气凝胶的详细介绍.

合集下载

气凝胶 保温材料

气凝胶 保温材料

气凝胶保温材料
气凝胶是一种具有纳米多孔网络结构的固体材料,它在孔隙中充满气态分散介质。

气凝胶作为保温材料,具有以下几个显著特点:
1. 高隔热性:气凝胶的保温性能是传统材料的2-8倍,这意味着在达到同等保温效果的情况下,所需的气凝胶用量更少。

2. 长寿命:气凝胶的使用寿命可长达20年左右,远超传统保温材料的5年更换周期,从而降低了全生命周期的使用成本。

3. 轻质薄厚:由于其低导热系数和高耐温性,气凝胶可以制成较薄的保温层,节省空间,同时具备出色的防火性和防水性。

4. 环保性:气凝胶材料本身绿色环保,不含有害物质,符合当前对环保的高要求。

此外,根据不同的骨架组成物质,气凝胶可分为无机气凝胶(如硅气凝胶和金属氧化物气凝胶)、有机气凝胶(例如使用间苯二酚-甲醛作为前躯体)以及碳气凝胶(高温和惰性气氛下碳化得到)等类型。

综上所述,气凝胶以其独特的性质在节能减排、提高能效等方面展现出了巨大的潜力和价值。

气凝胶简介演示

气凝胶简介演示
气凝胶在承受压力和稳定性方面 存在一定的局限性,需要优化制 备工艺和材料配方以提高其性能 。
降低导热系数
气凝胶的导热系数较高,限制了 其在一些需要低导热系数领域的 应用,需要研发新型材料和制备 方法来降低其导热系数。
增强隔声性能
气凝胶的隔声性能有待提高,需 要研究如何通过改进结构和材料 来增强其隔音效果。
性能优化与改性研究
表面修饰
通过化学或物理方法对气凝胶表 面进行修饰,以提高其润湿性、
耐腐蚀性和抗氧化性等性能。
多孔结构调控
通过改变制备工艺参数,调控气凝 胶的孔径、孔隙率和比表面积等参 数,以提高其吸附性能、隔热性能 和机械性能等。
复合增强
将气凝胶与其他材料进行复合,以 提高其力学性能、电学性能和光学 性能等。
04
气凝胶的研究进展
新型制备方法研究Biblioteka 溶胶-凝胶法通过将无机盐或金属醇盐溶液进行水解、聚合,形成凝胶,再经干燥和热处理得 到气凝胶。此方法制备的气凝胶孔径较小,结构均匀,但制备过程复杂,需要大 量有机溶剂。
超临界干燥法
在超临界状态下,将凝胶置于高压反应釜中,通过控制压力和温度,使凝胶中的 溶剂变成超临界流体,然后迅速释放压力,使凝胶内部形成大量微孔,得到气凝 胶。此方法制备的气凝胶孔径较大,结构较均匀,但需要高压力设备。
3
经过老化、干燥和高温处理后,即可得到气凝胶 。
化学气相沉积法
化学气相沉积法是一种常用于制 备无机气凝胶的方法。
该方法将气体反应物引入反应室 ,在一定条件下发生化学反应, 生成固态物质并沉积在基底上。
通过控制反应条件和沉积时间, 可以制备出具有不同结构和性能
的气凝胶。
模板法
模板法是一种通过使用模板来制备气 凝胶的方法。

气凝胶简介ppt课件

气凝胶简介ppt课件
14
气凝胶的热学特性及其应用
Ⅰ.气凝胶材质透明,光线可自由透射 Ⅱ.低折射率,对入射光几乎没有反射损失,太阳光透过率高达87% Ⅲ.纳米孔状材料,内部存在大量微小孔洞,孔隙率在80%~99.8%。 布满了无限多的孔壁,而这些孔壁都是辐射的反射面和折射面,极大 地阻滞了辐射的热量散失。
太阳能利用:因此气凝胶特别适合于用作太阳能集热器及其它集热装 置的保温隔热材料,当太阳光透过气凝胶进入集热器内部,内部系统 将太阳光的光能转化为热能,气凝胶又能有效阻止热量流失。
• 热传导:由于近于无穷多纳米孔的存在,热流在固体
中传递时就只能沿着气孔壁传递,近于无穷多的气孔壁构 成了近于“无穷长路径”效应,使得固体热传导的能力下 降到接近最低极限
9
气凝胶在太空任务的应用
美“火星探路者”探测器 (保护机器人电子仪器设备)
“火星漫步者”,抵挡入夜-100℃超低温
俄罗斯“和平号”空间
气凝胶可以作为飞机上使用的隔热消音材料 。据报道,航天飞机及宇宙飞船在重返大气 层时要经历数千摄氏度的白炽高温,保护其 安全重回地球的绝热材料正是SiO2气凝胶。 美国NASA在“火星流浪者”的设计中,使用 了SiO2气凝胶作为保温层,用来抵挡火星夜晚 的超低温。
20
工业设备及管道的保温
锅炉、炼解炉、 干燥机和窑的 保温
28
安装示意图
29
气凝胶复合材料
应用在暖气管道上的效果图
30
一层6mm厚的气凝胶复合材料 可使热水管的温度从86度降到30度
31
包裹在汽车的发动机上
应用在高速列车上
包裹在储油罐上
铺在地板上
32
33
房屋隔热效果对比
34
冷藏集装箱、保温集装箱

超材料气凝胶.pptx

超材料气凝胶.pptx
一、气凝胶:世界上最轻的气体
英文aerogel,又称为干凝胶。当凝胶脱去大部分溶剂,使凝胶 中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质 是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。
被称为冷烟、固体烟、固体空气或者蓝烟的气凝胶是目前已知 固体物质中最轻并且性能最好的隔热材料,其体积的90%以上都是 极微小的纳米孔洞,其余部分由三维纳米网状孔壁构成。
气凝胶内部充满了两端开放并与表面相通的纳米孔,其 高达1000m2/g的比表面积说明了其中包含孔的数量之多, 因此声音在其中传播时,声能将被其大量存在的孔壁大 大消耗,这使得气凝胶具有比普通多孔材料高数十倍的 吸声效果。
第12页/共20页
由于气凝胶的密度可以通过改变制备条件对其进行控制,因此使得声 阻亦可调。这一特性使得气凝胶可作为声阻耦合材料,如作为压电陶 瓷与空气的声阻耦合材料。 水声反声材料是指声波由水中入射到材料层上能无损耗地全部反射 出去的材料。
第13页/共20页
3、催化特性及其应用
超微粒子特定的表面结构有利于活性组分的分散,从而可以对许多催化 过程产生显著的影响。气凝胶是一种由纳米粒子组成的固体材料,具有小 粒径、高比表面积和低密度等特点,这些特点使气凝胶催化剂的活性和选 择性均远远高于常规催化剂,而且活性组分可以非常均匀地分散于载体中, 同时它还具有优良的热稳定性,可以有效的减少副反应发生。因此气凝胶 作为催化剂,其活性、选择性和寿命都可以得到大幅度地提高,具有非常 良好的催化特性
三、基本特性(5大特性,主要介绍3点)
1、热学特性及其应用 气凝胶的纳米多孔结构使它具有极佳的绝热性能,其热导率甚至比
空气还要低,空气在常温真空状态下的热导率为0.026W/(m·k),而 气凝胶在常温常压下的热导率一般小于0.020W/(m·k),在抽真空的 状态下,热导率可低至0.004W/(m·k)。

气凝胶熔点-概述说明以及解释

气凝胶熔点-概述说明以及解释

气凝胶熔点-概述说明以及解释1.引言1.1 概述概述气凝胶是一种具有极低密度、高度多孔结构、大比表面积和优秀吸附能力的材料。

它由超细的固体纳米颗粒或纤维形成,通过热解或溶胶-凝胶法制备而成。

由于其特殊的微观结构和独特的性质,气凝胶已经成为各个领域的研究热点,包括能源存储、催化剂、吸附剂、隔热材料等。

气凝胶的熔点是指在加热下从固态转变为液态的温度。

研究气凝胶的熔点对于深入了解其热稳定性、传热性能及应用前景具有重要意义。

然而,气凝胶的熔点受到多种因素的影响,包括物质的成分、形态结构、制备工艺等。

本文旨在探讨影响气凝胶熔点的因素,并总结已有的研究成果。

首先,我们将介绍气凝胶的定义及其基本性质,包括其低密度、高孔隙度和大比表面积等。

接着,我们将重点讨论影响气凝胶熔点的因素,这包括物质的化学成分、晶体结构、粒径分布、内部结构以及外部环境条件等。

在此基础上,我们将总结目前已有的关于气凝胶熔点的研究结果,并对未来的研究方向进行展望。

通过对气凝胶熔点的深入研究,我们可以更好地理解气凝胶的热性能和稳定性,为其在各个应用领域的开发和应用提供有力支撑。

最终,我们希望本文能够为读者对气凝胶熔点的了解提供一些参考,促进气凝胶研究领域的进一步发展。

文章结构部分的内容可以按照以下方式进行编写:在"1.2 文章结构"部分,将详细介绍本篇文章的结构和各个部分的内容。

本篇文章主要分为引言、正文和结论三个部分。

下面将对各个部分的内容进行介绍。

1. 引言部分将概述本篇文章的主题和目的。

首先,我们会简要介绍气凝胶熔点的定义。

然后,文章将重点阐述本研究的目的,即探讨影响气凝胶熔点的因素。

2. 正文部分将详细讨论气凝胶的定义和性质,以及影响气凝胶熔点的因素。

在2.1小节中,我们会先介绍气凝胶的定义,包括其制备方法和结构特点。

随后,我们将探讨气凝胶的性质,例如其热稳定性和热导率。

在2.2小节中,我们将从多个方面探讨影响气凝胶熔点的因素,包括化学成分、结构特点和外界条件等因素。

气凝胶的详细介绍课件

气凝胶的详细介绍课件

实验案例分析
案例一
采用正硅酸乙酯为硅源,乙醇为溶剂,氨水为催化剂,采用 溶胶凝胶法制备气凝胶。通过改变氨水的浓度,研究催化剂 对气凝胶性能的影响。
案例二
以甲基三甲氧基硅烷为硅源,采用乳化法制备气凝胶。通过 改变乳化剂的种类和浓度,研究乳化剂对气凝胶性能的影响 。
实验注意事项与安全措施
01
02
03
03
气凝胶的生产工艺及设备
气凝胶的生产工艺
气凝胶的生产工艺流程
01
从原料开始,经过一系列的化学反应和物理处理,最终得到气
凝胶产品。
气凝胶生产工艺的分类
02
根据生产工艺的不同,气凝胶可以分为化学气凝胶、物理气凝
胶和复合气凝胶等。
气凝胶生产工艺的特点
03
这些生产工艺具有不同的特点,如生产效率、产品性能等,根
气凝胶市场发展趋势
随着科技的不断进步和应用的深入拓 展,气凝胶市场将迎来更加广阔的发 展空间,预计未来几年将持续保持快 速增长态势。
气凝胶的技术发展趋势
气凝胶制备技术
目前,气凝胶的制备技术已经比较成熟,但制备效率、成本、环保性等方面仍 需进一步改进。未来,研究者将致力于开发更加高效、环保、低成本的制备技 术,以进一步推动气凝胶的应用。
气凝胶生产过程中的问题及解决方案
原料问题
气凝胶生产过程中,原料的纯度、稳定性等因素会影响产 品质量。解决方案:对原料进行严格筛选和检测,确保原 料的质量和稳定性。
反应控制问题
化学反应过程中,温度、压力、浓度等参数的控制会影响 产品质量。解决方案:采用先进的控制系统和检测设备, 对反应过程进行精确控制。
气凝胶的表面覆盖了大量的极性基团,使其具有很高的化学活性和吸附性能,可以 用于催化剂、吸附剂、隔热材料等领域。

气凝胶的详细介绍

气凝胶的详细介绍

气凝胶的详细介绍气凝胶是一种微孔多孔、低密度的固体材料,具有广泛的应用领域。

它在化学、物理、材料学等领域都有重要的研究价值和广泛的应用前景。

气凝胶的制备方法主要有凝胶法、超临界干燥法、模板法等,其中最为常用的是凝胶法和超临界干燥法。

气凝胶的具体制备过程通常包括溶液凝胶化、凝胶脱水、干燥等步骤。

首先,通过在水溶液中添加适量的溶剂和助剂,将所需的固体物质溶解并形成透明溶液;接着,在溶液中逐渐加入适量的交联剂,使溶液中的聚合物分子形成三维网络结构,形成凝胶;然后,在凝胶中将水分脱除,通常使用的方法有气相脱水、冷冻干燥、超临界干燥等;最后,通过适当的后处理方法(如热处理、化学修饰等),可以使气凝胶具有所需的性能和应用特性。

气凝胶具有一系列独特的物理、化学性质和特点。

首先,气凝胶具有超大的比表面积,一般可达到500 m2/g以上,甚至高达1000 m2/g以上。

这使得气凝胶具有很好的吸附和分离性能,对于气体、液体或固体颗粒的吸附、分离和催化等过程具有重要的应用价值。

其次,气凝胶的孔径和孔结构可以调控,可从纳米尺度到微米尺度进行调控,使其在不同领域具有广泛的应用潜力。

再次,气凝胶的密度较低,一般在0.01 g/cm3以下,这使得其具有极低的导热性能,同时还可以减小材料的重量,提高其在结构材料、热隔热材料等领域的应用性能。

此外,气凝胶还具有优异的吸声性能、机械性能、光学性能等特点,适用于声学材料、力学材料、光学材料等领域。

气凝胶的应用领域非常广泛。

首先,在能源领域,气凝胶可以作为储能材料和电极材料,用于超级电容器、锂离子电池等器件中,具有提高能量密度、提高充放电速度、延长循环寿命等优点;其次,气凝胶还可以应用于热隔热材料领域,例如用于建筑保温材料、飞机隔热材料等,由于其低导热性能可以有效减少热量传输,从而节约能源;此外,气凝胶在环境保护、汽车制造、航空航天、生物医药等领域也具有广阔的应用前景。

总的来说,气凝胶是一种具有独特性质和广泛应用前景的新型材料。

气凝胶应用

气凝胶应用

气凝胶应用
气凝胶是一种新型材料,具有很多优良的特性,如高表面积、低密度、良好的机械强度和热稳定性等。

因此,气凝胶的应用范围非常广泛。

1.绝缘材料:气凝胶具有非常好的绝缘性能,可以用于制作隔热、隔
音材料。

在建筑、航空航天、电子等领域需要高效的绝缘材料时,气凝胶
是一个很好的选择。

2.纳米材料:气凝胶的高比表面积和微米级孔隙结构使其具有很好的
催化性质和高效的吸附性能。

因此,气凝胶可以作为纳米催化剂、纳米吸
附剂、传感器等方面的材料。

3.节能材料:气凝胶可以制作为高效的隔热材料,可以用于建筑、冷
链运输、太阳能热水器、热电联产等方面,能够显著减少能源消耗。

4.生物医学:气凝胶可以被用于医疗器械、药物载体和生物传感器。

由于其高孔隙率和亲水性,气凝胶可以优化药物的传输速度和释放时间,
并且能够用于制作人造血管等医疗器械。

5.环保材料:气凝胶具有良好的吸附性能,可以用于净化水、空气等
方面,是一种非常有效的环保材料。

总之,气凝胶具有很多的应用前景,尤其在能源、环保、生物医学等
领域,还有很大的发展空间。

气凝胶产品介绍

气凝胶产品介绍

气凝胶的特性
孔隙率很高,可高达99.8% ;
纳米级别孔洞和三维纳米骨架颗粒;
高比表面积;
极低密度;
气凝胶独特的结构决定了其具有极低的热导率,常温下可以低至0.013W/(m.K);强度低,脆性大,由于其比表面积和孔隙率很大,密度很低,导致其强度很低。

性能参数
密度 12.5-18
比表面积 1400-1630
孔隙率 95-98%
孔径 7-14nm
孔容 3.5ml/g
导热系数 <0.018
产品性能:
1、超乎寻常的保温隔热性能
2、优异的吸附性能
3、高度多孔结构
4、高度疏水性能
5、透光度好
6、极低的密度
7、优良的隔音效果
8、良好的阻燃效果
9、绿色环保,无毒,无腐蚀,不含任何对人体有害的物质。

气凝胶的详细介绍

气凝胶的详细介绍

二氧化硅气凝胶的制备主要采用正硅酸乙酯,正甲基硅烷或水玻 璃等作为硅源。溶胶-凝胶过程中通过硅源物质的水解和缩聚获 得具有三维网络结构的二氧化硅凝胶。以正硅酸乙酯为例,说说 反应机理:
经过水解和浓缩,SiO2的分子链不断增加。当这些氧化物连接到一 起,形成三维网络结构。这些胶体粒子同样维持其网络结构不变, 溶剂充满于胶体粒子间隙,此时称为醇凝胶。醇凝胶由固相部分和 液相部分组成,固相部分由彼此连接的氧化物粒子三维网络结构组 成,液相充满固相网络结构。
气凝胶的性质与应用
气凝胶特有的纳米多孔、 三维网络结构,气凝胶 具有许多独特的性能, 尤其表现在高孔隙率、 低密度、低热导率等方 面
热学特性及其应用
气凝胶的纳米多孔结构使它具有极佳的绝热性能,其热导率甚至比空气还 要低,空气在常温真空状态下的热导率为0.026w/m·k,而气凝胶在常温常 压下的热导率一般小于0.020w/m·k,在抽真空的状态下,热导率可低至 0.004w/m·k 。
超临界干燥:由于凝胶骨架内部的溶剂存在表面张力,在普通的干燥 条件下会造成骨架的坍缩。超临界干燥旨在通过压力和温度的控制, 使溶剂在干燥过程中达到其本身的临界点,完成液相至气相的超临界 转变。过程中溶剂无明显表面张力,在维持骨架结构的前提下完成湿 凝胶向气凝胶的转变。
在无机的二氧化硅气凝胶中引入有机组分, 是获得有机无机杂化 气凝胶的一种有效途径。 Guo等用粘土增强聚酰亚胺/二氧化硅杂化气 凝胶, 随着粘土掺杂量的增加,气凝胶的密度基本保持不变,而模量 提高了将近三倍,说明粘土有效地增强了气凝胶的骨架结构。改性后的 杂化气凝胶往往被赋予新的功能, 如超疏水性气凝胶可以用作水处理 材料等。Cai等则是在纤维素水凝胶的骨架表面原位沉积二氧化硅,得 到纤维素/二氧化硅杂化气凝胶,这种气凝胶呈半透明,耐压缩,抗拉 伸,并能够打结,显示出很好的韧性。

气凝胶材料

气凝胶材料

气凝胶材料
气凝胶材料,是一种由固体颗粒和气体填充剂组成的多孔材料。

其具有低密度、低热导率、优异的保温性能等特点,在建筑、航空航天、能源等领域得到广泛应用。

首先,气凝胶材料具有低密度的特点。

其密度通常在0.1-
0.9g/cm³之间,仅为普通固体材料的5%左右。

这使得气凝胶
材料非常轻盈,适用于需要降低重量的应用场景。

例如,在航空航天领域,使用气凝胶材料可以减轻飞行器的重量,提高其燃料效率。

其次,气凝胶材料具有优异的保温性能。

由于气凝胶材料中充满了微小的孔隙空间,这些孔隙可以阻止热传导。

因此,气凝胶材料具有低热导率的特点,通常为0.01-0.03W/(m·K),是传
统绝热材料的几倍甚至几十倍。

这使得气凝胶材料成为一种非常理想的保温材料,可以有效降低建筑物的能耗,并提高室内的舒适度。

此外,气凝胶材料还具有优异的吸声性能。

由于其多孔结构和较高比表面积,气凝胶材料能够吸收和消散来自空气中的声波能量,降低噪音的传播。

因此,在建筑领域,可以使用气凝胶材料作为吸音板,改善室内的声环境。

此外,气凝胶材料还具有良好的化学稳定性和耐候性。

它能够抵御酸碱腐蚀、氧化等恶劣环境的侵蚀,具有长久的使用寿命。

另外,它还具有防火、隔热、抗震等特点,使其在建筑防火、通风管道等方面有较广泛的应用。

总结起来,气凝胶材料具有低密度、低热导率、优异的保温性能、吸声性能、化学稳定性和耐候性等特点,在建筑、航空航天、能源等领域有广泛的应用前景。

作为一种新型的材料,气凝胶材料的研究和开发将进一步推动科技的进步和社会的可持续发展。

气凝胶定义

气凝胶定义

气凝胶,又称为干凝胶,气凝胶是一种固体物质形态,世界上密度最小的固体。

密度为3千克每立方米。

一般常见的气凝胶为硅气凝胶,其最早由美国科学工作者Kistler在1931年因与其友打赌制得。

是化学溶液经反应,先形成溶胶,再凝胶化获得的凝胶,除去凝胶中的溶剂,获得的一种空间网状结构中充满气体,外表呈固体状密度极低的(接近空气密度)多孔材料。

密胺海绵复合气凝胶毯,具有柔软﹑易裁剪﹑密度小、防火阻燃﹑绿色环保等特性,其可替代玻璃纤维制品、石棉保温毡、硅酸盐纤维制品等不环保、保温性能差的传统柔性保温材料。

由于气凝胶中一般80%以上是空气,所以有非常好的隔热效果,一寸厚的气凝胶相当20至30块普通玻璃的隔热功能。

即使把气凝胶放在玫瑰与火焰之间,玫瑰也会丝毫无损。

气凝胶具有超轻、低密度、纳米微孔,特征是,具有超细蜂窝孔尺寸和多孔结构,由相互连接的聚合链连接而成。

孔径一般低于 100 nm,气凝胶颗粒尺寸通常小于 20nm。

它可以由无机材料(如二氧化硅、氧化铝等),有机材料(如聚酰亚胺、碳等),或混合材料(如凝胶玻璃等)而制得。

气凝胶的种类很多,有硅系,碳系,硫系,金属氧化物系,金属系等等。

aerogel是个组合词,此处aero是形容词,表示飞行的,gel显然是凝胶。

字面意思是可以飞行的凝胶。

任何物质的gel只要可以经干燥后除去内部溶剂后,又可基本保持其形状不变,且产物高孔隙率、低密度,则皆可以称之为气凝胶。

因为密度极低,最轻的气凝胶仅有0.16毫克每立方厘米,比空气密度略低,所以也被叫做“冻结的烟”或“蓝烟”。

由于里面的颗粒非常小(纳米量级),所以可见光经过它时散射较小(瑞利散射),就像阳光经过空气一样。

因此,它也和天空一样看着发蓝(如果里面没有掺杂其它东西),如果对着光看有点发红。

(天空是蓝色的,而傍晚的天空是红色的)。

气凝胶在航天探测上也有多种用途,在俄罗斯“和平”号空间站和美国“火星探路者”的探测器上都有用到这种材料。

气凝胶简介

气凝胶简介

气凝胶简介气凝胶(Aerogel)是一种三维网络结构的纳米先进材料。

当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为气凝胶。

气凝胶具有低密度、低导热性、高孔隙率、耐高温、不燃等优越性能,在航空航天、建筑、石油化工、军工、热能工程、交通运输和家用电器等领域有非常广阔的应用前景。

简介气凝胶是一种固体物质形态,世界上密度最小的固体之一。

密度为3千克每立方米。

一般常见的气凝胶为硅气凝胶,最早由美国科学工作者Kistler在1931年因与其友打赌制得。

气凝胶的种类很多,有硅系,碳系,硫系,金属氧化物系,金属系等等。

aerogel是个组合词,此处aero是形容词,表示飞行的,gel显然是凝胶。

字面意思是可以飞行的凝胶。

任何物质的gel只要可以经干燥后除去内部溶剂后,又可基本保持其形状不变,且产物高孔隙率、低密度,则皆可以称之为气凝胶。

因为密度极低,目前最轻的气凝胶仅有0.16毫克每立方厘米,比空气密度略低,所以也被叫做“冻结的烟”或“蓝烟”。

由于里面的颗粒非常小(纳米量级),所以可见光经过它时散射较小(瑞利散射),就像阳光经过空气一样。

因此,它也和天空一样看着发蓝,如果对着光看则有点发红。

由于气凝胶中一般80%以上是空气,所以有非常好的隔热效果,一寸厚的气凝胶相当20至30块普通玻璃的隔热功能。

即使把气凝胶放在玫瑰与火焰之间,玫瑰也会丝毫无损。

制备方法气凝胶最初是由S.Kistler命名,由于他采用超临界干燥方法成功制备了二氧化硅气凝胶,故将气凝胶定义为:湿凝胶经超临界干燥所得到的材料,称之为气凝胶。

在上世纪90年代中后期,随着常压干燥技术的出现和发展,科学界普遍接受的气凝胶的定义是:不论采用何种干燥方法,只要是将湿凝胶中的液体被气体所取代,同时凝胶的网络结构基本保留不变,这样所得的材料都称为气凝胶。

气凝胶的制备通常由溶胶凝胶过程和超临界干燥处理构成。

气凝胶产品介绍

气凝胶产品介绍

航空航天领域应用
航空航天领域应用
派宇航员登陆火星预定于2018年进行气凝胶正用来为人类首次登陆火星时所穿的太空服研制一种保温隔热衬里Aspen Aerogel公司的一位资深科学家马克·克拉耶夫斯基认为,一层18毫米的气凝胶将足以保护宇航员抵御零下130度的低温。他说:“它是我们所见过的最棒的绝热材料。”
光学领域
纯净的SiO2气凝胶是透明无色的,它的折射率(1.006~1.06)非常接近于空气的折射率,这意味着SiO2气凝胶对入射光几乎没有反射损失,能有效地透过太阳光。 SiO2气凝胶可以被用来制作绝热降噪玻璃。利用不同密度的SiO2气凝胶膜对不同波长的光制备光耦合材料,可以得到高级的光增透膜。 SiO2气凝胶的折射率和密度满足n-1≈2.1×10-4r/(kg/m3),当通过控制制备条件获得不同密度的SiO2气凝胶时,它的折射率可在1.008-1.4 范围内变化,因此SiO2气凝胶可作为切仑科夫探测器中的介质材料,用来探测高能粒子的质量和能量。
日常生活应用
声学领域
由于硅气凝胶的低声速特性,它还是一种理想的声学延迟或高温隔音材料。该材料的声阻抗可变范围较大(103~107 kg/m2·s),是一种较理想的超声探测器的声阻耦合材料水声反声材料是指声波由水中入射到材料层上能无损耗地全部反射出去的材料。在潜艇上构成声纳设备声学系统的材料中,水声反声材料是非常重要的,它可以使声纳单方向工作,消除非探测方向来的假目标信号的干扰,同时隔离装备体自身噪声,提高声纳的信噪比和增益。特性阻抗与水的特性阻抗严重失配的材料可用作水声反声材料。常压下空气的密度和声速都远远小于水的密度和声速,空气的特性阻抗将比水小得多,与水阻抗失配严重,因此含有大量空气的材料可作为常压水中的反声材料。气凝胶高孔隙率且超轻质的特点使其成为最佳的水声反声材料,既具有良好的水声反声效果,又不增加潜艇的重量。

新型气凝胶的研究及应用前景

新型气凝胶的研究及应用前景

新型气凝胶的研究及应用前景随着科技的不断进步和发展,新型材料的研究和应用也变得越来越重要。

其中,气凝胶作为一种新型材料,具有轻质、多孔、高比表面积等特性,因此备受科学界和工业界的关注。

本文将介绍气凝胶的基本概念以及最新的研究进展,并探讨气凝胶在能源、环保、生物医药和航空航天等领域的应用前景。

一、气凝胶的基本概念气凝胶是一种独特的多孔性材料,它的主要成分是固体、液体或气体。

它的制备方法主要有两种:溶胶-凝胶法和超临界干燥法。

其中,溶胶-凝胶法是利用化学反应或物理处理将固体或液体转化为凝胶,然后通过干燥去除水分得到气凝胶。

超临界干燥法则是将原料直接转化为气凝胶,避免了凝胶的形成过程,能够制备出高质量的气凝胶。

二、气凝胶的研究进展气凝胶作为一种新型材料,其研究进展正在快速发展。

近年来,国内外科学家在气凝胶的制备、性质和应用方面做了大量的研究。

在制备方面,人们逐渐意识到溶胶-凝胶法的缺陷,开始研究利用超临界干燥方法制备气凝胶。

在性质方面,人们对气凝胶的孔径结构、比表面积、稳定性等方面进行了研究。

此外,人们还通过掺杂、复合等方法改善气凝胶的物理和化学性能,使其能够广泛应用于各领域。

三、气凝胶在能源领域的应用前景气凝胶在能源领域有广阔的应用前景。

首先,气凝胶能够作为高效催化剂,用于制备氢燃料电池;其次,气凝胶作为一种良好的隔热材料,可广泛应用于太阳能和地热能的利用。

此外,气凝胶还可以用于制备高效光催化剂、储氢材料等,能够为能源领域的发展做出重要贡献。

四、气凝胶在环保领域的应用前景气凝胶的应用也将有助于环保领域的发展。

首先,气凝胶中的高比表面积和孔径结构使其能够有效吸附空气中的有害物质,如VOCs、氧化物和氮化物等。

此外,气凝胶还可以用于制备过滤器、催化剂等,提供环保技术的可能性。

五、气凝胶在生物医药领域的应用前景气凝胶在生物医药领域的应用也十分广泛。

气凝胶能够制备出高比表面积和孔径结构的药物载体、生物传感器等,可以制备出高效、低剂量的药物,同时避免药物副作用的产生。

混凝土中添加气凝胶的效果及应用

混凝土中添加气凝胶的效果及应用

混凝土中添加气凝胶的效果及应用一、前言混凝土作为现代建筑中不可或缺的材料,其性能的优劣直接影响着建筑物的质量和使用寿命。

近年来,随着科技的不断发展和人们对环保建材的需求越来越高,添加气凝胶成为了改善混凝土性能的热门方案,本文就混凝土中添加气凝胶的效果及应用进行详细的阐述。

二、气凝胶介绍气凝胶是一种高性能的新型材料,具有低密度、低导热系数、优异的保温隔热性能、优异的吸声性能、优异的抗压强度和高温稳定性等特点。

气凝胶的制备方法有溶胶-凝胶法、超临界干燥法、浸渍法、电化学沉积法等。

三、混凝土中添加气凝胶的效果1、保温隔热性能混凝土中添加气凝胶可以显著提高混凝土的保温隔热性能。

气凝胶的低导热系数可以有效地减少混凝土的传热损失,同时气凝胶的低密度可以减轻混凝土的重量,使混凝土的保温隔热性能更加优越。

2、抗压强度混凝土中添加适量的气凝胶可以显著提高混凝土的抗压强度。

气凝胶的特殊结构可以增加混凝土的内部结构,使混凝土更加紧密,从而提高混凝土的抗压强度。

3、耐久性混凝土中添加气凝胶可以提高混凝土的耐久性。

气凝胶的化学稳定性和高温稳定性可以有效地防止混凝土的老化和劣化,保证混凝土的使用寿命。

4、吸声性能混凝土中添加气凝胶可以提高混凝土的吸声性能。

气凝胶的孔隙结构可以有效地吸收声波,从而减少室内的噪音污染,提高建筑物的舒适度和居住质量。

四、混凝土中添加气凝胶的应用1、墙体保温混凝土中添加气凝胶可以用于墙体保温。

混凝土墙体中添加适量的气凝胶可以有效地提高墙体的保温隔热性能,从而减少室内的能量消耗,降低室内的温度变化,提高居住质量。

2、屋顶保温混凝土中添加气凝胶可以用于屋顶保温。

混凝土屋顶中添加适量的气凝胶可以有效地提高屋顶的保温隔热性能,从而减少室内的能量消耗,降低室内的温度变化,提高居住质量。

3、地面保温混凝土中添加气凝胶可以用于地面保温。

混凝土地面中添加适量的气凝胶可以有效地提高地面的保温隔热性能,从而减少室内的能量消耗,降低室内的温度变化,提高居住质量。

气凝胶材料及其应用

气凝胶材料及其应用

气凝胶材料及其应用一、气凝胶材料气凝胶,作为世界最轻的固体,已入选吉尼斯世界纪录。

这种新材料密度仅为3.55千克每立方米,仅为空气密度的2.75倍;干燥的松木密度(500千克每立方米)是它的140倍。

这种物质看上去像凝固的烟,但它的成分与玻璃相似。

气凝胶具有三维纳米多孔结构,孔隙率高、质轻、密度极低、隔热性高,而且不燃,从而使其在隔热、隔音、储氢、催化等领域有很好的应用前景。

气凝胶材料的优势如下:1.隔热节能:3mm的气凝胶保温材料,保温效果相当于60mm的传统保温板。

2.防火:建筑防火等级A1级,比传统保温材料的防火等级更高.此外,抗裂性强,避免热胀冷缩导致保温材料及外饰面的开裂甚至脱落。

3.绿色环保:纳米水性材料,不含VOC(挥发性有机化合物),无毒无害。

4.施工工艺简单:传统保温材料施工工序在7—15道,建筑阻燃节能用气凝胶材料施工工序为5道,采用喷涂工艺,有效降低施工难度,缩短施工周期。

5.方便清洗:气凝胶涂料表面光滑,污渍不易附着,方便日常清洁及水洗。

6.使用寿命长:传统材料使用寿命为3—5年,气凝胶材料使用寿命可达15年。

二、气凝胶材料的应用气凝胶在隔热、防水、防火、耐压、透气、隔声、吸附、使用寿命等多个维度性能都很优异,在纯粹追求性能的前提下,气凝胶对同类材料来说是“降维打击”,这使得气凝胶在诸多领域具有广泛的应用或潜在的应用前景。

1.航空航天领域轻质高效隔热材料是航空航天飞行器的关键热防护组件之一,受飞行环境影响,航空航天材料需要具备低密度、高硬度、耐高低温、低导热的特性,而气凝胶被认为是理想的轻质高效隔热材料。

此外,航天器的电路也广泛使用气凝胶进行隔热保护,俄罗斯的“和平号”空间站也使用气凝胶实现热绝缘防护,我国首个火星探测器“天问一号”着陆发动机,以及我国“祝融号”、美国“漫步者”和“探路者”火星车的关键电器元件和线路也均使用气凝胶防护,以承受-100℃的超低温。

2.国防军工领域气凝胶作为最高效的隔热材料,一直广泛应用于军工领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气凝胶,一种固体物质形态,被誉为世界上密度最小的固体,其独特性能包括高ቤተ መጻሕፍቲ ባይዱ明性、低密度(0.003-0.3g/cm³)、高孔隙率(80%-99.8%)、大比表面积(100-1600m²/g)以及极低的热导率。制备气凝胶通常需经历溶胶-凝胶聚合与后处理两个关键步骤。最早的气凝胶由Kistler在1931年制得,其后的发展中,无机气凝胶如二氧化硅因其出色的物理特性成为应用最广泛的气凝胶。然而,其脆性和复杂的干燥工艺仍是待解决的问题。近年来,有机气凝胶如RF气凝胶、碳气凝胶以及聚酰亚胺气凝胶的制备和应用逐渐成为研究热点。这些新型气凝胶不仅改善了力学性能,还拓展了气凝胶在航空航天、电子等领域的应用范围。例如,聚酰亚胺气凝胶凭借其良好的耐热性、耐弯折和耐压缩特点,以及优异的介电性能,被用作轻质接线天线的基板材料。此外,科研人员正通过有机-无机杂化的方式,旨在进一步提升气凝胶的力学性能并拓宽其应用功能。
相关文档
最新文档