概率论与数理统计----第五章大数定律及中心极限定理

合集下载

概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计第五章 大数定律及中心极限定理
解: 设Xk为第k次炮击炮弹命中的颗数(k=1,2,…,100),
在100次炮击中炮弹命中的总颗数
100
X = ∑ Xk k =1
相互独立地服从同一分布,
E(Xk)=2, D(Xk)=1.52 (k=1,2,…,100)
随机变量
∑ 1
100 × 1.5
100 k =1
(
X
k

2)
=
1 15
(
X

200)
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 (随机变量序列独立同分布且数学期望存在)
n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
给出了“频率稳定性”的严格数学解释. 提供了通过试验来确定事件概率的方法. 是数理统计中参数估计的重要理论依据之一.
§5.2 中心极限定理
望 E( Xk ) = µ (k = 1,2,"),则对于任意ε > 0,有
∑ lim
n→∞
P {|
1 n
n k =1
Xk

µ
|<
ε
}
=
1
说明
伯努利大数定理是辛钦定理的特殊情
况。n个随机变量的算术平均值以概率收敛于算
术平均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 算术平均值依概率收敛于数学期望
= 1 − P { V − 100 ≤ 0.387 } (10 12 ) 20
∫ 0.387
≈ 1−
1
e − t 2 dt
−∞ 2π
= 1 −Φ (0.387) = 0.348
所以 P{V > 105} ≈ 0.348

概率论与数理统计 第五章

概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列

n
i =1
Xi −
∑ E(X
i =1
n
i
)

n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。

数学中研究大量的工具是极限。

因此这一章学习概率论中的极限定理。

第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。

意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。

大数定律解释了这一结论。

首先介绍切比雪夫不等式。

一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。

切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。

进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。

当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。

二、依概率收敛随机变量序列即由随机变量构成的一个序列。

不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。

只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。

依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。

注意这三个大数定律的条件有何异同。

定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。

定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。

伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。

伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。

5大数定律与中心极限定理 课件(共31张PPT)- 《概率论与数理统计(第2版)》同步教学(人民邮电

5大数定律与中心极限定理 课件(共31张PPT)- 《概率论与数理统计(第2版)》同步教学(人民邮电

三、大数定律
第5章 大数定律及中心极限定理 12
定理4(独立同散布大数定律)
设随机变量序列X1, X2, , Xn, 独立同分布,若E Xi ,D Xi = 2 ,
i 1, 2, 。则对任意 0,有
lim P n
1 n
n i 1
Xi
1.
这里随机变量序列X1, X2, , Xn , 独立同分布指随机变量序列相互独立, 且序列中随机变量的分布类型及参数均相同。
例2 设X ~ N (, 2,) 用切比雪夫不等式估计概率P( X 3 ) 。

因为 =3 ,由切比雪夫不等式得
P X EX DX 2
P
X
3
D(X )
3 2
=
1 9
一、切比雪夫不等式
第5章 大数定律及中心极限定理 7
例3
设随机变量 X 的方差 D X 0,求证,X 服从参数为 c 的退化散布。
n
n i 1
X
2 i
P 1 n
n i 1
E
X
2 i
E
X
2 i
D Xi
E2
Xi
三、大数定律
第5章 大数定律及中心极限定理 17
例4续
01 当Xi B(m, p)时,E Xi =mp, E
X
2 i
=mp 1 p m2 p2, 有
OPTION
X P mp,
1 n
n i 1
X
2 i
P mp 1
p
m2 p2
02 OPTION
当X i
E 时,E
Xi
=
1
,
E
X
2 i
=
2

概率论与数理统计 第五章 大数定律与中心极限定理

概率论与数理统计 第五章 大数定律与中心极限定理
nA 一种提法是: “当 n 足够大时,频率 n 与概率 p 有较大偏差
的概率很小” ,用数学语言表达,就是要证明: 0 ,有
nA nA lim P p 0 lim P p 1 n ,或 n n . n
另一种提法是:研究随机变量 n A 的分布的极限行为,即讨 论分布函数
nA lim P p 0 lim P n n 或 n
nA p 1 . n
证 引入
1 , 第i次试验中事件A发生 Xi ,i 1 , 2 , , n , 0 , 第i次试验中事件A不发生
下面我们进一步来讨论贝努利试验.若记 n A 为 n 次贝努利试
nA 验中事件 A 发生的次数, 则事件 A 发生的频率为 n . 所谓 “频 率的稳定性” ,无非是指当试验次数 n 无限增大(即 n )时,
nA 频率 n 无限接近于某个固定常数.这个固定的常数就是“事 件 A 在一次试验中发生的的概率 p” . nA 由此可见,讨论频率 n 的极限行为,是理解概率论中最基本
2019年1月14日星期一
11 / 102
§5.1
大数定律
作为预备知识,我们先明确随机变量序列收敛的
相关概念,同时给出一个重要的不等式,它是以下理 论证明所用的主要工具之一.
定 义 1.1 设 a 是常数,对于随机变量序列 ,如果 0 ,有
X1 , X 2 ,
, Xn ,
lim P
n
个常数,即在这个常数的附近摆动,这就是所谓的“频
率稳定性”.但对这一点,至今为止我们尚未给予理论 上的说明.另外,在第二章我们给出了二项分布的泊松 逼近,那么更一般的近似计算方案又是怎样呢?

第五章 大数定律与中心极限定理 《概率论》PPT课件

第五章  大数定律与中心极限定理  《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即

概率论与数理统计 第五章

概率论与数理统计 第五章
n →∞ n →∞
∑ X − ∑µ
k =1 k =1
k
Bn
≤ x} = ∫
ቤተ መጻሕፍቲ ባይዱ
x
1 2π
−∞
e
t2 − 2
dt=Φ(x).
说明: 说明
在定理条件下, r.v. Zn =
∑ X − ∑µ
k =1 k k =1
n
n
k
Bn
当 n很 大
时, 近似地服从正态分布N(0, 1),由此当n很大时,
∑X
k =1 n
n
t2 2
(本定理 可以由独立同分布 的中心极限定理证 明)
说明: 说明 本定理不难看出 :若ηn
~ b(n,p), 有
t2 2
b ηn − np 1 lim P a < e dt = Φ(b) − Φ(a), ≤ b = ∫ a n →∞ npq 2π 因 而 当 n较 大 时 , 我 们 可 以 用 正 态 分 布 近 似 计 算 二 项 分布 的 概率 。
2. 切比雪夫大数定律: 设X1 , X 2 , L Xn , L 是由两两互 不相关的随机变量所构成的序列, 每一个随机变量都 有有限的方差, 并且它们有公共的上界 , D(X1 ) ≤ C, D(X 2 ) ≤ C, L , D(Xn ) ≤ C, L 则对∀ε > 0, 都有 1 n 1 n lim P ∑ Xk − ∑ E(Xk ) < ε = 1. n →∞ n k =1 n k =1
k
2 , k = 0,1, L ,90000. 3 ≤ 30500}
90000-k
显然直接计算十分麻烦, 我们利用德莫佛-拉普拉斯定理 来求它的近 似 值 即有P{29500 < X ≤ 30500} 29500-np = P < np(1-p ) 30500-np ≤ np(1-p ) np(1-p ) X-np

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

7 8.75E-06 6.2863E-05 7.19381E-05 7.28862E-05 7.2992E-05
8 3.65E-07 7.3817E-06 8.93826E-06 9.1053E-06 9.124E-06
4 0.01116 0.01494171 0.015289955 0.015324478 0.01532831
5 0.001488 0.00289779 0.003048808 0.003063976 0.00306566
6 0.000138 0.00046345 0.0005061 0.000510458 0.00051094
ln n) + 1 ( 2
ln n) = 0
Dn
=
E
2 n
=
1 2
(ln n) +
1 2
(ln n)
=
ln n

但 1
n2
n
D( i ) =
i =1
1 n2
n i =1
Di
=
1 n2
n
ln i
i =1
1 n2
n
ln n =
i =1
ln n n
→0
满足马尔可夫条件,{
}服从大数定律
n
注意: 辛钦大数定律只要求一阶矩存在,但是 随机变量序列是独立同分布的. 若所讨论的 随机变量序列是不服从同分布的要求或不独 立可应用切比雪夫大数定律 或者马尔可夫大 数定律 .
(2)设 n 为 n 次独立重复试验中 A 出现的次数, p 是事件 A 在每次试验中出现的概率, 0 ,

lim
n→
P{
n
n

p

概率论与数理统计 第三版 第五章 大数定律和中心极限定理

概率论与数理统计 第三版 第五章 大数定律和中心极限定理
上页 下页 返回
依概率收敛的序列还有以下性质: 设 X n p a, Yn pb, 且函数 g(x,y) 在点 (a,b)连续,
具有数学期望 E(X ) 和方差 D(X ) , 0 ,有
P{
X
E
(
X
)

}≤
D(
X
2
)
,

P{ X E(X ) }≥1 D(X ) .
2
上页 下页 返回
证 以连续型随机变量X为例.
P{ X E( X ) ≥} f (x)dx x E ( X ) ≥
≤ x E ( X ) ≥
x E(X ) 2
E(
X
k
)
,D(
X
k
)
2
(k
1,2,
上页
,
n).
下页
返回
则对任意的ε>0, 有
1
lim P{ n n
n
Xk
k 1
}1
证 由于
lim P X 1.
n
E
1 n
n k 1
X
k
1 n
n k 1
E(X
k
)
1 n
n
,
D
1 n
n k 1
Xk
1 n2
n
D
k 1
XK
1 n2
n
2
2
n
,
上页 下页 返回
由切比雪夫不等式知
P
1 n
n
Xk
k 1
≥1
2
n
2
.
令n , 并注意到概率不能大于1, 即得
1
lim
n
P

概率论与数理统计 第五章

概率论与数理统计 第五章

贝努里定理. 它的叙述如下:设是n次重复独立 对于任意给定的ε>0,有
lim P{| nA p | } 1
n
n
lim P{| nA p | } 1
n
n
其中nA/n是频率,p是概率,即次数多
时事件发生的频率收敛于概率.表示频率的稳定性.
定理3
lim P{|
n
1 n
n i 1
Xi
| } 1
数理统计的方法属于归纳法,由大量的资料作依据,而不
是从根据某种事实进行假设,按一定的逻辑推理得到的.例
如统计学家通过大量观察资料得出吸烟和肺癌有关,吸烟
者得肺癌的人比不吸烟的多好几倍.因此得到这个结论.
数理统计的应用范围很广泛.在政府部门要求有关的资
料给政府制定政策提供参考.由局部推断整体,学生的假期
第五章 大 数 定 律 与 中 心 极 限 定 律
§ 5.1大 数 定 律
定理1(切比雪夫定理) 设X1,X2,...,Xn,...是相互独立的随机变
量序列若存在常数C,使得D(Xi)≤C. (i=1,2,...n),则对任意给
定的ε>0,有
lim P{|
n
1 n
n i 1
[Xi
E( X i )] |
7200 6800 2
200 1
D 2
1
2100 2002
0.95
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度 不高.为此我们研究下面的内容.
2021/9/5
10
§ 5.2 中 心 极 限 定 理
在随机变量的一切可能性的分布律中,正态分布占有特殊的

《概率论与数理统计》课件第五章大数定律及中心极限定理

《概率论与数理统计》课件第五章大数定律及中心极限定理
有极其重要的地位?
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为

概率论与数理统计第5章

概率论与数理统计第5章

2、定理以数学形式证明了随机变量X
1
,
X
的算术平均
n
X

1 n
n i 1
X i接近数学期望E( X k ) (k
1,2, n),这种接近
说明其具有的稳定性
这种稳定性的含义说明算术平均值是依概率收敛的意义下 逼近某一常数.
1.(2010-1)设 n 为n次独立重复试验中事件A发生的次数,p是事件
10
3.(2009 1)
设X i

0, 1,
事件A不发生 事件A发生 (i 1, 2,
,100),且P(A) 0.8,
100
X1, X 2 , , X100相互独立,令Y Xi则由中心极限定理知Y 近似服从于 i 1
正态分布,其方差为________ .
4.(2008 -10)设总体X的分布律为P{X 1} p, P{X 0} 1- p, 其中0 p 1.
P{|
m n

p
|
}1

ln im
P{|
m n

p
|

}
0
注: 贝努里大数定律表明,当重复试验次数n充分 大时,事件A发生的频率m/n与事件A的概率p有较 大偏差的概率很小.
事件发生的频率可以代替事件的概率.
5.2.2 独立同分布随机变量的切比雪夫大数定律
定理5-3
设随机变量X
1
,
X

2
,X
n
,
是独立同分布随机变量序列,
E( Xi ) , D( Xi ) 2 (i 1, 2, )均存在,则对任意 0有
lim{|
n

概率论-第5章 大数定律及中心极限定理

概率论-第5章 大数定律及中心极限定理

§1 大数定律
一、问题的引入
生产过程中的 字母使用频率 废品率 启示:从实践中人们发现大量测量值的算术平均值 有稳定性.
大量抛掷硬币 正面出现频率
§1 大数定律
一、问题的引入
大数定律的概念 概率论中用来阐明大量随机现象平均结果的 稳定性的一系列定理,称为大数定律(law of large number)
§2 中心极限定理
即考虑随机变量X k (k 1, n)的和 X k的标准化变量
k 1 n
Yn
X
k 1
n
k
E ( X k )
k 1 n
n
D ( X k )
2
说明每一个随机变量都有相同的数学期望。
§1 大数定律
检验是否具有相同的有限方差?

Xn P
2
( na ) 1 2 2n
2 n
2
0 1 1 2 n
2
( na ) 1 2 2n
2
1 2 a , E ( X ) 2( na ) 2 2n 2 ) [ E ( X n )]2 a 2 . D( X n ) E ( X n
使得当 x a y b 时,
g( x , y ) g(a , b)பைடு நூலகம் ,
§1 大数定律
于是 { g( X n , Yn ) g(a, b) }
{ X n a Yn b }
X n a Yn b , 2 2
§2 中心极限定理
自从高斯指出测量误差服从正态分布之后,人 们发现,正态分布在自然界中极为常见.
如果一个随机变量是由大量相互独立的随机因 素的综合影响所造成,而每一个别因素对这种综合 影响中所起的作用不大. 则这种随机变量一般都服 从或近似服从正态分布. 现在我们就来研究独立随机变量之和所特有 的规律性问题.

第5章 大数定律及中心极限定理

第5章  大数定律及中心极限定理
定理2(辛钦大数定律) 设随机变量序列X1,X2, … 相互独立, 服从同一分布,具有数学期E(Xi)=μ, i=1,2,…, 则对于任意正数ε ,有
辛钦
1 n lim P{| X i | } 1 n n i 1

1、辛钦大数定律为寻找随机变量的期望值 提供了一条实际可行的途径.
2、切比雪夫大数定律是辛钦定理的特殊情况. 3、辛钦定理具有广泛的适用性.
例1 在一个罐子中,装有10个编号为0-9的同样 的球,从罐中有放回地抽取若干次, 每次抽一个, 并记下号码. 1 第k次取到号码 0 设 Xk = ,k=1,2, … 0 否则 问对序列{Xk}能否应用辛钦大数定律?
即有
n X k
k 1
n
其中X k ( k 1,2,, n)的分布律为 PX k i p i (1 p)1 i , i 0,1
由于E ( X k ) p, D( X k ) p(1 p) k 1,2,, n),
由定理 4得 n X k np n np lim P{ x } lim P{ k 1 x} n n np(1 p) np(1 p )
V 20 5 105 20 5 PV 105 p 100 12 20 100 12 20
V 20 5 p 0.387 100 12 20
V 20 5 1 p 0.387 100 12 20
n 1 P Xk 1 2 n k 1 上式中令 n 得 1 n lim P{| X i | } 1 n n i 1
n 2
说明
1 n 1、定理中{| X i | }是指一个随机事件, n i 1 当n 时,这个事件的概率趋于1.

第五章 大数定律及中心极限定理

第五章 大数定律及中心极限定理

解:(1)由X~b(300,1/4)知,E(X)=np=75, D(X)= npq =300*1/4*3/4=225/4.所以所求概率为:
225 P{| X − E ( X ) |≤ 50} ≥ 1 − 502 = 0.9975 4
(2)由X~b(1000,1/4)知, E(X)=250, D(X)=375/2.所以
依概率收敛的意义
依概率收敛即依概率1收敛。随机变量序列{ X n }依概率 收敛于a,说明对于任给的ε > 0,当n很大时,事件 “ xn − a < ε”的概率接近于1,但正因为是概率,所以不排 除小概率事件“ xn − a ≥ ε”发生。所以说依概率收敛是不 确定现象中关于收敛的一种说法。
例 设在每次试验中,事件A发生的概率为1/4. (1)300次重复独立试验,以X记A发生的次数.用切 比雪夫不等式估计X与E(X)的偏差不大于50的 概率; ; (2)问是否可用0.925的概率,确信在1000次试验 中, A发生的次数在200到300之间.
数学期望 E ( X i )和方差 D( X i )都存在( i = 1,2, L),且D( X i ) < C ( i = 1,2,L),则对任意给定的 ε > 0,有 1 n lim P ∑ [ X i − E ( X i )] < ε = 1 n→ ∞ n i =1
切比雪夫定理的特殊情况
定理 序列, 设X 1 , X 2 , L , X n , L是相互独立的随机变量 序列,
有相同的数学期望和方 差,E ( X i ) = µ , D( X i ) = σ 2 ( i = 1,2, L)。则对任意给定的 ε > 0,有 1 n lim P ∑ X i − µ < ε = 1 n→ ∞ n i =1 即 X →µ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>

+∞
−∞
e
x2 − 2
dx
则称随机变量序列{Xn}服从中心极限定理 服从中心极限定理 则称随机变量序列
定理(列维—林德贝格定理(i.i.d下中心极限定理 林德贝格定理(i.i.d下中心极限定理) 定理(列维 林德贝格定理(i.i.d下中心极限定理)) 为独立同分布序列, μ,方差 设X1,X2,…,X n,…为独立同分布序列,期望μ,方差 ,X 为独立同分布序列 期望μ, 则当n充分大时, σ2>0, 则当n充分大时,
D( X ) P{| X − E( X ) |≥ ε } ≤ 2 ε
P{| X − E( X ) |< ε } ≥ 1 −
D( X )
ε
2
xn − x e 例5.2.1.设X~ f ( x) = n! 设 0
x>0
用切贝绍夫不等式证明
x≤0
n P{0 < X < 2(n + 1)} ≥ n+1
a−µ
P{X>a}=1 − Φ( a − µ )
σ
)
X~B(n,p) ~
σ
一般地,若在一次实验中成功的概率为 若在一次实验中成功的概率为p(0<p<1),独立重复 定义:一般地 若在一次实验中成功的概率为 独立重复 进行n次 这 次中实验成功的次数 服从的分布为二项分布: 次中实验成功的次数X服从的分布为二项分布 进行 次,这n次中实验成功的次数 服从的分布为二项分布
此处区间越小越精确,习 此处区间越小越精确 习 惯上取长度为1的对称区 惯上取长度为 的对称区 间
m + 0.5 − np m − 0.5 − np ) − Φ( ). = Φ( npq npq
X~B(n,p)
m P{ X = m} = Cn pm (1 − p)n−m
m = 0,1,2,..., n
5
0.17635
(2)np=λ=5,应用 应用Possion逼近 逼近: 应用 逼近
55 −5 P{ X = 5} ≈ e =0.17547 5!
(3)应用正态逼近 X~N(5,4.95) 应用正态逼近: 应用正态逼近 P{X=5}=P{4.5<X≤5.5} ≈ Φ( 5.5 − 5) − Φ( 4.5 − 5) =0.1742 4.95 4.95 显然,本例中 逼近较正态逼近更精确. 显然 本例中Possion 逼近较正态逼近更精确 本例中
X = ∑ Xi
i =1
200
由独立同分布的中心极限定理得: 由独立同分布的中心极限定理得 EX=200EXi=20000, DX=200DXi=20000,
X近似服从正态分布 且 近似服从正态分布,且 近似服从正态分布
所求为P(X>20500)= 1-P(X≤20500) 所求为
20500 − 20000 ) ≈ 1 − Φ( 20000
∑ X 近似服从N(nµ , nσ
i =1 i
n
2
)
所以
∑ X − nµ
i =1 i
n

近似服从 (0,1) N
lim{ i=1
n→∞
∑X − nµ
i
n

≤ x} = Φ(x)
(1)一般地 只要 比较大 就可应用以上定理 一般地,只要 比较大,就可应用以上定理 一般地 只要n比较大 就可应用以上定理;
k P{ X = k} = Cn pk (1 − p)n−k
k = 0,1,2,..., n
定义: 定义:
若相互独立随机变量序列{Xn}的标准化和 的标准化和 若相互独立随机变量序列
n n
Yn =
∑ X − ∑E( X )
i =1 i i =1 n i
D(∑ Xi )
i =1
使得
1 P{Yn ≤ x} = 2π
某保险公司多年的统计资料表明,在索赔户中被盗索赔 例5.3.3.某保险公司多年的统计资料表明 在索赔户中被盗索赔 某保险公司多年的统计资料表明 户占20%,随机抽查 户,利用棣莫佛 拉普拉斯积分定理 随机抽查100户 利用棣莫佛---拉普拉斯积分定理 利用棣莫佛 户占 随机抽查 求被盗索赔户不少于14户且不多于 户的近似值 求被盗索赔户不少于 户且不多于30户的近似值 户且不多于 户的近似值. 表示100户中被盗索赔户数 户中被盗索赔户数,则 解:设X表示 户中被盗索赔户数 则 设 表示 X~B(100,0.2)
= Φ(2.5) − [1 − Φ(1.5)]
=0.927
某人一次射击,命中环数X 例5.3.4. 某人一次射击,命中环数X的分布列为
X P 10 0.8 9 0.1 8 0.05 7 0.02 6 ቤተ መጻሕፍቲ ባይዱ.03
求100次射击中命中环数在900环到930环之间的概率. 100次射击中命中环数在900环到930环之间的概率. 次射击中命中环数在900环到930环之间的概率
lim P{ Xn − an < ε }=1
n→∞
则称随机变量序列{X 则称随机变量序列{Xn}服从大数定律
二、切比绍夫不等式
设随机变量 的方差存在 这时均值也存在),则 设随机变量X的方差存在 这时均值也存在 则 对任意 变量 的方差存在(这时均值也存在 正数ε有下面不等式成立 正数 有下面不等式成立
n 1 n 1 lim P ∑ Xi − ∑µi < ε = 1 n→∞ n i =1 n i =1
辛钦大数定律) 设随机变量序列{X 相互独立, 定理 (辛钦大数定律) 设随机变量序列{Xn}相互独立,服从 同一分布,且有相同的期望E(X )=µ 则对任意的ε> ε>0 同一分布,且有相同的期望E(Xn)=µ,则对任意的ε>0 ,有
n
nA lim P − p <ε =1 n→∞ n
第5.3节 中心极限定理 节
复习
X~N(µ,σ2)
Y=
定理 设X~N(µ,σ2),
a−µ
X −µ
σ
,
则Y~N(0,1).
所以, 所以,若X~N(µ,σ2), 则 P{X<a}= Φ(
σ
)
P{a<X<b}= Φ(
b− µ
σ
) − Φ(
三、几个常见的大数定律
定理(切比雪夫大数定律) 设随机变量序列{Xn}相互独立,且 相互独立, 定理(切比雪夫大数定律) 设随机变量序列 相互独立 均存在有限方差,且方差 其中常数C与 均存在有限方差,且方差D(Xn) ≤C (n=1,2,...), 其中常数 与n 无 关,则对任意的ε>0 ,有 则对任意的
x
计算: 计算 (1) n≤40, p≤0.4,由Excel得 , 得 (2) n≤40,p>0.6, 应用以下定理: 应用以下定理
m F( x) = ∑Cn pm (1 − p)n−m m=0
其中q=1-p. 定理 若X~B(n,p),且Y=n-X,则Y~B(n,q),其中 且 则 其中 (3) n≥100,p<0.1, 应用 应用Possion定理有 定理有 (np) m −np P(X = m)≈ e (m = 0,1,2,L, n) m! (4) n≥100,p 接近于 接近于0.5,X~N(np,npq)
证明: 证明
+∞ xn − x x e dx =n+1 [注: xne− xdx = n!] ∫0 n! 0 +∞ xn − x =(n+1)(n+2) 2= x2 e dx EX ∫ 0 n!
EX =
+∞

所以, 所以
DX=EX2-(EX)2=n+1 [这里 这里,ε=n+1] 这里
n n+1 = (n + 1)2 n + 1
设每颗炮弹命中目标的概率为0.01,求500发炮弹中 例5.3.2.设每颗炮弹命中目标的概率为 设每颗炮弹命中目标的概率为 求 发炮弹中 发的概率。 命中 5发的概率。 发的概率 表示命中的炮弹数, 解: 设X表示命中的炮弹数 则 X~B(500,0.01) 表示命中的炮弹数
相关文档
最新文档