波函数及薛定谔方程习题解
23薛定谔方程习题解答
![23薛定谔方程习题解答](https://img.taocdn.com/s3/m/d58d3a9cd0d233d4b14e692b.png)
(提示:非相对论的动能和动量关系为 E 解:依题意,有如下关系
n/ 2 = a 或 = 2a / n 根据德布罗意波长公式 = h / p,则有p = h n / ( 2a ) 。 故在一维无限深势阱中运动的粒子能量 E n 2 h 2 /(8ma 2 ),
E p n h 2m 8ma 2
2 2 2 = x , t U x , t x , t 2x 2 1 x, t U x, t ( x, t ) 2m x 2 m U ( x, t ) 2 2x 2 1 m
令上两式相等,得势函数
2 2 2
n 1, 2, 3, … …
即
En n 2 h 2 /(8ma 2 ), n 1, 2, 3, ……
4
6. 假设一个微观粒子被封闭在一个边长为a的正立方盒子内,试根据驻波概念 导出粒子的能量为
En h2 8ma 2
2 2 (n x n2 y nz )
其中nx、ny、nz是相互独立的正整数。 解:本题中的粒子可看成是在三维无限深势阱中运动,由于边界条件的限 制,在盒壁处波函数为零,粒子在盒子内形成三维驻波。与在一维无限深势阱 中运动的粒子一样,每个方向上势阱宽度a必须等于该方向上德布罗意波长 半波长的整数倍,在x轴方向 nx x/ 2 = a 或 x = 2a / nx 式中nx是正整数。根据德布罗意波长公式x = h / px,则有px = h nx / ( 2a ) 。类似地py = h ny / ( 2a ),pz = h nz / ( 2a )。 故在盒子中运动的粒子能量
4. 粒子在一维无限深势阱中运动,其波函数为:
n x 2 a sin nπx a
量子力学课后习题答案
![量子力学课后习题答案](https://img.taocdn.com/s3/m/36e151b8f8c75fbfc67db256.png)
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
《量子力学教程》作业题及答案--2017-2018第一学期
![《量子力学教程》作业题及答案--2017-2018第一学期](https://img.taocdn.com/s3/m/1e1a834c77232f60ddcca195.png)
1、 求 一 维 线 性 谐 振 子 处 在 第 一 激 发 态 时 概 率 最 大 的 位 置 。
解:ψ 1(x ) =(
2α
π
)αxe − α
2
x2 /2
w(x ) = ψ 1(x ) =
2
2α 3
π
x 2e − α
2
x2
2 2 2 2 ∂w(x ) = 0 得 2xe − α x − 2α 2xx 2e − α x = 0 ∂x
E n x n y = E n x + E n y = (n x + 2n y + )ω
3) 对于基态, n x ,n y = 0 , E 00 =
3 ω 是非简并的; 2
对于第一激发态,
5 n x = 1 , E 10 = ω 是非简并的; 2 n y = 0 7 n x = 0 n x = 2 , , E 01 = E 20 = ω 能级是二重简并的; 2 = 1 = 0 n n y y 9 n x = 3 nx = 1 , ,E E = = ω 是二重简并的。 30 11 n = 1 2 = 0 n y y
x < 0 0 ≤ x ≤ a 中, x > a
V0
4
的本征态,试确定此势阱的宽度 a 。
解:对于 E = −
V0
4
< 0 的情况,三个区域中的波函数分别为
ψ 1 ( x ) = 0 ψ 2 ( x ) = A sin kx ψ ( x ) = B exp(− αx ) 3
其中,
k=
n
则只有量子数 n = 1,3,5, 时, H n (0) = 0 ( n = 1,3,5, ) 则能级为 E n = ( n + 1 2 )ω
量子力学习题及答案
![量子力学习题及答案](https://img.taocdn.com/s3/m/c63db02416fc700abb68fc2b.png)
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x
第15章波函数薛定谔方程
![第15章波函数薛定谔方程](https://img.taocdn.com/s3/m/7707f51087c24028915fc3a9.png)
4、波函数应满足的条件
1)标准条件 粒子在某一个时刻t,在空间某点上粒子出现的几 率应该是唯一的、有限的,所以波函数必须是单值的、 有限的;又因为粒子在空间的几率分布不会发生突变, 所以波函数还必须是连续的。
波函数必须满足“单值、有限、连续”的条件,称 为波函数的标准条件。也就是说,波函数必须连续可 微,且一阶导数也连续可微。 2)归一化条件 由于粒子必定要在空间中的某一点出现,所以任 意时刻,在整个空间发现粒子的总几率应是1。所以 应有: | |2 dV 1
例:电子在电场里加速所获得的能量 电子的德布罗意波长
U 1 5 0 V U 1 0 0 0 0 V
0 . 1 n m X射线范围 0 . 0 1 2 2 5 n m
h h h p m V 2 em U o o
二 德布罗意假设的实验证明
1 戴维孙-革末实验(1927) 电子束在晶体表面散射实验时,观察到了和X射线在晶 体表面衍射相类似的衍射现象,从而证实了电子具有波动性。 B
概率密度分布取决于空间各 点波强的比例,并非取决于 波强的绝对值。 因此,将波函数在空间各 因此,将波函数在空间各 点的振幅同时增大 C倍,则 个处的能流密度增大 C2 倍, 点的振幅同时增大 C倍,不影 响粒子的概率密度分布,即 变为另一种能流密度分布状 和C 所描述德布罗意波的状 态。 态相同。 波动方程无归一化问题。 波函数存在归一化问题。
波函数不仅把粒子与波统一起来,同时以几率幅(几 率密度幅)的形式描述粒子的量子运动状态。
波函数Ψ(x, y, z, t)的统计解释(哥本哈根解释):波函 数模的平方代表某时刻 t 在空间某点 (x, y, z) 附近单 位体积内发现粒子的概率,即|Ψ| 2 代表概率密度。 根据波恩的解释,波函数本身并没有直接的物理 意义,有物理意义的是波函数模的平方。从这点来 说,物质波在本质上与电磁波、机械波是不同的, 物质波是一种几率波,它反映微观粒子运动的统计 规律。 波函数的统计意义是波恩于1926年提出的。由于 波恩在量子力学所作的基础研究,特别是波函数的统 计解释,他与博特共享了1954年的诺贝尔物理学奖。
第二章 波函数和薛定谔方程b
![第二章 波函数和薛定谔方程b](https://img.taocdn.com/s3/m/6defba57ad02de80d4d840a9.png)
第二章 波函数和薛定谔方程§2.1 学习指导本章主要介绍微观粒子运动状态的描述方法、演化规律以及由此带来的新特点,并以一维情况作例子进行具体说明。
根据实验,微观粒子具有波粒二象性。
经典波一般用振幅(,)A r t v 与位相(,)r t ϕv来描述,它们可以统一写为(,)(,)(,)i rt r t A r t e ϕψ=v v v ,在量子力学中沿用坐标与时间的复值函数(,)r t ψv 来描述微观粒子的运动状态,称为波函数。
经典情况下,模方2|(,)|r t ψv表示波的强度;量子情况下,2|(,)|r t ψv表示粒子出现的概率密度,因此需要把波函数归一化。
波函数随时间的变化由薛定谔方程确定。
按照波函数的演化形式,粒子运动可以分为定态和非定态。
在定态中,粒子的概率密度不随时间变化。
按照定态波函数的空间形式,粒子运动可以分为束缚态和非束缚态。
在束缚态中,粒子的能量取离散值,形成能级,可以很好地说明原子光谱。
散射态是典型的非束缚态,可以用来描述粒子之间的碰撞,解释微观粒子的隧道贯穿现象。
真实的物理空间是三维的,但是当系统具有某些对称性时,可以约化为一维问题,例如中心势场中粒子的径向运动。
近来,实验中也制备出了某些类型的一维量子力学系统。
一维薛定谔方程容易求解,便于初学者理解量子力学的基本概念、熟悉常用方法和领会核心思想。
本章的主要知识点有 1. 微观粒子运动状态的描述 1)波函数波函数(,)r t ψv是描述微观粒子状态的复值函数,波函数需要满足的标准条件为单值性、连续性和有界性。
实际体系波函数满足平方可积条件,即22(,)r t d N τψ=<∞⎰⎰⎰v 。
2)波函数的意义波函数的模方2(,)(,)w r t r t =ψv v (2-1)给出t 时刻粒子出现在位置r v邻域单位体积内的概率,即概率密度。
因此,标准的波函数应该是归一化的,即满足归一化条件2(,)1r t d τψ=⎰⎰⎰v (2-2)未归一化的波函数可以通过乘以一个归一化因子来实现归一化。
5-2量子-波函数和薛定谔方程 大学物理作业习题解答
![5-2量子-波函数和薛定谔方程 大学物理作业习题解答](https://img.taocdn.com/s3/m/de222fba9e3143323968939a.png)
1 2
n,1 n,3
c1
1 2
,
c3
1, 2
其它 c n 0 ,
c1
2
c2
2
1. 2
x 1 2 sin x sin 3x
2 a a
a
c1 2 c3 2 1, E
cn
2En
522 2ma2
9
2-7 设粒子在一维无限深势阱中运动,已知粒子所处的势场
Ux
0
x 0,x a 0xa
x L c,p /2x /2c E c/2c,E 1 / 2
2-3一维谐振子的基态波函数是 0 x A e a2x 2 /2 a 2 m 0 / ,试
求:(1)归一化系数A;(2)基态能E0(即零点能)(提示用哈密顿算
符作用基态波函数求E0);(3)求 x 2 ;(4)借助不确定度关系,求
2-2原子从某一激发态向基态跃迁时,辐射的波列长度为L(相当干
长度),把L作为不确定度 x的大小,求光子的动量不确定度 p x
由E=cp计算能量不确定度 E, E正是激发态能级的宽度(所以从
具有一定能级宽度的激发态向基态跃迁时,辐射的光不是单色的),
它对应电子占据该激发态的寿命是有限的。证明: E /2 解:由 E cp , xp / 2
试求:(1)能量量子数为n的概率密度;(2)距势阱内壁四分之一宽
度内发现粒子的概率;(3)n为何值时在上述区域内发现粒子的概
率最大;(4)当时该概率的极限,并说明这一结果的物理意义。
解(1) (2)
(3) (4)
P1 4
a 4
2
sin2
n卜一x
dx
0a
a
a 3a
4
大学物理课件:波函数 薛定谔方程
![大学物理课件:波函数 薛定谔方程](https://img.taocdn.com/s3/m/47fc3004dcccda38376baf1ffc4ffe473268fd12.png)
14.6.2 薛定谔方程
薛定谔方程:适用于低速下微观粒子在力场中运动的 波函数所满足的微分方程称为薛定谔方程. 1.薛定谔方程的建立
a.自由粒子平面波函数:
(x, y,z,t) 0ei[Et(xpx ypy zpz )]/
b.自由粒子的薛定谔方程:
(14.6.4)
2
2 i
2m
t
(14.6.6)
波函数 薛定谔方程 14.6.1 波函数及其统计解释
波函数:由于微观粒子具有波粒二象性,其位置 与动量不能同时确定,所以已无法用经典物理方 法去描述其运动状态,故用波函数描述微观粒子 的运动。
1.经典的波与波函数
机械波:y(x,t) Acos2π(t x )
电磁波:
E ( x,t )
E0
c os 2π(t
c.粒子在外力场中运动且势能为 V
粒子的能量:
E
1 2m
(
px2
py2
pz2
)
V
(x,
y,
z,t)
对应的薛定谔方程:
2
2 V i
2m
t
该方程是关于空间、时间的线性偏微分方程,具有波动 方程的形式。将其应用于微观粒子所得大量结果与实验 符合,薛定谔因此贡献荣获1933年度诺贝尔物理学奖。
2.定态薛定谔方程
例题 14.6.1 设质量为m的粒子沿x轴方向运动,其势
能为:
u(x)
, 0,
x 0,x a 0 x a (14.6.15)
Ep
无限深势阱:该势能如图所示形如一
无限深的阱,故称无限深势阱,本问
题为求解该一维无限深势阱内粒子的
o
ax
波函数。
解:分析 因为势能不随时间变化,故粒子波函数
量子力学典型例题解答讲解
![量子力学典型例题解答讲解](https://img.taocdn.com/s3/m/4a2c1a16581b6bd97f19eae3.png)
量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解] 薛定谔方程:当, 故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n 值,可解一个, 为分离能级.2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解]束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型: 1.算符运算; 2.力学量的平均值; 3.力学量几率分布.一. 有关算符的运算1.证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。
2.证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符, 为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取: 试证明: 也是和共同本征函数, 对应本征值分别为: 。
[证]。
是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二.有关力学量平均值与几率分布方面1.(1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值[解]即是的本征函数。
本征值2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写。
求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率 , 出现的几率能量平均值另一做法3 .一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1) , 归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2)。
量子力学典型例题分析解答
![量子力学典型例题分析解答](https://img.taocdn.com/s3/m/5544b325763231126edb11b2.png)
量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解] 薛定谔方程:当, 故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n 值,可解一个, 为分离能级.2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解]束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型: 1.算符运算; 2.力学量的平均值; 3.力学量几率分布.一. 有关算符的运算1.证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。
2.证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符, 为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取: 试证明: 也是和共同本征函数, 对应本征值分别为: 。
[证]。
是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二.有关力学量平均值与几率分布方面1.(1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值[解]即是的本征函数。
本征值2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写。
求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率 , 出现的几率能量平均值另一做法3 .一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1) , 归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2)。
第二三章习题课
![第二三章习题课](https://img.taocdn.com/s3/m/9835dd17f18583d04964590d.png)
第三章 量子力学中的力学量 一、力学量与算符 1.厄米算符的定义 2.力学量与厄米算符的关系 力学量用厄米算符表示, 力学量用厄米算符表示,表示力学量的厄米算符有组成完全系 的本征函数系(假设) 的本征函数系(假设) 3.厄米算符的性质 厄米算符的本征值是实数, 厄米算符的本征值是实数,属于不同本征值的本征函数正交 力学量算符的构成(对应原则) 假设) 4.力学量算符的构成(对应原则)(假设) 5.力学量的平均值 [注] 2和4合起来作为一个假设 力学量的测量值与力学量算符关系: 二、力学量的测量值与力学量算符关系: 假设力学量算符的本征值是力学量的可测量值。 假设力学量算符的本征值是力学量的可测量值 。 将体系 ˆ 的状态波函数用算符 F 的本征函数系 {φn } 展开 ψ = ∑ cnφn + ∫ cλφλ d λ n 2 则在 ψ 态中测量力学量 F 得到结果为 λ n 的概率是 C n ,得到 λ ~ λ + dλ 范围内的概率是 Cλ 2 dλ 结果在
ˆ ˆ2ΨdΩ = 1 (Y11 + 2Y21 )* L2 1 (Y11 + 2Y21 )dΩ L = ∫Ψ L ∫ 5 5 1 1 2 2 = ∫ (Y11 + 2Y21 )* 2h2Y11 + 6h2 2Y21 dΩ = ∫ 2h2 Y11 + 24h2 Y21 dΩ 5 5 1 26 2 h = [2h2 + 24h2 ] = 5 5
第二章状态波函数和薛定谔方程
![第二章状态波函数和薛定谔方程](https://img.taocdn.com/s3/m/42cc4dc3370cba1aa8114431b90d6c85ec3a8885.png)
第二章 状态波函数和薛定谔方程本章引入描述量子体系状态的波函数,给出波函数的几率波解释和态的叠加原理两个量子力学的基本假设,在此基础上建立非相对论量子力学的基本方程——薛定谔(Schr ödinger)方程,并通过几个具体实例介绍定态薛定谔方程的解法。
§2.1 波函数的几率波解释1.波函数由第一章的讨论可知,微观粒子的波粒二象性是对粒子运动的一种统计性的反映。
数学上,把这种具有统计性的物质波(粒子波)用一个物理量ψ来描述,称为波函数。
它是位置),,(z y x 和时间t 的复值函数,表示为ψ或),,,(t z y x ψ。
微观体系的状态总可以用一个波函数(,)t ψr 来完全描述,即从这个波函数可以得出体系的所有性质,且(,t)ψr 和C t ψ(r,)(C 为比例常数)描写同一量子状态。
引入波函数来描写微观粒子的运动状态是量子力学的基本假设之一。
2.波函数的几率波解释在历史上,人们对波函数的解释曾有过不同的看法。
有人认为波是由它所描写的粒子组成的;也有人认为粒子是无限多波长不同的平面波叠加而成的波包。
除以上两种观点外,还有其它一些不同的看法。
但是,这些看法都与实验事实相矛盾,而被物理学家们普遍接受的解释是玻恩(Born)提出的统计解释,即几率波解释。
为了说明玻恩的解释,我们首先来考察电子的双缝衍射试验。
在电子的双缝衍射实验中,电子枪发射强电子束时,荧光屏上马上显示出明暗相间的双缝衍射条纹,这是电子的波动性的表现。
当电子枪发射弱电子束时,屏上接收的只是一个一个的亮点(电子),这体现了电子的微粒性。
若对弱电子束的衍射作长时间的曝光,则得到的衍射花样与强电子束的衍射花样完全相同。
实验表明,在出现亮条纹的地方,亮点较密集,电子投射的数目较多,即电子投射几率较大;而在比较暗的地方,达到的电子数目较少,即电子投射的几率较小。
电子在衍射实验中所揭示的波动性质,可看成是大量电子在同一个实验中的统计结果,也可以认为是单个电子在多次相同实验中显示的统计结果。
第二章-波函数与薛定谔方程-习题答案
![第二章-波函数与薛定谔方程-习题答案](https://img.taocdn.com/s3/m/ac9a0a3910661ed9ad51f3c1.png)
第二章 波函数与薛定谔方程 1.计算n=4时,所对应经典线性振子的振幅4A =?[解]:由线性谐振子能量公式 1()2E w n =+α=4n =时,2q E w ∴=又2212E w A μ=A A x ∴===即振幅4A =2. 证明在定态中,几率流密度与时间无关2 **()()() () (),iEtr t r f t r e iJ mψψ-ψ===ψ∇ψ-ψ∇ψ22**** [()()()()] [()()()()]()()i i i i Et Et Et Et i r e r e r e r e m ir r r r mψψψψψψψψ----=∇-∇=∇-∇可见t J 与无关。
3. 由下列两定态波函数计算几率流密度ikr ikr e re r -==1)2( 1)1(21ψψ 从所得结果说明ψ1表示向外传播的球面波,ψ1表示向内(即向原点)传播的球面波。
解:分量只有和r J J 21在球坐标中ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0**111110(1) ()21111 [()()]2ikr ikr ikr ikriJ mi e e e e r m r r r r r rψψψψ--=∇-∇∂∂=-∂∂022023111111[()()]2 i ik ik r m r r r r r rk kr r mr mr=----+==r J 1与同向。
表示向外传播的球面波。
rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ikr ikr ikr ikr *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
表示向内(即向原点) 传播的球面波。
4.求自由粒子的几率流密度J =?[解]自由粒子波函数()()iEx v Ax r e-=2*()()ii Et EtA x r x r ee--∇2*2*[()()()()]2iA x r x r A x r x r M=∇-∇ 对于自由粒子 ()i p rx r e ⋅= ()ip rix r pe⋅∇=*()i p rx r e-⋅=*()i p rix r pe-⋅∇=-22[()]2i i J A P x r M∴=- 5. 下列波函数中,哪些是定态?哪些是非定态?](1)1()()()i i ix ETix ETx x xt u eU x e ---=+(2)122()()()i i E T E Thx x xt u e u x e--=+ 12()E E ≠(3)3()()i iETETx x xt u eu x e-=+[解]:(1)是定态,(2)(3)是非定态。
第二章波函数与薛定谔方程
![第二章波函数与薛定谔方程](https://img.taocdn.com/s3/m/fcefa9e64693daef5ef73d5f.png)
第二章 波函数与薛定谔方程2.1 设22()exp )2(x x A αψ-=,α为常数, 求归一化常数A . 解:由波函数满足的归一化条件()21x dx ψ+∞-∞=⎰有2222222222()exp 12()x x x x dx A dx A e dx A e dx αααψ+∞+∞+∞+∞---∞-∞-∞-∞-====⎰⎰⎰⎰由积分公式2x e dx +∞--∞=⎰有()()222211x x y e dx ed xe dy ααα+∞+∞+∞----∞-∞-∞===⎰⎰⎰即22221x A e dx A α+∞--∞==⎰,归一化常数A =2.2 设粒子波函数为(,,)x y z ψ ,求在(,)x x dx +范围中找到粒子的概率.解:在(,)x x dx +范围内找到粒子的概率为2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎛⎫⎪⎝⎭⎰⎰.2.3 设在球坐标系中,粒子波函数表为(,,)r ψθϕ,求:(1)在球壳(,)r r dr +中找到粒子的概率;(2)在(,)θϕ方向的立体角d Ω中找到粒子的概率.解:(1)在球壳(,)r r dr +中找到粒子的概率为()22|(,,)|r d r dr ψθϕΩ⎰; (2)在(,)θϕ方向的立体角d Ω中找到粒子的概率()22|(,,)|r r dr d ψθϕΩ⎰.2.4求平面单色波为00()p i x p x ψ⎛⎫⎪⎝⎭=在动量表象中的形式. 解:由坐标表象与动量表象间傅里叶变换式()()121,t (,)e2ipx p x t dx ϕψπ+∞--∞=⎰得单色平面波动量表象中的形式为()()()()001112122111,t ()e e 222ii p x px px p p x dx e dx ϕψπππ⎛⎫ ⎪⎝⎭+∞+∞---∞-∞⎛⎫ ⎪ ⎪⎝⎭==⎰⎰()()001e2i p p xdx p p δπ+∞---∞==-⎰即平面单色波的波函数在动量表象中的表示形式为()()00,p p t p p ϕδ=-.2.5 粒子在0x x =点的量子态为δ函数00()()x x x x ψδ=-,试在动量表象中写出此量子态的形式.解:由坐标表象与动量表象间傅里叶变换式()()121,t (,)e 2i px p x t dx ϕψπ+∞--∞=⎰得δ函数在动量表象中量子态的形式为()()()()00012211211()e e21,t ()2e 2ip i ip x x x x p p x dx x x dx δϕπψππ+∞-----∞+∞∞-===⎰⎰即量子态为δ函数的波函数在动量表象中表示形式为()()00121,t e2i px x p ϕπ-=.2.6 证明从单粒子薛定谔方程得出的粒子速度场是非旋的,即求证0v ∇⨯=,其中/v j ρ=,ρ为概率密度,j 为概率流密度.证明:概率密度为()()(),,,r t r t r t ρψψ*=概率流密度为()()()()(),,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇根据薛定谔方程式可导出几率守恒方程,并定义几率流密度()()()()()(),,ln ,ln ,2,,2r t r t jv r t r t mi r t r t miψψψψρψψ***⎡⎤⎡⎤⎢⎥⎣⎦⎢⎥⎣⎦∇∇==-=∇-∇()()()()()ln ,ln ,l 2,,n 2r t i m r r t r t t mi ψψψψ**⎡⎤⎣⎦=∇-=∇可见v 正比于一个标量场()(),,r t r t ψψ* 的对数的梯度.梯度场无旋,故v是一个无旋场(0v ∇⨯=).2.7 设粒子在复势场()()()12V r V r iV r =+ 中运动,其中()1V r 和()2V r为实数,证明粒子的概率不守恒,并求出在某一空间体积中粒子概率“丧失”或“增加”的速率.解:根据薛定谔方程及其复数共轭形式()22122i V iV t m ψψψ∂=-∇++∂ (2.7.1)()22122i V iV t mψψψ***∂-=-∇+-∂ (2.7.2)ψ**(2.7.1) -ψ*(2.7.2)得()222222i iV t t m ψψψψψψψψψψ*****⎛⎫ ⎪⎝⎭∂∂+=-∇-∇+∂∂()2222iV mψψψψψψ***=-∇⋅∇-∇+ (2.7.3)即()()222V t mi ψψψψψψψψ****∂+∇⋅∇-∇=∂,可以写为 22j V tρρ∂+∇⋅=∂(2.7.4)其中()()(),,,r t r t r t ρψψ*=,()()()()(),,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇.上式右边不为零,这意味着粒子的几率不守恒.将上式对空间Ω积分,则得3322Sd r jds d rV t ρρΩΩ∂+=∂⎰⎰⎰ 故某一空间体积中粒子概率“丧失”或“增加”的速率为3322S V d r jds d r t ρρΩΩ∂=-+∂⎰⎰⎰ .2.8 设()()()1212,0E E r c r c r ψψψ=+ ,问(),0r ψ是否为定态,为什么?求(),r t ψ.解:(1)由于定态是体系能量具有确定值的状态,而题中波函数(),0r ψ处于能量1E 的本征态()1E r ψ与能量2E 的本征态()2E r ψ 的叠加状态,故(),0r ψ 不是定态;(2) t 时刻的波函数为()()()121212,i i E t E t E E r t c r e c r eψψψ--=+.2.9 计算1ikr e ψ=和2ikr e r ψ-=相应的概率流密度,并由所得结果说明这两个波函数描述的是怎样传播的波.解:由微商关系式:x y z e e e x y z∂∂∂∇=++∂∂∂ ,r r r e r ∇==,3211r r e r r r ∇=-=-(1)1ψ的概率流密度为:1ikr e r ψ=,1ikr e rψ-*= ()()()2122211ikr ikrikr ikrik ik ikr r r r e r e r ikr e e ikre r e r r rr r r ikr e e r ψ⎛⎫⎪⎝⎭∇-∇-∇-∇-∇=∇===∇= 或()111111ikrikrikr ikr ikr ikr ikr ikr r r r ikr e e ike e e e ike r e r e e e rrr r r r r r ψ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-∇=∇=∇+∇=∇+-∇=-= ()()()2212211ikrikr ikr ikr ikr i r r i r k k e r e r ikr e e ikre r e r r rr r r ikr e e r ψ-*------⎛⎫⎪⎝⎭∇-∇+-∇-∇=∇===--∇=+∇ ()()()()()11111,,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇()()22112ikrikrikr ikr r r ikr e ikr e e e e e mi r r r r --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦-+=--112r ikr ikr e mi r r ⎛⎫ ⎪⎝⎭--=+2rk e mr =即()12,r k j r t e mr=描述的是沿径向向外传播的球面波; (2) 2ψ的概率流密度为:2ikr e r ψ-=,2ikr e rψ*= ()()()2222211ikr ikrikr ikr ikri r kr ikr e r e r ikr e e ikre r e ikr e e r r r rr r r ψ-------⎛⎫⎪⎝⎭∇-∇+-∇-+∇-∇=∇===-∇= ()()()2222211ikr ikrikr ikrikr ikr r ikr e r e r ikr e e ikre r ik e r r rr r r e r e r ψ*⎛⎫⎪⎝⎭∇-∇-∇-∇=∇====∇∇- ()()()()()22222,,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇()()22112ikrikr ikr ikrr r ikr e ikr e e e e e mi r r r r --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦+-=-- ()33112r ikr ikr e mi r r ⎛⎫ ⎪ ⎪⎝⎭-+-=-2rk e mr =-即()22,r k j r t e mr=-描述的是沿径向向内传播的球面波.2.10 粒子在一维势场中运动,若所处的外场均匀但与时间有关,即()(),V x t V t =,试用分离变量法求解一维薛定谔方程.解:由一维薛定谔波动方程()()()222,,,2i x t V x t x t t m x ψψ⎡⎤⎢⎥⎣⎦∂∂=-+∂∂ , 采用分离变量法求特解,令其特解可表示为()()(),x t x f t ψϕ=,带入一维薛定谔波动方程有()()()()()()()()()()2222i x f t x f t V t x f t t m x ϕϕϕ∂∂=-+∂∂ ()()()()()()()()2222x i f t f t x V t x f t t m xϕϕϕ∂∂=-+∂∂方程两边同时除以()()x f t ϕ可得()()()()()22212f t i x V t f t t m x x ϕϕ∂∂=-+∂∂ ()()()()()22212f t i V t x f t t m x x ϕεϕ∂∂-=-≡∂∂其中ε是既不依赖于t ,也不依赖于x 的常数.(1)此时关于时间部分为:()()()f t i V t f t tε∂-=∂ 方程两边同时对时间t 积分得()()()()()()00000ln tt t t t df i d d V d d i f d V d t f d d ττττετττττε-=⇒-=⎰⎰⎰⎰⎰()()()()00ln ti V d t ti f t V d t f t e ττεττε⎛⎫ ⎪⎝⎭-+⎛⎫ ⎪⎝⎭⎰=-+⇒=⎰(2)关于坐标的部分为:()()()()2222221202d d m x x x m x dx dx εϕεϕϕϕ-=⇒+=此二阶齐次微分方程的解为()x Ae ϕ±=由上述两部分可知()()()()0,t i V d t x t x f t Ae eττεψϕ⎛⎫ ⎪ ⎪⎝⎭-+±⎰==其中A 和ε均为常数,分别由归一化条件和初试条件决定.2.11 粒子在无限深方势阱中(0x a <<)中运动,对处于定态()n x ψ的粒子,证明:2ax =,()222226112a x x n π⎛⎫ ⎪⎝⎭-=-, 0p =,()222n p p mE -=,讨论n →∞的情况,并与经典计算结果比较.解:一维无限深方势阱内(0x a <<)粒子的波函数为()n n x x a πψ⎛⎫⎪⎝⎭=, 能量本征值为22222n n E ma π= .(1) ()()0n n n x n x x x x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭==⎰⎰200cos 12sin 1222a a n x a n x x x a dx dx a a ππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎰⎰ 0020022cos sin 1111122aaa a n x n x x a a dx dx x a a a n πππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-=⎰⎰2a=(2)()222202n x a n x x x x dx a a ππ⎛⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝-=-⎰22222002212sin 1cos 222a a a n x a n x x dx x dx a a a a ππ⎛⎫⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭⎝⎭⎝⎭=-=--⎰⎰ 22220000112112cos cos 4a a a a n x a n xx dx x dx dx x dx a a a a a aππ=--+⎰⎰⎰⎰2222222260132412a a a a n n ππ⎛⎫ ⎪⎝⎭=--+=-(3)()()()(n n i i n x n x p x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫-∇-∇ ⎪ ⎪⎝⎭⎝⎭==⎰⎰22022sin cos sin aan n x n x n n x i dx i dx a a a a a πππππ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎝⎭⎝⎭⎝⎭-=-=⎰⎰0022022cos cos 222sin aaaa n x i n x n a a a n n x n i dx i a a a ππππππ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-==-=-⎰0=(4)()()222222220sin 2sin an n n x x x a n x p p x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∂∂--∂∂-==⎰⎰2222222230022sin sin sin a an n x n a a a a n x n x dx dx a a πππππ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭--==⎰⎰002222223301221cos sin 222a a a n x a n x x a n a n n a a dx πππππ⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭-==-⎰22222n mE n a π==2.12 考虑质量为m 的粒子被限制在宽度为a 的一维无限深势阱();;0,2,2ax V x a x ⎧⎪⎪⎨⎪⎪⎩<=∞> 中运动,(1)粒子的能级和相应的波函数;(2)粒子处于基态的动量分布. 解:(1)在阱内体系所满足的定态薛定谔方程是2222d E m dx ψψ=- ,2a x < (2.12.1)在阱外,定态薛定谔方程为()2222V x d E m dx ψψψ+=- ,2a x > (2.12.2) (2.12.2)式中,()x V →∞.根据波函数所满足的连续性和有限性条件,只有当0ψ=时,(2.12.2)式才能成立,所以有0ψ=,2ax >(2.12.3) 该条件为解(2.12.1)式时所需的边界条件.为书写简便,引入记号1222mEα⎛⎫⎪⎝⎭= (2.12.4) 则(2.12.1)式简写为2220d dx αψψ+=,2a x <它的解是sin cos A x B x ψαα=+,ax <(2.12.5) 根据ψ的连续性,由(2.12.3)式20a ψ⎛⎫± ⎪⎝⎭=,代入(2.12.5),有22sin cos 0aaA B αα+=, 22sin cos 0aaA B αα-+=.由此得到2sin 0aA α=,2cos 0aB α=. (2.12.6)A 和B 不能同时为零,否则ψ到处为零,这在物理上是没有意义的.因此,我们得到两组解:(1) 0A =,2cos 0aα= (2.12.7) (2) 0B =,2sin 0aα= (2.12.8)由此可求得22anαπ=,1,2,3,n = (2.12.9)对于第一组解,n 为奇数;对于第二组解,n 为偶数. 0n =对应于ψ恒为零的解,n 等于负整数时解与n 等于相应正整数时解线性相关(仅差一负号),都不取.由(2.12.4)式和(2.12.9)式,得到体系的能量为22222n n E maπ= ,n 为正整数. (2.12.10) 将(2.12.7)式、(2.12.8)式依次代入(2.12.5)式中,并考虑(2.12.9)及(2.12.3)两式,得到一组解的波函数为sin ,20,2n n aA x n x a a x πψ⎧<⎪⎪=⎨⎪>⎪⎩为正偶数 (2.12.11)另一组解的波函数为cos ,20,2n n aB x n x a a x πψ⎧<⎪⎪=⎨⎪>⎪⎩为正奇数 (2.12.12)由归一化条件21dx ψ∞-∞=⎰可得常数A B ==(2)粒子处于基态时1n =,体系的能量为22122E ma π= ,波函数为1x aπψ=,对应于动量空间的波函数为:()()221a a i i px px p x e dx x e dx a πϕψ∞---∞-⎫⎛⎫⎪ ⎪⎪⎝⎭⎭==⎰22c os 2aipx a ap x e dx a π--⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭==⎰ 其中积分项2cosaipx a x edx a π--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎰采用两次分部积分求出: 222222cossin sin a i px a a ai ipx px a a x e a a a ix edx x pe dx a a πππππ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-⎰⎰222sin i ai a p p aipx a i eep a a x e dx a πππ---⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰ (I)222222cossincos aipx a a aiipx px a a x e a a a ix edx x pe dx a a πππππ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=---⎰⎰2cos aipx a i a p x e dx aππ--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=-⎰ (II) 结合(I)、(II)两式可得2222222222cos 2cos i a i a p p ai px a a ap a e e a p p a x e dx a πππππ---⎛⎫⎪⎛⎫⎛⎫⎛⎫⎝⎭+= ⎪ ⎪ ⎪-⎝⎭⎛⎫⎛⎫⎝⎭⎝⎭- ⎪ ⎪⎝⎭⎝⎭=⎰即()22cos a i px a ap a p x e dx a ππϕ--⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭== . 粒子处于基态的动量分布为()222224cos 221ap ap a p p a a p a πππϕπ⎛⎫ ⎪⎝⎭=⎡⎤⎛⎫⎛⎫++ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=2.14 粒子在如图所示的势阱中运动,设粒子处于第n 个束缚态,相应的能级为n E ,如0n V E ,求粒子在阱外出现的概率.解:00E V <<的情况下粒子处于束缚态:在阱外2ax ≥,定态波动方程为 ()022220V d m E dx ψψ--=令β=考虑到束缚态边界条件(x →∞处,()0x ψ→),方程应取如下形式的解(),2,2xx a Ae x x a Be x ββψ-⎧⎪⎪⎨⎪⎪⎩≥=≤-常数A 与B 由归一化条件确定(由于势场具有对称性A B =).在阱内2ax ≤,定态波动方程表示为22220d mE dx ψψ+= 令k =波函数偶宇称态的解为()cos x C kx ψ ,奇宇称态的解为()sin x D kx ψ . (a) 偶宇称态,波函数()x ψ及其微商()x ψ'在2ax =处是连续的; 22cos cos 2a a x x a xaC kx C k AeAe ββ==--=⇒=()()222cos sin 2xa a x x aAeC kx akC k Ae βββ-==-''-=⇒=-两式相比可得到能级公式为tan 2ka kβ=. 如0n V E ,k β=→=,()2122n ka π+→ ()2222222222+xa a aa a xB A A Aee e e dx Bedx dx x ββββββββψ∞------∞+===⎰⎰⎰阱外带入关系式2cos 2aa C k Ae β-=得()222cos 2C kax dx ψβ=⎰阱外()222221sin 22cos aa C C a ka kdx C kx dx x ψ-+==⎰⎰阱内由于()2122n ka π+→,所以2cos 02ka →,sin 0ka →,粒子出现在阱外的概率远小于粒子出现在阱内的概率()()2222C a dx dx x x ψψ≈≈⎰⎰全空间阱内粒子出现在阱外的概率为()()220222c cos 2=o 2=s =222C k ka V a E dxC a a dxa x x βββψψ⎰⎰全空间阱外22220222221cos 21tan 112ka k k E k V a k ββ⎝⎭====+⎛⎫+ ⎪+⎝⎭=+⎝⎭⎝⎭.2.16 利用厄米多项式的递推关系()()()11220n n n H H nH ξξξξ+--+=,()()12n n H nH ξξ-=',求证()()111()n n n x x x x ψα-+⎤⎥⎥⎦=+,()()11()n n n d x x x dx ψα-+⎤⎥⎥⎦=, 并由此证明()n x ψ态下0x =,2nE V =,0p =,222n p m E T ==. 证明:(1)谐振子波函数()()22n n x H ξψξ-=,其中xξα=,α=关于Hermite 多项式有递推关系()()()11220n n n H H nH ξξξξ+--+=22ξ-得()()()22222211220n n n H H H ξξξξξξ---+--+=()()()2222221102n n n H H H ξξξξξξα---+--+= (*)()()()1120n n n x x xx αψ+--+=由此即得()()111()n n n x x x x ψα-+⎤⎥⎥⎦=(2) 由()()2n n x H ξψξ-=,()()()()()()()()222222x x x n n n n d d d dx dx dx d dx x H x e H x e H x αααψααα---⎫⎫⎛⎫⎪⎪ ⎪=+⎨⎬⎪ ⎪⎪⎭⎝⎭⎭= ()()()()()2222212x x n n x e H x e n H x αααααα---⎫⎛⎫⎪ ⎪=-+⎬⎪⎪⎝⎭⎭(()()()()2222212x x n n x H x n H x ααααα---=-+代入(*)的变形式得()()()222222112n n n H H H ξξξαξξξ---+-=+()(()()()()2222212x x n n n d x dx x H x n H x αααψαα---=-+()()()()22222112122x n n n H H n H x αξξαξξα--+---=-++⎫⎪⎪⎭()()()1112n n n x x x αψ⎫⎪⎪⎭+--=- ()()11n n x x α-+⎤⎥⎥⎦=(3)()()111n n n n nx x dx dx x x ψαψψ+∞+∞**-∞-+-∞⎤⎥⎥⎦==⎰⎰()()11n n n n x x dx dx ψψψψ-++∞+∞**-∞-∞=0=(4)()222222111222n n n n n n V m x m x m x V dx dx dx ωωωψψψψψψ+∞+∞+∞***-∞-∞-∞⎛⎫ ⎪⎝⎭====⎰⎰⎰由(1)得()()111()n n n x x x x ψα-+⎤⎥⎥⎦=+再乘以x 得()()2111()n n n x x x x ψψψα-+⎤⎥⎥⎦=()()()()2211n n n n x x x x αα-+⎫⎤⎤⎪⎥⎥⎪⎥⎦⎦⎤⎥=⎭⎥⎦()()()()2222112n n n n x x x ψα-+⎤⎥⎦=++ ()()()()()222222112n n n n n n x xdx n dx x x x ψψψψα+∞+∞**-∞-∞-+⎧⎫⎤⎨⎬⎩=⎭=⎥⎦+++⎰⎰()()()()222002112n n n n n n x dx n x dx x dx ψψψψψψα+∞+∞**-++∞∞*--∞-∞⎫⎪=++⎬⎪⎩⎭⎰ ()2212n α=+()()222222212111122221112222n n n n E m x m m V ωωωωα=++⎛⎫=+= ⎪⎝⎭==(5)()()11n n n n n n n d d i dx dx i i x dx d p d x x xψψψψψα+∞+∞+∞**-∞-∞-+*-∞--⎤⎛⎫-⎥ ⎪⎝⎭⎥⎦===⎰⎰⎰()()11000n n n n i x x dx dx ψψαψψ-++∞+∞**-∞-∞⎫⎪=-=⎬⎪⎭(6)()()22221121222nn n nnd dm dx m dxxpT dxmx dxαψψψ+∞+∞**-∞--∞+⎧⎫⎤⎪⎪⎥⎨⎬⎥⎪⎪⎛⎫--⎪⎝⎭⎦⎩⎭===⎰⎰()()()() 222 2n nn nn n mx x dx dx x x αααψψ+∞+∞*-*-∞∞+-⎧⎫⎧⎫⎤⎤⎪⎪⎪⎪⎥⎥⎨⎬⎨⎬⎥⎥⎪⎪⎪⎪⎫⎪-⎬⎪⎭⎦⎦⎩⎭⎩⎭=()()()()220022214nn n nnndx dxx xnmx dxψψψψαψψ+∞+∞**-∞+-∞-⎫⎪⎪⎬⎪⎪⎪⎩⎭+∞*-∞+-=-⎰⎰⎰()222111222212144nm nn Enm mωωα⎛⎫⎪⎪⎝⎭⎛⎫⎪⎝⎭+==+=+=2.17 质量为m的粒子处于势阱()220;,1,20;xxxm xVω∞⎧>=≤⎪⎨⎪⎩中,求粒子的可能能量.提示:利用谐振子波函数()nxψ的奇偶性()()()1nn nx xψψ-=-.解:线性谐振子对应于本正函数()()221212122!xn nnx e H xnαααπψ-⎛⎫⎪=⎪⎝⎭,α=的本征值为12nE nω⎛⎫=+⎪⎝⎭.题中0x≤区域,粒子的波函数满足()0xϕ=.0x>区域粒子的波函数满足边界条件()00ϕ=,()0ϕ∞=,由波函数的连续性可知()00ϕ=.由谐振子波函数()nxψ的奇偶性条件()()()1nn nx xψψ-=-,我们得知只有当n取奇数时连续性条件才被满足,故此时粒子的可能能量值为()1321222nE n nωω⎛⎫⎛⎫=++=+⎪ ⎪⎝⎭⎝⎭,0,1,2,n=.相应的本正函数为()()21n nx xϕ+=.()()()222222121011122n n n A x dx A x dx A x dx ψψϕ+∞+∞+∞++-∞====⎰⎰⎰,故A =.2.18 设()1,r t ψ 和()2,r t ψ 是不含时势场()V r中薛定谔方程的两个解,证明对变量变化的全空间积分312d x ψψ*⎰与时间无关,即3120d d x dtψψ*=⎰. 证明:由题意得()1,r t ψ 和()2,r t ψ分别满足薛定谔波动方程()()()()22111,,,2i r t r t V r r t t m ψψψ∂=-∇+∂ (2.18.1) ()()()()22222,,,2i r t r t V r r t t mψψψ∂=-∇+∂ (2.18.2) ()1,r t ψ*⨯ ()2.18.2 - ()2,r t ψ⨯()2.18.1*()()()()()()()()222122112,,,,,,2i r t r t r t r t r t r t t mψψψψψψ***∂=∇-∇∂()()()()()22112,,,,2r t r t r t r t mψψψψ**=∇⋅∇-∇上式对全空间进行积分()()()()()()()()233122112,,,,,,2i r t r t d x r t r t r t r t d x t mψψψψψψ***∂=∇⋅∇-∇∂⎰⎰ ()()()()()22112,,,,2r t r t r t r t ds m ψψψψ**=∇-∇⋅⎰由于无穷远处波函数为零,积分项()()()()()2112,,,,r t r t r t r t ψψψψ**∇-∇⎰ 为零,即()()()132,0,d d x dtr t r t ψψ*= .。
第二章-波函数与薛定谔方程-习题
![第二章-波函数与薛定谔方程-习题](https://img.taocdn.com/s3/m/24b4afb2960590c69ec376ad.png)
第二章波函数与薛定谔方程第一部分;基本概念与基本思想题目1.试述波函数的统计解释。
2.为什么波函数可以描述微观粒子的微观态?3.如何理解态叠加原理?量子力学中的态叠加原理与经典力学中的态叠加原理有何区别?4.简述动量几率密度的物理意义。
5.试述定态的基本特征。
6.两个能量本征值不同的定态波函数,他们的线性组合是否还是定态?7.何为定态?如何判断一量子态是定态?8.在经典力学中,E=T+U=动能+势能,这个结果对微观粒子是否成立?为什么?9.试写出求解定态薛定谔方程的基本步骤10. 何为束缚态?有何特征?11. 波函数满足的标准条件是什么?12. 实物粒子的波动性为什么很长时间未能发现?13. 试述C(P, t) 物理意义。
第二部分:基本技能训练题1.计算线性谐振子n=4时所对应的经典线性谐振子的振幅A4=?2.证明在定态中,几率流密度与时间无关3. 由下列两定态波函数计算几率流密度(1)ψ1=(1/r )e ikr (2)ψ2=(1/r )e -ikr从所得结果说明ψ1表示向外传播的球面波,ψ1表示向内(即向原点)传播的球面波。
4. 求自由粒子的几率流密度J =?5. 下列波函数中,哪些是定态,哪些不是定态?12312312ix-(i)Et -ix-(i )Et -(i )E t -(i )E t 12-(i)Et (i )Et () (x,t)U(x)e U(x)e () (x,t)U(x)e U(x)e E E () (x,t)U(x)e U(x)e ψψψ=+=+≠=+ 6. 一粒子在一维势场 x 0()0 0x a x a U x ∞<⎧⎪=≤≤⎨⎪∞>⎩中运动,求粒子的能级和对应波函数。
7. 设粒子限制在矩形匣子里,其运动势能为:0 x a, y b, z c, (,,) U x y z ⎧<<<⎪=⎨∞⎪⎩其它 求其本征值与本征函数。
8. 求一维谐振子处于第一激发态时几率最大位置。
量子力学习题
![量子力学习题](https://img.taocdn.com/s3/m/d4476a4abe23482fb4da4caa.png)
第二章 波函数与薛定谔方程(1)一、填空题1、在量子力学中,描述系统的运动状态用波函数()r ψ,一般要求波函数满足三个条件即 有限性 ; 连续性 ;单值性 。
根据玻恩对波函数的统计解释,电子呈现的波动性只是反映客体运动的一种统计规律,称为 概率 波,波函数模的平方()2r ψ 表示粒子在空间的几率分布,称为 概率密度 。
而()2r d ψτ 表示在空间体积 dt 中概率,要表示粒子出现的绝对几率,波函数必须 归一化 。
2r 点处小体积元dτ内粒子出现的几率与波函数模的平方(|Ψ|2)成正比。
3、根据波函数的统计解释,dx t x 2),(ψ的物理意义为 粒子在xdx 范围内的概率 。
4、在量子力学中,描述系统的运动状态用波函数()r ψ,一般要求波函数满足三个条件即 有限性 ; 单值性 ;连续的。
5、波函数的标准条件为(1)波函数可归一化(2)波函数的模单值(3)波函数有限。
6、三维空间自由粒子的归一化波函数为()r pψ= ,()()=⎰+∞∞-*'τψψd r r p p见书P18 。
7、动量算符的归一化本征态=)(r p ψ ,='∞⎰τψψd r r p p )()(* 见书P18 。
8、按照量子力学理论,微观粒子的几率密度w = 见网页收藏 ,几率流密度= 。
9、设)(r ψ描写粒子的状态,2)(r ψ是 概率波 ,在)(rψ中力学量Fˆ的平均值为F = 。
10、波函数ψ和ψc 是描写 状态,δψi e 中的δi e 称为 ,δi e 不影响波函数ψ的归一化,因为 。
11、定态是指 的状态,束缚态是指 的状态。
12、定态波函数的形式为 。
13、)i exp()()iexp()(),(2211t Ex t E x t x-+-=ψψψ是定态的条件是 ,这时几率密度和 都与时间无关。
14、波函数的统计解释 15.描述微观粒子状态的波函数ψ应满足的三个标准条件 。
16、粒子作自由运动时,能量本征值是 ___ __。
波函数及薛定谔方程习题解
![波函数及薛定谔方程习题解](https://img.taocdn.com/s3/m/6ed04000cc17552707220831.png)
π2 2 2 n 2μ a 2
(n = 1, 2,3, ) 能量是量子化的
两组波函数的空间部分:
nπ ⎧ B cos x, ⎪ ⎪ a ψn = ⎨ ⎪ 0, ⎪ ⎩ nπ ⎧ A sin x, ⎪ ⎪ a ψn = ⎨ ⎪ 0, ⎪ ⎩
可以将上式合并写为:
a a - ≤x≤ 2 2 a a x< - , x> 2 2 a a - ≤x≤ 2 2 a a x< - , x> 2 2
E
t ) + v( x) exp(−ix) exp(−i E t)
E
t)
= [u ( x) exp(ix) + v( x) exp(−ix)]exp(−i E1 E2
由此可见,其能量值为固定值 E ,故此状态为定态。 对于ψ 2 ( x, t ) = u ( x) exp(−i 所以不是定态。 对于ψ 3 ( x, t ) = u ( x) exp(−i
∴ψ 2 ( x) = A sin
(n = 1, 2, 3, )
nπ x a
题解仅供参考,如有问题请联系 zhyjiao@,谢谢
第二章 波函数与薛定谔方程习题解
门福殿教授著《量子力学》
由归一化条件
∫
由
∞
2 ψ ( x) dx = 1 得
A2 ∫ sin 2
0
a
nπ xdx = 1 a
2
令k =
2
,得
d 2ψ 2 ( x) + k 2ψ 2 ( x) = 0 dx 2
④
其解为
ψ 2 ( x) = A sin kx + B cos kx
a 2 a 2
根据波函数的标准条件确定系数 A,B,由连续性条件,得
(完整版)量子力学期末考试题及解答
![(完整版)量子力学期末考试题及解答](https://img.taocdn.com/s3/m/9468b77f102de2bd960588f4.png)
一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。
2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。
解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即:
| A |2 = 1 ,因此 A = 2 λ 3 = 2λ λ 3 4λ
∫
( x > 0) ( x ≤ 0)
2
∞
0
x n e − ax dx =
n! a n +1
⎧ ⎪2λ λ xe − λ x 归一化的波函数为:ψ ( x) = ⎨ ⎪ ⎩0
(2)粒子坐标的概率分布函数为: w( x ) =| ψ ( x ) | = ⎨ (3)由
⎧4λ 3 x 2 e −2 λ x ⎩ 0
( x > 0) ( x ≤ 0)
d w( x) = 4λ 3 (2 xe−2 λ x − 2λ x 2 e−2 λ x ) = 0 , dx
有: x1 = 0, x2 = ∞, x3 = 1/ λ ,据题意取 x3 = 1/ λ 。 2 、 一 个 势 能 U ( x) =
解: U ( x )与t 无关,是定态问题。其定态薛定谔方程为
−
a a ≤x≤ 2 2 a | x |> 2
d2 − ψ ( x) + U ( x)ψ ( x) = Eψ ( x) 2 μ dx 2
在各区域的具体形式为 Ⅰ: x < −
2
a 2
−
d2 ψ 1 ( x) + U ( x)ψ 1 ( x) = Eψ 1 ( x) 2 μ dx 2
E
t ) + v( x) exp(−ix) exp(−i E2 t) ;
E
t) ;
E1 E
t ) + u ( x) exp(−i E
t ) + u ( x) exp(i
t) 。
解:判断是否定态可从下面三个方面来进行:1)能量是否为确定值;2)概率是否与时间无 关;3)概率流密度是否与时间无关 先看ψ 1 ( x, t ) = u ( x) exp(ix − i
第 3 页 共 17 页
题解仅供参考,如有问题请联系 zhyjiao@,谢谢
第二章 波函数与薛定谔方程习题解
门福殿教授著《量子力学》
⎧ 2 nπ a sin ( x + ), ⎪ ⎪ a 2 由此得归一化的波函数为:ψ n = ⎨ a ⎪ 0, ⎪ ⎩
a a - ≤x≤ 2 2 a a x< - , x> 2 2
L2 为H = z 。 2I z
解: (1) 哈密顿算符
2 d2 ˆ = 1 L ˆ2 = − H Z 2I z 2 I z dϕ 2
其本征方程为
ˆ 与t 无关,属定态问题) (H
−
d2 ψ (ϕ ) = Eψ (ϕ ) 2 I z dϕ 2 d 2ψ (ϕ ) 2I E = − z2 ψ (ϕ ) 2 dϕ
ψ 1 ( x) = 0
第 2 页 共 17 页
ψ 3 ( x) = 0
题解仅供参考,如有问题请联系 zhyjiao@,谢谢
第二章 波函数与薛定谔方程习题解
门福殿教授著《量子力学》
即粒子不能运动到势阱以外的地方去。 方程(2)可变为
d 2ψ 2 ( x) 2 μ E + 2 ψ 2 ( x) = 0 dx 2 2μ E
5、一粒子在一维无限深势阱
⎧∞,x < 0, x > a 中运动,求粒子的能级和对应的波函数。 U ( x) = ⎨ ⎩ 0, 0 ≤ x ≤ a
解: U ( x)与t 无关,是定态问题。其定态薛定谔方程为
−
d2 ψ ( x) + U ( x)ψ ( x) = Eψ ( x) 2 μ dx 2
2
在各区域的具体形式为 Ⅰ: x < 0
④
其解为
ψ 2 ( x) = A sin kx + B cos kx
根据波函数的标准条件确定系数 A,B,由连续性条件,得
ψ 2 (0) = ψ 1 (0)
⑤⇒ B = 0
⑤ ⑥ ⇒ A sin ka = 0
ψ 2 (a) = ψ 3 (a)
⑥
∵A≠0 ∴ sin ka = 0 ⇒ ka = nπ
第 4 页 共 17 页
d2 − ψ 1 ( x) + U ( x)ψ 1 ( x) = Eψ 1 ( x) 2 μ dx 2 − d2 ψ 2 ( x) = Eψ 2 ( x) 2 μ dx 2 d2 ψ 3 ( x) + U ( x)ψ 3 ( x) = Eψ 3 ( x) 2 μ dx 2
2 2
2
①
Ⅱ: 0 ≤ x ≤ a
第二章 波函数与薛定谔方程习题解
门福殿教授著《量子力学》
即
e i 2 mπ = 1
m2 2 2I z
∴m= 0,±1,±2,… (m= 0,±1,±2,…)
转子的定态能量为 Em =
可见能量只能取一系列分立值,构成分立谱。 定态波函数为 A 为归一化常数,由归一化条件
* ψ m dϕ = A2 ∫ dϕ = A2 2π 1= ∫ ψm 0 0 2π 2π
−∞
|ψ ( x, t ) | dx = ∫ | A | e
2 2 −∞
+∞
1 1 − α 2 x 2 − iωt 2 2
e
dx
=| A |2
∫
−∞
exp(−α 2 x 2 )dx =| A |2
π α = 1 因此有: | A |2 = α π
所以归一化因子为: A =
α π
(2)由
d w( x) d | ψ ( x, t ) |2 d[| A |2 exp(−α 2 x 2 )] = = =| A |2 [−2α 2 x exp(−α 2 x 2 )] = 0 dx dx dx
∫
2
∞
0
| ψ ( x) |2 dx = ∫ | A |2 x 2 e −2 λ x dx = 1
0
有
∫
∞
0
| A| x e
2
2 −2 λ x
dx =| A |
∫
∞
0
xe
2 −2 λ x
4λ x 2 + 4λ x + 2 −2 λ x ∞ | A |2 dx = − | A | e |0 = 8λ 3 4λ 3
2
令
m =
2
2I z E
2
,则
d 2ψ (ϕ ) + m 2ψ (ϕ ) = 0 2 dϕ
( m 可正可负可为零)
取其解为
ψ (ϕ ) = Aeimϕ
由波函数的单值性,应有
ψ (ϕ + 2π ) = ψ (ϕ ) ⇒ eim (ϕ + 2π ) = eimϕ
第 5 页 共 17 页 题解仅供参考,如有问题请联系 zhyjiao@,谢谢
t ) + u ( x) exp(−i E
t ) ,显然有两个可能的能量值 E1 和 E2 ,
E
t ) + u ( x) exp(i
t ) ,显然能量有个量取值 E 和 − E
可以验证概率密度及概率流密度是否随时间变化。
⎧ 0 ⎪ ⎪ 4、求粒子在一维无限深势阱中的波函数及能级。势阱为: U = ⎨ ⎪∞ ⎪ ⎩
∴ψ 2 (x a
题解仅供参考,如有问题请联系 zhyjiao@,谢谢
第二章 波函数与薛定谔方程习题解
门福殿教授著《量子力学》
由归一化条件
∫
由
∞
2 ψ ( x) dx = 1 得
A2 ∫ sin 2
0
a
nπ xdx = 1 a
0≤ x≤a x < a, x > a
6、一个量子刚体,具有转动惯量 I z ,自由的在 x, y 平面内转动, φ 为转角。 (1)找出其能量本征值 En 和本征函数ψ n (φ ); (2)在 t = 0 时转子由波包ψ (0) = A sin φ 描述,求在 t > 0 时的ψ (φ , t ); 此系统的哈密顿量
A sin
a 2
a 2
⑥
− A sin
ka ka + B cos = 0 2 2
ka ka + B cos = 0 2 2
A 和 B 不能同时为 0,否则波函数处处为 0,意味着粒子到处都不出现,无物理意义。因此
得到两组解
ka ka = 0 ; B = 0,sin =0 2 2 ka nπ nπ 由此得, ,即 k = = a 2 2 对第一组解, n 为奇数;对第二组解, n 为偶数,因此体系的能量为: A = 0, cos
2
令k =
2
,得
d 2ψ 2 ( x) + k 2ψ 2 ( x) = 0 dx 2
④
其解为
ψ 2 ( x) = A sin kx + B cos kx
a 2 a 2
根据波函数的标准条件确定系数 A,B,由连续性条件,得
ψ 2 (− ) = ψ 1 (− ) =0
由此得
⑤
ψ 2 ( ) = ψ 3 ( ) =0
2
2
①
Ⅱ: -
a a ≤x≤ 2 2
−
d2 ψ 2 ( x) = Eψ 2 ( x) 2 μ dx 2
2
②
a Ⅲ: x > 2
d2 − ψ 3 ( x) + U ( x)ψ 3 ( x) = Eψ 3 ( x) 2 μ dx 2
③
由于(1)、(3)方程中,由于 U ( x) = ∞ ,要等式成立,必须
∫
a
b
sin
mπ nπ a x sin xdx = δ mn 2 a a
2 a ∴ψ 2 ( x) = ⇒ En = 2 nπ sin x a a (n = 1, 2,3, ) 可见 E 是量子化的。