2020-2021中考数学圆的综合综合经典题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学圆的综合综合经典题含详细答案
一、圆的综合
1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
【答案】(1)4;(2)3
5
;(3)点E的坐标为(1,2)、(
5
3

10
3
)、(4,2).
【解析】
分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则
MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,
②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
∵∠BHA=90°,∠BAO=45°,
∴tan∠BAH=BH
HA
=1,∴BH=HA=4,∴OC=BH=4.
故答案为4.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).
由(1)得:OH =2,BH =4.
∵OC 与⊙M 相切于N ,∴MN ⊥OC .
设圆的半径为r ,则MN =MB =MD =r .
∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .
∵BM =DM ,∴CN =ON ,∴MN =
12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.
在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.
解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .
∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .
∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12
BD =2,∴OF =4,
∴OG
同理可得:OB AB ,∴BG =
12AB .
设OR =x ,则RG x .
∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,
∴(
2﹣x 2=()2﹣(x )2.
解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5

在Rt △ORB 中,sin ∠BOR =BR OB
35. 故答案为35
. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.
此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.
解得:t =1.则OP =CD =DB =1.
∵DE ∥OC ,∴△BDE ∽△BCO ,∴
DE OC =BD BC =12
,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).
②当∠BED =90°时,如图3.
∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,
∴BE
BC =2DB BE OB ∴,∴BE =5
t . ∵PE ∥OC ,∴∠OEP =∠BOC .
∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,
∴OE
OB =
25
OP
BC

,=
2
t
,∴OE=5t.
∵OE+BE=OB=255
,∴t+5
t=25.
解得:t=5
3
,∴OP=
5
3
,OE=
55
,∴PE=22
OE OP
-=
10
3

∴点E的坐标为(510
33
,).
③当∠DBE=90°时,如图4.
此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
则有OD=PE,EA=22
PE PA
+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.
∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
在Rt△DBE中,cos∠BED=BE
DE
=
2
,∴DE=2BE,
∴t=22
(t﹣22)=2t﹣4.
解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、
(510
33
,)、(4,2).
点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数
学思想,有一定的综合性.
2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:∠G=∠CEF;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG =3
4
,AH=33,求EM的值.
【答案】(1)证明见解析;(2)证明见解析;(3)253 8
.
【解析】
试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»
AD AC
=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;
(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;
(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明
△AHC∽△MEO,可得AH HC
EM OE
=,由此即可解决问题;
试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»
AD AC
=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.
(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,
∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.
(3)解:如图3中,连接OC.设⊙O的半径为r.
在Rt△AHC中,tan∠ACH=tan∠G=AH
HC
=
3
4
,∵AH=33∴HC=3Rt△HOC中,
∵OC=r,OH=r﹣33HC=43∴222
(33)(43)
r r
-+=,∴r=253
6

∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HC
EM OE
=,
∴3343
253
6
=
,∴EM
253

点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.
3.图 1 和图 2 中,优弧»AB纸片所在⊙O 的半径为 2,AB=3,点P为优弧»AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点A 的对称点A′.
发现:
(1)点O 到弦AB 的距离是,当BP 经过点O 时,∠ABA′=;
(2)当BA′与⊙O 相切时,如图 2,求折痕的长.
拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M, N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′, O′,设∠MNP=α.
(1)当α=15°时,过点A′作A′C∥MN,如图 3,判断A′C 与半圆O 的位置关系,并说明理由;
(2)如图 4,当α= °时,NA′与半圆O 相切,当α= °时,点O′落在»NP上.
(3)当线段NO′与半圆O 只有一个公共点N 时,直接写出β的取值范围.
【答案】发现:(1)1,60°;(2)3;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.
【解析】
【分析】
发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.
(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性
质可得OD=A'H=1
2
A'N=
1
2
MN=2可判定A′C与半圆相切;
(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在»PB时,连接MO′,则
可知NO′=1
2
MN,可求得∠MNO′=60°,可求得α=30°;
(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.
【详解】
发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,
∵⊙O的半径为2,AB=23,
∴OH=22
OB HB
-=22
2(3)1
-=
在△BOH中,OH=1,BO=2
∴∠ABO=30°
∵图形沿BP折叠,得到点A的对称点A′.
∴∠OBA′=∠ABO=30°
∴∠ABA′=60°
(2)过点O作OG⊥BP,垂足为G,如图2所示.
∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.
∵∠OBH=30°,∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.∴OG=1
2
OB=1.∴3.
∵OG⊥BP,∴3.
∴3.∴折痕的长为3
拓展:(1)相切.
分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,
∵A'C∥MN
∴四边形A'HOD是矩形
∴A'H=O
∵α=15°∴∠A'NH=30
∴OD=A'H=1
2A'N=
1
2
MN=2
∴A'C与半圆
(2)当NA′与半圆O相切时,则ON⊥NA′,∴∠ONA′=2α=90°,
∴α=45
当O′在»PB上时,连接M O′,则可知NO′=1
2 MN,
∴∠O′MN=0°
∴∠MNO′=60°,
∴α=30°,
故答案为:45°;30°.
(3)∵点P,M不重合,∴α>0,
由(2)可知当α增大到30°时,点O′在半圆上,
∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;
当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.
当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,
∴α<90°,
∴当45°≤α<90°线段BO′与半圆只有一个公共点B.
综上所述0°<α<30°或45°≤α<90°.
【点睛】
本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.
4.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若AB=4,∠C=30°,求劣弧»BE的长.
【答案】(1)证明见解析(2)4 3π
【解析】
分析:(1)连接AD、OD,根据直径所对的圆周角为直角,可得∠ADB=90°,然后根据等腰三角形的性质求出BD=CD,再根据中位线的性质求出OD⊥DF,进而根据切线的判定证明即可;
(2)连接OE,根据三角形的外角求出∠BAE的度数,然后根据圆周角定理求出∠BOE的度数,根据弧长公式求解即可.
详解:(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.
∵AB=AC,∴BD=CD,
又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,
∵DF⊥AC,∴OD⊥DF
即∠ODF=90°.∴DF为⊙O的切线;
(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,
∵∠BOE=2∠BAE,∴∠BOE=120°,
∴=·4π=π.
点睛:本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、圆周角定理,灵活添加辅助线是解题关键.
5.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.
(1)求证:CF是⊙O的切线; (2)若AE=4,tan∠ACD=1
2
,求AB和FC的长.
【答案】(1)见解析;(2) ⑵AB=20 ,
40
3 CF=
【解析】
分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;
(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.
详解:⑴证明:连结OC
∵AB 是⊙O 的直径
∴∠ACB=90°
∴∠B+∠BAC=90°
∵OA=OC
∴∠BAC=∠OCA
∵∠B=∠FCA
∴∠FCA+∠OCA=90°
即∠OCF=90°
∵C 在⊙O 上
∴CF 是⊙O 的切线
⑵∵AE=4,tan ∠ACD
12
AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E
∴»»AD AC =
∵∠FCA =∠B
∴∠B=∠ACD=∠FCA
∴∠EOC=∠ECA
∴tan ∠B=tan ∠ACD=
1=2CE BE ∴BE=16
∴AB=20
∴OE=AB÷2-AE=6
∵CE ⊥AB
∴∠CEO=∠FCE=90°
∴△OCE ∽△CFE ∴OC OE CF CE =
即106
=
8 CF
∴40
CF
3
点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.
6.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.
(1)求证:CD是⊙O的切线;
(2)若圆O的直径等于2,填空:
①当AD=时,四边形OADC是正方形;
②当AD=时,四边形OECB是菱形.
【答案】(1)见解析;(2)①1;②3.
【解析】
试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;
(2)①依据正方形的四条边都相等可知AD=OA;
②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.
试题解析:解:∵AM⊥AB,
∴∠OAD=90°.
∵OA=OC,OD=OD,AD=DC,
∴△OAD≌△OCD,
∴∠OCD=∠OAD=90°.
∴OC⊥CD,
∴CD是⊙O的切线.
(2)①∵当四边形OADC是正方形,
∴AO=AD=1.
故答案为:1.
②∵四边形OECB是菱形,
∴OE=CE.
又∵OC=OE,
∴OC=OE=CE.
∴∠CEO=60°.
∵CE∥AB,
∴∠AOD=60°.
在Rt △OAD 中,∠AOD=60°,AO=1,
∴AD=. 故答案为:.
点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.
7.如图1,在Rt △ABC 中,∠ABC=90°,BA=BC ,直线MN 是过点A 的直线CD ⊥MN 于点D ,连接BD .
(1)观察猜想张老师在课堂上提出问题:线段DC ,AD ,BD 之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B 作BE ⊥BD ,交MN 于点E ,进而得出:DC+AD= BD .
(2)探究证明
将直线MN 绕点A 顺时针旋转到图2的位置写出此时线段DC ,AD ,BD 之间的数量关系,并证明
(3)拓展延伸
在直线MN 绕点A 旋转的过程中,当△ABD 面积取得最大值时,若CD 长为1,请直接写BD 的长.
【答案】(12;(2)AD ﹣2BD ;(3)2+1.
【解析】
【分析】
(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系
(2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O ,
证明CDB AEB ∆∆≌,得到CD AE =,EB BD =,
根据BED ∆为等腰直角三角形,得到2DE BD =,
再根据DE AD AE AD CD =-=-,即可解出答案.
(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.
在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==
由BD AD =即可得出答案.
【详解】
解:(1)如图1中,
由题意:BAE BCD ∆∆≌,
∴AE=CD ,BE=BD ,
∴CD+AD=AD+AE=DE ,
∵BDE ∆是等腰直角三角形, ∴DE=2BD ,
∴DC+AD=2BD ,
故答案为2.
(2)2AD DC BD -=.
证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .
∵90ABC DBE ∠=∠=︒,
∴ABE EBC CBD EBC ∠+∠=∠+∠,
∴ABE CBD ∠=∠.
∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠,
∴BAE BCD ∠=∠,
∴ABE DBC ∠=∠.又∵AB CB =,
∴CDB AEB ∆∆≌,
∴CD AE =,EB BD =,
∴BD ∆为等腰直角三角形,2DE BD =
. ∵DE AD AE AD CD =-=-,
∴2AD DC BD -=.
(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB 的右侧时,△ABD的面积最大.
此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证2
==,
CH AH
∴21
==+.
BD AD
【点睛】
本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.
8.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.
(1)求证:CE是⊙O的切线;
(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.
【答案】(1)证明见解析;(2)
【解析】
【分析】
(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;
(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.
【详解】
(1)证明:连接OC,AC.
∵CF⊥AB,CE⊥AD,且CE=CF.
∴∠CAE=∠CAB.
∵OC=OA,
∴∠CAB=∠OCA.
∴∠CAE=∠OCA.
∴OC∥AE.
∴∠OCE+∠AEC=180°,
∵∠AEC=90°,
∴∠OCE=90°即OC⊥CE,
∵OC是⊙O的半径,点C为半径外端,
∴CE是⊙O的切线.
(2)解:∵AD=CD,
∴∠DAC=∠DCA=∠CAB,
∴DC∥AB,
∵∠CAE=∠OCA,
∴OC∥AD,
∴四边形AOCD是平行四边形,
∴OC=AD=a,AB=2a,
∵∠CAE=∠CAB,
∴CD=CB=a,
∴CB=OC=OB,
∴△OCB是等边三角形,
在Rt△CFB中,CF=,
∴S四边形ABCD=(DC+AB)•CF=
【点睛】
本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.
9.定义:
数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.
理解:
⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);
⑵如图,在正方形中,是的中点,是上一点,且,试
判断是否为“智慧三角形”,并说明理由;
运用:
⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.
【答案】(1)详见解析;(2)详见解析;(3)P的坐标(22

1
3
22

1
3
).
【解析】
试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.
试题解析:
(1)如图1所示:
(2)△AEF是否为“智慧三角形”,
理由如下:设正方形的边长为4a,
∵E是DC的中点,
∴DE=CE=2a,
∵BC:FC=4:1,
∴FC=a,BF=4a﹣a=3a,
在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,
在Rt△ECF中,EF2=(2a)2+a2=5a2,
在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,
∴AE2+EF2=AF2,
∴△AEF是直角三角形,
∵斜边AF上的中线等于AF的一半,
∴△AEF为“智慧三角形”;
(3)如图3所示:
由“智慧三角形”的定义可得△OPQ为直角三角形,
根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,
由勾股定理可得PQ=,
PM=1×2÷3=,
由勾股定理可求得OM=,
故点P的坐标(﹣,),(,).
考点:圆的综合题.
10.如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B 作l的垂线BD,垂足为D,BD与⊙O交于点E.
(1)求∠AEC的度数;
(2)求证:四边形OBEC是菱形.
【答案】(1)30°;(2)详见解析.
【解析】
【分析】
(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB =OC,即可判断四边形OBEC是菱形.
【详解】
(1)解:在△AOC中,AC=4,
∵AO=OC=4,
∴△AOC是等边三角形,
∴∠AOC=60°,
∴∠AEC=30°;
(2)证明:∵OC⊥l,BD⊥l.
∴OC∥BD.
∴∠ABD=∠AOC=60°.
∵AB为⊙O的直径,
∴∠AEB=90°,
∴△AEB为直角三角形,∠EAB=30°.
∴∠EAB=∠AEC.
∴CE∥OB,又∵CO∥EB
∴四边形OBEC为平行四边形.
又∵OB=OC=4.
∴四边形OBEC是菱形.
【点睛】
本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.
11.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=2,BC=2,求⊙O的半径.
【答案】(1)直线CE与⊙O相切,理由见解析;(2)⊙O的半径为
6 4
【解析】
【分析】
(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切;
(2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程
222
3)6)
x x
-=,解此方程即可求得⊙O的半径.
【详解】
解:(1)直线CE与⊙O相切.…
理由:连接OE,
∵四边形ABCD是矩形,
∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,
∴∠DCE+∠DEC=90°,∠ACB=∠DAC,
又∠DCE=∠ACB,
∴∠DEC+∠DAC=90°,
∵OE=OA,
∴∠OEA=∠DAC,
∴∠DEC+∠OEA=90°,
∴∠OEC=90°,
∴OE⊥EC,
∵OE为圆O半径,
∴直线CE与⊙O相切;…
(2)∵∠B=∠D,∠DCE=∠ACB,
∴△CDE∽△CBA,
∴BC AB
DC DE
=,
又CD =AB =2,BC =2, ∴DE =1
根据勾股定理得EC =3, 又226AC AB BC =+=,…
设OA 为x ,则222(3)(6)x x +=-,
解得6x =, ∴⊙O 的半径为6.
【点睛】
此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.
12.
如图,△ABC 中,AC =BC =10,cosC =
35
,点P 是AC 边上一动点(不与点A 、C 重合),以PA 长为半径的⊙P 与边AB 的另一个交点为D ,过点D 作DE ⊥CB 于点E .
(1)当⊙P 与边BC 相切时,求⊙P 的半径. (2)连接BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围.
(3)在(2)的条件下,当以PE 长为直径的⊙Q 与⊙P 相交于AC 边上的点G 时,求相交所得的公共弦的长.
【答案】(1)
40
9
R=;(2)2
5
880
320
x
y x x
x
=-+
+
;(3)50105
-.
【解析】【分析】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=3
5
,则
sinC=4
5
,sinC=
HP
CP

10
R
R
-

4
5
,即可求解;
(2)首先证明PD∥BE,则EB BF
PD PF
=,即:20
2
4
588
x y
x
x
x
y
-+
--
=,即可求解;
(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.
【详解】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,
连接HP,则HP⊥BC,cosC=3
5
,则sinC=
4
5

sinC=HP
CP

10
R
R
-

4
5
,解得:R=
40
9

(2)在△ABC中,AC=BC=10,cosC=3
5

设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,
则BH =ACsinC =8,
同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2,
BP =228+(4)x -=2880x x -+, DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,
tanβ=2,则cosβ5,sinβ5
, EB =BDcosβ=(525x )5=4﹣25
x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x x
x -+--=, 整理得:y 25x x 8x 803x 20
-++ (3)以EP 为直径作圆Q 如下图所示,
两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,
∵点Q 是弧GD 的中点,
∴DG ⊥EP ,
∵AG 是圆P 的直径,
∴∠GDA =90°,
∴EP ∥BD ,
由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,
∴AG =EP =BD ,
∴AB =DB+AD =AG+AD =5
设圆的半径为r ,在△ADG 中,
AD =2rcosβ5DG 5
AG =2r , 5=52r 51
+, 则:DG 5
50﹣5 相交所得的公共弦的长为50﹣5
【点睛】
本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.
13.如图①,已知Rt ABC ∆中,90ACB ∠=o ,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O e ,过C 作CE 切O e 于E ,交AB 于F .
(1)若O e 的半径为2,求线段CE 的长;
(2)若AF BF =,求O e 的半径;
(3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.
【答案】(1)42CE =;(2)O e 的半径为3;(3)G 、E 两点之间的距离为9.6.
【解析】
【分析】
(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;
(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到
OE BC =OC BA ,即r 8-r =610,解得即可;
(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC =,即12108
GE =,解得即可. 【详解】
(1)如图,连结OE .
∵CE 切O e 于E ,
∴90OEC ∠=︒.
∵8AC =,O e 半径为2,
∴6OC =,2OE =.
∴2242CE OC OE =-=;
(2)设O e 半径为r .
在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =, ∴226BC AB AC =
-=. ∵
AF BF =, ∴
AF CF BF ==. ∴
ACF CAF ∠=∠. ∵CE 切O e 于E ,
∴90OEC ∠=︒.
∴OEC ACB ∠=∠,
∴OEC BCA ∆~∆.

OE OC BC BA =, ∴8610
r r -=, 解得3r =.
∴O e 的半径为3;
(3)连结EG 、OE ,设EG 交AC 于点M ,
由对称性可知,CB CG =.
又CE CB =,
∴CE CG =.
∴EGC GEC ∠=∠.
∵CE 切O e 于E ,
∴90GEC OEG ∠+∠=︒.
又90EGC GMC ∠+∠=︒,
∴OEG GMC ∠=∠.又GMC OME ∠=∠,
∴OEG OME ∠=∠.
∴OE OM =.
∴点M 与点D 重合.
∴G 、D 、E 三点在同一条直线上.
连结AE 、BE ,
∵AD 是直径,
∴90AED ∠=︒,即90AEG ∠=︒.
又CE CB CG ==,
∴90BEG ∠=︒.
∴180AEB AEG BEG ∠=∠+∠=︒,
∴A 、E 、B 三点在同一条直线上.
∴E 、F 两点重合.
∵90GEB ACB ∠=∠=︒,B B ∠=∠,
∴GBE ABC ∆~∆. ∴GB GE AB AC =,即12108
GE =. ∴9.6GE =.
故G 、E 两点之间的距离为9.6.
【点睛】
本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.
14.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形,以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .
求证:(1)AD 是⊙B 的切线;
(2)AD =AQ ;
(3)BC 2=CF×EG .
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
【分析】
()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得
AD BD =,再根据正方形的性质,可得90ADB ∠=o ;
()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得
122.52
G CDG BDG BCD ∠=∠=∠=
∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =;
()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论.
【详解】
证明:()1连接BD ,
Q 四边形BCDE 是正方形,
45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,
C Q 为AB 的中点,
CD ∴是线段AB 的垂直平分线,
AD BD ∴=,
45DAB DBA ∴∠=∠=o ,
90ADB ∴∠=o ,
即BD AD ⊥,
BD Q 为半径,
AD ∴是B e 的切线;
()2BD BG =Q ,
BDG G ∴∠=∠,
//CD BE Q ,
CDG G ∴∠=∠,
122.52
G CDG BDG BCD ∴∠=∠=∠=∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o , ADQ AQD ∴∠=∠,
AD AQ ∴=;
()3连接DF ,
在BDF V 中,BD BF =,
BFD BDF ∴∠=∠,
又45DBF ∠=o Q ,
67.5BFD BDF ∴∠=∠=o ,
22.5GDB ∠=o Q ,
在Rt DEF V 与Rt GCD V 中,
67.5GDE GDB BDE DFE ∠=∠+∠==∠o Q ,90DCF E ∠=∠=o ,
Rt DCF ∴V ∽Rt GED V ,
CF CD ED EG
∴=, 又CD DE BC ==Q ,
2BC CF EG ∴=⋅.
【点睛】
本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.
15.结果如此巧合!
下面是小颖对一道题目的解答.
题目:如图,Rt △ABC 的内切圆与斜边AB 相切于点D ,AD=3,BD=4,求△ABC 的面积. 解:设△ABC 的内切圆分别与AC 、BC 相切于点E 、F ,CE 的长为x .
根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x .
根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x 2+7x=12.
所以S △ABC =
12AC•BC =
12(x+3)(x+4) =
12(x 2+7x+12) =12
×(12+12) =12.
小颖发现12恰好就是3×4,即△ABC 的面积等于AD 与BD 的积.这仅仅是巧合吗? 请你帮她完成下面的探索.
已知:△ABC 的内切圆与AB 相切于点D ,AD=m ,BD=n .
可以一般化吗?
(1)若∠C=90°,求证:△ABC 的面积等于mn .
倒过来思考呢?
(2)若AC•BC=2mn ,求证∠C=90°.
改变一下条件……
(3)若∠C=60°,用m 、n 表示△ABC 的面积.
【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;
【解析】
【分析】
(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.
【详解】
设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,
根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,
(1)如图1,
在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,
整理,得:x2+(m+n)x=mn,
所以S△ABC=AC•BC
=(x+m)(x+n)
=[x2+(m+n)x+mn]
=(mn+mn)
=mn;
(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,
整理,得:x2+(m+n)x=mn,
∴AC2+BC2=(x+m)2+(x+n)2
=2[x2+(m+n)x]+m2+n2
=2mn+m2+n2
=(m+n)2
=AB2,
根据勾股定理逆定理可得∠C=90°;
(3)如图2,过点A作AG⊥BC于点G,
在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),
∴BG=BC﹣CG=(x+n)﹣(x+m),
在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,
整理,得:x2+(m+n)x=3mn,
∴S△ABC=BC•AG
=×(x+n)•(x+m)
=3
x2+(m+n)x+mn]
=3
(3mn+mn)3.
【点睛】
本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。

相关文档
最新文档