19-ansys_热分析讲义

合集下载

《ansys讲义》PPT课件

《ansys讲义》PPT课件
– 十分有用,如图,找到两条线的交点并保留四条线段。
L
L
2
1
分割
L
L
6
3L
L
4
5
3.3 实体建模 其它操作
布尔操作对由上到下和由下到上建模方法生成的实体都有效。 除布尔操作外,还可用许多其它的操作:
– 拖拉 – 缩放 – 移动 – 拷贝 – 反射 – 合并 – 倒角
Extrude Scale Move/modify Copy Reflect Merge Fillet
注意:所有的方向都表达为激活坐标系 下的方向,且激活的坐标系必须为笛 卡尔坐标系。
合并(Merge)(Numbering Ctrls>Merge Items>Keypoints) 通过合并重合的关键点或节点等,将两个实体贴上; -合并关键点将会自动合并重合的高级实体。 通常在反射、拷贝、或其它操作引起重合的实体时需要合并。
出的在端点(边界点)的值的条件,称为边界条件,微分方程和边界条件构成数学模型就称为边值问题。 三类边界条件: 边值问题中的边界条件的形式多种多样,在端点处大体上可以写成这样的形式,Ay+By'=C,若B=0,A≠0,则称为第一类边界条
件或狄里克莱(Dirichlet)条件;B≠0,A=0,称为第二类边界条件或诺依曼(Neumann)条件;A≠0,B≠0,则称为第三类边界条件或 洛平(Robin)条件。 总体来说, 第一类边界条件: 给出未知函数在边界上的数值; 第二类边界条件: 给出未知函数在边界外法线的方向导数; 第三类边界条件: 给出未知函数在边界上的函数值和外法向导数的线性组合。
重新定位工作平面
例如, Align WP with Keypoints 提示你拾取三个关键点:第一 个定义原点,第二个定义X轴, 另一个定义X-Y平面

《热分析ansys教程》课件

《热分析ansys教程》课件

05
热分析优化设计
优化设计的基本概念
01
优化设计是一种通过数学模型和计算机技术,寻找满足特定条 件下的最优设计方案的方法。
02
优化设计的基本概念包括目标函数、设计变量、约束条件和求
解算法等。
热分析优化设计是针对热学问题,通过优化设计来提高产品的
03
热性能和降低能耗。
ANSYS优化设计的步骤
定义设计变量
网格质量检查
对生成的网格进行检查, 确保网格质量良好,没有 出现奇异点或扭曲。
边界条件的设置
确定边界条件
根据分析对象的实际情况,确定合适的边界条件,如温度、热流 率等。
设置边界条件
在ANSYS软件中,将确定的边界条件应用到几何模型上。
验证边界条件
对设置的边界条件进行验证,确保其合理性和准确性。
04
傅里叶定律
热量传递与温度梯度成正比,即热流密度与温度梯度 成正比。
牛顿冷却定律
物体表面与周围介质之间的温差与热流密度成正比。
热力学第一定律
能量守恒定律,表示系统能量的增加等于传入系统的 热量与系统对外界所做的功之和。
热分析的三种基本类型
稳态热分析
系统达到热平衡状态时的温度分布。
瞬态热分析
系统随时间变化的温度分布。
网格划分问题
网格划分不均匀
在某些区域,网格可能过于密集,而 在其他区域则可能过于稀疏,这可能 导致求解精度下降或求解失败。
网格自适应调整问题
在某些情况下,ANSYS可能无法正确 地自适应调整网格,导致求解结果不 准确。
网格划分问题
手动调整网格
手动调整网格密度,确保在关键区域有足够的网格密度。
使用更高级的网格划分工具

ansys稳态及瞬态热分析.ppt

ansys稳态及瞬态热分析.ppt
[K]{T}={Q} 式中: [K]为传导矩阵,包含导热系数、对流系数及辐射率和形状系
数; {T}为节点温度向量; {Q}为节点热流率向量,包含热生成; ANSYS利用模型几何参数、材料热性能参数以及所施加的边界 条件,生成[K] 、 {T}以及{Q} 。
2001年10月1日 2023/11/13
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
Guidelines Them-16
第五讲、瞬态传热
瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统 的温度、热流率、热边界条件以及系统内能随时间都有明显变化。 根据能量守恒原理,瞬态热平衡可以表达为(以矩阵形式表示):
[C]{T}+[K]{T}={Q}
式中: [K]为传导矩阵,包含导热系数、对流系数及辐射率和形状 系数; [C]为比热矩阵,考虑系统内能的增加; {T}为节点温度向量;
2001年10月1日 2023/11/13
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
Them-15
第四讲、稳态传热
如果系统的净热流率为0,即流入系统的热量加上系统自身产生的 热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳 态。在稳态热分析中任一节点的温度不随时间变化。稳态热分析 的能量平衡方程为(以矩阵形式表示)
2001年10月1日 2023/11/13
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
Guidelines Them-19
第八讲、热分析误差估计

ANSYS热分析PPT合集 安世亚太内部教程

ANSYS热分析PPT合集 安世亚太内部教程

目录第1 章– 介绍– 概述– 相关讲座& 培训– 其他信息来源第2章– 基本概念第3 章– 稳态热传导(no mass transport of heat)第4 章– 附加考虑非线性分析第5章– 瞬态分析1-31-51-121-132-13-14-15-1第6 章– 复杂的, 时间和空间变化的边界条件第7章– 附加对流/热流载荷选项和简单的热/流单元第8 章– 辐射热传递– 例题-使用辐射矩阵的热沉分析第9 章– 相变分析– 相变分析例题- 飞轮铸造分析第10 章– 耦合场分析6-17-18-18-439-19-1410-1目录(续)第1 章介绍先决条件•理解热传递讲座的先决条件包括:– 掌握ANSYS 第1部分的培训课程或具备相应的ANSYS 实践经验 。

– 理工科学士或具备相等程度的热传递知识。

章节内容概述• 第1 章- 介绍• 第2 章- 基本概念– 术语– 符号和单位– 热传递的类型– 能量守恒定律(热力学第一定律)– 瞬态热传导的控制微分方程– 有限元方法– 有限元热分析中的基本符号– 如何使热传递分析包括非线性?章节内容概述• 第2 章- 续– 何时需要定义比热和密度?– 同结构分析的比较– 单元库概况;功能和限制– 例题1 - 基本热传递分析• 第3 章- 稳态热传递– 稳态热传递的控制方程– 热边界条件类型– 热分析样板– GUI 和ANSYS 命令– 分析过程逐步的讲解,使用例题: 带Fins的钢管的热分析章节内容概述• 第3 章- 续• 前处理- 建立模型• 求解处理器• 后处理器-“后处理101”– 例题2 - 晶体管的稳态热分析• 第4 章- 附加考虑非线性分析– 时间,载荷步, 子步和迭代方程– 收敛准则– 初始温度– 阶跃或渐进载荷– 其他非线性选项– 输出控制选项章节内容概述• 第4 章- 续– 控制/查看非线性分析– 例题3 - 晶体管的非线性热分析• 第5 章- 瞬态分析– 控制方程– 与稳态分析的区别– 查看瞬态结果– 例题4 - 晶体管的瞬态热分析• 第6 章- 复杂的, 时间和空间变化的边界条件– 表格化的热边界条件(载荷)– 基本变量– 用户定义的因变变量章节内容概述• 第6 章- 续– 典型的应用实例– 优点和缺点– 定义关键时间和输出时间– ANSYS 表格和数组复习– 例题5 - 有表格化载荷的瞬态练习• 第7 章-附加对流/热流载荷选项和简单的热/流单元– 对流作为平面载荷施加– 对流连接单元– 平面效果单元– 接触热阻的建模– 1D 热/流单元– 用户对流子程序章节内容概述• 第7 章- 续– 例题 6 - 低压气轮机箱的热分析• 第8 章- 辐射– 辐射概念的回顾– 基本定义– 辐射建模的可选择方法– 辐射矩阵模块– 辐射分析例题- 使用辐射矩阵模块进行热沉分析,隐式和非隐式方法。

ansysworkbench热分析教程

ansysworkbench热分析教程

. . -•本章练习稳态热分析的模拟,包括:A.几何模型B.组件-实体接触C.热载荷D.求解选项E.结果和后处理F. 作业6.1•本节描述的应用一般都能在ANSYS DesignSpaceEntra或更高版本中使用,除了ANSYSStructural•提示:在ANSYS 热分析的培训中包含了包括热瞬态分析的高级分析•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得:[K(T)]{T}={Q(T)}•假设:–在稳态分析中不考虑瞬态影响–[K]可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数•上述方程基于傅里叶定律:•固体内部的热流(Fourier’s Law)是[K]的基础;•热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。

•热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在DesignModeler中定义•热分析里不可以使用点质量(PointMass)的特性•壳体和线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度• 但在线实体的轴向仍有温度变化• 唯一需要的材料特性是导热性(ThermalConductivity )• Thermal Conductivity 在Engineering Data 中输入•温度相关的导热性以表格形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。

… 材料特性Training ManualB. 组件-实体接触Training Manual•对于结构分析,接触域是自动生成的,用于激活各部件间的热传导–如果部件间初始就已经接触,那么就会出现热传导。

–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball的解释)。

–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义的,同时还给了一个相对较小的值来适应模型里的小间距。

19-热-结构耦合分析

19-热-结构耦合分析

4.工程实例:泵壳的热应力计算
泵壳的外表面的热边界为对流换热 条件,环境文件为22度,对流换热 系数系数为50. 结构分析的边界条件为完全固定约 束螺栓通孔。泵壳的材料为结构钢 。
Training Manual
Advanced Contact & Fasteners
Training Manual
Advanced Contact & Fasteners
稳态热应力,第一步首先进行稳态热分析,获取结构的温 度场,然后将温度导入到结构分析中,将温度场做为结构计算 的体载荷来计算稳态热应力。
3.瞬态热应力
Training Manual
Advanced Contact & Fasteners
Advanced Contact & Fasteners
由约束产生 热应力
在 ANSYS 中求解热-应力问题主要使用间接法 :即首先进行结构的温度场分析,获取结构的 温度,然后将温度作为体载荷施加到结构计算 中,计算热应力。
由不同材料 产生热应力
1.热应力分析的基本理论
• 间接法的分析顺序
Training Manual
Advanced Contact & Fasteners
1. 先作稳态(或瞬态)热分析。
• 导入模型。 • 施加热荷载。 • 求解并检查结果。 2. 然后作静力结构分析。 • 导入温度场 • 定义结构边界条件和载荷。
热分析
jobname.rth
温度
结构分析
• 求解并检查结果。
jobname.rst
2.稳态热应力
热-结构耦合分析
1.热应力分析的基本理论
• • • • 热应力产生 结构受热或变冷时,由于热胀冷缩产生变形 。 若变形受到某些限制 — 如位移约束或相反的 压力 — 则在结构中产生热应力。 产生热应力的另一个原因,是由于材料不同 而形成的不均匀变形(如,不同的热膨胀系 数)。

ANSYS瞬态热分析教程及实例 ppt课件

ANSYS瞬态热分析教程及实例  ppt课件

定义密度
GUI:Main Menu > Preprocessor > Material Props > Thermal > Density
在弹出密度定义对话框中的DENS栏键入 “5000”。
命令:MPDATA,DENS,1,,5000 材料属性定义完毕.
PPT课件
PPT课件
QUST
13
3. 设置节点温度
命令:D
GUI:Main Menu > Solution > Define Loads > Apply > Thermal > Temperature > On Nodes
PPT课件
QUST
14
3. 设定非均匀的初始温度 命令:IC GUI:Main Menu > Solution > Define Loads
如果需要知道系统受随时间变化(或不变)的载荷和边 界条件时的响应,就需要进行“瞬态分析” 。
QUST
2
PPT课件
4. 瞬态传热分析
QUST
3
PPT课件
5. 瞬态传热分析
ANSYS 缺省是渐进加载的。渐进加载可以提 高瞬态求解的适应性,如果有非线性时可以提 高收敛性。
QUST
4
PPT课件
5. 瞬态传热分析
(1) 选择分析类型 选择Transient分析,操作如下:
PPT课件
QUST
36
GUI:Main Menu > Preprocessor > Loads > Analysis Type > New Analysis
选择Transient 分析,单击OK。采用ANSYS 默认设置,在弹出的子对话框中单击OK。

ANSYS热分析培训热接触解析PPT教学课件

ANSYS热分析培训热接触解析PPT教学课件
省设







第15页/共26页
热接触
…3. 实修例改接触单元的选项来包括温度自由度。
第16页/共26页
热接触
…4. 实修例改接触单元实常数来包括接触导热系数( TCC)。
第17页/共26页
热接触
… 实例
• 本例使用常数 TCC = .001.
若接触选项
第18页/共26页
热接触
…5. 实施例加结构分析的边界条件。
车轮的刹车垫
第5页/共26页
热接触
• 对流: q = CONV * (TE - TC) • CONV 为对流换热系数(可由SFE 施加表参数荷载)
• TE 为目标面的温度,或者为自由面的环境温度 (SFE)
• TC 为接触面的温度
• 接触面和目标面间的热流
0 < gap < pinball
• 自由面中接触面到环境的热流
• 重要特性: • 接触面间的热传导 • 摩擦耗能所导致的热生成 • 热对流和/或热辐射 • 具有小间隙的接触面 • 从自由面到环境
注•意开: 本放课的程间主隙要处讲的述热接流触输面入之间的热传导。有关热接触其他功能的情 况请参考ANSYS相关文档。
第3页/共26页
热接触
• 热传导:
q = TCC * (TT - TC)
• TCC为热接触导热系数(由实常数输入)
• 可以使一个表参数(压力和温度的函数)
• TT 与TC 分别为目标面及接触面温度 • 当处于接触状态时将关闭热流
• 模型温度在接触面处不连续
没有 DT (连续材料)
DT (接触面)
第4页/共26页
热接触

Ansys热分析教程(全)

Ansys热分析教程(全)

目录第1章–介绍–概述–相关讲座&培训–其他信息来源第2章–基本概念第3章–稳态热传导(n o m a s s t r a n s p o r t o f h e a t)第4章–附加考虑非线性分析第5章–瞬态分析1-3 1-5 1-12 1-132-13-14-15-1第6章–复杂的,时间和空间变化的边界条件第7章–附加对流/热流载荷选项和简单的热/流单元第8章–辐射热传递–例题-使用辐射矩阵的热沉分析第9章–相变分析–相变分析例题-飞轮铸造分析第10章–耦合场分析6-1 7-18-1 8-43 9-1 9-14 10-1目录(续)第1章先决条件1章节内容概述12章节内容概述213章节内容概述310124章节内容概述43546章节内容概述6571章节内容概述7689章节内容概述1072相关讲座&培训2tT c h K Q qq E============t i m e t e m p e r a t u r e d e n s i t y s p e c i f i c h e a t f i l m c o e f f i c i e n t e m i s s i v i t y S t e f a n -B o l t z m a n n c o n s t a n t t h e r m a l c o n d u c t i v i t y h e a t f l o w (r a t e ) h e a t f l u x i n t e r n a l h e a t g e n e r a t i o n /v o l u m e e n e r g y ρεσ*&&&fA N S Y S()3223注,对于结构热容量,密度/G c和比热*G c经常使用该单位。

其中G c=386.4(l b m-i n c h)/(l b f-s e c2)A N S Y S(S I)3223–传导–对流–辐射•传导的热流由传导的傅立叶定律决定�•负号表示热沿梯度的反向流动(i .e ., 热从热的部分流向冷的).q K T n K T T n n n n n *=−∂∂=∂∂=h e a t f l o w r a t e p e r u n i t a r e a i n d i r e c t i o n n Wh e r e , = t h e r m a l c o n d u c t i v i t y i n d i r e c t i o n n= t e m p e r a t u r e t h e r m a l g r a d i e n t i n d i r e c t i o n n Tnq*dT d n•对流的热流由冷却的牛顿准则得出:•对流一般作为面边界条件施加qh T T h T T f S B f S B *()=−=h e a t f l o w r a t e p e r u n i t a r e a b e t w e e n s u r f a c e a n d f l u i d W h e r e , = c o n v e c t i v e f i l m c o e f f i c i e n t= s u r f a c e t e m p e r a t u r e = b u l k f l u i d t e m p e r a t u r e TB Ts•从平面i 到平面j 的辐射热流由施蒂芬-玻斯曼定律得出: •在A N S Y S 中将辐射按平面现象处理(i .e ., 体都假设为不透明的)。

ANSYS WorkBench 19 有限元分析系统培训课

ANSYS WorkBench  19 有限元分析系统培训课

ANSYS WorkBench19.0原创有限元分析系统培训课视频教程第01讲.课程及软件介绍1.软件介绍2.WorkBench 能做哪些分析3.本门课程主要讲哪些模块4.如何快速学好WorkBench 4.屈曲分析14.谐响应分析20.模态分析24.随机振动分析25.响应谱分析26.刚体动力学分析27.静力学分析30.稳态热分析36.拓扑优化分析37.瞬态动力学分析40.瞬态热分析27.静力学分析20.模态分析37.瞬态动力学分析4.屈曲分析36.拓扑优化分析26.刚体动力学分析14.谐响应分析24.随机振动分析25.响应谱分析30.稳态热分析40.瞬态热分析第02讲.一个实例初识WorkBench分析流程-卡扣结构的动作分析1.问题描述,关心的结果2.建模的介绍,模型改如何简化3.复杂特征的网格初步试划分4.网格再次的划分及调整5.材料的修改,及材料弹性模量、变形、应力之间的关系6.公母卡扣之间的接触关系的创建7.边界条件的理解及施加8.子步,求解控制9.求解,后处理10.深入剖析本例第03讲.模型创建-初识Design Modeler1.Design Modeler建模工具介绍2.Design Modeler梁单元的建立3.Design Modeler壳单元的建立4.Design Modeler实体单元的建立5.SolidWorks梁单元的建立6.SolidWorks壳单元的建立7.SolidWorks实体单元的建立8.Deign Modeler建模工具与主流建模工具的效率对比9.Design Modeler最常用功能介绍第04讲.梁、壳、实体模型静力学分析及对比1.Deign Modeler模型的传递2.Solidworks模型的导入3.材料创建及WorkBench材料库介绍4.梁单元悬臂梁的计算5.壳单元悬臂梁的计算6.实体单元悬臂梁的计算7.计算结果查看及对比1.Deign Modeler平面钢架结构的草图绘制2.线体的生成、截面的赋予3.WorkBench中网格划分、边界条件的施加4.两端固支、两端固定铰支、两端简支的边界条件的理解5.梁模型结果后处理6.支座反力、反力矩的提取方法7.三种不同边界条件结果的对比8.深入剖析理解本例及对实际工程项目分析的边界条件理解的建议9.本例的拓展:对于实体梁模型的两端固支、两端固定铰支、两端简支边界条件的实现方法10.结果的对比和理解1.Deign Modeler空间钢架结构的生成2.线体的生成及注意事项、截面的赋予3.WorkBench中网格划分、边界条件的理解、载荷的施加4.后处理5.支座反力、反力矩的提取方法6.深入剖析理解本例及对实际工程项目分析的边界条件理解的建议7.本例的拓展:实体结构四点吊装模型的建立8.网格划分、边界条件施加、边界条件的理解9.结果后处理及对比10.关于边界条件的一些探讨第07讲.壳单元工字钢结构节点拓扑与不共节点的深入学习与探讨1.SolidWorks壳单元工字钢的快速建模2.直接导入WorkBench进行分析、赋予厚度、解决接触对不能自动生成的问题3.约束、加载、求解、后处理4.共节点的处理方法、赋予厚度5.共节点与不共节点的处理方法对比及实际应用经验讲解6.约束、加载、求解、后处理7.二者的对比及探讨第08讲.抽中面技术哪家强-DM/SpaceClaim/HyperMesh 1.三大抽中面软件的介绍DM/SpaceClaim/HyperMesh及为何选用这三大软件来抽中面2.难度★:平板结构3.难度★★:工字钢结构4.难度★★★:耳座结构5.难度★★★★:垫板结构6.WorkBench如何使用这些软件抽出的中面进行计算7.关于抽中面的一些工程经验与建议第09讲.复杂零件的网格划分与分网思路剖析1.建模的注意事项与模型介绍2.自动化分3.第一次切分4.第二次切分5.第三次切分6.第四次切分7.最终划分效果8.关于网格划分思路的深入剖析9.轴承座的静力学分析及后处理第10讲.车间工位吊多工况移动载荷分析(装配体网格详解)1.问题描述、考察的内容,模型的简化及考虑,建模注意事项2.装配体网格自动识别接触对、自动划分3.根据分析经验和考察部位对装配体网格做出更精准的划分4.材料、接触、约束、载荷施加,如何对接实际的工况5.多工况的添加与注意事项6.结果后处理7.深入剖析本例第11讲.实体工字钢与壳单元工字钢装配分析(实体、壳单元装配)1.SolidWorks实体、壳工字钢建模、装配注意事项,导入DM的设置2.网格划分、厚度赋予3.实体和壳的结合设置4.约束、加载、求解、后处理5.对于实体和壳单元装配分析的效率操作探讨第12讲.钢架桥的装配分析(梁、壳单元装配)1.SolidWorks梁、壳工字钢建模、装配注意事项,导入DM的设置2.DM截面赋予、WB网格划分、厚度赋予3.梁和壳的结合设置4.约束、加载、求解、后处理(梁单元等效应力的显示方法)5.对于梁单元和壳单元装配分析的效率操作探讨第13讲.法兰接头预紧力密封接触分析1.问题描述、考察的内容,模型小特征、螺栓组的简化,计算的简化、建模操作及注意事项2.网格调整、网格与计算时间、精度的关系,如何获得高质量的网格3.材料、摩擦接触的批量生成、约束、载荷施加,如何对接实际的工况、求解设置4.求解、后处理5.深入剖析本例第14讲.法兰接头预紧力密封接触分析周期对称1.周期对称的优点,对模型的要求(具备何种特点的模型可以做周期对称)2.局部柱坐标系的建立3.周期对称的设置4.网格控制的调整(周期对称对网格的要求)5.求解、后处理6.深入剖析本例第15讲.装配体静力学分析经验技巧总结篇1.问题描述、考察的内容,模型的简化及考虑,建模注意事项2.模型导入DM的预处理过程(如何提高计算机网格划分速度(对比处理与不处理的划分速度))3.装配体网格的细微调整(针对不同的零部件如何有选择性地划分高质量的网格(切分的处理、DM的进一步调整))4.工作原理的对接(如何更加真实地模拟工位吊实际的工况),从工作原理去判断和施加装配体各零部件之间的装配与接触关系(如何高效地添加这些关系)5.工况的对接,约束、预紧力、重力、载荷之间的施加关系(考虑收敛性即如何让分析进行的更加顺利)6.求解,结果后处理(结果合理性的判断)7.计算机性能有限的情况下如何简化计算(1.对称分析2.分解求解3.将桁架用梁单元简化)第16讲.塑胶靠背椅的静力学分析1.Step格式三维中性文件的导入方法,导入的具体设置,导入时如何过滤出计算所需的实体2.材料的修改、更新及赋予、网格的自动划分3.虚拟拓扑Virtual Topology的运用(如何用虚拟拓扑功能提高局部网格质量)4.约束、加载、求解设置5.求解、后处理、安全系数Safety factor云图的输出、各种云图在自动生成的报告Report中的展现方法6.深入拓展本例1.问题描述、考察的内容,模型的简化及考虑,建模注意事项2.印记面在SolidWorks中的制作方法3.印记面在DM中的制作方法4.弹塑性材料的调用、更新及赋予、网格的自动划分,刚体的设置5.变形体网格的划分,刚体接触面网格的划分(各种网格控制参数的调整)6.变形体与刚体接触的具体设置7.约束、加载(加载/卸载工况的处理)、求解设置8.求解、后处理(残余应力、残余变形)9.各种曲线的绘制10.深入剖析本例1.问题描述、考察的内容,模型的简化及考虑,建模注意事项2.Space Claim抽中面、加载面的分离,DM中曲面的拓扑共节点3.弹塑性材料的调用、更新及赋予、网格的自动划分4.变形体网格的划分,刚体接触面网格的划分(各种网格控制参数的调整)5.变形体与刚体接触的具体设置6.约束、加载(加载/卸载工况的处理)、求解设置7.求解、后处理(残余应力、残余变形)8.各种曲线的绘制9.深入剖析本例第19讲.O型密封圈2D轴对称装配过程橡胶大变形接触分析1.问题描述、关心的结果建模的介绍、2D轴对称模型的建模注意事项(关于y轴对称建模)2.Solidworks连接到WorkBench(2D轴对称分析模型的导入设置)3.橡胶材料的建立、模型导入(几何体2D轴对称设置)、将O型圈的材料改为橡胶4.网格的划分及调整(2D轴对称模型的扩展方法)(全局高阶单元,O型圈低阶单元的设置技巧)5.各部件之间接触关系的创建(对称、非对称、刚度更新)6.边界条件的探讨及施加7.求解控制、试算8.后处理(应力动画、推力曲线)9.深入剖析本例第20讲.铝板冲压成型四分之一对称模型分析1.问题描述、考察的内容,模型的简化及考虑,四分之一对称建模的注意事项2.DM里面对称关系的添加及注意事项3.材料库中弹塑性材料的调用、更新及赋予4.网格的划分(各种网格控制参数的调整)5.对称扩展的设置6.接触关系的添加7.约束、加载(下压/上抬工况的处理)、求解设置8.求解、后处理(残余应力、残余变形)9.冲压反力曲线的绘制10.深入剖析本例第23讲.货车尾箱脚踏板挂架多工况静力学拓扑优化分析1.拓扑优化概念的讲解及其实际应用的介绍2.本例拓扑优化的目的,实际工况的探讨3.模型的创建,体的分块,网格的精细划分(减小规模)name selection 高效的运用4.静力学-拓扑优化项目流程图的创建5.静力学多工况的分析及后处理6.优化区域的选择,优化区域中非优化边界的排除(如何使得优化的结果更加接近实际)7.优化目标多工况优化载荷步的选择8.优化区域优化百分比的界定9.优化尺寸控制(如何使得优化出来的结构清晰)10.对称条件的控制(如何使得优化出来的结构具有对称性)11.全局应力上限界定12.求解,各种优化结果及数据的查看13.深入剖析本例,对称和不对称,单工况和多工况对优化结果的影响14.优化结构的输出及模型重建、验证计算第24讲.带孔异性梁的腹板挖孔尺寸的直接优化分析1.直接尺寸优化概念的讲解及其实际应用的介绍2.本例优化的目的3.模型的创建,带参尺寸的创建,网格的控制4.静力学分析及后处理,各种物理量和结果的参数化5.项目列表的搭建6.优化分析相关参数的设置,变量范围的界定,优化目标的界定7.求解,后处理,解读优化设计的结果8.深入剖析本例第26讲.连杆结构静力循环对称应力疲劳分析1.疲劳分析的相关理论与概念介绍(1.高周应力疲劳,低周应变疲劳2.幅值载荷(恒定/非恒定)3.应力比,平均应力(循环对称,脉动循环)4.S-N,E-N曲线)2.模型的简化,建模注意事项,模型导入,材料参数的讲解3.网格的划分(各种网格控制参数的调整)、约束、加载、求解、后处理4.疲劳工具相关参数理解及各种云图,曲线的生成与理解5.深入剖析本例第41讲.经典压杆的静力学,稳定性分析1.静力学/稳定性分析模块的关联创建,压杆的绘制,截面的赋予2.网格划分,约束,加载,求解后处理,结果查看与理解3.深入剖析本例及对设计生产的指导422cr 22=21020000064F =242.2365()(21000)EI l μπππμ⨯⨯⨯==⨯一端固定另一端自由第42讲.高耸格构式结构静力学、稳定性分析1.静力学/稳定性分析模块的关联创建,循环结构的快速建模思路引导,DM点云功能的运用(点云文本格式的讲解)2.连线Line body及注意事项,梁截面的创建与赋予(梁截面方向的朝向的定义方法)3.环向阵列及线性阵列的使用方法及注意事项,form new part 在桁架结构中的重要地位及具体操作展示4.网格划分及各种显示方法,约束,加载,求解后处理,结果查看与理解5.深入剖析本例第51讲.单自由度弹簧振子群固有频率分析及理论计算对比1.模态相关的知识介绍,模型的建立、导入、材料的修改、网格划分2.弹簧的添加(弹簧参数的设置)、无摩擦支撑的添加3.模态求解的相关设置、求解、后处理,结果查看4.对比结果及拓展12345111=0.159********=0.31831221119=0.477462211116=0.636622211125=0.79577221k f m k f m k f m k f m k f m ππππππππππ==========第52讲.悬臂矩形梁的模态分析及理论计算对比1.问题描述、建模操作及注意事项2.模型导入、材料设置、网格划分3.约束施加(如何才能等效模拟平面梁问题)4.模态求解设置,求解,后处理查看前3阶模态振型(对比手工验算结果)1.问题描述、预应力模态的相关知识点、预应力模态分析项目列表的搭建2.琴弦的建立、截面的赋予、材料设置、将默认的Beam188单元转化为Link180用以模拟琴弦,网格的划分3.工况的正确理解、约束的施加、预应力的施加4.后处理查看前5阶模态振型(对比手工验算结果)5.用ANSYS 经典命令流运行本例(对比结果)第53讲.琴弦预应力模态分析及理论计算以及经典ANSYS 对比132=(L m F N kg m)2118N ====329.176220.4m 10200/0.00009m n F f n Ln F f L kg m μμμπ⨯⨯⨯为阶次、为弦长、为拉力、为线密度/()阶次长度m 拉力N 密度kg/m³半径m线密度kg/m 频率Hz 10.4 18 10200 0.000090.0002596 329.18 20.4 18 10200 0.000090.0002596 658.35 30.4 18 10200 0.000090.0002596 987.53 40.4 18 10200 0.000090.0002596 1316.71 50.4 18 102000.00009 0.0002596 1645.88第54讲.发动机缸体缸盖的约束模态分析1.使用SCDM打开常见三维软件的文件,及无损链接到Workbench的方法2.网格的划分,接触的设置3.约束设置,约束模态和无约束模态的区别,求解设置4.求解,后处理,模态分析的理解及实际意义5.深入剖析本例第55讲.工作台静力学、模态分析1.问题的描述,模型的简化,考察的内容2.工作台的自顶向下的高速建模,壳厚度,梁截面的赋予3.硬点的添加及操作讲解4.质量点的添加,远程作用点的附带生成5.静力学分析及结果查看6.模态分析的搭建及分析操作7.模态的解读,质量点对模态频率的影响(高清图片的输出)8.深入剖析本例第56讲.工作台谐响应分析(模态叠加法)及与静力学工况的组合1.谐响应分析(模态叠加法)的相关理论介绍2.模态叠加法谐响应系统的搭建,分析的设置,简谐载荷Remote Force的施加,及相关参数的意义3.求解后处理,频响曲线的绘制及解读,不同的分析设置对频响曲线的影响4.查看共振下的频率、相位角对应的稳态位移和应力,以及结果查看的相关参数设置5.静力学动力学工况组合的意义6.静力学动力学工况组合的添加方法及相关参数的设置及注意事项7.不同组合方式的结果对比与理解8.回顾模态叠加法谐响应分析的整个过程,深入剖析及拓展第57讲.工作台谐响应分析(完全法)及与静力学工况的组合1.谐响应分析(完全法)的相关理论介绍2.完全法谐响应系统的搭建,分析的设置,约束及简谐载荷Remote Force的copy3.查看共振下的频率、相位角对应的稳态位移和应力,及与模态叠加法结果的对比4.静力学动力学工况组合,及与模态叠加法结果的对比5.回顾完全法谐响应分析的整个过程及拓展第61讲.斜齿轮瞬态啮合接触分析1.瞬态动力学相关知识点的讲解2.齿轮对模型的简化,考察的内容3.材料的添加,材料库的使用方法,新材料的引入,材料的更新,网格的初步划分4.网格的进一步控制,Name Selection的使用方法,接触的设置(接触参数的修改)5.驱动的施加,负载扭矩的施加,求解控制参数,求解,后处理6.各种动画、曲线的后处理7.深入剖析本例,易错点的讲解瞬态动力学的非线性控制方程:[M]: 结构质量矩阵;[C]: 结构阻尼矩阵;[K]: 结构刚度矩阵;{F}: 载荷矢量;{ü}:节点加速度矢量;{ů}:节点速度矢量;{u} :节点位移矢量(t): 时间第62讲.行星减速器瞬态动力学分析1.行星减速器工作原理的介绍、模型的简化,考察的内容2.模型的导入,DM里模型的打散操作(打散及Form New Part使用场合的讲解)3.网格的进一步控制,网格与计算量、收敛的关系(针对不同的硬件如何去减小计算量) Selection中WorkSheet高级功能的使用(如何进一步提升操作效率)5.接触的设置(接触参数的修改)、joint转动副的应用及讲解6.驱动的施加、负载扭矩的施加、求解控制、试算7.后处理、各种动画、曲线的输出8.深入剖析本例,及星型减速器的相关知识的拓展第63讲.齿轮齿条瞬态啮合接触分析1.齿轮、齿条模型的简化,考察的内容2.网格的初步划分、网格的进一步控制3.接触的设置(接触参数的修改)4.驱动的施加,负载的施加,求解控制参数,求解,后处理5.应力动画、各种曲线的后处理6.深入剖析本例及拓展第64讲.摆锤冲击滑块的瞬态动力学分析1.模型的建立及注意事项2.网格的初步划分、网格的进一步控制3.接触的设置(接触参数的修改)4.约束的施加,重力的施加,求解控制参数5.求解试算,调整求解控制参数6.后处理、应力动画、各种曲线的后处理7.深入剖析本例及拓展第65讲.带初速度的碰撞瞬态动力学分析1.模型的建立及注意事项2.网格划分及控制3.接触的设置(接触参数的修改)4.约束的施加、初速度的施加、求解控制参数5.求解试算、调整求解控制参数6.后处理、应力动画、各种曲线的后处理7.深入剖析本例及拓展第71讲.航空星型发动机刚体动力学分析1.刚体动力学相关知识点的介绍2.星型发动机模型的简化,考察的内容3.先易后难的有限元分析思想的贯彻,模型的导入,平动副、转动副的添加及注意事项,4.驱动的添加,求解,后处理5.深入剖析本例刚体动力分析:1.计算刚体组合机构的动力学响应.2.可以用来考察机构运动特性.3.部件之间采用运动副或者弹簧连接第72讲.带初速度的碰撞刚体动力学分析1.刚体动力学碰撞的动量守恒、动能守恒2.从瞬态动力学直接切换到刚体动力学3.解决刚体动力学的报错问题4.接触的设置(接触参数的修改)5.约束的施加、初速度的施加技巧、求解控制参数6.求解试算、后处理、动画、各种曲线的后处理、动能、势能变化规律的查看7.深入剖析本例及拓展第73讲.牛顿摆刚体动力学分析1.模型的导入及DM的处理2.吊杆0密度的修改3.球体间接触的快速设置4.吊杆与支架铰接的设置5.吊杆与球体的连接关系设置6.求解试算、后处理、动画、各种曲线的后处理、动能、势能变化规律的查看7.深入剖析本例及拓展第81讲.矩形杆稳态热传导的计算及傅里叶定律的深入理解1.传热的基本方式:热传导、对流、辐射(热传导基本概念和特点的介绍)2.热传导基本规律(傅里叶定律)的介绍及其理解3.矩形杆的建立、模型的导入、材料的修改4.通过两端温度求热流密度、各种后处理及相关云图、数据的理解、将上述计算值与手工计算值做对比5.通过一端温度、一端热流密度反求另一端温度、再次比对二者结果数值6.深入理解热传导及剖析本例222=t n m 2.T T 011010t n d q d q q l λλ-=+⨯∆=+⨯=1.已知两端温度求热流密度为热流密度 单位为w/m 为导热系数 单位为w/m-℃为温度 单位为℃为长度 单位为已知一端温度和热流密度求另一端温度高温端的温度为℃第82讲.矩形杆稳态热对流的计算及牛顿冷却公式的深入理解1.热平衡、热对流基本规律(牛顿冷却公式)的介绍及其理解2.热流率的施加、热对流的施加及相关参数含义的理解3.求解、后处理、相关云图、数据的理解、将上述计算值与手工计算值做对比4.深入理解热对流及剖析本例22=011=1A 12.()1==22=231==23110=33s f s f s f s Q Q Q Q Q w Q q q h t t h t t q t t ht t q l +-=====-+++⨯∆+⨯流入生成流出流出流入流出高1.系统热平衡单位面积流出的热量w/m 对流换热的基本规律(牛顿冷却公式)单位面积的流出热量为对流换热系数 单位为w/m -℃为表面温度 单位为℃为流体温度 单位为℃℃高温端温度℃第83讲.矩形杆稳态热辐射的计算及玻尔兹曼定律的深入理解1.热辐射基本规律(玻尔兹曼定律)的介绍及其理解2.热流率的施加、热辐射的施加及相关参数含义的理解3.求解、后处理、相关云图、数据的理解、将上述计算值与手工计算值做对比4.深入理解热辐射及剖析本例24412241444412=011=1A 12.()e /K1==(22273.16)1e =295.33132K Q Q Q Q Q w Q q q T T w m k T qT T εσεσσεσ+-=====-=+++⨯流入生成流出流出流入流出1.系统热平衡单位面积流出的热量w/m 辐射换热的基本规律(玻尔兹曼定律)单位面积的辐射热量为物体的发射度(黑率)为玻尔兹曼常数(黑体辐射常数)5.67-8为辐射面的绝对温度单位为5.67-8=22.17132==22.17132110=32.17132s t t q l +⨯∆+⨯高℃高温端温度℃第84讲.装配体稳态热分析之芯片的散热分析1.稳态热分析基本方程的介绍2.芯片及散热器的建立、模型的导入、材料的修改3.网格的划分,热接触的设置4.内部生热的施加、热对流的施加及相关参数含义的理解5.求解、后处理、切片及相关云图第85讲.不同材质散热器及热对流系数、环境温度对芯片散热影响1.将散热器材质更换为铝、铜重新提交运算2.后处理,对比三种材质的散热器的散热效果3.改变热对流系数2组,重新提交运算4.后处理,对比三组热对流系数下的散热效果5.改变环境温度2组,重新提交运算6.后处理,对比三组环境温度下的散热效果7.深入剖析本例第86讲.考虑硅脂涂层(接触导热系数)对芯片散热影响1.接触导热系数的相关理论讲解2.系统默认的接触导热系数的计算3.用常见硅脂材料换算接触导热系数并输入、提交运算4.后处理,温降曲线的输出,对比不同硅脂的导热性能5.深入剖析本例2℃TCC=60.510000/0.06807=8887909.5/w m第87讲.钢丝钳的瞬态传热分析1.问题描述、考察的内容,模型的简化及考虑,建模操作及注意事项2.模型的导入、网格控制及划分3.热边界的施加、求解设置4.求解,结果后处理5.深入剖析本例第91讲.矩形杆稳态热应力分析及理论计算,升降温预应力的添加1.热结构耦合的相关理论,热应力的推导过程2.稳态热结构耦合项目列表的搭建,材料属性的定义,修改,更新3.温升的添加,热分析模块的求解4.温度初始条件的导入,结构分析模块的求解5.改变约束条件,求解伸长量6.温升的添加,及结构热应力的再次计算,切面的创建,压应力的查看7.本例的拓展,使用降温和升温添加结构预应力555110mm/mm(210)(110)2E MPaδε--⨯=⨯=⨯⨯⨯=温度降低1℃产生的应变为应力第92讲.高速电机外壳稳态热结构耦合分析1.模型的简化,考察的内容,建模的注意事项2.稳态热结构耦合项目列表的搭建,材料属性的定义,修改,更新3.网格的初步划分,实体的切分,模型的直接更新,DM中的拓扑,再次划分4.热分析中的热生成,对流的施加,结构分析中固定约束的施加5.求解,后处理,温度场,应力场6.深入剖析本例,关于仅压缩边界的理解2690V3。

ansys中的热分析

ansys中的热分析

ansys中的热分析【转】热-结构耦合分析知识掌握篇2022-05-3114:09:19阅读131评论0字号:大中小订阅热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析,然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析.21.1热-结构耦合分析简介热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法.21.1.1热分析基本知识ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传递方式.此外,还可以分析相变,有内热源,接触热阻等问题.热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程.如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变化.瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率,热边界条件以及系统内能随时间都有明显变化.ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度,对流,辐射,绝热,生热.热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表21.1所示.表21.1热分析单元列表单元类型名称说明线性LINK32LINK33LINK34LINK31两维二节点热传导单元三维二节点热传导单元二节点热对流单元二节点热辐射单元二维实体PLANE55PLANE77PLANE35PLANE75PLANE78四节点四边形单元八节点四边形单元三节点三角形单元四节点轴对称单元八节点轴对称单元三维实体SOLID87SOLID70SOLID90六节点四面体单元八节点六面体单元二十节点六面体单元壳SHELL57四节点四边形壳单元点MASS71节点质量单元21.1.2耦合分析在ANSYS中能够进行的热耦合分析有:热-结构耦合,热-流体耦合,热-电耦合,热-磁耦合,热-电-磁-结构耦合等,因为本书主要讲解结构实例分析,所以着重讲解热-结构耦合分析.在ANSYS中通常可以用两种方法来进行耦合分析,一种是顺序耦合方法,另一种是直接耦合方法.顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于某一物理分析.通过将前一个分析的结果作为载荷施加到下一个分析中的方式进行耦合.典型的例子就是热-应力顺利耦合分析,热分析中得到节点温度作为\体载荷\施加到随后的结构分析中去.直接耦合方法,只包含一个分析,它使用包含多场自由度的耦合单元.通过计算包含所需物理量的单元矩阵或载荷向量矩阵或载荷向量的方式进行耦合.典型的例子是使用了SOLID45,PLANE13或SOLID98单元的压电分析.进行顺序耦合场分析可以使用间接法和物理环境法.对于间接法,使用不同的数据库和结果文件,每个数据库包含合适的实体模型,单元,载荷等.可以把一个图21.1间接法顺序耦合分析数据流程图21.2稳态热分析稳态传热用于分析稳定的热载荷对系统或部件的影响.通常在进行瞬态热分析以前,需要进行稳态热分析来确定初始温度分布.稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度,热梯度,热流率,热流密度等参数.ANSYS稳态热分析可分为三个步骤:前处理:建模求解:施加载荷计算后处理:查看结果21.2.1建模稳态热分析的模型和前面的结构分析模型建立过程基本相同.不同的就是需要在菜单过虑对话框中将分析类型指定为热分析,这样才能使菜单选项为热分析选项,单元类型也为热分析的单元类型,另外在材料定义时需要定义相应的热性能参数,下面为大概操作步骤.1.确定jobname,title,unit;2.进入PREP7前处理,定义单元类型,设定单元选项;3.定义单元实常数;4.定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;5.创建几何模型并划分网格,请参阅结构分析的建模步骤.21.2.2施加载荷计算热分析跟前面讲解的结构分析相比,区别在于指定的载荷为温度边条.通常可施加的温度载荷有恒定的温度,热流率,对流,热流密度和生热率五种.另外在分析选项中也包含非线性选项,结果输出选项等需要根据情况进行设置.1.定义分析类型(1)如果进行新的热分析,则使用下面命令或菜单路径:COMMAND:ANTYPE,STATIC,NEWGUI:Mainmenu|Solution|-AnalyiType-|NewAnalyi|Steady-tate(2)如果继续上一次分析,比如增加边界条件等,则需要进行重启动功能:COMMAND:ANTYPE,STATIC,RESTGUI:Mainmenu|Solution|AnalyiType-|Retart2.施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件).(1)恒定的温度:通常作为自由度约束施加于温度已知的边界上.COMMAND:D GUI:MainMenu|Solution|-Load-Apply|-Thermal-Temperature(2)热流率:热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量.如果温度与热流率同时施加在一节点上,则ANSYS读取温度值进行计算.注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意.此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些.COMMAND:FGUI:MainMenu|Solution|-Load-Apply|-Thermal-HeatFlow(3)对流:对流边界条件作为面载施加于实体的外表面,计算与流体的热交换.它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流.COMMAND:SFGUI:MainMenu|Solution|-Load-Apply|-Thermal-Convection(4)热流密度:热流密度也是一种面载荷.当通过单位面积的热流率已知或通过FLOTRANCFD计算得到时,可以在模型相应的外表面施加热流密度.如果输入的值为正,代表热流流入单元.热流密度也仅适用于实体和壳单元.热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载荷进行计算.COMMAND:FGUI:MainMenu|Solution|-Load-Apply|-Thermal-HeatFlu某(5)生热率:生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热.它的单位是单位体积的热流率.COMMAND:BFGUI:MainMenu|Solution|-Load-Apply|-Thermal-HeatGenerat3.确定载荷步选项对于一个热分析,可以确定普通选项,非线性选项以及输出控制.热分析的载荷不选项和结构静力分析中的载荷步相同,读者可以参阅本书结构静力分析部分的相关内容或基本分析过程中关于载荷步选项的内容.这里就不再详细讲解了.4.确定分析选项GUI:MainMenu|Solution|AnalyiOption5.求解GUI:MainMenu|Solution|CurrentLS21.2.3后处理ANSYS将热分析的结果写入某.rth文件中,它包含如下数据信息:(1)基本数据:节点温度(2)导出数据:节点及单元的热流密度节点及单元的热梯度单元热流率节点的反作用热流率其它对于稳态热分析,可以使用POST1进行后处理.关于后处理的完整描述,可参阅本书第四章中关于利用通用后处理器进行结果观察分析的讲解.下面是几个关键操作的命令和菜单路径.1.进入POST1后,读入载荷步和子步:COMMAND:SETGUI:MainMenu|GeneralPotproc|-ReadReult-ByLoadStep2.在热分析中可以通过如下三种方式查看结果:彩色云图显示COMMAND:PLNSOL,PLESOL,PLETAB等GUI:MainMenu|GeneralPotproc|PlotReult|NodalSolu,ElementSolu, ElemTable矢量图显示COMMAND:PLVECTGUI:MainMenu|GeneralPotproc|PlotReult|Pre-definedorUerdefined列表显示COMMNAD:PRNSOL,PRESOL,PRRSOL等GUI:MainMenu|GeneralPotproc|LitReult|NodalSolu,ElementSolu,R eactionSolu21.3瞬态传热分析瞬态热分析用于计算一个系统随时间变化的温度场及其它热参数.在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析.瞬态热分析的基本步骤与稳态热分析类似.主要的区别是瞬态热分析中的载荷是随时间变化的.为了表达随时间变化的载荷,首先必须将载荷~时间曲线分为载荷步.载荷~时间曲线中的每一个拐点为一个载荷步,如下图所示.图21.2瞬态热分析载荷-时间曲线对于每一个载荷步,必须定义载荷值荷对应的时间值,同时必须指定载荷步的施加方式为渐变或阶越.21.3.1建模一般瞬态热分析中,定义材料性能时要定义导热系数,密度及比热,其余建模过程与稳态热分析类似,这里就不再赘述.21.3.2加载求解和其它ANSYS中进行的分析一样,瞬态热分析进行加载求解时同样需要完成如下的工作.包括定义分析类型,定义初始条件,施加载荷,指定载荷步选项,指定结果输出选项以及最后进行求解.1.定义分析类型指定分析类型为瞬态分析,通用可以进行新的分析或进行重启动分析.2.获得瞬态热分析的初始条件(1)定义均匀温度场GUI:MainMenu|Solution|-Load-|Setting|UniformTempGUI:MainMenu|Solution|-Load-|Apply|-Thermal-|Temperature|OnNodeGUI:MainMenu|Solution|-Load-|Delete|-Thermal-Temperature|OnNode(2)设定非均匀的初始温度GUI:MainMenu|Solution|Load|Apply|-InitialCondit'n|Define如果初始温度场是不均匀的且又是未知的,就必须首先作稳态热分析确定初始条件.GUI:MainMenu|Preproceor|Load|-LoadStepOpt-Time/Frequenc|TimeIntegrationGUI:MainMenu|Preproceor|Load|-LoadStepOpt-Time/Frequenc|TimeandSubtp写入载荷步文件:GUI:MainMenu|Preproceor|Load|WriteLSFile或先求解:GUI:MainMenu|Solution|Solve|CurrentLS注意:在第二载荷步中,要删去所有设定的温度,除非这些节点的温度在瞬态分析与稳态分析相同.3.设定载荷步选项进行瞬态热分析需要指定的载荷步选项和进行瞬态结构分析相同,主要有普通选项,非线性选项和输出控制选项.(1)普通选项GUI:MainMenu|Solution|-LoadStepOpt-Time/Frequenc|TimeandSubtp每个载荷步的载荷子步数,或时间增量.对于非线性分析,每个载荷步需要多个载荷子步.时间步长的大小关系到计算的精度.步长越小,计算精度越高,同时计算的时间越长.根据线性传导热传递,可以按如下公式估计初始时间步长:ITS=δα24GUI:MainMenu|Solution|-LoadStepOpt-|Time/Frequenc|TimeandSubtp如果载荷值在这个载荷步是恒定的,需要设为阶越选项;如果载荷值随时间线GUI:MainMenu|Solution|-LoadStepOpt-|Time/Frequenc|TimeandSubtp(2)非线性选项GUI:MainMenu|Solution|-LoadStepOpt-|Time/Frequenc|TimeIntegrationGUI:MainMenu|Solution|-LoadStepOpt-|OutputCtrl|DB/ReultFile4.在定义完所有求解分析选项后,进行结果求解.21.3.3结果后处理对于瞬态热分析,ANSYS提供两种后处理方式.通用后处理器POST1,可以对整个模型在某一载荷步(时间点)的结果进行后处理;GUI:MainMenu|GeneralPotproc.GUI:MainMenu|TimeHitPotproc1.用POST1进行后处理GUI:MainMenu|GeneralPotproc|ReadReult|ByTime/Freq如果设定的时间点不在任何一个子步的时间点上,ANSYS会进行线性插值.此外,还可以读出某一载荷步的结果.GUI:MainMenu|GeneralPotproc|ReadReult|ByLoadStep然后,就可以采用与稳态热分析类似的方法,对结果进行彩色云图显示,矢量图显示,打印列表等后处理.2,用POST26进行后处理首先,要定义变量.GUI:MainMenu|TimeHitPotproc|GraphVariable或列表输出GUI:MainMenu|TimeHitPotproc|LitVariable21.4热-结构耦合分析前面讲了热-结构耦合分析是一种间接法顺序耦合分析的典型例子.其主要分三步完成:1.进行热分析,求得结构的的温度场;2.将模型中的单元转变为对应的结构分析单元,并将第一步求得的热分析结构当作体载荷施加到节点上;3.定义其余结构分析需要的选项,并进行结构分析.前面已经介绍了如何单独进行热分析和结构分析,下面介绍如何转换模型并将第一步求解的结果施加到节点上.1.完成必要的热分析,并进行相应的后处理,对结果进行查看分析.2.重新进入前处理器,并指定新的分析范畴为结构分析.选择菜单路径MainMenu|Preference,在弹出的对话框中选择\选项,使所有菜单变为结构分析的选项.3.进行单元转换.选择菜单路径MainMenu|Preproceor|ElementType|SwitchElemType,将弹出SwithchElemType(转换单元类型)对话框,如图21.3所示.图21.3转换单元类型对话框4.在对话框中的Changeelementtype(改变单元类型)下拉框中选择\然后单击关闭对话框,ANSYS程序将会自动将模型中的热单元转换为对应的结构单元类型.5.定义材料的性能参数.跟通常的结构分析不同的是,除了定义进行结构静力分析需要的材料弹性模量,密度,或强化准则的定义之外.在热-结构耦合分析的第二个分析中,还需要定义材料的热膨胀系数,而且材料性能应该随温度变化的.6.将第一次分析得到的温度结果施加到结构分析模型上.选取菜单路径MainMenu|Solution|DefineLoad|Apply|Structural|Temperature|FromThermAn aly,将弹出ApplyTEMPfromThemalAnalyi(从已进行的热分析结果中施加温度载荷)对话框,如图21.4所示.单击对话框中的按钮,选择前面热分析的结果文件某.rth,作为结构分析的热载荷加到节点上.图21.4从已进行的热分析结果中施加温度载荷对话框7.定义其它结构分析的载荷步选项和求解分析选项,并进行结构分析求解.8.进行结果后处理,观察分析所求得的结果.。

热分析(ansys教程)

热分析(ansys教程)

热传递的方式(续)
3、热辐射 热辐射指物体发射电磁能,并被其它物体吸收转变 为热的热量交换过程。物体温度越高,单位时间辐 射的热量越多。热传导和热对流都需要有传热介质, 而热辐射无须任何介质。实质上,在真空中的热辐 射效率最高。 在工程中通常考虑两个或两个以上物体之间的辐射, 系统中每个物体同时辐射并吸收热量。它们之间的 净热量传递可以用斯蒂芬 — 波尔兹曼方程来计算: q=εσA1F12(T14-T24) ,式中 q 为热流率, ε 为辐射率 (黑度), σ为斯蒂芬-波尔兹曼常数,约为 5.67×10-8W/m2.K4 , A1 为辐射面 1 的面积, F12 为由 辐射面1到辐射面2的形状系数,T1为辐射面1的绝对 温度,T2为辐射面2的绝对温度。由上式可以看出, 包含热辐射的热分析是高度非线性的。

划分网格

首先定义单元属性: 单元类型, 实常数, 材料属性.
单元类型
下表给出了常用的热单元类型 每个结点只有一个自由度: 温度
2-D Solid Linear Quadratic PLANE55 PLANE77 PLANE35 3-D Solid SOLID70 SOLID90 SOLID87 3-D Shell SHELL57 Line Elements LINK31,32,33,34
热分析误差估计




仅用于评估由于网格密度不够带来的误差; 仅适用于 SOLID 或 SHELL 的热单元 ( 只有温度 一个自由度); 基于单元边界的热流密度的不连续; 仅对一种材料、线性、稳态热分析有效; 使用自适应网格划分可以对误差进行控制。
稳态传热分析


稳态传热用于分析稳定的热载荷对系统或部件 的影响。通常在进行瞬态热分析以前,进行稳 态热分析用于确定初始温度分布。 稳态热分析可以通过有限元计算确定由于稳定 的热载荷引起的温度、热梯度、热流率、热流 密度等参数

Ansys热分析教程_第三章稳态热分析

Ansys热分析教程_第三章稳态热分析

前处理:建模
定义并查看材料特性
在ANSYS中定义材料特性的选项:
– 在材料特性对话框中输入需要的数值。 – 从ANSYS材料库或用户自定义材料库中读入材料特性。
在定义了材料特性以后,也可以将材料特性写到文件中以备后 用。
前处理:建模
定义并查看材料特性
要从材料库中读入材料特性,只要指定包含所需数据的文件路径 和文件名即可。
• 只对最小的循环部分建模。
稳态热传导分析实例
绝热对称边界 对流面
绝热对称边界
对流面
翅片端部的热流密度
简化成了最小的可重复2D几何模型。
稳态热传导分析实例
稳态热传递例题的指导说明:
• 使用最小的可循环部分求解下列问题: – 钢管/肋骨中的温度场分布 – 钢管/肋骨的对流热损耗 – 绘出钢管/肋骨面上的温度变化情况。
前处理:建模
定义并查看材料特性
要手工输入材料特性,首先选择Material Models菜单,并双击树 状结构以获得该分析所需的材料行为方式( 均匀各向同性,均匀 各向异性,对温度变化) …….
本例中使用的材料特性是均匀各向同性 的。第一种材料缺省的材料号为1。
前处理:建模
定义并查看材料特性
然后,在对话框中输入需要的数值………..
前处理:建模
定义并查看材料特性
稳态热分析中关于材料特性的总体说明
– 对于稳态分析,热材料特性必须输入热传导率“k”-KXX, 和可选的KYY, KZZ。
– 如果用户不定义,KYY和KZZ缺省等于KXX。 – 密度(DENS)和比热(C)或热焓(ENTH)在没有质量传递的稳态热分析中不
需要。 – 随温度变化的材料导热系数k, 使得热分析为非线性。 – 与温度有关的换热系数也被处理为材料特性。

Ansys耦合热分析教程ppt课件

Ansys耦合热分析教程ppt课件
Main Menu->Solution->Apply->Structural->Pressure
45
施加表载荷
46
定义温度载荷
47
定义约束
48
施加约束的结果
49
施加位移载荷
50
选择铜块的节点
51
旋转节点坐标系
52
旋转节点坐标系
53
施加位移载荷
54
施加位移载荷
55
设置求解选项
56
30
STEP4:建立几何模型
31
STEP4:建立几何模型
32
STEP 5: 划分网格
33
指定单元类型及材料属性
34
网格控制
35
网格控制
36
网格划分结果
37
定义接触对
38
定义接触对
39
定义接触对
40
STEP 6:定义载荷
41
定义表
42
定义表
43
施加压力表载荷
44
施加表载荷
5A
检查实常数和单元选项是否正确。
14
流程细节 (续)
5B. 从热分析中施加温度体载荷(LDREAD 命令):
5B 确定结果的 时间和子步 确定温度结 果文件 9. 求解当前载荷步
15
流程细节 (续)
下面六页 (步骤 5a-5d) 假设热网格不在结构模型中使用 (选项2)。
5a. 清除热网格 . . .
热网格
Using the default tolerance, these two nodes would not be assigned a load
结构网格边界
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Spotweld(点焊)提供了离散的热传导点: (点焊)提供了离散的热传导点:
Training Manual
– Spotweld在CAD软件中进行定义(目前只有 在 软件中进行定义( 软件中进行定义 目前只有DesignModeler和Unigraphics可 和 可 用) 。
T2
T1
6-13
热分析
Training Manual
• 在模拟时,记住这些假设对热分析是很重要的。 在模拟时,记住这些假设对热分析是很重要的。
6-4
热分析
A. 几何模型
• 热分析里所有实体类都被约束: 热分析里所有实体类都被约束:
– 体、面、线
• 线实体的截面和轴向在 DesignModeler中定义 中定义 • 热分析里不可以使用点质量(Point Mass)的特性 热分析里不可以使用点质量( )
Training Manual
Pinball Radius
右图中, 右图中,两部件间的间距大于 pinball区域,因此在这两个部件间 区域, 区域 会发生热传导。 会发生热传导。
6-9
热分析
… 组件 导热率 组件-导热率
Training Manual
• 默认情况下,假设部件间是完美的热接触传导, 意味着界面上不会发生温 默认情况下,假设部件间是完美的热接触传导, 度降 • 实际情况下,有些条件削弱了完美的热接触传导: 实际情况下,有些条件削弱了完美的热接触传导:
6-3
热分析
稳态热传导基础
• 上述方程基于傅里叶定律: 上述方程基于傅里叶定律:
• 固体内部的热流(Fourier’s Law) 是 [K]的基础; 固体内部的热流( 的基础; ) 的基础 • 热通量、热流率、以及对流 在{Q} 为边界条件; 热通量、热流率、 为边界条件; • 对流被处理成边界条件,虽然对流换热系数可能与温度相关 对流被处理成边界条件,
4 4 QR = σεFA Tsurface −Tambient
Training Manual
(
)
– 式中: 式中:
• σ =斯蒂芬一玻尔兹曼常数
• ε = 放射率 • A = 辐射面面积 • F = 形状系数 (默认是 ) 默认是1)
– 只针对环境辐射,不存在于面面之间(形状系数假设为 ) 只针对环境辐射,不存在于面面之间(形状系数假设为1) – 斯蒂芬一玻尔兹曼常数自动以工作单位制系统确定
6-8
热分析
… 组件 接触区域 组件-接触区域
• 如果接触是 如果接触是Bonded(绑定的)或no (绑定的) separation(无分离的),那么当面出现在 ),那么当面出现在 (无分离的), pinball radius内时就会发生热传导(绿色实线 内时就会发生热传导( 内时就会发生热传导 表示)。 表示)。
q = hA(Tsurface −Tambient )
– “h” 和 “Tambient” 是用户指定的值 – 导热膜系数 h 可以是常量或是温度的函数
6-16
热分析
…热边界条件 热边界条件
• 与温度相关的对流: 与温度相关的对流:
– 为系数类型选择 为系数类型选择Tabular (Temperature) – 输入对流换热系数 温度表格数据 输入对流换热系数-温度表格数据 – 在细节窗口中,为h(T)指定温度的处理 在细节窗口中, 指定温度的处理 方式
TCC = KXX ⋅10,000 / ASMDIAG
– 这实质上为部件间提供了一个完美接触传导
6-11
热分析
… 组件 导热率 组件-导热率
Training Manual
• 在ANSYS Professional 或更高版本,用户可以为纯罚函数和增广拉格朗日 或更高版本, 方程定义一个有限热接触传导( 方程定义一个有限热接触传导(TCC)。 )。
Training Manual
6-17
热分析
…热边界条件 热边界条件
Training Manual
• 几种常见的对流系数可以从一个样本文件中导入。新的对流系数可以保存 几种常见的对流系数可以从一个样本文件中导入。 在文件中。 在文件中。
6-18
热分析
…热边界条件 热边界条件
• 辐射 辐射:
– 施加在面上 (二维分析施加在边上) 二维分析施加在边上)
• 本节描述的应用一般都能在ANSYS DesignSpace Entra或更高版本中使用,除了 或更高版本中使用, 本节描述的应用一般都能在 或更高版本中使用 ANSYS Structural • 提示:在 ANSYS 热分析 的培训中包含了包括热瞬态分析的高级分析 提示:
6-2
热分析
稳态热传导基础
C. 热载荷
• 热流量: 热流量:
– 热流速可以施加在点、边或面上。它分布在多个选择域上。 热流速可以施加在点、边或面上。它分布在多个选择域上。 – 它的单位是能量比上时间( energy/time) 它的单位是能量比上时间( )
Training Manual
• 完全绝热(热流量为0): 完全绝热(热流量为 ):
Workbench - Mechanical Introduction
第六章 热分析
6-1
热分析
概念
• 本章练习稳态热分析的模拟,包括: 本章练习稳态热分析的模拟,包括:
A. 几何模型 B. 组件 实体接触 组件-实体接触 C. 热载荷 D. 求解选项 E. 结果和后处理 F. 作业 6.1
Training Manual
Heat Transfer Between Parts in Contact Region? Initially Touching Inside Pinball Region Outside Pinball Region Yes Yes No Yes Yes No Yes No No Yes No No Yes No No
Training Manual
• 对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得: 对于一个稳态热分析的模拟,温度矩阵 通过下面的矩阵方程解得 通过下面的矩阵方)}
• 假设: 假设:
– 在稳态分析中不考虑瞬态影响 – [K] 可以是一个常量或是温度的函数 – {Q}可以是一个常量或是温度的函数 可以是一个常量或是温度的函数
Training Manual
6-20
热分析
… 求解模型
Training Manual
• 为了实现热应力求解,需要在求解时把结构分析关联到热模型上。 为了实现热应力求解,需要在求解时把结构分析关联到热模型上。 • 在Static Structural中插入了一个 中插入了一个imported load分支,并同时导入了施 分支, 中插入了一个 分支 加的结构载荷和约束。 加的结构载荷和约束。
q = TCC ⋅ (Ttarget −Tcontact )
– 式中 contact 是一个接触节点上的温度, Ttarget 是对应目标节点上的温度 式中T 是一个接触节点上的温度, – 默认情况下,基于模型中定义的最大材料导热性KXX和整个几何边界框的对角 默认情况下,基于模型中定义的最大材料导热性 和整个几何边界框的对角 被赋以一个相对较大的值。 线ASMDIAG, TCC 被赋以一个相对较大的值。 ,
– – – – – – – – 表面光滑度 表面粗糙度 氧化物 包埋液 接触压力 表面温度 使用导电脂 ....
∆T
T x
• 接着 接着……
6-10
热分析
… 组件 导热率 组件-导热率
– 穿过接触界面的热流速,由接触热通量q决定: 穿过接触界面的热流速,由接触热通量 决定 决定:
Training Manual
– 求解结构
6-21
热分析
E. 结果和后处理
• 后处理可以处理各种结果: 后处理可以处理各种结果:
Contact Type Bonded No Separation Rough Frictionless Frictional
– Pinball区域决定了什么时候发生接触,并且是自动定义的,同时还给了一个相 区域决定了什么时候发生接触,并且是自动定义的, 区域决定了什么时候发生接触 对较小的值来适应模型里的小间距。 对较小的值来适应模型里的小间距。
Training Manual
• Thermal Conductivity 在 Engineering Data 中输 入
• 温度相关的导热性以表格 形式输入
若存在任何的温度相关的材料特性,就将导致非线性求解。 若存在任何的温度相关的材料特性,就将导致非线性求解。
6-6
热分析
B. 组件 实体接触 组件-实体接触
• 给定温度: 给定温度:
– 给点、边、面或体上指定一个温度 给点、 – 温度是需要求解的自由度
6-15
热分析
…热边界条件 热边界条件
• 对流: 对流:
Training Manual
– 只能施加在面上(二维分析时只能施加在边上) 只能施加在面上(二维分析时只能施加在边上) – 对流q 由导热膜系数 h,面积 A,以及表面温度 surface与环境温度 ambient的差值 与环境温度T 对流 , ,以及表面温度T 来定义。 来定义。
Training Manual
• 壳体和线体假设: 壳体和线体假设:
– 壳体:没有厚度方向上的温度梯度 壳体: – 线体:没有厚度变化,假设在截面上是一个常量温度 线体:没有厚度变化,
• 但在线实体的轴向仍有温度变化
6-5
热分析
… 材料特性
• 唯一需要的材料特性是导热性(Thermal Conductivity) 唯一需要的材料特性是导热性( )
正的热载荷会增加系统的能量。 正的热载荷会增加系统的能量。
相关文档
最新文档