中科大计算流体力学CFD之大作业一
计算流体力学大作业
计算流体⼒学⼤作业管壳式换热器壳程流动传热数值模拟机械与动⼒⼯程学1.问题描述⼀⼯业⽤换热器,功能是加热壳程介质。
管程流体为上⼀⼯段的⾼温废液。
近似认为废液在管内流动时,管壁温度恒定。
2.软件环境表1 软件环境前处理软件计算软件后处理软件Gambit2.3.6/Pro-e ANSYS-Fluent15.0 Fluent15.0其他软件如截图⼯具,图⽚编辑软件等不逐⼀列举。
3.模型建⽴表2 换热器⼏何参数折流板尺⼨依据GB151选取。
在gambit中建⽴壳程流体的⽔⼒模型,建模时进⾏必要的简化,忽略折流板和壳体之间的间隙,忽略定距管和拉管。
从观察中可以看出管壳式换热器是左右对称的装置,为了减少计算的时间,提⾼⼯作的效率,可以去对称的⼀半进⾏计算,然后由软件处理得到结果。
图1 ⼏何模型4.⽹格划分⽹格总数1649730。
折流板之间的流动区域选⽤⾮结构化⽹格,以便于⽹格划分。
⽹格质量检查复合要求。
图2 ⽹格模型由于本⽂只需得到壳程的⼤致流动情况,不要要精确解,因此为了节约⽹格划分⼯作量,没有划分边界层⽹格。
图3⽹格局部放⼤5.边界条件设置表3 边界条件设置进⼝流速取2m/s,分别取壳程⾛空⽓和⽔两种介质,⽐较壳程流体对传热的影响。
打开能量⽅程;湍流模拟采⽤k-ε⽅程;迭代求解⽅法默认。
6.计算结果当壳程⾛⽔时,出⼝温度为323K,温度升⾼了25℃。
图4壳程⾛⽔时温度分布图5壳程⾛⽔时流速分布图6壳程⾛⽔时折流板处的回流当壳程⾛空⽓时,出⼝温度为378K,温度升⾼了65℃。
与管壁温度⼀致。
图7壳程⾛空⽓时温度分布图8壳程⾛空⽓时流速分布图8壳程⾛空⽓时折流板处的回流从两种流体的对⽐可以看出,由于空⽓和⽔的粘性都很⼩,所以两者的流动状态并没有显著差别,回流区的位置和⼤⼩也基本⼀直。
因此可以说明,当⼊⼝速度⼀致时,在低粘度,不考虑重⼒的前提下,流体的性质对换热器壳程内流速分布的影响可以忽略。
另外从加热效果的⾓度讲,虽然壳程⾛空⽓时出⼝温度⽐较⾼,但空⽓的密度低,⽐热低,因此实际上带⾛的管程热量只有壳程⾛⽔时的千分之⼀。
计算流体力学大作业
计算液体力学基础及应用课程期末作业-----程序调试最终版学号:134212059 姓名:徐影ContentsCFD模型示意图一、拟一维喷管理论解求解二、拟一维喷管的CFD求解三、理论值与CFD解的对比CFD模型示意图两圆弧直径为10米,喉部直径为0.59米,长为3米clear all;I=imread('xuying.png'); imshow(I)一、拟一维喷管理论解求解喷管内马赫数的变化公依赖于面积比A/A0,所以可以将Ma作为x的函数1.2.采用隐函数绘图给出理论的马赫数解gamma=1.4;h0=59/100;% 取学生学号后两位数的十分之一作喉部直径syms x Ma A_x y;% xz为x坐标,Ma为马赫数A_x=((10.59-2*sqrt(25-(x-1.5)^2))/0.59)^2;% A_x为面积系数figure('Color',[1 1 1]);set(gcf,'position',[0,0,1.5*468,468]);plot_Ma=A_x^2-(2/(gamma+1)+(gamma-1)/(gamma+1)*y^2)^((gamma+1)/(gamma-1))/y^2;subplot(1,2,1);gca=ezplot(plot_Ma,[0,3]);xlabel('x');ylabel('马赫数');title('采用隐函数求解的马赫数结果');grid on; % 得到两条曲线,由递增规律选取上升曲线段,从该曲线上得到一系列点的坐标为[x0,Ma0]load tk.mat;x_0=tk(:,1);Ma_0=tk(:,2);% 这里load的数据采用某算法从上面出的图取点拟合得到,用到polyval和polyfit函数subplot(1,2,2);plot(x_0,Ma_0);xlabel('x');ylabel('马赫数');title('马赫数的理论解');grid on;求出马赫数后,压力、密度、温度的变化都是Ma的函数,求出理论值并绘图1.2.3.p_0=(1+(gamma-1)/2*Ma_0.^2).^(-gamma/(gamma-1));rho_0=(1+(gamma-1)/2*Ma_0.^2).^(-1/(gamma-1));t_0=(1+(gamma-1)/2*Ma_0.^2).^-1;figure('Color',[1 1 1]);set(gcf,'position',[0,0,1.5*468,1.5*468]);subplot(3,1,1);plot(x_0,p_0);title('压力比理论值');xlabel('x');ylabel('p');grid on; subplot(3,1,2);plot(x_0,rho_0);title('密度比理论值');xlabel('x');ylabel('rho');grid on; subplot(3,1,3);plot(x_0,t_0);title('温度比理论值');xlabel('x');ylabel('T');grid on;二、拟一维喷管的CFD求解clear all;L=3;N=31;dx=L/(N-1);x=linspace(0,L,N);C=0.5;n=2000;student_num=59;A=((10+student_num/100-2*((25-((x-1.5).^2))).^0.5)/(student_num/100)).^2;%面积比A/A_0与x坐标的关系第一步,密度比、温度比、速度比的初始条件设定1.2.3.Rou=1-0.3146*x;rhobi=zeros(1,n);T=1-0.2314*x;V=(0.1+1.09*x).*sqrt(T);P_rou_t=zeros(size(Rou));P_v_t=zeros(size(Rou));P_T_t=zeros(size(Rou));P_rou_t_2=zeros(size(Rou));P_v_t_2=zeros(size(Rou));P_T_t_2=zeros(size(Rou));第二步,预估步第三步,并求Δt,求rou, V, T的预测量1.2.3.第四步,修正步第五步,求平均时间导数1.2.3.最后,得到t+Delta t时刻流动参数的修正值为1.2.3.第七步,边界条件处理for j=1:ntemp=Rou(16);% 第二步,预估步for i=2:30P_rou_t(i)=-V(i)*((Rou(i+1)-Rou(i))/dx)-Rou(i)*((V(i+1)-V(i))/dx)-Rou(i)*V(i)*((log(A(i+1))-log(A(i)))/dx);P_v_t(i)=-V(i)*((V(i+1)-V(i))/dx)-((T(i+1)-T(i))/dx+((Rou(i+1)-Rou(i))/dx)*T(i)/Rou(i))*1/1.4;P_T_t(i)=-V(i)*((T(i+1)-T(i))/dx)-0.4*T(i)*(((V(i+1)-V(i))/dx)+V(i)*((log(A(i+1))-log(A(i)))/dx));end% 第三步,并求Δt,求rou, V, T的预测量dt=C*(dx./(V(2:30)+sqrt(T(2:30))));dt=min(dt);Rou1(2:30)=Rou(2:30)+P_rou_t(2:30).*dt;V1(2:30)=V(2:30)+P_v_t(2:30).*dt;T1(2:30)=T(2:30)+P_T_t(2:30).*dt;V1(1)=V(1);T1(1)=T(1);Rou1(1)=Rou(1);% 第四步,修正步%for i=2:30P_rou_t_2(i)=-V1(i)*((Rou1(i)-Rou1(i-1))/dx)-Rou1(i)*((V1(i)-V1(i-1))/dx)-Rou1(i)*V1(i)*((log(A(i))-log(A(i-1)))/dx); P_v_t_2(i)=-V1(i)*((V1(i)-V1(i-1))/dx)-((T1(i)-T1(i-1))/dx+((Rou1(i)-Rou1(i-1))/dx)*T1(i)/Rou1(i))*1/1.4;P_T_t_2(i)=-V1(i)*((T1(i)-T1(i-1))/dx)-0.4*T1(i)*(((V1(i)-V1(i-1))/dx)+V1(i)*((log(A(i))-log(A(i-1)))/dx));end% 第五步,求平均时间导数P_rou_av=(P_rou_t+P_rou_t_2)/2;P_v_av=(P_v_t+P_v_t_2)/2;P_T_av=(P_T_t+P_T_t_2)/2;% 最后,得到t+Delta t时刻流动参数的修正值为Rou(2:30)=Rou(2:30)+P_rou_av(2:30).*dt;T(2:30)=T(2:30)+P_T_av(2:30).*dt;V(2:30)=V(2:30)+P_v_av(2:30).*dt;P(2:30)=Rou(2:30).*T(2:30);% 第七步,边界条件处理V(1)=2*V(2)-V(3);V(31)=2*V(30)-V(29);Rou(31)=2*Rou(30)-Rou(29);T(31)=2*T(30)-T(29);p=Rou.*T;Ma=V./sqrt(T);rhobi(j)=abs((temp-Rou(16))/temp); % 计算后一次时间步与前一时间步之间的密度比的变化情况,以此检验CFD过程收敛性质end最终结果的绘图figure('Color',[1 1 1]);set(gcf,'position',[0,0,1.2*468,1.5*468]);subplot(3,1,1);plot(1:n,rhobi);xlabel('x');ylabel('Ma');title('相对密度比');grid on;% 密度比收敛情况绘图subplot(3,1,2);plot(x,Ma);title('喷管内马赫数分布');xlabel('x');ylabel('Ma');grid on;% 马赫数CFD值绘图subplot(3,1,3);plot(x,p);title('喷管内压力分布');xlabel('x');ylabel('p');grid on; % 压力分布CFD值绘图shu=[x;A;Ma;V;T;p;Rou];显示各参量最终计算结果fprintf('%6s\t%12s\t%12s\t%12s\t%12s\t%12s\t%12s\r\n','x','A/A_0','Ma','v/v_0','T/T_0','p/p_0','rho')% 依次显示坐标点、形状参数、马赫数、速度、温度、压力的结果fprintf('%6.1f\t%12.4f\t%12.4f\t%12.4f\t%12.4f\t%12.4f\t%12.4f\r\n',shu)x A/A_0 Ma v/v_0 T/T_0 p/p_0 rho0.0 3.1709 0.1859 0.1859 1.0000 1.0000 1.00000.1 2.8156 0.2124 0.2121 0.9975 0.9915 0.99390.2 2.5056 0.2389 0.2383 0.9956 0.9847 0.98900.3 2.2361 0.2711 0.2700 0.9922 0.9728 0.98050.4 2.0030 0.3056 0.3038 0.9885 0.9602 0.97140.5 1.8022 0.3451 0.3422 0.9834 0.9433 0.95910.6 1.6303 0.3882 0.3838 0.9775 0.9234 0.94470.7 1.4844 0.4364 0.4298 0.9700 0.8989 0.92670.8 1.3617 0.4891 0.4794 0.9611 0.8701 0.90540.9 1.2600 0.5469 0.5331 0.9502 0.8362 0.88001.0 1.1771 0.6096 0.5903 0.9374 0.7974 0.85071.1 1.1116 0.6776 0.6508 0.9224 0.7536 0.81701.2 1.0620 0.7507 0.7142 0.9051 0.7053 0.77921.3 1.0273 0.8289 0.7800 0.8855 0.6532 0.73761.4 1.0068 0.9119 0.8475 0.8636 0.5982 0.69271.5 1.0000 0.9998 0.9160 0.8394 0.5416 0.64521.6 1.0068 1.0921 0.9849 0.8132 0.4847 0.59601.7 1.0273 1.1887 1.0534 0.7853 0.4288 0.54611.8 1.0620 1.2893 1.1210 0.7559 0.3753 0.49641.9 1.1116 1.3934 1.1869 0.7255 0.3250 0.44802.0 1.1771 1.5009 1.2507 0.6943 0.2788 0.40152.1 1.2600 1.6113 1.3119 0.6629 0.2371 0.35762.2 1.3617 1.7245 1.3705 0.6315 0.2001 0.31682.3 1.4844 1.8398 1.4258 0.6006 0.1678 0.27952.4 1.6303 1.9576 1.4782 0.5702 0.1400 0.24552.5 1.8022 2.0764 1.5269 0.5408 0.1163 0.21512.6 2.0030 2.1983 1.5732 0.5122 0.0962 0.1879。
《计算流体力学》作业
《计算流体力学》作业西安交通大学航天学院1(第二章)如图所示,在一个二维平行板通道内的中心线上置有一个温度均匀的正方形柱体,计算区域入口流体温度为T in = c ,流速已达充分发展,上下平板绝热,出口边界离开柱体比较远。
试写出层流、稳态对流换热的控制方程组,并对所取定的计算区域写出流速及温度的边界条件。
u (y)T in = c绝热绝热T h进口出口xy2(第四章)推导二阶偏导的四阶精度差分(均分网格)考虑函数在(x, y )=(1,1) 处,(1)计算的精确值;(2)分别采用一阶前差,一阶后差及中心差分近似,其中∆x =∆y= 0.1,计算(1,1)处的估算值。
计算它们与(1)结果的相对误差;(3)重复(2),只是∆x =∆y= 0.01。
将此时得到的有限差分结果与(2)对比。
(),=+x y x y e e φ/,/∂∂∂∂x y φφ/,/∂∂∂∂x y φφ3(第四章)4(第四章)试证明一维非稳态对流-扩散方程的隐式中心差分(对流、扩散项)格式(1)无条件稳定;(2)是相容的。
数值求解一维线性对流方程:给定初始分布:5(第四章)编程题格式稳定性验证1. 用LAX 格式求解:(1)CFL=0.5时,t=0,t=0.8,1.2时刻的波形;(2)CFL=1.2时,t=0,t=0.8,1.2时刻的波形;2. 用FTCS 格式求解:(1)CFL=0.5时,t=0,t=0.4,t=0.6时刻的波形;(2)CFL=1.2时,t=0,t=0.4时刻的波形;网格数=100网格数=100数值求解一维线性对流方程:给定初始分布:6(第四章)编程题数值粘性影响验证1. 用LAX格式求解:(1)CFL=0.5时,网格数=100,t=0,t=1,2时刻的波形;(2)CFL=0.5时,网格数=100,200,400,800,t=2时刻的波形;有一个二维稳态无源项的对流-扩散问题,已知。
四个边上的Φ值如图所示,其中Δx=Δy=2。
流体力学大作业
《计算流体力学》课程大作业作业内容:3-4人为小组完成数值模拟,在第8次课上每组进行成果展示,并在课程结束后每组上交一份纸质版报告。
数值模拟实现形式:自编程或者使用任意的开源、商业模型。
成果展示要求:口头讲述和幻灯片结合的方式,每组限时10分钟(8分钟讲述,2分钟提问和讨论)。
报告要求:按照期刊论文的思路和格式进行撰写(包括但不限于如下内容:摘要、绪论\引言、数值模型简介、数值结果分析\讨论、结论、参考文献)。
(以下题目二选一)题目一:固定单方柱扰流问题根据文章《Interactions of tandem square cylinders at low Reynolds numbers》中的实验进行数值模拟,完成但不局限于如下工作:(1)根据Fig. 2 中的雷诺数和方柱排列形式,进行相同雷诺数不同间距比情况下的方柱绕流数值模拟,并做出流线图和Fig.2中的结果对比。
(2)根据Fig. 3 中的雷诺数和方柱排列形式,进行相同雷诺数后柱不同转角情况下的方柱绕流数值模拟,并做出流线图和Fig.3中的结果对比。
(3)根据Fig. 12, 13 中的雷诺数和方柱间距比的设置进行数值模拟,作出频率、斯特劳哈尔数、阻力系数随雷诺数变化的折线并与图中对应的折线画在同一坐标系下比较。
(中共有4条折线,对应4种不同的方柱排列形式下的物理参数随雷诺数变化的规律,仅需选取单柱模型和其中一种双柱模型进行数值模拟,共计16个工况)。
题目二:溃坝问题根据文章《Experimental investigation of dynamic pressure loads during dam break》中的实验进行数值模拟,完成但不局限于如下工作:(1)分别完成二维、三维的溃坝的数值建模,讨论二维、三维模型的区别。
(2)分别将二维、三维溃坝的数值模拟结果和Fig. 7,10中各时刻的自由面形态进行对比,并分别观测溃坝前端水舌的位置随时间的变化,其结果和Fig. 12 种的各试验结果放在同一坐标系下进行对比。
中科院计算流体力学最新讲义CFD1110讲不可压流动 21页
u u u 2
8
2) 对流项的处理原则
V0
VVVp 1 2V
t
Re
守恒型 普通型
关系式1:
( V ) V V V V ( V ) V V( u x)u ( u y)v u u xv y yu( u x y v)
6
奇偶失联与交错网格
u v 0 x y
压力项,通 常采用中心 差分离散
u u u v u p 1 2u t x y x Re
p p i 1 ,jp i 1 ,j,
v u v v v p 1 2u
t x y y Re
引入流函数
u ,v
y
x
uv1 2 (4)
t x y Re
2 (5)
(4) (5) 式即涡量-流函数的控制方程
计算结束后,如果需要计算压力,则求解如下方程
(2) (3) x y
2pux22u y xv yv22
讲课录像及讲义上传至网盘 cid-1cc0dcbff560c149.skydrive.live/browse.aspx/.Public
Copyright by Li Xinliang
1
知识回顾
一、 代数方程组的求解 Axb
直 接 法
Gauss 消元法
a11 a12 a13 a1n
Step 3: 最终步
Vn1 V* p0 t
得到n+1时刻的V
以 1阶精度时间推进方法为例,实际上可采用更高阶精度时间推进方法: Karniadakis GE, Israeli M, Orszag SA. 1991 Highorder splitting methods for the incompressible Navier-stokes equations. J. Comp. Phys. 97:414-443.
计算流体力学作业电子版
1. 已知有限体积法求解的通用控制方程为()()()u div div grad S tρφρφφ∂+=Γ+∂ 其中φ为通用变量,可代表u 、v 、w 、T 等求解变量。
(1)试说明通用控制方程中各项的物理意义;(2)对于特定的方程,φ、Γ、S 具有特定的形式,对应于质量守恒方程、动量守恒方程、能量守恒方程、(多种化学组分的)组分质量守恒方程,试写出φ、Γ、S 的具体表达式。
解答:(1) 方程中的各项(从左到右)分别是瞬态项、对流项、扩散项及源项。
(2)2. 简述有限体积法建立离散方程时应遵守的四条基本原则。
解答:1) 控制体积界面上的连续性原则当一个面为相邻的两个控制体积所共有时,在这两个控制体积的离散方程中,通过该界面的通量(包括热通量、质量通量、动量通量)的表达式必须相同。
即:通过某特定界面从一个控制体积所流出的热通量,必须等于通过该界面进入相邻控制体积的热通量,否则,总体平衡就得不到满足。
2) 正系数原则中心节点系数aP 和相邻节点系数anb 必须恒为正值。
该原则是求得合理解的重要保证。
当违背这一原则,结果往往是得到物理上不真实的解。
例如,如果相邻节点的系数为负值,就可能出现边界温度的增加引起的相邻节点温度降低。
3) 源项的负斜率线性化原则源项斜率为负可以保证正系数原则。
从式(C2)中看到,当相邻节点的系数皆为正值,但有源项Sp 的存在,中心节点系数aP 仍有可能为负。
当我们规定Sp ≤0,便可以保证aP 为正值。
4) 系数aP 等于相邻节点系数之和原则当源项为0时,我们发现中心节点系数等于相邻节点系数之和,而当有源项存在时也应该保证这一原则,如果不能满足这个条件,可以取SP 为0。
3.什么是对流质量流量F 、扩散传导量D 以及Pelclet 数Pe ,试用定义式表达之。
解答:F 表示通过界面上单位面积的对流质量通量(convective mass flux),简称对流质量流量;D 表示界面的扩散传导性(量)(diffusion conductance)。
计算流体力学课程大作业
《计算流体力学》课程大作业——基于涡量-流函数法的不可压缩方腔驱动流问题数值模拟张伊哲 航博1011、 引言和综述2、 问题的提出,怎样使用涡量-流函数方法建立差分格式3、 程序说明4、 计算结果和讨论5、 结论1引言虽然不可压缩流动的控制方程从形式上看更为简单,但实际上,目前不可压缩流动的数值方法远远不如可压缩流动的数值方法成熟。
考虑不可压缩流动的N-S 方程:01()P t νρ∇⋅=⎧⎪∂⎨+∇⋅=-∇+∆⎪∂⎩U UUU f U (1.1)其中ν是运动粘性系数,认为是常数。
将方程组写成无量纲的形式:01()Re P t∇⋅=⎧⎪∂⎨+∇⋅=-∇+∆⎪∂⎩U UUU f U (1.2) 其中Re 是雷诺数。
从数学角度看,不可压缩流动的控制方程中不含有密度对时间的偏导数项,方程表现出椭圆-抛物组合型的特点;从物理意义上看,在不可压缩流动中,压力这一物理量的波动具有无穷大的传播速度,它瞬间传遍全场,以使不可压缩条件在任何时间、任何位置满足,这就是椭圆型方程的物理意义。
这就造成不可压缩的N-S 方程不能使用比较成熟的发展型...偏微分方程的数值求解理论和方法。
如果将动量方程和连续性方程完全耦合求解,即使使用显示的离散格式,也将会得到一个刚性很强的、庞大的稀疏线性方程组,计算量巨大,更重要的问题是不易收敛。
因此,实际应用中,通常都必须将连续方程和动量方程在一定程度上解耦。
目前,求解不可压缩流动的方法主要有涡量-流函数法,SIMPLE 法及其衍生的改进方法,有限元法,谱方法等,这些方法各有优缺点。
其中涡量-流函数法是解决二维不可压缩流动的有效方法。
作者本学期学习了研究生计算流体课程,为了熟悉计算流体的基本方法,选择使用涡量-流函数法计算不可压缩方腔驱动流问题,并且对于不同雷诺数下的解进行比较和分析,得出一些结论。
本文接下来的内容安排为:第2节提出不可压缩方腔驱动流问题,并分析该问题怎样使用涡量-流函数方法建立差分格式、选择边界条件。
计算流体力学大作业
1 提出问题[问题描述]Sod 激波管问题是典型的一类Riemann 问题。
如图所示,一管道左侧为高温高压气体,右侧为低温低压气体,中间用薄膜隔开。
t=0 时刻,突然撤去薄膜,试分析其他的运动。
Sod 模型问题:在一维激波管的左侧初始分布为:0 ,1 ,1111===u p ρ,右侧分布为:0 ,1.0 ,125.0222===u p ρ,两种状态之间有一隔膜位于5.0=x 处。
隔膜突然去掉,试给出在14.0=t 时刻Euler 方程的准确解,并给出在区间10≤≤x 这一时刻u p , ,ρ的分布图。
2 一维Euler 方程组分析可知,一维激波管流体流动符合一维Euler 方程,具体方程如下: 矢量方程:0U ft x∂∂+=∂∂ (0.1)分量方程:连续性方程、动量方程和能量方程分别是:222,,p u ρ()()()()2000u tx u u pt x x u E p E tx ρρρρ∂⎧∂+=⎪∂∂⎪⎪∂∂∂⎪++=⎨∂∂∂⎪⎪∂+⎡⎤∂⎣⎦+=⎪∂∂⎪⎩ (0.2)其中 22v u E c T ρ⎛⎫=+ ⎪⎝⎭对于完全气体,在量纲为一的形式下,状态方程为:()2p T Ma ργ∞=(0.3)在量纲为一的定义下,定容热容v c 为:()211v c Ma γγ∞=- (0.4)联立(1.2),(1.3),(1.4)消去温度T 和定容比热v c ,得到气体压力公式为:()2112p E u γρ⎛⎫=-- ⎪⎝⎭(0.5)上式中γ为气体常数,对于理想气体4.1=γ。
3 Euler 方程组的离散3.1 Jacibian 矩阵特征值的分裂Jacibian 矩阵A 的三个特征值分别是123;;u u c u c λλλ==+=-,依据如下算法将其分裂成正负特征值:()12222k k k λλελ±±+=(0.6)3.2 流通矢量的分裂这里对流通矢量的分裂选用Steger-Warming 分裂法,分裂后的流通矢量为()()()()()()()12312322232121212122f u u c u c u u c u c w γλλλργλλλγλλγλ⎛⎫⎪-++ ⎪=-+-++ ⎪ ⎪ ⎪-+-+++ ⎪⎝⎭+++++++++++(0.7)()()()()()()()12312322232121212122f u u c u c u u c u c w γλλλργλλλγλλγλ⎛⎫⎪-++ ⎪=-+-++ ⎪ ⎪ ⎪-+-+++ ⎪⎝⎭-----------(0.8)其中:()()()223321c w γλλγ±±±-+=- c 为量纲为一的声速:22Tc Ma ∞=(0.9)联立(1.3),(1.9)式,消去来流马赫数得:ργp c =3.3 一阶迎风显示格式离散Euler 方程组 10n n i i x i x i U U f f t xδδ+-++--++=∆∆ (0.10)得到()()n+1nj j 11U =U j j j j t f f f f x++---+∆⎡⎤--+-⎣⎦∆ 算法如下:① 已知初始时刻t=0的速度、压力及密度分布000,,j j j u P ρ,则可得到特征值分裂值0k λ±,从而求出流通矢量0j f ±;② 应用一阶迎风显示格式可以计算出1t t =∆时刻的组合变量1j U ,从而得到1t t =∆时刻的速度、压力及密度分布111,,j j j u P ρ;③ 利用1t t =∆时刻的速度、压力及密度分布111,,j j j u P ρ可得特征值分裂值1k λ±,从而求出流通矢量1j f ±;④ 按照步骤2的方法即可得到2t t =∆时刻的速度、压力及密度分布222,,j j j u P ρ;⑤ 循环以上过程即可得到()1t n t =+∆时刻的速度、压力及密度分布n+1n+1n+1,,j j j u P ρ。
计算流体力学CFD
洞内温度比洞外温度低所引起的温降 被雪球击中所引起的温降
迁移导数 当地导数
总的温降
计算流体力学CFD
物质导数
物质导数(运动流体微团的时间变化率)
物质导数
全微分:
对时间的全导数:
计算流体力学CFD
物质导数(运动流体微团的时间变化率)
物质导数 对时间的全导数:
物质导数在本质上与对时间的全导数相同。
计算流体力学CFD
方程不同形式之间的转换方程不同形式之间的转换dvvds空间位臵固定的有限控制体模型随流体运动的有限控制体模型dvdt随流体运动的无穷小微团模型方程不同形式之间的转换方程不同形式之间的转换dvvds空间位臵固定的有限控制体模型空间位臵固定的无穷小微团模型方程不同形式之间的转换方程不同形式之间的转换空间位臵固定的无穷小微团模型随流体运动的无穷小微团模型积分形式与微分形式的重要注释积分形式与微分形式的重要注释dvvds空间位臵固定的有限控制体模型随流体运动的有限控制体模型dvdt随流体运动的无穷小微团模型积分形式与微分形式的重要注释积分形式与微分形式的重要注释积分形式的方程允许出现间断微分形式的方程要求流动参数是连续的
随流体运动的无穷小微团模型
连续性方程
质量守恒定律
随流体运动的无穷小 计算流体力学C微FD 团模型
随流体运动的无穷小微团模型
连续性方程
质量守恒定律
随流体运动的无穷小 计算流体力学C微FD 团模型
随流体运动的无穷小微团模型
连续性方程:
随流体运动的无穷小 计算流体力学C微FD 团模型
方程不同形式之间的转换
采用流体微团模型来理解物质导数的概念:
沿流线运动的无穷小 流体微团,其速度等 于流线上每一计算点流体的力学当CFD
流体力学-大作业
流体力学-大作业一.选择题1.牛顿内摩擦定律适用于()。
A.任何流体B.牛顿流体C.非牛顿流体2.液体不具有的性质是()。
A.易流动性B.压缩性C.抗拉性D.粘滞性3连续介质假定认为流体()连续。
A.在宏观上B.在微观上C.分子间D.原子间4.在国际单位制中流体力学基本量纲不包括()。
A.时间B.质量C.长度D.力.5.在静水中取一六面体,作用在该六面体上的力有()A.切向力、正压力B.正压力 C.正压力、重力 D.正压力、切向力、重力6.下述哪些力属于质量力 ( )A.惯性力B.粘性力C.弹性力D.表面张力 E.重力7.某点存在真空时,()()A.该点的绝对压强为正值B.该点的相对压强为正值 c.该点的绝对压强为负值D.该点的相对压强为负值8.流体静压强的()。
A.方向与受压面有关 B.大小与受压面积有关 B.大小与受压面方位无关9.流体静压强的全微分式为()。
A.B.C.10.压强单位为时,采用了哪种表示法()。
A.应力单位B.大气压倍数C.液柱高度11.密封容器内液面压强小于大气压强,其任一点的测压管液面()。
A.高于容器内液面B.低于容器内液面C.等于容器内液面12.流体运动的连续性方程是根据()原理导出的。
A.动量守恒B. 质量守恒C.能量守恒D. 力的平衡13. 流线和迹线重合的条件为()。
A.恒定流B.非恒定流C.非恒定均匀流14.总流伯努利方程适用于()。
A.恒定流B.非恒定流C.可压缩流体15. 总水头线与测压管水头线的基本规律是:()、()A.总水头线总是沿程下降的。
B.总水头线总是在测压管水头线的上方。
C.测压管水头线沿程可升可降。
D.测压管水头线总是沿程下降的。
16 管道中液体的雷诺数与()无关。
A. 温度B. 管径C. 流速D. 管长17.. 某圆管直径d=30mm,其中液体平均流速为20cm/s。
液体粘滞系数为0.0114cm3/s,则此管中液体流态为()。
A. 层流B. 层流向紊流过渡C.紊流18.等直径圆管中紊流的过流断面流速分布是() A呈抛物线分布 B. 呈对数线分布 C.呈椭圆曲线分布 D. 呈双曲线分布19.等直径圆管中的层流,其过流断面平均流速是圆管中最大流速的() A 1.0倍 B.1/3倍 C. 1/4倍 D. 1/2倍20.圆管中的层流的沿程损失与管中平均流速的()成正比.A. 一次方B. 二次方C. 三次方D. 四次方21..圆管的水力半径是 ( )A. d/2B. d/3C. d/4D. d/5.22谢才公式中谢才系数的单位是() A. 无量纲 B. C. D. .23. 判断层流和紊流的临界雷诺数是()A.上临界雷诺数B.下临界雷诺数C.上下临界雷诺数代数平均D.上下临界雷诺数几何平均24.. 对于管道无压流,当充满度分别为()时,其流量和速度分别达到最大。
计算流体力学大作业(资料教育)
Case 1.二维方腔驱动流问题描述如图所示,特征长度为方腔边长,特征速度为u。
上边界以已知速度u移动,其它边界为静壁面。
试求在Re=100、1000、10000、100000时,空腔内流体的流动状态,比较不同Re流动特征的差异。
一.Re=100在一个正方形的二维空腔中充满等密度的空气,上边界以速度u移动,由Re=ud/ν,又ν=1.789×10-5m2/s,方腔每边长为l=0.1m,可求得速度u=0.01466m/s。
其它边界为静壁面。
同时带动方腔内流体流动。
速度矢量图总压等值线图水平中心线(y=0)上竖直速度分量(v)分布V-x竖直中心线(x=0)上水平速度分量(u)分布U-y不同Re方腔内流函数的分布情况Re=1000Re=10000Re=100000不同Re方腔内总压分布情况Re=1000Re=10000Re=100000方腔驱动流是数值计算中比较简单,具有验证性的一种流动情况,受到很多研究者的关注。
本文通过不同雷诺数观察方腔流动,所得结论如下:(1)当雷诺数较小时,腔中涡旋位置贴近腔体上壁面中部,随着雷诺数Re的增加,涡旋位置逐渐向下方靠近。
(2)随着雷诺数的增加,涡旋的位置逐渐靠近腔体中心。
(3)方腔壁面上的速度大于其他地方的速度。
Case2.圆管的沿程阻力1.问题描述如图,常温下,水充满长度l的一段圆管。
圆管进口存在平均速度u,壁面的当量粗糙高度为0.15mm。
试求在不同雷诺数下,计算该圆管的沿程阻力系数λ,分析比较Re与λ 的关系。
出口截面速度分布如下可见,出口截面流速分布较为明显,呈同心圆分布,内层流速偏大,外层靠近壁面处流速几乎为0,分层更为严重,边界层很薄。
Y=0截面速度分布图可以看出圆管水流湍流入口段及之后的流速发展趋势,而且显示流速变化的规律更为明显。
轴线压降圆管湍流中的压降,除了入口段压强分布因流速急剧上升而下降稍快外,管道后端速度呈充分发展状态,压降呈线性,即△p随L 的增加而降低。
计算流体力学大作业
计算流体力学大作业流体力学是研究流体运动和力学性质的物理学分支,广泛应用于各个领域,例如天气预报、航空航天工程、水力工程等。
本文将介绍流体力学的基本概念,并结合具体的应用案例进行分析和计算。
首先,我们来了解流体力学的一些基本概念。
流体是一种由分子或离子组成的具有流动性质的物质,包括气体和液体。
流体力学研究流体的运动规律和受力情况。
流体力学的研究对象主要包括流体的运动状态、速度场、压力场和力学性质。
流体力学的基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程描述了流体质量的守恒原则,即流体的质量既不会凭空消失也不会凭空增加。
动量守恒方程描述了流体的动量守恒原则,即流体在受力作用下会改变其速度和方向。
能量守恒方程描述了流体的能量守恒原则,即流体在受力作用下会改变其热能和动能。
接下来,我们将结合具体的应用案例进行流体力学的计算。
以水力工程为例,假设有一个水泵,流入口直径为15厘米,流出口直径为10厘米,水泵的转速为2000转/分钟。
我们需要计算水泵的流量和水速。
首先,我们可以使用质量守恒方程来计算流量。
根据质量守恒方程,流体的质量流量是恒定的。
我们可以根据流入口和流出口的横截面积和水速来计算质量流量。
假设流入口的水速为v1,流出口的水速为v2,流入口的横截面积为A1,流出口的横截面积为A2,则有以下公式:质量流量1=质量流量2ρ*A1*v1=ρ*A2*v2其中,ρ为水的密度,A1和A2分别为流入口和流出口的横截面积,v1和v2分别为流入口和流出口的水速。
我们可以通过这个公式计算出水泵的流量。
其次,我们可以使用动量守恒方程来计算水速。
根据动量守恒方程,流体在受力作用下会改变其速度和方向。
假设水泵在流出口施加了一个压力,我们可以通过动量守恒方程来计算出水速。
假设流入口的速度为v1,流出口的速度为v2,流入口的压力为P1,流出口的压力为P2,则有以下公式:ρ*A1*v1+P1=ρ*A2*v2+P2其中,ρ为水的密度,A1和A2分别为流入口和流出口的横截面积,v1和v2分别为流入口和流出口的水速,P1和P2分别为流入口和流出口的压力。
中科大计算流体力学CFD之大作业一
CFD 实验报告一姓名: 学号:一、题目:利用中心差分格式近似导数22/dx y d ,数值求解常微分方程x dx yd 2sin 22= (10≤≤x ) 00==x y 42sin 11-==x y 步长分别取x ∆=0.05, 0.01, 0.001,0.0001。
二、报告要求:1)列出全部计算公式和步骤;2)表列出程序中各主要符号和数组意义;3)绘出数值计算结果的函数曲线,并与精确解比较;4)比较不同差分格式和不同网格步长计算结果的精度和代价; 5)附源程序。
三、相关差分格式二阶导数22/dx y d 的三点差分格式有向前差分、向后差分和中心差分,表达式分别如下:()()()2212222122211222222j j jj j jj j j u u u u O x x xu u u u O x x x u u u u O x x x++--+--+∂=+∆∂∆-+∂=+∆∂∆-+∂=+∆∂∆一阶向前差分:一阶向后差分:二阶中心差分:代入微分方程可以得到差分方程,表达式分别如下:2122121122=sin 22=sin 22=sin 2j j j j j j j j j j j ju u u x xu u u x x u u u x x++--+--+∆-+∆-+∆一阶向前差分:一阶向后差分:二阶中心差分:对于三种差分格式,差分格式可以改写成AY b =的形式,其中A 是相同的,非齐次项b 不同,如下所示:2112112112A -⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥-⎣⎦系数矩阵 ()()()021123221sin 2sin 2sin 2k k y x x b x x x x y ---⎡⎤⎢⎥∆⎢⎥⎢⎥=⎢⎥∆⎢⎥⎢⎥∆-⎣⎦一阶向前差分 ()()()()2202322121sin 2sin 2sin 2sin 2k k x x y x x b x x x x y -⎡⎤∆-⎢⎥∆⎢⎥⎢⎥=⎢⎥∆⎢⎥⎢⎥∆-⎣⎦一阶向后差分 ()()()()21022322211sin 2sin 2sin 2sin 2k k x x y x x b x x x x y --⎡⎤∆-⎢⎥∆⎢⎥⎢⎥=⎢⎥∆⎢⎥⎢⎥∆-⎣⎦二阶中心差分 求解AY b =可以得到各节点y 的值[]T1221k k Y y y y y --=。
计算流体力学大作业
剪切波速(m/s) 130 220 420 800
图 1 框架结构平面和立面图(单位:mm)
附
录
水平地震影响系数最大值
特征周期表 (s)
地震影响系数曲线
2 max
(
0.45 max
Tg T ) 2 max
[2 0.2 1 (T 5Tg )]max
0 0 .1
e(i)=-exp(-0.05*w(i)*0.02)*(w(i)/sqrt(1-0.05^2)*sin(wd(i)*0.02)); f(i)=exp(-0.05*w(i)*0.02)*(cos(wd(i)*0.02)-0.05/sqrt(1-0.05^2)*sin(wd(i)*0.02) ); g(i)=(-1/0.02+exp(-0.05*w(i)*0.02)*((w(i)/sqrt(1-0.05^2)+0.05/(0.02*sqrt(1-0.0 5^2)))*sin(wd(i)*0.02)+cos(wd(i)*0.02)/0.02))/K(i); h(i)=(1-exp(-0.05*w(i)*0.02)*(0.05/sqrt(1-0.05^2)*sin(wd(i)*0.02)+cos(wd(i)*0 .02)))/(0.02*K(i)); C=-M(i)*D; end for i=1:3 for j=2:2503 WY(1,i)=Y0; SD(1,i)=V0; C(1,i)=0; WY(j,i)=c(i)*C(j-1,i)+d(i)*C(j,i)+a(i)*WY(j-1,i)+b(i)*SD(j-1,i); SD(j,i)=g(i)*C(j-1,i)+h(i)*C(j,i)+e(i)*WY(j-1,i)+f(i)*SD(j-1,i); end end A1=[V(1,1);V(2,1);V(3,1)]; A2=[V(1,2);V(2,2);V(3,2)]; A3=[V(1,3);V(2,3);V(3,3)]; for j=1:2503 wy=WY(j,1)*A1+WY(j,2)*A2+WY(j,3)*A3; y1(j)=wy(1,1); y2(j)=wy(2,1); y3(j)=wy(3,1); end x=0:0.02:0.02*2502; figure(1) plot(x,y1) xlabel('振动时间 /s','FontSize',12) ylabel('第一层位移 /m','FontSize',12) title('1940El Centro ( NS) 地震动作用下结构的动力时程反应分析 ','FontName',' 隶书 ','FontSize',12) figure(2) plot(x,y2) xlabel('振动时间 /s','FontSize',12) ylabel('第二层位移 /m','FontSize',12) title('1940El Centro ( NS) 地震动作用下结构的动力时程反应分析 ','FontName',' 隶书 ','FontSize',12) figure(3)
中科大计算流体力学CFD之大作业一
中科大计算流体力学CFD之大作业一中科大计算流体力学CFD之大作业一中科大计算流体力学(CFD)课程是一门非常实践性的课程,着重于学生对流体流动过程的数值模拟和分析。
在课程结束前的大作业一是一个很好的机会,通过完成一个真实流体力学问题的数值模拟,学生可以将所学的知识应用到实际的问题中,提高对流体流动过程的理解。
我选择的大作业一是模拟一个风扇在房间中的空气流动。
这是一个常见的问题,也是一个比较复杂的数值模拟任务。
通过模拟风扇产生的气流,我们可以了解风扇的性能,以及气流对房间内温度和空气质量的影响。
在开始模拟之前,首先需要确定模拟的几何模型。
我选择了一个具有一个大门和一个窗户的简单房间模型。
这个模型符合实际情况,而且不会太复杂,方便进行数值模拟。
接下来,需要确定模拟中的物理模型和边界条件。
根据风扇产生的气流特性,我采用了湍流模型,并对大门和窗户设置了适当的进出口边界条件。
接下来是最关键的一步,即选择和优化数值模拟的方法。
我使用了基于有限体积法的求解器,在计算网格上进行离散,将房间划分为小的网格单元。
然后,我对求解器的算法和网格进行了优化,以提高计算效率和精度。
通过进行一系列的数值实验,我成功地优化了数值模拟方法,并获得了较为准确的结果。
最后,我对模拟结果进行了分析和讨论。
通过对不同位置和高度的温度和速度分布进行分析,我得出了以下结论:风扇对房间中的温度和空气质量有着显著影响;风扇的位置和角度对气流的分布和速度分布有着重要影响;房间的尺寸和几何形状也会对气流分布产生影响。
通过完成这个大作业一,我不仅提高了CFD方法的理论知识,还掌握了实际应用的技能。
在模拟中,我还学习了如何进行参数优化和结果分析。
最重要的是,我进一步认识到了流体力学的复杂性和重要性。
总之,中科大计算流体力学(CFD)大作业一是一次非常有意义的学习经历。
通过模拟一个风扇在房间中的空气流动,我不仅巩固了所学的知识,还学会了如何应用这些知识解决实际问题。
中科院计算流体力学最新讲义CFD第讲求代数方程组及网格生成精品文档
知识回顾: 有限体积法基本流程
U tIJ 1 IJ F n d s 1 IJ F vn d s0
无粘项常用方法 (流过AB边的通量):
a. 利用周围点的值,计算出(I+1/2,J) 点处的物理量; 直接利用“差分格式”
n 1 n 1 n 1 n 1
2
i 1 ,j i 1 ,j i,j 1 i,j 1 i,j
i N ,N 1 .1 .;j. .N ,N 1 .1 ..
n
n+1
n+1
n
n+1
n
n+1
n+1
n+1
n
特点: 两次扫描,反复迭代
Copyright by Li Xinliang
0 ann
为了计算稳定,通常使用主元消去法 列主元消去法; 全主元消去法 计算量: 乘法:n3/3n2n/3
加法:n3/3n2/2n5/6
O(n3 / 3)
xnbn/ann
n
xi [bi aikxk]/aii ki1
优点: 简单精确,缺点:计算量大
Copyright by Li Xinliang
l u jk,k1,..n.
k mmj
m1
k1
lik(aik limumk)/ukk ik1,..n. m1
对角线上不能有0, 计算之前先交换矩阵A 的元素,将主值交换到对角线上
Copyright by Li Xinliang
5
回代过程
Axb
LUXb
1 l21 1
y1 b1
t
x2
中科大计算流体力学CFD之大作业二
CFD 实验报告二姓名: 学号:一、题目求解Poisson 方程y x y x cos sin 2222=∂∂+∂∂ψψ, 10≤≤x , 10≤≤y , 0|0==x ψ,y x ==1|ψ2cos 1sin y-, ==0|y ψ2sin x -, x y ==1|ψ21cos sin x -,描出等值线:05.0=ψ, 0.2, 0.5, 0.75, 1.要求所用方法:(1) Jacobi, G-S 选一;SOR ,线SOR ,块SOR 选一。
迭代法要求误差610-;(2) CG 方法,MG 方法选一。
二、报告要求1)简述问题的性质、求解原则; 2)列出全部计算公式和步骤;3)表列出程序中各主要符号和数组意义; 4)计算结果与精确解比较5)结果分析(方案选择、比较、讨论、体会、建议等); 6)附源程序。
三、问题简要分析3.1问题性质从题目给出的问题可以看出,该方程是一个二阶线性非齐次偏微分方程,并且给出了四个边界条件,更具定解条件,所以该方程是可以求解的。
3.2求解原则题中是关于x 和y 的二阶导数,因此可以用二阶中心差分离散,即用正五点格式离散泊松方程。
将差分方程整理成以五对角矩阵为系数的线性方程组,用Jacobi 或者CG 或者SOR 等迭代方法求解线性方程组,即可得到函数,i j ψ的在网格点处的离散值。
同时,计算域为Lx Ly ⨯的矩形区域,划分结构网格,均匀步长,设x 方向网格步长x ∆,y 方向网格步长y ∆,则x 方向网格点数为m=/1Lx x ∆+, y 方向网格点数为n=/1Ly y ∆+。
四、计算公式和步骤4.1 精确解的计算题中已知四个边界条件,可以通过现已有的解析求解不难求得精确解(解析解)为1sin cos 2x y xy ψ=-⨯+。
4.2迭代求解一般过程迭代法是求解离散代数方程组的主要方法。
假如我们对题目中的PDE 给定一个离散格式,则对每一个确定的离散点(i ,j ),PDE 转化为FDE ,为,1,,(,sin[(1)]cos[(1)])i j a b c d F i x i y ψψψ=-∆-∆,其中,,~a b c d ψψ是离散格式中所有与,i j ψ有关的点,函数1F 中所有元素都是线性叠加,即1F 是线性多元函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CFD 实验报告一
姓名: 学号:
一、题目:
利用中心差分格式近似导数22/dx y d ,数值求解常微分方程
x dx y
d 2sin 2
2= (10≤≤x ) 00==x y 4
2
sin 11-
==x y 步长分别取x ∆=0.05, 0.01, 0.001,0.0001。
二、报告要求:
1)列出全部计算公式和步骤;
2)表列出程序中各主要符号和数组意义;
3)绘出数值计算结果的函数曲线,并与精确解比较;
4)比较不同差分格式和不同网格步长计算结果的精度和代价; 5)附源程序。
三、相关差分格式
二阶导数22/dx y d 的三点差分格式有向前差分、向后差分和中心差分,表达
式分别如下:
()()()22122
22122
211
222
222j j j
j j j
j j j u u u u O x x x
u u u u O x x x u u u u O x x x
++--+--+∂=+∆∂∆-+∂=+∆∂∆-+∂=+∆∂∆一阶向前差分:一阶向后差分:二阶中心差分:
代入微分方程可以得到差分方程,表达式分别如下:
212
212
11
22=sin 22=sin 22=sin 2j j j j j j j j j j j j
u u u x x
u u u x x u u u x x
++--+--+∆-+∆-+∆一阶向前差分:一阶向后差分:二阶中心差分:
对于三种差分格式,差分格式可以改写成AY b =的形式,其中A 是相同的,
非齐次项b 不同,如下所示:
2112112112A -⎡⎤⎢⎥-⎢⎥
⎢
⎥=⎢⎥
-⎢⎥
⎢⎥-⎣⎦
系数矩阵 ()()()02112
3221sin 2sin 2sin 2k k y x x b x x x x y ---⎡⎤
⎢⎥
∆⎢⎥
⎢
⎥=⎢⎥∆⎢⎥
⎢⎥
∆-⎣⎦
一阶向前差分 ()()()()2202
322121sin 2sin 2sin 2sin 2k k x x y x x b x x x x y -⎡⎤∆-⎢⎥∆⎢⎥
⎢
⎥=⎢⎥∆⎢⎥
⎢⎥∆-⎣⎦一阶向后差分 ()()()()2102
232
2211sin 2sin 2sin 2sin 2k k x x y x x b x x x x y --⎡⎤
∆-⎢⎥∆⎢⎥
⎢
⎥=⎢⎥∆⎢⎥⎢⎥
∆-⎣
⎦二阶中心差分 求解AY b =可以得到各节点y 的值[]T
1
22
1k k Y y y y y --=。
四、计算公式和步骤;
1.关于精确解的推导:
已知
22
sin 2d y
x dx =,对x 进行两次积分,得到121
sin 24
y x C x C =-++,再结合
边界条件00
==x y 和4
2
sin 11-==x y 得到相对应的1C 和2C ,确定最后精确解为:
1
sin 24y x x =-+。
2.关于数值求解方法:
对于方程组AY b =可直接求解,也可以使用追赶法求解,下面介绍简单追赶法求解三对角方程组的过程。
对于三对角方程组:
11112222211111=n n n n n n n n n y b d c y b a d c y b a d c a d y b -----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥
⎢⎥⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢
⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
系数矩阵A 中仅三对角线上的数值不全为0,其余位置上的数值全为0,是典型的对角占优的三对角矩阵,利用高斯消去法,经过n-1次消元可以化为同解方程组:
11122211111=11n n n n n y q u y q u y q u y q ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥
⎢⎥⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢
⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
如上所示,求这些值的过程(即消元过程)称为追:
()
()
()()()111111111/,/,
/2,...,1/2,...,i i i i i i i i i i i i u c d q b d u c d u a i n q b q a d u a i n ---===-=-=--=
再利用回代过程求出方程组的各变量:
()1
,1,2,...,1n n i i i i y q y q u y i n n +==-=--
这一逆序求变量的过程(回代过程)称为赶。
五、计算结果与分析
根据题意需要分别取步长x ∆=0.05, 0.01, 0.001,0.0001进行计算,因此采用MATLAB 进行编程运算,然后将数值解与精确解进行比较,如下图所示:
∆=0.05 步长x
∆=0.01步长x
∆=0.001
步长x
∆=0.0001
步长x
从上面四个图可以看出,这几个格式的精确解和数值解之间符合度很好,其中中心差分格式精确度更高,并且随着步长的减小与精确解的符合度越高。
下面将计算结果用表格的形式列出:
)
表1 不同格式不同步长计算耗时(单位s
由不同格式不同步长计算耗时和计算精度的结果对比可知:
1、从时间代价来看,三种格式采用追赶法求解所需要的时间基本一样,从计算精度来看,中心差分格式的计算精度明显优于向前差分和向后差分格式。
2、随着步长的减小,虽然求解的计算精度增高,但所需要的时间却大大增加。
3、对于这三种格式而言,中心差分格式明显优于另两种格式。
4、从上可知,提高计算精度可以通过减少步长和采用高阶格式的方法,由于减
少步长需要用时间作为代价,所以采用高阶格式相对而言比较好。
六、源程序及其说明
符号说明:
源程序如下:
clear; %清空
long=1;%变量取值范围
dx=0.05; %设置步长
n=long/dx; % 此处n=节点数—1
y0=0;%设定始端边界条件
yl=1-sin(2)/4; %设定末端边界条件
A=zeros(n-1,n-1);%设置系数矩阵A
A(1,1:2)=[-2 1];%始端边界
for i=2:n-2
A(i,i-1:i+1)=[1,-2,1];
end
A(n-1,n-2:n-1)=[1,-2];%末端边界
b=zeros(n-1,1);%设置矩阵b
for i=1:n-1
% b(i)=dx^2*sin((i-1)*2*dx); %一阶向前差分
% b(i)=dx^2*sin((i+1)*2*dx); %一阶向后差分
b(i)=dx^2*sin(i*2*dx); %中心差分
end
b(1)=b(1)-y0;%设置边界条件
b(n-1)=b(n-1)-yl;
x=dx*(0:n);%求解精确解
Y_e=x-sin(2*x)/4;
disp('~~~~~~~~~~~~~~~~~~~SC16005041李文建~~~~~~~~~~~~~~~~~~~~~~~~'); disp(' ');
tic; % 追赶法求解并开始计时
a=1;
c=-2;
u(1)=a/c;
q(1)=b(1)/c;
for i=2:n-2
u(i)=a/(c-u(i-1)*a);
end
for i=2:n-1
q(i)=(b(i)-q(i-1))/(c-u(i-1)*a);
end
y(n-1)=q(n-1);
for i=n-2:-1:1
y(i)=q(i)-u(i)*y(i+1);
end
Y(2:n)=y(1:n-1);%加上边界值
Y(1)=y0;
Y(n+1)=yl;
toc; %结束计时
T_E=abs(Y-Y_e); %计算截断误差Q=sum(T_E.^2); %求平方和为精度disp('所求计算精度为:');
Q
plot(x,Y,'m') %画出差分近似解hold on%将两个曲线绘在同一图上plot(x,Y_e,'g') %画出精确解。