半导体物理2

合集下载

半导体物理学刘恩科课后习题解答

半导体物理学刘恩科课后习题解答

半导体物理学第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。

(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。

2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。

As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。

这个过程叫做施主杂质的电离过程。

能够施放电子而在导带中产生电子并形成正电中心,称为施主杂质或N型杂质,掺有施主杂质的半导体叫N型半导体。

3. 以Ga掺入Ge中为例,说明什么是受主杂质、受主杂质电离过程和p型半导体。

Ga有3个价电子,它与周围的四个Ge原子形成共价键,还缺少一个电子,于是在Ge 晶体的共价键中产生了一个空穴,而Ga原子接受一个电子后所在处形成一个负离子中心,所以,一个Ga原子取代一个Ge原子,其效果是形成一个负电中心和一个空穴,空穴束缚在Ga原子附近,但这种束缚很弱,很小的能量就可使空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而Ga原子形成一个不能移动的负电中心。

这个过程叫做受主杂质的电离过程,能够接受电子而在价带中产生空穴,并形成负电中心的杂质,称为受主杂质,掺有受主型杂质的半导体叫P型半导体。

4. 以Si在GaAs中的行为为例,说明IV族杂质在III-V族化合物中可能出现的双性行为。

Si取代GaAs中的Ga原子则起施主作用; Si取代GaAs中的As原子则起受主作用。

中国科技大学微电子专业-半导体物理Chapter2

中国科技大学微电子专业-半导体物理Chapter2
• mdn--导带底电子状态密度有效质量
2010-4-8
Semiconductor Physics
3/ 2
10
中国科学技术大学物理系微电子专业
Si, Ge,价带顶附近: (轻,重空穴带)
h 3/ 2 3/ 2 2/ 3 mdp = (mpl + mph )
gv = 4πV
(2mdp )
3
3/ 2
( Ev − E )
图3-6
图3-8
2010-4-8
Semiconductor Physics
37
中国科学技术大学物理系微电子专业
2010-4-8
Semiconductor Physics
38
中国科学技术大学物理系微电子专业
2010-4-8
Semiconductor Physics
39
中国科学技术大学物理系微电子专业
2010-4-8
Semiconductor Physics
25
中国科学技术大学物理系微电子专业
表3-2 300K下, Ge、Si、GaAs的 能隙宽度-- Eg 态密度有效质量—mn*, mp* 等效(有效)状态密度—NC , NV 本征载流子浓度— ni
2010-4-8
Semiconductor Physics
2010-4-8
Semiconductor Physics
29
中国科学技术大学物理系微电子专业
能带
态密度
分布函数
载流子分布
图3-6 本征半导体
2010-4-8
Semiconductor Physics
30
中国科学技术大学物理系微电子专业
★ 本征载流子浓度

半导体物理第二章概述

半导体物理第二章概述

半导体的导带和价带中,有很多能级存在,间隔 很小,约10-22eV,可以认为是准连续的。
• 状态密度:能带中能量E--E+dE之间有dZ个量子态。
dZ g (E) = dE
即状态密度是能带中能量E附近单位 能量间隔内的量子态数目
怎样理解状态密度?
1、理想晶体的k空间的状态密度
(1):一维晶体(一维单原子链) 设它由N个原子组成,晶格常数为a,晶体的长为L=aN, 起点在x处
一定到达某点,只给出到达各点的统计分布。粒子在
某点出现的几率与波函数的强度
*成正比
2
5、 自由电子波函数 解自由电子薛定谔方程可得自由电子波函数与能量:
( x) Ae 式中k
i ( kx t ) 2

E
k
2
2m0
2

,m0 为电子惯性质量,ห้องสมุดไป่ตู้角频率
自由电子速度
·
· 2
L
·
0
· 2
L
·
k
(2).三维立方晶体
设晶体的边长为L,L=N× a,体积为V=L3
K空间中的状态分布
kz
kx
• • • • • • 2 • • L • • • • •• •• • • • • • • • • • • • • • • •
3
• • • • • • • • • • • • • •
* 0 。 2、对于能带底,E(k)>E(0),顾 mn
半导体中的电子
k2 E (k ) E (0) * 2mn
1 d 2E 1 * 2 2 dk k 0 mn
2
自由电子能量:
k2 E 2m

半导体物理器件Chapter2-

半导体物理器件Chapter2-

势垒高度增加至 q(y0 VR) ,增高的势垒阻挡载流子通过PN结扩散,通
过PN结的电流非常小,结的阻抗很高。耗尽层宽度(突变结):
1
W

2k0

y0 VR
qNd
2

(2-23)
PN结
2.2加偏压的PN结
4)根据能带图和修正欧姆定律分析结的单向导电性
在电子扩散区和空穴扩散区,
区间电势差 y 0 。
未形成PN结之前的N区(P区)的电子(空穴)浓度为:
nN dnie(E F nE i)/K T
pNani(EiEFp)/KT
可以得到分别的费米能级为:
EFnEi
KTlnNd ni
EFp
Ei
KTln
Na ni
再由热电势
VT

KT q
,得: y01 q(EFnEFp)VTlnNn diN 2a
耗尽区
n 型电中性区
(c) 与(b)相对应的空间电荷分布
PN结
2.1热平衡PN结
3.几个概念
耗尽近似:在空间电荷区,与电离杂质浓度相比,自由
载流子浓度可以忽略,这种近似称为耗尽近似。因此空间电 荷区也称为耗尽区(又称为耗尽层)。在完全耗尽的区域, 自由载流子密度为零。
中性近似:假设耗尽区以外,在杂质饱和电离情况下,
单边突变结(一侧的杂质浓度远远大于另一侧的质浓度的突变结)
PN结
NaNd
引言
4.突变结与线性缓变结 2)线性缓变结: 两区之间杂质过渡是渐变的
adNDNA常数
dx
- ax
xj 0
x
ND NA
0
x
在线性区: N(x)a(xxj)

半导体第二章习题解析

半导体第二章习题解析

等m效0玻尔半径
(Ge: ,Si:
)试,计基r 算质16G相e对r,S价i浅h电施q2常2r主rm数n*0的12束缚
2-2
硅中掺入某种施主杂质,设其电子有效质
量 mn* ,0计.2算6m电0 离能为多少?若
,其电
离能又m为n* 多 0少.4?m0这两种值中哪一种更接近实验值?
解答:利用类氢原子模型:
E Di
mn* m0
E0
2 r
E0 13.6eV , 对Si : r 12
mn*
0.26m0 , Eni
第二章
PowerPoint2003
《半导体物理》第二章
2-1 2-2 2-3 2-4 2-5 2-5(2)
2-6 2-6(2) 2-7 2-8 2-8(2)
2-1
掺入锗,硅晶体中的杂质通常有磷,铟,锑,硼, 砷,铝,镓,铋,
其中哪些是施主杂质? 哪些是受主杂质?
解答:
磷,砷,铋,锑为Ⅴ族元素,为施主杂质 硼,铝,镓,铟为Ⅲ族元素,为受主杂质。
解答: 施主能级和受主能级分别以D和A表示: 如下图:
硅晶体中(eV)
锗晶体中(eV)
类型
Au D A
Ag D A
Cu A Fe D Zn A Cd A Ni A
位置
类型
EV 0.35
D
EC 0.54
A
EV 0.32
A
EC 0.29
A EV 0.24, EV 0.37, EV 0.52
E1
a
Z
2 e ff
25 128
5 4
Z eff
E2
aZ
2 eff
将 E2 0.055 2.475 2 0.3365 eV EAi2

半导体物理 习题练习2参考答案

半导体物理 习题练习2参考答案
z B y c L W a x h I
y E
C
Ei EF E
V
x
Nd= Ne-ax,则电子为主要载流子 n(x)=ni+Nd=ni+ Ne-ax
y E EF Ei
C
Eห้องสมุดไป่ตู้
V
x
• 4. 某半导体硅样品中含磷浓度为1016/cm3, 含硼的浓度为2X1015/cm3,已知在T=260K时, 本征载流子浓度为ni = 2X109/cm3, 且费米 能级EF与ED重合,试求: • (1)未电离的施主浓度; • (2)多子浓度和少子浓度 • (3)设un= 1300cm2/(v.s),up = • 500cm2/(v.s), 求此样品电导率
练习二(参考答案)
1。Zn在Si中是一双重受主,即每一个Zn原子 可在EA1(EA1-EV=0.31eV),能级接受1个电 子,在较高能级EA2(EA2-Ev=0.55eV)上接受 第2个电子。为了完全补偿1个Nd=1016cm-3的 n-Si样品,需要掺入Zn的密度是多少?(设 Eg=1.12eV)。
Ec
EA2-Ev=0.55ev
1.12ev
EF=Ei
EA1-Ev=0.31ev
Ev
1。如图所示的硅样品,尺寸为h=1.0mm, W=4.0mm, L=8.0mm.在霍尔效应实验中, I=1mA, B=4000 (0.4T), 实验中测出在77K~ 400K的温度范围内霍尔电势差不变,其数值 为Vac= Va-Vc =-5.0mV。在300K测得Vx= 200mV 200mV。

半导体物理_第2讲

半导体物理_第2讲

导带
禁带
价带
严谨严格求实求是
原子能级和晶体的能带
(5) 能带的特点 1. 允带的宽窄由晶体的晶格常数决定(原子间距) 外层能带宽,内层能带窄。晶格常数越小,能级 分裂程度越大,共有化运动显著。 2. 带宽与原子数目N无关,N只决定了能级的密集程度。 3. 原子能级与能带不全是一一对应的。若能级分裂程度 较大,能带有可能交叠,且发生轨道杂化。
严谨严格求实求是
严谨严格求实求是
电子的近似 • 单电子近似:
设每个电子是在周期性排列且固定不动的原子核势场 及其它电子的平均势场中运动。该势场是具有与晶格 同周期的周期性势场,则多电子可近似为单个电子。
近似地把其它电子对某一电子的相互作用简单看成是叠 加在原子核的周期势场上的等效平均势场。也就是说, 把电子的运动看作是相互独立的,所有其它的电子对某 一电子的作用只归结为产生一个固定的电荷分布和与之 相联系的附加势场。
严谨严格求实求是
电子的近似
从两个角度来研究电子的状态
孤立原子的能级:晶体的能带及电子的共有化运动。 能带论:电子在固定势场V0中运动,周期性势场为微扰, 简化真实能带情况。
严谨严格求实求是
原子的能级和晶体的能带
孤立原子的能级
也就是相应的电子壳层:1s;2s,2p等。如Si原子轨道: 1s22s22p63s23p2
严谨严格求实求是
半导体中的电子状态
3.能带论 (1)布洛赫定理
– 自由电子薛定谔方程: 2 d ( x)2 . E ( x) 2
2m0 dx
– 单电子近似薛定谔方程:
2 d ( x)2 . V ( x) ( x) E ( x) 2 2m0 dx
V(x)=V(x+Sa) S为整数。V(x)是晶格位置为X的势能, 反映了周期性势场的特性。

半导体物理学名词解释 2

半导体物理学名词解释 2

半导体物理学名词解释1、直接复合:电子在导带与价带间直接跃迁而引起非平衡载流子的复合。

2、间接复合:指的是非平衡载流子通过复合中心的复合。

3、俄歇复合:载流子从高能级向低能级跃迁发生电子-空穴复合时,把多余的能量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回到低能级时,多余的能量常以声子的形式放出,这种复合称为俄歇复合,显然这是一种非辐射复合。

4、施主杂质:V族杂质在硅、锗中电离时,能够施放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。

5、受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。

6、多数载流子:半导体材料中有电子和空穴两种载流子。

在N 型半导体中,电子是多数载流子, 空穴是少数载流子。

在P型半导体中,空穴是多数载流子,电子是少数载流子。

7、能谷间散射:8、本征半导体:本征半导体就是没有杂质和缺陷的半导体。

9、准费米能级:半导体中的非平衡载流子,可以认为它们都处于准平衡状态(即导带所有的电子和价带所有的空穴分别处于准平衡状态)。

对于处于准平衡状态的非平衡载流子,可以近似地引入与Fermi能级相类似的物理量——准Fermi能级来分析其统计分布;当然,采用准Fermi能级这个概念,是一种近似,但确是一种较好的近似。

基于这种近似,对于导带中的非平衡电子,即可引入电子的准Fermi能级;对于价带中的非平衡空穴,即可引入空穴的准Fermi能级。

10、禁带:能带结构中能态密度为零的能量区间。

11、价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。

12、导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。

13、束缚激子:等电子陷阱俘获载流子后成为带电中心,这一中心由于库仑作用又能俘获另一种带电符号相反的载流子从而成为定域激子,称为束缚激子。

14、浅能级杂质:在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子(电子或空穴)的施主、受主杂质,它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。

半导体物理学简明教程 (2)[111页]

半导体物理学简明教程 (2)[111页]

《半导体物理学简明教程》孟庆巨等编著.电子工业出版社
40
2.4.2 能带图及其画法
图2.7在简约区能带图的右边画出了使用方便的简化能带 图,其纵坐标为电子能量,横坐标通常是没有意义的。 这种表示方法简单,直观性强,是经常使用的一种能带 图。例如在讨论半导体表面问题和半导体接触现象时, 用的都是这种图,并使横坐标也有明确的含义。图中Eg 表示两个能带之间的带隙宽度即禁带宽度。
《半导体物理学简明教程》孟庆巨等编著.电子工业出版社
38
2.4.2 能带图及其画法
(2)重复区形式:把每一个能带都按照式 (2.4-3)周期 性地重复,在每一个布里渊区中表示出所有的能带。 这时E是k的多值函数。
《半导体物理学简明教程》孟庆巨等编著.电子工业出版社
39
2.4.2 能带图及其画法
(3)简约区形式:在第一布里渊区中表示出所有能带 。这时E是k的多值函数,与每个k值对应的不同能量属 于不同的能带,如图2.6所示。在用图形表示晶体的能 带结构时经常使用的就是这种形式。
V (r + Rm ) = V (r )
《半导体物理学简明教程》孟庆巨等编著.电子工业出版社
3
2.1 周期性势场
上图给出一维周期性势场的示意图。周期性势场可以 看做是各个孤立原子的势场的叠加。V1, V2, V3, …分别 代表原子1, 2, 3, …的势场,V代表叠加后的晶体势场。
《半导体物理学简明教程》孟庆巨等编著.电子工业出版社
11
波矢量k和波矢量 k’= k+Kn标志的两个状态
( n1, n2, n3为任意整数) 为倒格矢。晶格平移矢量 Rm 和倒格矢 Kn 之间满足如下 关系 K n Rm 2 ( μ为任意整数) (1.3-5) 所以 iK n Rm (2.2-6) e 1 式(2.2-6)即为式(1.3-4)。利用式(2.2-6),有

半导体物理1-2章总结

半导体物理1-2章总结

半导体中E(k)与k的关系
01
(能带极值附近)
02
半导体中电子的平均速度
03
(能带极值附近)
04
半导体中电子的加速度
05
(能带极值附近)
06
4.空穴---
07
正电荷+q和正有效质量
08
半导体中的电子运动
09
1.3-1.4节
f
01
a
02
概括了半导体内部势场的作用 a是半导体内部势场和外电场作用的综合效果 直接将外力与电子加速度联系起来
严格周期性重复排列的原子间运动
恒定为零的势场中运动
▲单电子近似:晶体中的某一个电子是在周期性排列且固定不动的原子核的势场 以及其他大量电子的平均势场中运动,这个势场也是周期变化的, 并且它的周期与晶格周期相同。
原子相互接近 形成晶体
共有化运动
▲共有化运动:由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因而,电子将可以在整个晶体中运动 只有外层电子共有化运动最显著
1.2节
能级分裂
能带形成
满带或价带 导带
2.半导体中电子状态和能带
晶体中的电子
VS
自由电子
标志区域
k只能取有限多个分立值
k可取任意的连续值,自由电子可以在整个空间内运动
波矢K
几率不相同,有周期性 周期函数的周期与晶格周期相同
空间各处几率相同
波函数
共有化运动的电子
自由电子
▲导体、绝缘体和半导体的能带
绝缘体 (b) 半导体 (c) 导体
在Ⅱ带带顶附近:
01
即:电子有效质量比空穴有效质量小
02

半导体物理基础2

半导体物理基础2
二、本征半导体和杂质半导体
1、什么是半导体?
在上一节中,我们从电子填充能带的情况说明 了什么是半导体。
半导体是一种具有特殊导电性能的功能材料, 其电阻率介于10-4到1010欧姆厘米之间,介于金属导 体和绝缘体之间。半导体的导电性质可以随着材料的 纯度、温度及其它外界条件(如光照)的不同而变化。
受主杂质的电离过程也可以用能带图表示。
(能带图中空穴的能量是越向下越高)
将被受主杂质束
缚的空穴的能量
状态称为受主能 级,记为EA。当 空穴得到能量 EA 后 就 从 受 主 的束缚态跃迁到
价带成为导电空 穴,所以EA比价 带 顶 Ev 低 , 并 且 由 于 EA《Eg , 所以受主能级位
于离价带顶很近 的禁带中。
在纯净的半导体中掺入受主杂质后,受 主杂质电离,使价带中的导电空穴增多,增强 了半导体的导电能力。通常把主要依靠空穴导 电的半导体称为空穴型或 p型半导体。
对于p型半导体:空穴浓度p》电子浓度n;np=ni2
空穴是多数载流子,简称多子, 电子是少数载流子,简称少子。
总之,根据对导电性的影响,半导体中 的杂质又可分为两种类型。当杂质能级能提供 电子时(施主杂质),半导体主要靠杂质电离 后提供的电子导电,这种半导体称为n型半导 体;另一种杂质可以提供禁带中空的能级(受 主杂质),因而价带中有些电子可以激发到受 主能级上而在价带中产生大量空穴,这种半导 体称为p型半导体,其主要靠空穴导电。
n0=p0=(NcNv)1/2 exp(-Eg/2kT) = ni ni称为本征载流子浓度
Nc、Nv 是导带底和价带
n0
顶的有效状态密度;
Ec k是波耳兹曼常数;
Eg
本征激发 T为温度;

半导体物理2

半导体物理2

§2.2 缺 陷 能 级
1、 点 缺 陷:
空位 自间隙原子 反结构缺陷 各种复合体 位 错
(1)Si中的点缺陷: Si中的点缺陷:
以空位、间隙和复合体为主
A、空位
V0+e V0-e V- (受主) V+ (施主)
Ec EA
ED1 ED2 EV
ED1〈ED2
B、 间隙
例1:Si:B空位 Si:
7、等电子陷阱
(1)等电子杂质 ) 特征:a、与本征元素同族但不同原子序数 例:GaP中掺入Ⅴ族的N或Bi
b、以替位形式存在于晶体中,基本上 是电中性的。
(2)等电子陷阱
等电子杂质(如N)占据本征原子位置 (如GaAsP中的P位置)后,即 N NP 存在着由核心力引起的短程作用力,它们 可以吸引一个导带电子(空穴)而变成负 (正)离子,前者就是电子陷阱,后者就是 空穴陷阱。
3、受主能级:举例:Si中掺硼 B(Si:B) 举例:Si中掺硼 Si:
电离受主 B价带空穴
受主能级 EA
电离的结果: 掺受主的意义所在。 电离的结果:价带中的空穴数增加了,这即是掺受主的意义 掺受主的意义
EC
Eg EA EV
△EA
受主 电 离 能: △EA=EA-EV
受主杂质:束缚在杂质能级上的空穴 受主杂质:
EC
△ED=EC-ED
ED Eg
EV
施主杂质:束缚在杂质能级上的电子 施主杂质:
被激发到导带E 被激发到导带Ec成为导带电子,该杂质电 离后成为正电中心(正离子)。这种杂质 称为施主杂质。 Si、Ge中Ⅴ族杂质的电离能△ED(eV) 晶体 杂 质 P As Sb Si 0.044 0.049 0.039 Ge 0.0126 0.0127 0.0096

半导体物理与材料2

半导体物理与材料2

施主原子的轨道上施主电子Bohr氢原子模型. 这个轨道的半径仍用氢原子模型计算,得:
* rd 0 h 2 /(q 2m0 ) 0.53 10 8 ( r / 0 )( m0 / m0 )cm 13 10 8 cm
现在考虑左图的情形,随着施主原子增多,第 五个电子的轨道开始交叠,这种情况发生的临 界杂质浓度Ncrit可以通过计算体积求出:
100
1015
1019
N
迁移率与掺杂浓度关系
迁移率依赖于温度
1. 低掺杂:晶格散射占优势 3/ 2 温度增加,晶格振动加剧,增加碰撞,因而迁移率减小 T . 2. 高掺杂:电离杂质散射占优势 在这种情况下,主要因素是电子保留在电离杂质原子附近的时间长短,时 间越长,库仑效应越明显.但电子在高温下运动速度加快,停留在杂质原子 3/ 2 附近的时间变短,散射效应变弱,迁移率增加,理论上有 T .
热平衡状态
热平衡时未掺杂的半导体的载流子浓度由带隙Eg决定. 带隙越大.n0 , p0 就越小.因为在热平衡状态下,粒子的能量只有热 能,其量级是kT,而Eg远大于kT,所以只有很少的电子从价带激发到导 带.对本征半导体,可以推导出严格解:
n p ni C exp( Eg / 2kT ) C exp( Ei / kT )
空穴电荷,而将多数载流子浓度写为:
nn 0 N D
下标n代表N型材料,0代表热平衡状态.
考虑到电中性:
nn 0 N D pn 0
根据质量作用定律,就可以求出少子浓度:
pn 0 ni2 / N D
同理,对于P型半导体有:
p p 0 N A , p p 0 N A n p 0 , n p 0 ni2 / p p 0 ni2 / N A

《半导体物理》习题答案第二章

《半导体物理》习题答案第二章
②利用氢原子基态电子的轨道半径
13.6 0.012eV 17
r0
0 h2 52.9 1012 m m0 q 2
可将浅施主杂质弱束缚电子的基态轨道半径表示为
rn

0 r h2 m 17 r o r 52.9 1012 =6 10-8m=60nm * 2 * 0 mn q mn 0.015
补充 1、在硅晶体的深能级图中添加铒 (Er)、钐 (Sm)、钕(Nd)及缺陷深中心(双空位、E 中心、A
第2章
中心)的能级。 (略) 补充 2、参照上列 GaN 中常见杂质及缺陷的电离能参数表(或参考书表 2-4)回答下列问题: 1)表中哪些杂质属于双性杂质? 2)表中还有哪些杂质可能跟这些杂质一样起双重作用,未发现其双重作用的可能原因是什 么? 3)Mg 在 GaN 中起施主作用的电离能为什么比 Si、C 施主的电离能大,且有两个不同值? 4)Ga 取 N 位属何种缺陷,有可能产生几条何种能级,其他能级观察不到的可能原因是什 么? 5)还能不能对此表提出其他问题?试提出并解答之。 答:1)按表中所列,Si、C、Mg 皆既为施主亦为受主,因而是双性杂质。 2)既然 II 族元素 Mg 在 N 位时能以不同电离能 0.26eV 和 0.6eV 先后释放其两个价电子,那么 表中与 Mg 同属 II 族元素的 Be、Zn、Cd、Hg 似也有可能具有类似能力,I 族元素 Li 更有可能在 N 位上释放其唯一的外层电子而起施主作用。现未发现这些杂质的施主能级,原因可能是这些元素释 放一个电子的电离能过大,相应的能级已进入价带之中。 3)Mg 在 GaN 中起施主作用时占据的是 N 位,因其外层电子数 2 比被其置换的 N 原子少很多, 因此它有可能释放其价电子,但这些电子已为其与最近邻 Ga 原子所共有,所受之约束比 Si、C 原子 取代 Ga 原子后多余的一个电子所受之约束大得多,因此其电离能较大。当其释放了第一个电子之后 就成为带正电的 Mg 离子,其第二个价电子不仅受共价环境的约束,还受 Mg 离子的约束,其电离能 更大,因此 Mg 代 N 位产生两条深施主能级。 4)Ga 取 N 位属反位缺陷,因比其替代的 N 原子少两个电子,所以有可能产生两条受主能级, 目前只观察到一条范围在价带顶以上 0.59eV1.09eV 的受主能级, 另一能级观察不到的原因可能是其 二重电离(接受第二个共价电子)的电离能太大,相应的能级已进入导带之中。 (不过,表中所列数 据变化范围太大,不合情理,怀疑符号有误,待查。 ) 5)其他问题例如: 为什么 C 比 Si 的电离能高?答:因为 C 比 Si 的电负性强。 Li 代 Ga 位应该有几条受主能级?答:Li 比 Ga 少两个价电子,应该有两条受主能级。 ……….

半导体物理问答题2

半导体物理问答题2

半导体物理问答题2第⼀篇习题半导体中的电⼦状态1-1、什么叫本征激发?温度越⾼,本征激发的载流⼦越多,为什么?试定性说明之。

1-2、试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。

1-3、试指出空⽳的主要特征。

1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。

1-5、某⼀维晶体的电⼦能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。

求:(1)能带宽度;(2)能带底和能带顶的有效质量。

第⼀篇题解半导体中的电⼦状态1-1、解:在⼀定温度下,价带电⼦获得⾜够的能量(≥E g )被激发到导带成为导电电⼦的过程就是本征激发。

其结果是在半导体中出现成对的电⼦-空⽳对。

如果温度升⾼,则禁带宽度变窄,跃迁所需的能量变⼩,将会有更多的电⼦被激发到导带中。

1-2、解:电⼦的共有化运动导致孤⽴原⼦的能级形成能带,即允带和禁带。

温度升⾼,则电⼦的共有化运动加剧,导致允带进⼀步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。

反之,温度降低,将导致禁带变宽。

因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、解:空⽳是未被电⼦占据的空量⼦态,被⽤来描述半满带中的⼤量电⼦的集体运动状态,是准粒⼦。

主要特征如下:A 、荷正电:+q ;B 、空⽳浓度表⽰为p (电⼦浓度表⽰为n );C 、E P =-E nD 、m P *=-m n *。

1-4、解:(1) Ge 、Si:a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;b )间接能隙结构c )禁带宽度E g 随温度增加⽽减⼩;(2) GaAs :a )E g (300K )= 1.428eV , Eg (0K) = 1.522eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、解:(1)由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE ooo o 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=??=+====∴==--则能带宽度对应能带极⼤值。

半导体物理分章答案第二章

半导体物理分章答案第二章
EC 0.04eV
ED
③Au一:Au0 + e →Au一
EC 0.04eV
ED
Eg
EV
EA 0.15eV
Eg EV
④Au二:Au一 + e →Au二
0.20eV EA2 EA1 0.15eV EC Eg EV
⑤Au三:Au二 + e →Au三
EA3 EA2 EA1 0.15eV EC Eg EV
0.04eV
例如:GaAs中掺Si(IV族)
Si
Si
Ga As
施主
受主
§2.3 缺陷能级
Imperfection Level
1、点缺陷
常见点缺陷
• 空位
• 间隙原子 • 反结构缺陷
哈尔滨工业大学微电子科学与技术系
(1)Si中的点缺陷
以空位、间隙和复合体为主。 • A、空位 V0 + e → V-(受主) V0 - e → V+(施主)
• NA>ND时:p 型半导体 因EA在ED之下,ED上的束缚电子首先填充EA上的空 位,即施主与受主先相互“抵消”,剩余的束缚空穴再电 离到价带上。
有效受主浓度: NA*=NA-ND
• NA≌ND时:杂质高度补偿
高度补偿:若施主杂质浓度与受主杂质尝试相差不大或二 者相等,则不能提供电子或空穴,这种情况称 为杂质的高度补偿。 本征激发的导带电子
m* q 4 p
(4)
(mn*和mp*分别为电导有效质量) 估算结果与实际测量值有 误差,但数量级相同。 这种估算有优点,也有缺 点。 • Ge:△ED~0.0064eV • Si: △ED~0.025eV
6、杂质补偿
半导体中同时存在施主杂质和受主杂质时,受主杂质 会接受施主杂质的电子,导致两者提供载流子的能力相互 抵消,这种作用称为杂质补偿。 在制造半导体器件的过程中,通过采用杂质补偿的方 法来改变半导体某个区域的导电类型或电阻率。

西电半导体物理教案chapter2

西电半导体物理教案chapter2

School of Microelectronics
在图 (a)中,A点的状态和a点的状态 完全相同,也就是由布里渊区一边运 动出去的电子在另一边同时补充进来, 因此电子的运动并不改变布里渊区内 电子分布情况和能量状态,所以满带 电子即使存在电场也不导电。 但对于图(b)的半满带,在外电场的作 用下电子的运动改变了布里渊区内电 子的分布情况和能量状态,电子吸收 能量以后跃迁到未被电子占据的能级 上去了,因此半满带中的电子在外电 场的作用下可以参与导电。
N是固体物理学原胞数,代入布洛赫波函数得到 K=n/Na=n/L (n=0,±1,±2…)
因此波矢k是量子化的,并且k在布里渊区内均匀分布 , 每个布里渊区有N个k值 。
School of Microelectronics
推广到三维
nx L1 ny Ky = L2 nz Kz = L3 Kx =
是半导体中出现的是 mn*,称mn*为导带底电子有效质量。 因导带底附近E(k)>Ec,所以mn* >0。 同样假设价带极大值在k=0处,价带极大值为Ev ,可 以得到
h2k 2 E( k ) Ev = 2mn
1 1 d 2E = 2 2 mn h dk k =0
其中
而价带顶附近E(k)<Ev,所以价带顶电子有效质量mn* <0。
半导体器件和集成电路生产中就是利用杂质补偿作用在n型si外延层上的特定区域掺入比原先n型外延层浓度更高的受主杂质通过杂质补偿作用就形成了p型区而在n型区与p型区的交界处就形成了pn结
半导体物理
SEMICONDUCTOR PHYSICS
西安电子科技大学 微电子学院
School of Microelectronics
School of Microelectronics
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• We may consider this deficiency as a particle similar to an electron. • This fictitious particle is called hole
Wen Chang Huang chapter 2 19
Energy levels of isolated atoms
• For an isolated, the electron an have discrete energy level
– Ex: an isolated hydrogen atom are given by the Bohr model
E H m o q / 8 o h n 13 . 6 / n eV
– Find the intercepts of the plane on the three Cartesian coordinates in terms of the lattice constant – Take the reciprocals of these numbers and reduce them to the smallest three integers having the same ratio – Enclose the result in parentheses (hkl) as the miller indices for a single plane
chapter 2 4
Wen Chang Huang
Compound semiconductors
Wen Chang HuangΒιβλιοθήκη chapter 25
Basic crystal structure
• Single crystal
– The atoms are arranged in three dimensional periodic fashion
• The element semiconductors
– Silicon and germanium – Belongs to fcc crystal family
• Two interpenetrating fcc sublattices with one sublattice displaced from the other by one-quarter of the distance along the body diagonal of the cubic • A displacement of a 3 / 4
• SiC+SiO2(sand)→Si(solid)+Si O(gas)+CO(gas)
– 98% pure
• Si(solid)+3HCl(gas)→SiHCl3( gas)+H2(gas) • SiHCl3(gas)+H2(gas)→Si(solid )+3HCl(gas)
– Polycrystalline silicon
• Body centered cubic
– Additional an atom at the center – Each atom has eight nearestneighbor atoms – Sodium, tungsten
• Face-centered cubic
– Additional an atom at each face – Each atom has 12 nearestneighbor atoms – Aluminum, copper, gold and platinum
– Zincblende lattice
• One fcc sublattice fas column III atoms and the other has column V atoms
Wen Chang Huang
chapter 2
12
Example 2
Wen Chang Huang
chapter 2
– A unit cell of a diamond lattice consists of a tetrahedron
• Each atom is surrounded by four equidistant nearest neighbors
• III-V compound semiconductor
Wen Chang Huang chapter 2 20
Isolated silicon atom
• Has 14 electrons
– 10 electrons occupy deeplying energy level – The four remaining valence electron
• • • • • • • Semiconductor materials Basic crystal structure Basic crystal growth technique Valence bands Energy bands Intrinsic carrier concentration Donors and acceptors
Wen Chang Huang chapter 2 14
Example 3
Wen Chang Huang
chapter 2
15
Miller indices, some other convention
Wen Chang Huang
chapter 2
16
Basic crystal growth technique
Wen Chang Huang chapter 2 6
Unit cell
• R=na+nb+pc • R: lattice point
Wen Chang Huang
chapter 2
7
Basic cubic-unit cells
• Simple cubic
– Has an atom at each corner – Each atom has six equidistant nearest-neighbor atoms – Lattice constant: a – Polonium 釙
• As N isolated atoms are brought together to form a solid
– N separate but closely spaced level are formed – As N is large continuous band of energy – The parameter a: the equilibrium interatomic distance of the crystal
Chapter 2
Energy bands and carrier concentration in thermal equilibrium
Wen Chang Huang chapter 2 1
Energy bands and carrier concentration in thermal equilibrium
Conduction electron and hole
• At low temperature
– Not available for conduction
• At higher temperature
– Thermal vibrations break the covalent bonds a free electron results participle in current conduction – A electron deficiency is left in the covalent bond
• Weakly bound • Involved in chemical reactions • The 3s sushell has two allowed quantum states per atom
8
Wen Chang Huang
chapter 2
Simple cubic
Wen Chang Huang
chapter 2
9
FCC
Wen Chang Huang
chapter 2
10
example1
Wen Chang Huang
chapter 2
11
The diamond structures
13
Crystal planes and miller indices
• The crystal properties along different planes are different • The electrical and other device characteristics can be dependent on the crystal orientation • Miller indices
• Lattice
– The periodic arrangement of atoms in a crystal – In a crystal, an atom never strays far from a single, fixed position
• Unit cell
– Is representative of the entire lattice
4 2 2 2 2
– The discrete energy level
• Consider two identical atoms
– Far apart
• Both atoms have the same energy
– Brought closer
• The doubly degenerate energy levels will spilt into two level by the interaction between the atoms
相关文档
最新文档