;当d=R﹣r(R>r),两圆内切;当0≤d<R﹣r(R>r),两圆内含.9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为()A.B.C.D.【考点】概率公式;条形统计图.【分析】根据统计图求出总的水彩笔和蓝色水彩笔的支数,再根据概率公式进行计算即可.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.【点评】本题考查了概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()A.1 B.2 C.1+D.2﹣【考点】圆周角定理;等腰直角三角形.【专题】压轴题.【分析】连接AD,OD,根据已知分析可得△ODA,△ADC都是等腰直角三角形,从而得到两个弓形的面积相等,即阴影部分的面积等于△ACD的面积,根据三角形面积公式即可求得图中阴影部分的面积.【解答】解:连接AD,OD∵∠BAC=90°,AB=AC=2∴△ABC是等腰直角三角形∵AB是圆的直径∴∠ADB=90°∴AD⊥BC∴点D是BC的中点∴OD是△ABC的中位线∴∠DOA=90°∴△ODA,△ADC都是等腰直角三角形∴两个弓形的面积相等∴阴影部分的面积=S△ADC=AD2=1.故选A.【点评】本题利用了等腰直角三角形的判定和性质,直径对的圆周角是直角求解.二、填空题(本题共20分,每小题4分)11.已知两个相似三角形相似比是3:4,那么它们的面积比是9:16.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【解答】解:∵两个相似三角形的相似比是3:4,∴它们的面积为9:16.故答案为9:16.【点评】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.12.如果双曲线经过点(2,﹣1),那么m=﹣2.【考点】待定系数法求反比例函数解析式.【专题】待定系数法.【分析】把(2,﹣1)代入函数y=中可先求出m的值.【解答】解:由题意知,m=2×(﹣1)=﹣2.故答案为:﹣2.【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.13.已知在Rt△ABC中,∠C=90°,tanA=,则sinA=.【考点】同角三角函数的关系.【分析】根据tanA=,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出sinA的值.【解答】解:在Rt△ABC中,∠C=90°,∵tanA==,∴设a=3x,则b=4x,则c==5x.sinA===.故答案是:.【点评】本题考查了同角三角函数的关系.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门315步而见木.【考点】相似三角形的应用.【分析】根据题意写出AB、AC、CD的长,根据相似三角形的性质得到比例式,计算即可.【解答】解:由题意得,AB=15里,AC=4.5里,CD=3.5里,△ACB∽△DEC,∴=,即=,解得,DE=1.05里=315步,∴走出南门315步恰好能望见这棵树,故答案为:315.【点评】本题考查的是直角三角形三边关系,掌握相似三角形的判定定理和性质定理是解题的关键.15.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为.【考点】平行四边形的性质;三角形中位线定理;相似三角形的判定与性质.【分析】由四边形ABCD是平行四边形,可得OA=OC,又由点E,F分别是边AD,AB的中点,可得AH:AO=1:2,即可得AH:AC=1:4,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵点E,F分别是边AD,AB的中点,∴EF∥BD,∴△AFH∽△ABO,∴AH:AO=AF:AB,∴AH=AO,∴AH=AC,∴=.故答案为:.【点评】此题考查了平行四边形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.三、解答题(本题共70分)16.计算:cos45°﹣tan30°•sin60°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=×﹣•=1﹣=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.17.解方程:(1)x2﹣3x﹣1=0.(2)x2+4x﹣2=0.【考点】解一元二次方程-公式法;解一元二次方程-配方法.【分析】(1)利用一元二次方程的求根公式直接求解即可;(2)利用配方法解方程即可.【解答】解:(1)∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=9+4=13,∴x=,∴方程的解为:x1=,x2=;(2)移项得:x2+4x=2,配方得:x2+4x+4=2+4,即(x+2)2=6,∴x+2=±,∴x1=﹣2+,x2=﹣2﹣.【点评】本题考查了一元二次方程的解法,解题的关键是根据不同的一元二次方程选择不同的求根方法,难度不大.18.如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△ACD∽△ABC;(2)如果BC=,AC=3,求CD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定得出即可;(2)根据相似得出比例式,代入求出即可.【解答】(1)证明:∵∠DBC=∠A,∠C=∠C,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴=,∴=,∴CD=2.【点评】本题考查了相似三角形的性质和判定的应用,解此题的关键是能根据相似三角形的判定定理推出△ACD∽△ABC.19.如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.【考点】相似三角形的判定与性质;勾股定理;矩形的性质.【专题】几何综合题.【分析】(1)根据矩形的性质和DF⊥AE,可得∠ABE=∠AFD=90°,∠AEB=∠DAF,即可证明△ABE∽△DFA.(2)利用△ABE∽△ADF,得=,再利用勾股定理,求出AE的长,然后将已知数值代入即可求出DF的长.【解答】解:(1)△ABE与△ADF相似.理由如下:∵四边形ABCD为矩形,DF⊥AE,∴∠ABE=∠AFD=90°,∠AEB=∠DAF,∴△ABE∽△DFA.(2)∵△ABE∽△ADF∴=,∵在Rt△ABE中,AB=6,BE=8,∴AE=10∴DF===7.2.答:DF的长为7.2.【点评】此题主要考查学生对相似三角形的判定与性质、勾股定理和矩形的性质的理解和掌握,难度不大,属于基础题.20.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可;(2)求出OP、DP长,分别求出扇形DOB和三角形ODP面积,即可求出答案.【解答】(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°,∴∠DOP=180°﹣120°=60°,∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°,∴OD⊥DP,∵OD为半径,∴DP是⊙O切线;(2)解:∵∠P=30°,∠ODP=90°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm,∴图中阴影部分的面积S=S△ODP﹣S=×3×3﹣=(﹣π)cm2扇形DOB【点评】本题考查了扇形面积,三角形面积,切线的判定,圆周角定理等知识点的应用,主要考查学生的推理和计算能力.21.如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【专题】计算题.【分析】根据三角形外角和定理可求得BC的值,然后放到直角三角形BCD中,借助60°角的正弦值即可解答.【解答】解:由题意得∠CAB=30°,∠CBD=60°,∴∠ACB=30°,∴BC=BA=40海里,∵∠CDB=90°,∴sin∠CBD=.∴sin60°==.∴CD=BC×=40×(海里).∴此时轮船与灯塔C的距离为20海里.【点评】将已知条件和所求结论转化到同一个直角三角形中求解是解直角三角形的常规思路.22.如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b﹣<0的解集.(直接写出答案)【考点】反比例函数综合题;不等式的解集;一次函数的图象.【专题】计算题;待定系数法.【分析】(1)由B点在反比例函数y=上,可求出m,再由A点在函数图象上,由待定系数法求出函数解析式;(2)由上问求出的函数解析式联立方程求出A,B,C三点的坐标,从而求出△AOC的面积;(3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.【解答】解:(1)∵B(1,4)在反比例函数y=上,∴m=4,又∵A(n,﹣2)在反比例函数y=的图象上,∴n=﹣2,又∵A(﹣2,﹣2),B(1,4)是一次函数y=kx+b的上的点,联立方程组解得,k=2,b=2,∴,y=2x+2;(2)过点A作AD⊥CD,∵一次函数y=kx+b的图象和反比例函数y=的图象的两个交点为A,B,联立方程组解得,A(﹣2,﹣2),B(1,4),C(0,2),∴AD=2,CO=2,∴△AOC的面积为:S=AD•CO=×2×2=2;(3)由图象知:当0<x<1和﹣2<x<0时函数y=的图象在一次函数y=kx+b图象的上方,∴不等式kx+b﹣<0的解集为:0<x<1或x<﹣2.【点评】此题考查一次函数和反比例函数的性质及图象,考查用待定系数法求函数的解析式,还间接考查函数的增减性,从而来解不等式.。