2021届高考数学解答题核心素养题型3 三角函数与平面向量综合问题(答题指导解析版)

合集下载

-三角函数三角形平面向量高考常考14种题型解题方法

-三角函数三角形平面向量高考常考14种题型解题方法

三角函数三角形平面向量高考常考题型解题方法本专题要特别小心: 1.平面向量的几何意义应用 2. 平面向量与三角形的综合 3. 三角形的边角互化4.向量的数量积问题等综合问题5. 向量夹角为锐角、钝角时注意问题6.三角形中角的范围7.正余弦定理综合。

【题型方法】(一)考查平面向量基本定理例1. 设D 为ABC ∆所在平面内一点,若3BC CD =,则下列关系中正确的是( ) A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-【解析】∵3BC CD = ∴AC −−AB =3(AD −−AC ) ∴AD =43AC −−13AB . 选C练习1.设四边形ABCD 为平行四边形,,.若点M ,N 满足,,则( )A .20B .15C .9D .6【解析】不妨设该平行四边形为矩形,以为坐标原点建立平面直角坐标系 则,故练习2. 如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭得2213,22AB AC =即3,AB AC =故3AB AC=(二)考察数形结合思想(如:向量与圆等图形的结合) 例2. 已知点A ,B ,C 在圆上运动,且ABBC ,若点P 的坐标为(2,0),则的最大值为( )A .6B .7C .8D .9 【解析】由题意,AC 为直径,所以当且仅当点B 为(-1,0)时,取得最大值7选B练习1. 在平面内,定点A ,B ,C ,D 满足==, = = =–2,动点P ,M 满足=1,=,则的最大值是( )A .B .C .D .【解析】甴已知易得以为原点,直线为轴建立平面直角坐标系,如图所示则设由已知,得又,它表示圆上的点与点的距离的平方的,选B练习2. 在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为( ) A .3 B .22 C .5 D .2 【解析】如图,建立平面直角坐标系设()()()()0,1,0,0,2,1,,A B D P x y 根据等面积公式可得圆的半径是25,即圆的方程是()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=若满足AP AB AD λμ=+,即21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==- ,所以12xy λμ+=-+设12x z y =-+ ,即102xy z -+-= 点(),P x y 在圆()22425x y -+=上,所以圆心到直线的距离d r ≤,即221514z -≤+ ,解得13z ≤≤ 所以z 的最大值是3,即λμ+的最大值是3,选A(三).考查向量的数量积 例3. 已知向量,则ABC =( )A .30B .45C .60D .120 【解析】由题意,得,所以,选A【小结】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题练习1. 已知是边长为4的等边三角形,为平面内一点,则的最小值是A .B .C .D .【解析】以BC 中点为坐标原点,建立如图所示的坐标系则A (0,2),B (﹣2,0),C (2,0),设P (x ,y )则=(﹣x ,2﹣y ),=(﹣2﹣x ,﹣y ),=(2﹣x ,﹣y )所以•(+)=﹣x •(﹣2x )+(2﹣y )•(﹣2y )=2x 2﹣4y +2y 2=2[x 2+(y ﹣)2﹣3]所以当x =0,y =时,•(+)取得最小值为2×(﹣3)=﹣6,选D练习2.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【解析】因为1,9DF DC λ=12DC AB = 119199918CF DF DC DC DC DC AB λλλλλ--=-=-==;AE AB BE AB BC λ=+=+19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+ ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒21172117299218921818λλλλ=++≥⋅+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918BAD C E(四)考查三角形中的边角互化例 4. 在ABC ∆中,角,,A B C 的对边分别为a , b , c .若ABC ∆为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A = 【解析】()sin 2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A练习1. 在中,角,,所对应的边分别为,,.已知,则()A.一定是直角三角形B.一定是等腰三角形C.一定是等腰直角三角形D.是等腰或直角三角形【解析】由题,已知,由正弦定理可得:即又因为所以即由余弦定理:,即所以所以三角形一定是等腰三角形,选B练习2. 在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A.B.C.D.【解析】因为,为的角平分线,所以在中,,因为,所以在中,,因为,所以,所以则因为,所以所以,则即的取值范围为,选A练习3. 在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知,,,则的面积( ) A .B .C .D .【解析】由题,,所以所以 又因为锐角三角形ABC ,所以 由题,即根据代入可得,,即再根据正弦定理: 面积故选D练习4. 在锐角ABC ∆中,角AB C ,,的对边分别为a b c ,,.且cos cos A B a b +=33Ca,23b =a c +的取值范围为_____.【解析】cos cos 33A B C a b a +=23cos cos sin 3b A a B C ∴+= ∴由正弦定理可得: 23sin cos sin cos sin 3B A A B BC +=,可得:23sin()sin sin A B C B C +==,3sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭33A π⎛⎫=- ⎪⎝⎭ 2,3A A π-均为锐角,可得:,62636A A πππππ<<-<-<,(6,43]a c ∴+∈.练习5. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos sin sin sin ab Ca Bb A a A b Bc C+=+-,且3a b +=,则c 的取值范围为________________. 【解析】因为()sin sin sin cos cos sin C A B A B A B =+=+ 所以由正弦定理可得cos cos a B b A c +=, 又因为sin cos cos sin sin sin ab C a B b A a A b B c C+=+-,所以由正弦定理可得222abcc a b c =+- 即222a b c ab +-=,所以222c a b =+-2()3ab a b ab =+-, 因为3a b +=,所以293c ab =-,因为29()24a b ab +≤=, 当且仅当23==b a 时取等号,所以27304ab -≤-<, 所以99394ab ≤-<,即2994c ≤<,所以332c ≤<,故c 的取值范围为3[,3)2(五)三角形与向量综合 例5. 在△中,为边上的中线,为的中点,则( )A .B .C .D .【分析】首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.【解析】根据向量的运算法则,可得,所以,故选A .练习1. 已知中,为的重心,则()A.B.C.D.【解析】因为中,为的重心,所以,由余弦定理可得:且所以=练习2. 下列命题中,①在中,若,则为直角三角形;②若,则的最大值为;③在中,若,则;④在中,,若为锐角,则的最大值为.正确的命题的序号是______【解析】①在中,若,可得或,则为直角或钝角三角形,故①错;②若时,即,即垂直,则的最大值为,故②正确;③在中,若,,即,即,,即为,由,可得,故③正确;④在中,,即为,即为,可得,即,可得锐角,可得时,的最大值为,故④正确故答案为:②③④练习3. 在ABC 中, 60A ∠=︒, 3AB =, 2AC =. 若2BD DC =, ()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________. 【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ 则()1221233493433333311AD AE AB AC AC AB λλλλ⎛⎫⋅=+-=⨯+⨯-⨯-⨯=-⇒= ⎪⎝⎭(六)向量与三角函数综合例6. 自平面上一点O 引两条射线OA ,OB ,点P 在OA 上运动,点Q 在OB 上运动且保持PQ 为定值a (点P ,Q 不与点O 重合),已知3AOB π∠=,7a =,则3||||PQ PO QP QOPO QO ⋅⋅+的取值范围为( )A .1,72⎛⎤⎥⎝⎦B .7,72⎛⎤⎥ ⎝⎦C .1,72⎛⎤- ⎥⎝⎦D .7,72⎛⎤- ⎥ ⎝⎦【解析】设OPQ α∠=,则23PQO πα∠=- 322cos 3cos 7cos 3cos 33PQ PO QP QO PQ QP POQO ππαααα⋅⋅⎫⎛⎫⎛⎫+=+-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎭()3331337cos cos 7cos 7sin 22ααααααϕ⎫⎫=-=-+=-⎪⎪⎪⎪⎭⎭其中3tan 9ϕ=,则7sin 14ϕ=20,3πα⎛⎫∈ ⎪⎝⎭,∴当()sin 1αϕ-=时,原式取最大值7 ()()7sin sin 0sin 14αϕϕϕ->-=-=-,∴()77sin 2αϕ->- 37,72PQ PO QP QO PO QO ⎛⎤⋅⋅+∈- ⎥ ⎝⎦∴,选D练习1. 在同一个平面内,向量的模分别为与的夹角为,且与的夹角为,若,则_________.【解析】以为轴,建立直角坐标系,则, 由的模为与与的夹角为,且知,,可得,,由可得 ,(七)三角形中的最值 例7. 在中,内角所对的边分别为.已知,,,设的面积为,,则的最小值为_______. 【解析】在中,由得, 因为利用正弦定理得,再根据,可得,,,由余弦定理得,求得,所以,所以 ,所以,当且仅当,即时取等,所以 的最小值为。

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。

备战2021高考理数热点题型和提分秘籍 专题72 三角函数、平面向量综合题(解析版)

备战2021高考理数热点题型和提分秘籍 专题72 三角函数、平面向量综合题(解析版)

专题七十二 三角函数、平面对量综合题【高频考点解读】三角函数作为一种重要的基本初等函数,是中学数学的重要内容,也是高考命题的热点之一.近几年对三角函数的要求基本未作调整,主要考查三角函数的定义、图象与性质以及同角三角函数的基本关系式、诱导公式、和差角与倍角公式等.解答题主要考查三角函数的性质、三角函数的恒等变换或三角函数的实际应用,一般消灭在前两个解答题的位置.平面对量是连接代数与几何的桥梁,是高考的重要内容之一.高考常设置1个客观题或1个解答题,对平面对量学问进行全面的考查,其分值约为10分,约占总分的7%.近年高考中平面对量与解三角形的试题是难易适中的基础题或中档题,一是直接考查向量的概念、性质及其几何意义;二是考查向量、正弦定理与余弦定理在代数、几何问题中的应用.【热点题型】题型一 三角函数的化简与求值 例1、设函数f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x . (1)求函数f (x )的最大值和最小正周期;(2)设A ,B ,C 为△ABC 的三个内角,若cos B =13,f ⎝⎛⎭⎫C 2=-14,且C 为锐角,求sin A .(2)f ⎝⎛⎭⎫C 2=-14,即12-32sin C =-14,解得sin C =32, 又C 为锐角,所以C =π3.由cos B =13得sin B =223.因此sin A =sin[π-(B +C )]=sin(B +C )=sin B cos C +cos B sin C =223×12+13×32=22+36. 【提分秘籍】三角函数的化简与求值是高考考查的重点内容.近几年高考解答题单独考查渐渐削减,多在某一问中进行考查,解此类题应依据考题的特点机敏地正用、逆用、变形运用和、差、倍角公式和诱导公式,进行化简、求值.【热点题型】题型二 三角函数的图象与性质例2、设函数f (x )=4cos ⎝⎛⎭⎫ωx -π6·sin ωx -cos(2ωx +π),其中ω>0. (1)求函数y =f (x )的值域;(2)若f (x )在区间⎣⎡⎦⎤-3π2,π2上为增函数,求ω的最大值. 【提分秘籍】三角函数的图象与性质是高考考查的重点,其中图象的变换是重中之重,函数的各种变换,都是对自变量x 与函数值y 进行的变换.精确 作出三角函数的图象,可以挂念我们快速而又精确 地求解相关问题.【热点题型】题型三 三角形中的三角函数例3、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.【提分秘籍】此类题主要考查三角函数在三角形中的应用.解三角形的关键是在转化与化归数学思想的指导下,正确、机敏地运用正弦、余弦定理、三角形的面积公式及三角形内角和等公式及定理解题.【热点题型】题型四 平面对量与三角函数例4、已知向量m =(sin x,1),n =(3A cos x ,A2cos2x )(A >0),函数f (x )=m ·n 的最大值为6.(1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤0,5π24上的值域. 【解】 (1)f (x )=m ·n=3A sin x cos x +A 2cos2x =A ⎝⎛⎭⎫32sin2x +12cos2x=A sin ⎝⎛⎭⎫2x +π6.由于A >0,由题意知A =6.【提分秘籍】此类题型主要表现为两种综合方式:(1)三角函数与向量的数量积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时首先利用向量进行转化,再利用三角函数学问求解.【高考在线】1.(2022·新课标全国卷Ⅱ)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.2.(2022·湖北卷)某试验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求试验室这一天的最大温差.(2)若要求试验室温度不高于11℃,则在哪段时间试验室需要降温?故试验室这一天的最高温度为12℃,最低温度为8 ℃,最大温差为4 ℃. 3.(2022·湖南卷)如图1­5所示,在平面四边形ABCD中,AD=1,CD=2,AC =7.图1­5(1)求cos∠CAD的值;(2)若cos∠BAD=-714,sin∠CBA=216,求BC的长.4.(2022·辽宁卷)已知函数f(x)=(cos x-x)(π+2x)-83(sin x+1),g(x)=3(x-π)cos x-4(1+sinx)ln⎝⎛⎭⎫3-2xπ.证明:(1)存在唯一x0∈⎝⎛⎭⎫0,π2,使f(x0)=0;(2)存在唯一x1∈⎝⎛⎭⎫π2,π,使g(x1)=0,且对(1)中的x0,有x0+x1<π.因此存在唯一的x 1=π-t 1∈⎝⎛⎭⎫π2,π,使h (x 1)=h (π-t 1)=u (t 1)=0.由于当x ∈⎝⎛⎭⎫π2,π时,1+sin x >0,故g (x )=(1+sin x )h (x )与h (x )有相同的零点,所以存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.由于x 1=π-t 1,t 1>x 0,所以x 0+x 1<π.5.(2022·辽宁卷)已知函数f (x )=(cos x -x )(π+2x )-83(sin x +1),g (x )=3(x -π)cos x -4(1+sinx )ln ⎝⎛⎭⎫3-2xπ.证明:(1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1<π.6.(2022·山东卷)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.7.(2022·湖南卷)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.8.(2022·四川卷)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.109.(2022·浙江卷)记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y .设a ,b 为平面对量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2【随堂巩固】1.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2,x ∈R 的图象的一部分如图所示. (1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.2.已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在区间⎣⎡⎦⎤0,3π5上的取值范围.3.向量a =(2,2),向量b 与向量a 的夹角为3π4,且a ·b =-2.(1)求向量b ;(2)若t =(1,0),且b ⊥t ,c =⎝⎛⎭⎫cos A ,2cos 2C2,其中A 、B 、C 是△ABC 的内角,若△ABC 的内角A 、B 、C 依次成等差数列,试求|b +c |的取值范围.解:(1)设b =(x ,y ),则a ·b =2x +2y =-2,且|b |=a ·b|a |cos3π4=1=x 2+y 2, ∴解得⎩⎪⎨⎪⎧ x =-1,y =0,或⎩⎪⎨⎪⎧x =0,y =-1.∴b =(-1,0)或b =(0,-1).4.设函数f (θ)=3sin θ+cos θ,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x ,y ),且0≤θ≤π.(1)若点P 的坐标为⎝⎛⎭⎫12,32,求f (θ)的值;(2)若点P (x ,y )为平面区域Ω:⎩⎪⎨⎪⎧x +y ≥1x ≤1y ≤1,上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.解:(1)由点P 的坐标和三角函数的定义可得⎩⎨⎧sin θ=32,cos θ=12.于是f (θ)=3sin θ+cos θ=3×32+12=2.5.已知函数f (x )=2cos (x +π3)[sin(x +π3)-3cos(x +π3)].(1)求f (x )的值域和最小正周期;(2)若对任意x ∈[0,π6],使得m [f (x )+3]+2=0恒成立,求实数m 的取值范围.解:(1)f (x )=2sin(x +π3)cos(x +π3)-23cos 2(x +π3)=sin(2x +2π3)-3[cos(2x +2π3)+1]=sin(2x +2π3)-3cos(2x +2π3)- 3=2sin(2x +π3)- 3.∵-1≤sin(2x +π3)≤1,∴-2-3≤2sin(2x +π3)-3≤2-3,T =2π2=π,即f (x )的值域为[-2-3,2-3],最小正周期为π.6.如图所示,A 、B 分别是单位圆与x 轴、y 轴正半轴的交点,点P 在单位圆上,∠AOP =θ(0<θ<π),C 点坐标为(-2,0),平行四边形OAQP 的面积为S .(1)求OA →·OQ →+S 的最大值; (2)若CB ∥OP ,求sin ⎝⎛⎭⎫2θ-π6的值.∵0<θ<π,∴当θ=π4时,OA →·OQ →+S 的最大值为2+1.。

【高三】2021届高考数学三角函数三角变换解三角形平面向量备考复习

【高三】2021届高考数学三角函数三角变换解三角形平面向量备考复习

【高三】2021届高考数学三角函数三角变换解三角形平面向量备考复习【高三】2021届高考数学三角函数、三角变换、解三角形、平面向量备考复习主题二:三角函数,三角变换,解三角形,平面向量【备考策略】根据近年来高考的特点和规律,复习本课题时应注意以下几个方面:1.掌握三角函数的概念、图象与性质;熟练掌握同角公式、诱导公式、和角与差角、二倍角公式,且会推导掌握它们之间的内在联系。

掌握正弦、余弦定理,平面向量及有关的概念,向量的数量积以及坐标形式的运算。

2.掌握解决以下问题的思路和方法本专题试题以选择题、填空题、解答题的形式出现,因此复习中要重视选择、填空题的一些特殊方法,如数形结合法、函数法、代入检验法、特殊值法、待定系数法、排除法等。

另外对有些具体问题还要掌握和运用一些基本结论(如对正弦、余弦函数的图象的对称轴经过最高点或最低点,对称中心为三角函数值为零的点,应熟练的写出对称轴的方程及对称中心的坐标;应用三角函数线解三角方程、比较三角函数值的大小;对三角函数的角的限制及讨论;常数1的代换等)。

3.特别注意(1)与三角函数的图象与性质有关的选择、填空题;(2)三角命题与向量解的交集知识;(3)与测量、距离、角度有关的解三角形问题。

第一讲三角函数的图像和性质【最新考纲透析】1.了解任意角度和弧度系统的概念,并能互动弧度和角度。

2.理解任意角三角函数(正弦、余弦、正切)的定义。

3.能使用单位圆上三角函数线导出的正弦、余弦、正切的归纳公式,画出y=SiNx、y=cosx、y=TaNx的图像,了解三角函数的周期性。

4.理解正弦函数、余弦函数在区间[0,]的性质(如单调性、最大值和最小值以及图象与x轴的交点等),理解正切函数在区间的单调性。

5.理解同角度三角函数的基本关系:sin2x+cos2x=1,sinx/cosx=tanx.6.了解函数y=asin(ωx+φ),了解参数a,ω,φ对函数图像变化的影响。

7.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。

2021学年高考文科数学解题策略专题二三角函数与平面向量第四节平面向量与几何的综合应用

2021学年高考文科数学解题策略专题二三角函数与平面向量第四节平面向量与几何的综合应用

解: ⑴因为 l1: x
a2 c ,渐近线 l2: y
b x ;所以 M ( a2 ,ab ),又 F (c,0) ,
a
cc
a2
l1: x
实际上
c
2
2
2
c ab
,得出
uuuur OM
( a2 ,ab )

uuur MF
(c
a2

ab )
(b2 ,
ab )

cc
cc
cc
uuuur uuur OM MF
2sin 2 ) 2
(1
sin 2
2 )(1 sin 2 2
2sin 2
2)

令 x sin 2 ,0
uuur uuur x 1, PA PB
(1 x)(1 2x)
2x 1 3 2 2 3 ;
2
x
x
O
P B 图2 4 4
方法二:以圆心 O 的坐标原点,以 OP 为 x 轴,建立坐标系:圆的方程为 x 2 y 2 1,
立,则 m =( )
A.2
B. 3
C. 4
D. 5
uuur
2.设 D , E , F 分别是 ABC 的三边 BC、CA 、A B 上的点,且 DC
uuur uuur 2BD, CE
uuur uuur 2EA, AF
uuur 2FB, 则
uuur uuur uuur uuru
AD BE CF 与 BC (
F
C
时,
2 ,所以
4.
方法二,如图 2 4 2 建立直角坐标系,设六边形的边长为 2,各个顶点的坐标分
别是 A( 1, 3) 、 B(1, 3) 、 C (2,0) 、 D (1, 3) 、 E( 1, 3) 、 F ( 2,0) ,

2021高考数学必考点解题方式秘籍 向量与三角 理(1)

2021高考数学必考点解题方式秘籍 向量与三角 理(1)

2021高考理科数学必考点解题方式秘籍:向量与三角函数一.专题综述三角函数高中数学传统的内容,而平面向量那么是新添内容,此刻高考对这两部份的考查完美的表现了传统和现代的结合。

1.考纲要求三角函数:(1)能灵活运用三角函数的有关公式,对三角函数进行变形与化简;(2)明白得和把握三角函数的图像及性质;(3)能用正弦定理、余弦定明白得三角形问题。

平面向量:(1)能灵活运用向量的数量积解决有关问题;(2)明白得和把握向量的几何运算、坐标运算;(3)明白得和把握平面向量的平行和垂直关系。

2.考题设置与分值:高考对这两部份的考试一样有1-2个客观题和1个解答题(第16题),总分值20分左右;3.考试重点及难度:(1)三角函数要紧考查:①灵活运用公式的能力,专门是单项化公式;②在客观题中,突出考察三角函数的图像和性质;③解三角形也是高考的一个重点.(2)平面向量的考察偏重:①平面向量的运算,专门是数量积的运算(坐标运算);要关注各类运算的几何意义和物理意义,要擅长在几何图形中寻求各向量的关系;②向量的平行、垂直的充要条件的运用;(3)三角函数与平面向量的综合:将三角函数和向量综合在一路进行考查是此刻高考的趋势(解答题16题),这表现了在知识的交汇点命题的原那么,由于这种题放在16题的位置,是较容易的题总之,高考对三角和向量的考查小题多数以考察大体公式、大体性质为主,解答题以基础题为主,中档题可能有所涉及,压轴题可能性不大。

二.考点选讲【考点1】三角函数的图像和性质【例1】已知函数sin()cos(),1212y x xππ=--那么以下对函数的判定正确的选项是()A.周期为2π,其图像的一个对称中心是(,0) 12π;B.周期为π,其图象的一个对称中心是(,0) 12πC.周期为2π,其图象的一个对称中心是(,0)6π;D.周期为π,其图象的一个对称中心是(,0) 6π【解析】)12cos()12sin(ππ--=xxy=)62sin(21π-x因此ππ==22T,对称中心是(,0)12π。

高考数学二轮复习 第二部分 指导三 3三角函数、解三角形、平面向量 文

高考数学二轮复习 第二部分 指导三 3三角函数、解三角形、平面向量 文

2.同角三角函数的基本关系式及诱导公式
(1)平方关系:sin2α+cos2α=1.
(2)商数关系:tan
α=csoins
α α.
(3)诱导公式记忆口诀:奇变偶不变、符号看象限
-α
π-α
sin -sin α sin α cos cos α -cos α
π+α -sin α -cos α
2π-α -sin α cos α
[回扣问题 3] (1)把函数 y=sinx+π6图象上各点的横坐标缩短 到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么 所得图象的一条对称轴方程为( ) A.x=-π2 B.x=-π4 C.x=π8 D.x=π4 (2)函数 y=sin-2x+π3的递减区间是________. 答案 (1)A (2)kπ-1π2,kπ+51π2(k∈Z)
cosπ4+x=35,1172π<x<74π,则sin
2x+2sin2 1-tan x
x=________.
答案 (1)1 (2)-2785
5.在三角恒等变形中,注意常见的拆角、拼角技巧,如: α=(α+β)-β,2α=(α+β)+(α-β); α=12[(α+β)+(α-β)]; α+π4=(α+β)-β-π4,α=α+π4-π4. [回扣问题 5] 已知 α,β∈34π,π,sin(α+β)=-35, sinβ-π4=1123,则 cosα+π4=________. 答案 -5665
93
33
A.3
B. 2
C. 2
D.3 3
8.平面向量的基本概念及线性运算 (1)加、减法的平行四边形与三角形法则:A→B+B→C=A→C;A→B- A→C=C→B. (2)向量满足三角形不等式:||a|-|b||≤|a±b|≤|a|+|b|. (3)实数 λ 与向量 a 的积是一个向量,记为 λa,其长度和方向 规定如下: ①|λa|=|λ||a|;②λ>0,λa 与 a 同向;λ<0,λa 与 a 反向;λ= 0,或 a=0,λa=0. (4)平面向量的两个重要定理 ①向量共线定理:向量 a(a≠0)与 b 共线当且仅当存在唯一一 个实数 λ,使 b=λa.

高考数学 专题2 三角函数、平面向量综合问题的解答课件 文 新人教A版

高考数学 专题2 三角函数、平面向量综合问题的解答课件 文 新人教A版
专题二
三角函数、平面向量综合问题的解答
本专题主要包括三部分内容:三角函数,平面向量、解三角形, 所以“角”“关系”与“运算”串成了这部分每年的高考热点. (1)三角函数的图象与性质是三角函数的重点,准确把握三角函 数的定义域、值域、周期性、奇偶性、单调性、最值等是解决图象 问题的关键.
(2)角的变化是三角恒等变换的关键,熟练记忆和角、差角、倍 角的三角函数公式,这是三角函数化简求值的基础,三角函数综合 问题的求解都需要先利用这些公式把三角函数解析式化成“一角一 函数”的形式,进而研究三角函数的图象与性质,这些公式是联系 三角函数各个部分的纽带. (3)正、余弦定理是实现三角形中边角互化的依据,三角形的有 关性质及向量的运算在解三角形中起着重要作用. (4)向量的几何表示及坐标运算是向量的核心知识.高考中对这 部分既可以单独成题,也可以综合考查,是每年的必考内容.
热点三
向量运算与三角形综合应用
向量的有关概念可以与三角形结合起来,如向量的模与三角形 的边长联系,向量的夹角与三角形内角联系.向量的运算与正、余 弦定理结合,为求解三角形带来了方便. → → → → (2012· 高考江苏卷)在△ABC 中,已知AB· AC=3BA· BC. (1)求证:tan B=3tan A; (2)若 cos C= 5 ,求 A 的值. 5
不同角的三角函数的运算规律”,对公式要会“正用”、“逆用”、 “变形用”,记忆公式要注意角、三角函数名称排列以及连接符号 “+”,“-”的变化特点.(2)在使用三角恒等变换公式解决问题 时,“变换”是其中的精髓,在“变换”中既有公式的各种形式的 变换,也有角之间的变换.(3)本题的易错点是易用错公式和角的拆 分不准确.
ωx-3(ω>0)在一个周期内的图象如图所示,A 为 图象的最高点 B,C 为图象与 x 轴的交点,且△ABC 为正三角形.

(完整版)三角函数与平面向量综合题的六种类型

(完整版)三角函数与平面向量综合题的六种类型

第1讲 三角函数与平面向量综合题3.17题型一:三角函数与平面向量平行(共线)的综合【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B2的最大值.题型二. 三角函数与平面向量垂直的综合 【例2】已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值.题型三. 三角函数与平面向量的模的综合【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.题型四 三角函数与平面向量数量积的综合【例4】设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.题型五:结合三角形中的向量知识考查三角形的边长或角的运算【例5】(山东卷)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,tan 37C =.(1)求cos C ;(2)若52CB CA ⋅=u u u r u u u r ,且9a b +=,求c .题型六:结合三角函数的有界性,考查三角函数的最值与向量运算【例6】()f x a b =⋅r r ,其中向量(,cos 2)a m x =r,(1sin 2,1)b x =+r ,x R ∈,且函数()y f x =的图象经过点(,2)4π.(Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。

专题03 三角与向量-2021年高考数学(理)试题分项版解析(原卷版)

专题03 三角与向量-2021年高考数学(理)试题分项版解析(原卷版)

1.【2017课标1,理9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 22.【2017课标3,理6】设函数f (x )=cos (x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 3.【2017课标3,理12】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .22C .5D .24.【2017北京,理6】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件5.【2017天津,理7】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=6.【2017课标II ,理12】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小是( )A.2-B.32-C. 43- D.1- 7.【2017山东,理9】在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 8.【2017北京,理12】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称. 若1sin 3α=,cos()αβ-=___________. 9.【2017课标1,理13】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= .10.【2017天津,理13】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,()AE AC AB λλ∈=-R ,且4AD AE ⋅=-,则λ的值为___________.12.【2017浙江,11】我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任 意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆 术”的第一步是计算单位圆内接正六边形的面积6S ,=6S .13.【2017浙江,14】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△B DC 的面积是______,cos ∠BDC =_______.14.【2017浙江,15】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是_______.15.【2017课标II ,理14】函数()23sin 34f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 。

高中数学高考专题 (3)三角函数、平面向量的高考解答题型及求解策略

高中数学高考专题 (3)三角函数、平面向量的高考解答题型及求解策略

高中数学高考专题3三角函数、平面向量的高考解答题型及求解策略高考对本部分内容的考查主要有:三角恒等变换与三角函数图象和性质结合,解三角形与恒等变换、平面向量的综合,难度属于中低档题,但考生得分不高,其主要原因是公式不熟导致运算错误.考生在复习时,要熟练掌握三角公式,特别是二倍角的余弦公式,在此基础上掌握一些三角恒等变换.要注意公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.题型一 三角函数的图象与性质题型概览:(1)三角函数的性质问题,往往都要先化成f (x )=A sin(ωx +φ)的形式再求解.要注意在进行此步骤之前,如果函数解析式中出现α及其二倍角、半角或函数值的平方,应根据变换的难易程度去化简,往往要利用到二倍角公式、升幂或降幂分式,把解析式统一化成关于同一个角的三角函数式.(2)要正确理解三角函数的性质,关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的单调性、最值与周期.已知函数f (x )=2a cos 2x +b sin x cos x -32,且f (0)=32,f ⎝ ⎛⎭⎪⎫π4=12.(1)求f (x )的最小正周期; (2)求f (x )的单调递减区间;(3)函数f (x )的图象经过怎样的平移才能使所得图象关于原点对称? [审题程序]第一步:确定f (x )的解析式;第二步:求f (x )的最小正周期及单调区间; 第三步:进行平移变换.[规范解答] (1)由f (0)=32,得2a -32=32, 故a =32.由f ⎝ ⎛⎭⎪⎫π4=12,得32+b 2-32=12,所以b =1.可得f (x )=3cos 2x +sin x cos x -32=32cos 2x +12sin 2x =sin ⎝⎛⎭⎪⎫2x +π3.所以函数f (x )的最小正周期T =2π2=π. (2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z , 得π12+k π≤x ≤7π12+k π,k ∈Z .所以f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ). (3)因为f (x )=sin2⎝⎛⎭⎪⎫x +π6,所以由奇函数y =sin 2x 的图象向左平移π6个单位即得到y =f (x )的图象,故函数f (x )的图象向右平移π6+k 2π(k ∈Z )个单位或向左平移π3+k2π(k ∈Z )个单位后,对应的函数即成为奇函数,图象关于原点对称.[答题模板] 解决这类问题的答题模板如下:1.设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值.[解] (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx =-sin ⎝⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎪⎫2x -π3.设t =2x -π3,则函数f (x )可转化为y =-sin t .当π≤x ≤3π2时,5π3≤t =2x -π3≤8π3,如图所示,作出函数y =sin t 在⎣⎢⎡⎦⎥⎤5π3,8π3上的图象.由图象可知,当t ∈⎣⎢⎡⎦⎥⎤5π3,8π3时,sin t ∈⎣⎢⎡⎦⎥⎤-32,1,故-1≤-sin t ≤32,因此-1≤f (x )=-sin ⎝⎛⎭⎪⎫2x -π3≤32.故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.题型二 解三角形题型概览:(1)已知两角A ,B 与一边a ,由A +B +C =π及a sin A =b sin B =csin C ,可先求出角C 及b ,再求出c .(2)已知两边b ,c 及其夹角A ,由a 2=b 2+c 2-2bc cos A ,先求出a ,再求出角B ,C . (3)已知三边a ,b ,c ,由余弦定理可求出角A ,B ,C .(4)已知两边a ,b 及其中一边的对角A ,由正弦定理a sin A =bsin B 可求出另一边b 的对角B ,由C =π-(A +B ),可求出角C ,再由a sin A =c sin C 可求出c ,而通过a sin A =bsin B 求角B 时,可能有一解或两解或无解的情况.(2016·宁波统考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且c sin C -b sin B =(a -b )sin A . (1)求角C ;(2)若c =5,求△ABC 的面积的最大值. [审题程序]第一步:依据正弦定理角化边; 第二步:依据余弦定理求角C ;第三步:由余弦定理和重要不等式求△ABC 面积的最大值.[规范解答] (1)由c sin C -b sin B =(a -b )sin A 及正弦定理,得a 2+b 2-c 2=ab , ∴cos C =a 2+b 2-c 22ab =12 又C ∈(0,π),∴C =π3.(2)∵c =5,由(1)知C =π3,∴a 2+b 2-25=ab , 又a 2+b 2≥2ab (当且仅当a =b 时,等号成立), ∴a 2+b 2-25=ab ≥2ab -25,即ab ≤25,∴△ABC 的面积S △ABC =12ab sin C ≤12×25×32=2534.当且仅当a =b =c =5,即△ABC 为等边三角形时,面积取得最大值2534. [答题模板] 解决这类问题的答题模板如下:2.(2016·广东惠州三调)如图所示,在四边形ABCD 中,∠D =2∠B ,且AD =1,CD =3,cos B =33.(1)求△ACD 的面积; (2)若BC =23,求AB 的长. [解] (1)∵∠D =2∠B ,cos B =33, ∴cos D =cos2B =2cos 2B -1=-13.又∵∠D ∈(0,π), ∴sin D =1-cos 2D =223.∴S △ACD =12AD ·CD ·sin D =12×1×3×223= 2. (2)在△ACD 中,由余弦定理,得 AC 2=AD 2+CD 2-2AD ·CD cos D=12+32-2×1×3×⎝ ⎛⎭⎪⎫-13=12, ∴AC =2 3.在△ABC 中,由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC ·cos B , 12=AB 2+12-2×23×33×AB , 解得AB =4.题型三 正弦、余弦定理应用举例题型概览:实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.如图所示,一人在C 地看到建筑物A 在正北方向,另一建筑物B 在北偏西45°的方向,此人向北偏西75°的方向前进30 km 到达D ,看到A 在他的北偏东45°的方向,B 在他的北偏东75°的方向,试求建筑物A 与B 之间的距离.[审题程序]第一步:在△ABC 中,使用正弦定理求出BC ; 第二步:在△ADC 中使用正弦定理求出AC ; 第三步:在△ABC 中,使用余弦定理求出AB . [规范解答] 依题意得,在△BCD 中,DC =30 km , 易知∠BCD =∠BDC =30°, ∴∠DBC =120°, 由正弦定理可得BC =DC sin ∠BDC sin ∠DBC =30·sin30°sin120°=10 (km).在△ADC 中,易知∠ADC =60°,∠DAC =45°,由正弦定理可得 AC =DC sin ∠ADC sin ∠DAC =30·sin60°sin45°=35(km).在△ABC 中,AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB =(35)2+(10)2-2×35×10×cos45°=25, ∴AB =5(km).故建筑物A 与B 之间的距离为5 km. [答题模板] 解决这类问题的答题模板如下:3.(2016·辽宁沈阳一模)如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测量B 点和D 点仰角分别为75°, 30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01 km ,2≈1.414,6≈2.449).[解] 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°, 故CB 是△CAD 底边AD 的中垂线, 所以BD =BA .在△ABC 中,AB sin ∠BCA =AC sin ∠ABC,即AB =ACsin60°sin15°,又sin15°=sin(60°-45°) =sin60°cos45°-cos60°sin45° =32×22-12×22=6-24, 所以AB =AC sin60°sin15°=32+620,因此,BD =32+620≈0.33 (km). 故B ,D 的距离约为0.33 km.题型四 三角函数、解三角形与平面向量的综合应用题型概览:(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.已知向量m =(3sin x 4,1),n =(cos x 4,cos 2x 4). (1)若m ·n =1,求cos(2π3-x )的值;(2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数 f (A )的取值范围.[审题程序]第一步:化简m ·n =1;第二步:应用三角函数诱导公式求cos ⎝ ⎛⎭⎪⎫2π3-x ;第三步:由正弦定理求角; 第四步:求三角函数的值域.[规范解答] (1)m ·n =3sin x 4·cos x 4+cos 2x 4 =32sin x2+1+cos x22=sin(x 2+π6)+12,∵m ·n =1,∴sin(x 2+π6)=12. ∵cos(x +π3)=1-2sin 2(x 2+π6)=12, ∴cos(2π3-x )=-cos(x +π3)=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -sin C cos B =sin B cos C .∴2sin A cos B =sin(B +C ).∵A +B +C =π, ∴sin(B +C )=sin A ≠0.∴cos B =12,∵0<B <π,∴B =π3. ∴0<A <2π3.∴π6<A 2+π6<π2, sin(A 2+π6)∈(12,1). 又∵f (x )=sin(x 2+π6)+12. ∴f (A )=sin(A 2+π6)+12.故函数f (A )的取值范围是(1,32).[答题模板] 解决这类问题的答题模板如下:4.已知向量m =⎝ ⎛⎭⎪⎫cos x 2,-1,n =⎝ ⎛⎭⎪⎫3sin x 2,cos 2 x 2,设函数f (x )=m ·n +1. (1)求函数f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足a 2+b 2=6ab cos C ,sin 2C =2sin A sin B ,求f (C )的值.[解] (1)f (x )=3sin x 2·cos x 2-cos 2 x2+1=32sin x -12cos x +12=sin ⎝⎛⎭⎪⎫x -π6+12.令2k π-π2≤x -π6≤2k π+π2, 2k π-π3≤x ≤2k π+2π3(k ∈Z ),所以所求增区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ).(2)由a 2+b 2=6ab cos C ,sin 2C =2sin A sin B ⇒c 2=2ab , ∴cos C =a 2+b 2-c 22ab =6ab cos C -2ab2ab=3cos C -1, 即cos C =12,又∵0<C <π,C =π3,∴f (C )=f ⎝ ⎛⎭⎪⎫π3=1.。

专题03 三角与向量-2021年高考数学(理)试题分项版解析(解析版)

专题03 三角与向量-2021年高考数学(理)试题分项版解析(解析版)

1.【2017课标1,理9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D 【解析】【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言. 2.【2017课标3,理6】设函数f (x )=cos (x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 【答案】D 【解析】【考点】 函数()cos y A x ωϕ=+ 的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.(2)求f (x )=Asin (ωx +φ)(ω≠0)的对称轴,只需令()2x k k Z πωϕπ+=+∈,求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z )即可. 学科@网3.【2017课标3,理12】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .22C .5D .2【答案】A 【解析】试题分析:如图所示,建立平面直角坐标系【考点】 平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.4.【2017北京,理6】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】A 【解析】试题分析:若0λ∃<,使m n λ=,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<T ,若0m n ⋅<,那么两向量的夹角为(0090,180⎤⎦ ,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A.【名师点睛】判断充分必要条件的的方法:1.根据定义,若,p q q p ⇒≠>,那么p 是q 的充分不必要 ,同时q 是p 的必要不充分条件,若p q ⇔,那互为充要条件,若p q <≠>,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若:,:p x A q x B ∈∈,若A B ≠⊂,那么p 是q的充分必要条件,同时q 是p 的必要不充分条件,若A B =,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将p 是q 条件的判断,转化为q ⌝是p ⌝条件的判断. 学科@网5.【2017天津,理7】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=【答案】A【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等.6.【2017课标II ,理12】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小是( )A.2-B.32-C. 43- D.1- 【答案】B 【解析】【考点】 平面向量的坐标运算;函数的最值【名师点睛】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决。

三角函数专题与平面向量的解题技巧

三角函数专题与平面向量的解题技巧

专题 三角函数专题【命题趋向】该专题的内容包括三角函数的图象与性质、平面向量、简单的三角恒等变换、解三角形.高考在该部分的选择和填空题,一般有两个试题。

一个试题是,如果在解答题部分没有涉及到正、余弦定理的考查,会有一个与正余弦定理有关的题目,如果在解答题中涉及到了正、余弦定理,可能是一个和解答题相互补充的三角函数图象、性质、恒等变换的题目;一个试题是以考查平面向量为主的试题,这个试题的主要命题方向是(1)以平面向量基本定理、共线向量定理为主,(2)以数量积的运算为主;三角函数解答题的主要命题方向有三个:(1)以三角函数的图象和性质为主体的解答题,往往和平面向量相结合;(2)以三角形中的三角恒等变换为主题,综合考查三角函数的性质等;(3)以实际应用题的形式考查正余弦定理、三角函数知识的实际应用.【考点透析】该专题的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.【例题解析】题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例 1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-D .12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令sin cos sin(),4t x x x π=++而74412x πππ<+≤,得1t <≤.又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =,选D 。

三角函数与平面向量结合问题-高考数学大题精做之解答题题型全覆盖高端精品

三角函数与平面向量结合问题-高考数学大题精做之解答题题型全覆盖高端精品

高考数学大题精做之解答题题型全覆盖高端精品第一篇三角函数与解三角形专题04三角函数与平面向量结合问题类型对应典例三角函数的定义与平面向量的运算相结合典例1三角恒等变换与平面向量运算相结合典例2三角函数的图象与平面向量相结合典例3三角函数的性质与平面向量、不等式相结合典例4三角函数图象的性质与平面向量运算相结合典例5平面向量的数量积运算与三角函数相结合典例6三角函数的性质与平面向量的数量积相结合典例7【典例1】如图,在平面直角坐标系中,已知点()2,0A 和单位圆上的两点()10B ,,34,55C ⎛⎫- ⎪⎝⎭,点P 是劣弧 BC上一点,BOC α∠=,BOP β∠=.(1)若OC OP ⊥,求()()sin sin παβ-+-的值;(2)设()f t OA tOP =+ ,当()f t 的最小值为1时,求OP OC ⋅的值.【思路引导】(1)根据任意角三角函数定义可求得sin ,cos αα,利用2πβα=-可求得sin cos βα=-,结合诱导公式可化简求出结果;(2)利用向量坐标表示可得到()2cos ,sin OA tOP t t ββ+=+ ,可求得224cos 4OA tOP t t β+=++ ,根据二次函数性质可求得22min44cos OA tOP β+=- ,从而利用()f t 的最小值构造方程可求得2cos β,根据角的范围可求得sin β和cos β,进而根据数量积的坐标运算可求得结果.【典例2】在平面直角坐标系xOy 中,设向量()cos sin a αα=,,()sin cos b ββ=-,,()12c =-.(1)若a b c +=,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//a b c + ,求β的值.【思路引导】(1)利用向量的数量积转化求解两角差的三角函数即可;(2)通过向量平行,转化求解角的大小即可.【典例3】已知向量a m x (,cos 2)= ,b x n (sin 2,)= ,设函数()f x a b =⋅ ,且()y f x =的图象过点(12π和点2(,2)3π-.(Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.【思路引导】(Ⅰ)利用向量的数量积坐标运算公式代入函数式整理化简,将函数过的点(12π和点2(,2)3π-代入就可得到关于,m n 的方程,解方程求其值;(Ⅱ)利用图像平移的方法得到()y g x =的解析式,利用最高点到点(0,3)的距离的最小值为1求得ϕ角,得()2cos 2g x x =,求减区间需令[]22,2x k k πππ∈+解x 的范围【典例4】已知函数()()f x a b c=+,其中向量()sin ,cos a x x =-,()sin ,3cos b x x =-,()cos ,sin c x x =-,x ∈R .(Ⅰ)若()52f α=,588ππα-<<-,求cos 2α的值;(Ⅱ)不等式()2f x m -<在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围.【思路引导】(Ⅰ)利用向量数量积公式得到()f x 后,再用二倍角公式以及两角和的正弦公式的逆用公式化成辅助角的形式,根据已知条件及同角公式解得3cos 244πα⎛⎫+= ⎪⎝⎭,再将所求变成33cos 2cos 244ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦后,利用两角差的余弦公式求得;(Ⅱ)将不等式恒成立转化为最大最小值可解得.【典例5】已知向量()a cos x cos x ωω=-,,()b sin x xωω=(ω>0),且函数()f x a b=⋅的两个相邻对称中心之间的距离是4π.(1)求6f π⎛⎫⎪⎝⎭;(2)若函数()()1g x m x =+-在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,求实数m 的取值范围.【思路引导】(1)首先利用平面向量的数量积的应用求出函数的关系式,进一步把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.(2)利用函数的零点和方程之间的转换的应用,利用函数的定义域和值域之间的关系求出m 的范围.【典例6】已知实数0θπ≤≤,()cos ,sin a θθ= ,()0,1j = ,若向量b满足()0a b j +⋅= ,且0a b ⋅= .(1)若2a b -= ,求b;(2)若()()f x b x a b =+- 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,求实数θ的取值范围.【思路引导】(1)设出b 的坐标,结合0a b ⋅= 、2a b -= 、()0a b j +⋅= ,解方程,先求得θ的值,再求得b的坐标.(2)利用向量模的运算、数量积的运算化简()f x 表达式,结合二次函数的性质列不等式,解不等式求得b的取值范围.设出b的坐标,结合()0a b j +⋅= 、0a b ⋅= ,解方程,用θ表示出2b ,根据b 的取值范围列不等式,解不等式求得cos θ的取值范围,进而求得θ的取值范围.【典例7】在平面直角坐标系xOy 中,已知向量()cos ,sin e αα=,设,(0)OA e λλ=>,向量ππcos ,sin 22OB ββ⎛⎫⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .(1)若π6βα=-,求向量OA 与OB 的夹角;(2)若2AB OB ≥对任意实数,αβ都成立,求实数λ的取值范围.【思路引导】(1)由题意结合平面向量的坐标表示,结合平面向量的数量积运算法则可得1cos sin 62πθ==.则向量OA 与OB的夹角为3π.(2)原问题等价于2230OA OB λ-⋅-≥任意实数,αβ都成立.分离参数可得()23sin 2λαβλ-≥-任意实数,αβ都成立.结合三角函数的性质求解关于实数λ的不等式可得3λ≥.1.已知向量)1,2sin a x xωω=+,)()0b x x ωωω=->r .(1)当2x k πωπ≠+,k Z ∈时,若向量()1,0c =r ,)d =u r ,且()()//a c b d -+r r r u r,求224sin cos x x ωω-的值;(2)若函数()f x a b =⋅ 的图象的相邻两对称轴之间的距离为4π,当,86x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.2.已知向量(sin ,1),cos ,cos 2)(0)2Am x n x x A ==>,函数()f x m n =⋅ 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域.3.已知点()2,0A ,()0,2B -,()2,0F -,设AOC α∠=,[)0,2απ∈,其中O 为坐标原点.(1)设点C 在x 轴上方,到线段AF 3AFC π∠=,求α和线段AC 的大小;(2)设点D 为线段OA 的中点,若2OC =uuu r,且点C 在第二象限内,求)cos y OB BC OA α=⋅+⋅ 的取值范围.4.已知向量())2=+ a x ωϕ,22,22⎛⎫=- ⎪ ⎪⎝⎭ b ,其中0>ω,02πϕ<<,函数()f x a b =⋅ 的图像过点()1,2B ,点B 与其相邻的最高点的距离为4.(1)求函数()f x 的单调递减区间;(2)计算()()()122019f f f ++⋅⋅⋅+的值.5.已知向量)()2,1,cos ,cos 1m x n x x ωωω==+,设函数()f x m n b =⋅+ .(1)若函数()f x 的图象关于直线6x π=对称,[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围.6.已知(sin ,cos ),(sin ,sin )a x x b x x ==,函数()f x a b =⋅.(1)求()f x 的对称轴方程;(2)若对任意实数[,]63x ππ∈,不等式()2f x m -<恒成立,求实数m 的取值范围.7.在如图所示的平面直角坐标系中,已知点(1,0)A 和点(1,0)B -,1OC = ,且AOC=x ∠,其中O 为坐标原点.(1)若34x π=,设点D 为线段OA 上的动点,求||OC OD +uuu r uuu r 的最小值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,向量m BC = ,(1cos ,sin 2cos )n x x x =-- ,求m n ⋅ 的最小值及对应的x 值.8.已知向量(p = ,()cos ,sin q x x =.(1)若//p q u r r,求2sin 2cos x x -的值;(2)设函数()f x p q =⋅ ,将函数()f x 的图象上所有的点的横坐标缩小到原来的12(纵坐标不变),再把所得的图象向左平移3π个单位,得到函数()g x 的图象,求()g x 的单调增区间.9.已知向量(3sin ,cos )x x =m ,(cos )x x =-n ,3()2f x =⋅-m n .(1)求函数()f x 的最大值及取得最大值时x 的值;(2)若方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.10.已知O 为坐标原点,()22cos ,1OA x =,()OB x a=+()R,R x a a ∈∈且为常数,若()•f x OA OB =.(Ⅰ)求函数()f x 的最小正周期和单调递减区间;(Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值为2,求实数a 的值.参考答案【典例1】解:(1)由34,55C ⎛⎫- ⎪⎝⎭可知:4sin 5α=,3cos 5α=-OC OP⊥ 2πβα∴=-3sin sin cos 25πβαα⎛⎫∴=-=-=⎪⎝⎭()()431sin sin sin sin 555παβαβ∴-+-=-=-=(2)由题意得:()cos ,sin P ββ()2,0OA ∴= ,()cos ,sin OP ββ=()2cos ,sin OA tOP t t ββ∴+=+()()22222cos sin 4cos 4OA tOP t t t t βββ∴+=++=++ 当2cos t β=-时,22min44cos OA tOP β+=- ()min 1f t ∴==,解得:23cos 4β=1sin 2β∴==0βα<< 6πβ∴=3cos 2β∴=31,22P ⎛⎫∴ ⎪ ⎪⎝⎭3414525210OP OC -⎛⎫∴⋅=-⨯+⨯=⎪⎝⎭【典例2】解:(1)因为()cos sin a αα= ,,()sin cos b ββ=- ,,()12c =-,所以1a b c ===,且()cos sin sin cos sin a b αβαβαβ⋅=-+=-.因为a b c += ,所以22a b c +=,即2221a a b b +⋅+= ,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.(2)因为5π6α=,所以3122a ⎛⎫=- ⎪ ⎪⎝⎭,.依题意,1sin cos 22b c ββ⎛⎫+=--+ ⎪ ⎪⎝⎭,.因为()//a b c +,所以)()11cos sin 022ββ-+--=.化简得,11sin 22ββ-=,所以()π1sin 32β-=.因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.【典例3】试题解析:(1)由题意知.()y f x =的过图象过点(12π和2(,2)3π-,所以sincos ,66442sin cos ,33m n m n ππππ=+-=+即13,2212,22m n m n =+-=--解得{1.m n ==(2)由(1)知.由题意知()()2sin(22)6g x f x x πϕϕ=+=++.设()y g x =的图象上符合题意的最高点为0(,2)x ,1=,所以,即到点(0,3)的距离为1的最高点为(0,2).将其代入()y g x =得sin(216πϕ+=,因为0ϕπ<<,所以6πϕ=,因此()2sin(22cos 22g x x x π=+=.由222,k x k k πππ-+≤≤∈Z 得,2k x k k πππ-+≤≤∈Z ,所以函数()y f x =的单调递增区间为[,],2k k k Zπππ-+∈【典例4】解:()()f x a b c=+()()sin ,cos sin cos ,sin 3cos x x x x x x =--- 222sin 2sin cos 3cos 1sin 22cos x x x x x x=-+=-+32cos 2sin 2224x x x π⎛⎫=+-=++ ⎪⎝⎭(Ⅰ)若()52f α=,则352242πα⎛⎫+= ⎪⎝⎭,即3sin(244πα+=,由588ππα-<<-∴544ππα-<2<-,即3242πππα-<2+<,则3cos 244πα⎛⎫+= ⎪⎝⎭,则333333cos 2cos 2cos 2cos sin 2sin444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦142424⎛⎫=⨯-+⨯= ⎪ ⎪⎝⎭.(Ⅱ)∵不等式()2f x m -<在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,∴()22f x m -<-<,即()()22f x m f x -<<+在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,当,82x ππ⎡⎤∈⎢⎥⎣⎦,则2,4x ππ⎡⎤∈⎢⎥⎣⎦,372,44x πππ⎡⎤+∈⎢⎥⎣⎦,则当324x ππ+=,即8x π=时,()f x 取得最大值,最大值为()max 2f x =,当33242x ππ+=,即38x π=时,()f x 取得最小值,最小值为()min 322f x π=+2=,则2222m m >-⎧⎪⎨<-+⎪⎩,得04m <<,即实数m的取值范围是(0,4-.【典例5】解:(1)向量()a cos x cos x ωω=-,,()b sin x x ωω= ,所以()f x a b =⋅= sinωx •cosωx cos 2ωx ()121222232sin x cos x sin x πωωω⎛⎫=-+=-- ⎪⎝⎭.函数的两个相邻对称中心之间的距离是4π.所以函数的最小正周期为2π,由于ω>0,所以242πωπ==,所以f (x )=sin (4x 3π-).则f (6π)4632sin ππ⎛⎫=⋅--= ⎪⎝⎭sin 332π-=0.(2)由于f (x )=sin (4x 3π-).则()()1g x m x =+-在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,即31432m x π⎛⎫+--= ⎪⎝⎭0,即m 1432x π⎛⎫=-+ ⎪⎝⎭,由于04x π⎡⎤∈⎢⎥⎣⎦,,所以24333x πππ⎡⎤-∈-⎢⎥⎣⎦,,在24333x πππ⎡⎤-∈-⎢⎥⎣⎦,时,函数的图象与y =m 有两个交点,最高点除外.当433x ππ-=时,m 31222=+=,当432x ππ-=时,m 12=,所以当m 122⎡⎫∈+⎪⎢⎣⎭时,函数的图象在在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点.【典例6】解:(1)设()00,b x y = ,则()00cos ,sin b x a y θθ=+++ ,∵0a b ⋅=,由2a b -= 得()24a b-= ,得2224a a b b -⋅+= ,得2104b -+= ,得b =,∵()0a b j +⋅=,∴0sin 0y θ+=,∴0sin y θ=-,∵0a b ⋅= ,∴00cos sin 0x y θθ+=,∴20sin cos x θθ=,∴()22222002sin 3sin cos x y b θθθ⎛⎫=+=⇒+- ⎪⎝⎭3tan θ=⇒=,∵[]0,θπ∈,∴3πθ=,或23πθ=,∴当3πθ=时,032x =,032y =-,当23πθ=时,032x =-,032y =-,所以3,22b ⎛⎫=- ⎪ ⎪⎝⎭或3,22b ⎛⎫=-- ⎪ ⎪⎝⎭.(2)()()()1f x b x a b xa x b =+-=+-==∵()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,所以对称轴()2221221b b--≤+ ,即1b ≤ ,设()00,b x y = ,则()00cos ,sin b x a y θθ=+++,又∵()0a b j +⋅= ,且0a b ⋅= ,∴0sin y θ=-,20sin cos x θθ=.∴22222020sin sin 1cos x b y θθθ⎛⎫=+=+≤ ⎪⎝⎭,即22sin cos θθ≤,21cos 2θ≥,∴,11,22cos θ⎤⎡∈--⎥⎢⎣⎦⎣⎦ ,∴30,,44ππθπ⎡⎤⎡⎤∈⎢⎥⎢⎥⎣⎦⎣⎦ .【典例7】解析:(1)由题意,()cos ,sin (0)OA λαλαλ=> ,()sin ,cos OB ββ=-,所以OA λ= ,1OB =,设向量OA 与OB的夹角为θ,所以()()cos sin sin cos cos sin 1OA OB OA OBλαβλαβθαβλ-+⋅===-⋅⋅.因为6πβα=-,即6παβ-=,所以1cos sin 62πθ==.又因为[]0,θπ∈,所以3πθ=,即向量OA 与OB 的夹角为3π.(2)因为2AB OB ≥ 对任意实数,αβ都成立,而1OB =,所以24AB ≥,即()24OB OA-≥任意实数,αβ都成立..因为OA λ= ,所以2230OA OBλ-⋅-≥任意实数,αβ都成立.所以()22sin 30λλαβ---≥任意实数,αβ都成立.因为0λ>,所以()23sin 2λαβλ-≥-任意实数,αβ都成立.所以2312λλ-≥,即2230λλ--≥,又因为0λ>,所以3λ≥1.【思路引导】(1)先将a c -r r 和b d +r u r用坐标形式表示出来,然后根据向量平行对应的坐标表示得到tan x ω的值,然后利用22sin cos 1x x ωω+=将224sin cos x x ωω-进行变形即可求值;(2)计算并化简()f x ,根据相邻两对称轴之间的距离为4π求解出ω的值,然后根据x 范围即可求解出()f x 的最大值和最小值.解:(1)因为),2sin a c x x ωω-=r r,),cos b d x x ωω+=r u r,又因为()()//a c b d -+r r r u r,2cos x x x ωωω=,又因为()2x k k Z πωπ≠+∈,所以3tan 6x ω=,所以22222222114sin cos 4tan 1834sin cos 1sin cos tan 113112x x x x x x x x ωωωωωωωω----====-+++;(2)()))112sin cos f x a b ωx ωx ωx ωx=⋅=+-+)22cos 1sin 2sin 222sin 23x x x x x πωωωωω⎛⎫=-+==+ ⎪⎝⎭,因为相邻两对称轴之间的距离为4π,所以242T ππ=⨯=,所以224Tπω==,所以2ω=,所以()2sin 43πf x x ⎛⎫=+⎪⎝⎭,因为,86x ππ⎡⎤∈-⎢⎥⎣⎦,所以4,36ππx π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以()max 2sin 22f x π==,此时24x π=,()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,此时8x π=-.2.【解析】(Ⅰ)()(sin ,1)cos ,cos 2)sin 2.26A f x m n x x x A x π⎛⎫=⋅=⋅=+ ⎪⎝⎭因为()f x m n =⋅的最大值为6,所以 6.A =(Ⅱ)将函数()y f x =的图象向左平移12π个单位,得到()6sin 26sin 2.1263t x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()6sin 4.3g x x π⎛⎫=+ ⎪⎝⎭因为5[0,24x π∈所以74,336x πππ≤+≤()6sin 43g x x π⎛⎫=+ ⎪⎝⎭的最小值为76sin 3,6π⨯=-最大值为6sin 6,2π⨯=所以()g x 在5[0,]24π上的值域为[]3,6.-3.【思路引导】(1)过点C 作AF 的垂线,垂足为点E ,可得出CE =2CF =,可得出OCF ∆为等边三角形,可求出α的值,然后在ACF ∆中利用余弦定理求出AC ;(2)由题中条件求出DC 、OB 、OA的坐标,化简)cos y OB BC OA α=⋅+⋅ 的解析式为4cos 223y πα⎛⎫=++ ⎪⎝⎭,再根据α的取值范围,结合余弦函数的定义域与基本性质可求出y 的取值范围.解:(1)过C 作AF 的垂线,垂足为E ,则CE =在直角三角形FCE 中,2sin CEFC CFE==∠,又2OF =,3OFC π∠=,所以OFC ∆为正三角形.所以3FOC π∠=,从而23FOC παπ=-∠=.在AFC ∆中,AC ===;(2)()2,0A ,点D 为线段OA 的中点,()1,0D ∴,2OC = 且点C 在第二象限内,()2cos ,2sin C αα∴,,2παπ⎛⎫∈ ⎪⎝⎭,从而()2cos 1,2sin DC αα=- ,()2cos ,2sin 2BC αα=+ ,()2,0OA = ,()0,2OB =-,则)2cos cos 4cos y OB BC OA αααα=⋅+⋅=-+()221cos 24cos 223πααα⎛⎫=-++=++ ⎪⎝⎭,因为,2παπ⎛⎫∈⎪⎝⎭,所以472,333πππα⎛⎫+∈ ⎪⎝⎭,从而1cos 2123πα⎛⎫-<+≤ ⎪⎝⎭,04cos 2263πα⎛⎫∴<++≤ ⎪⎝⎭,因此,)cos y OB BC OA α=⋅+⋅的取值范围为(]0,6.4.【思路引导】(1)先求出()1cos 2()f x x ωϕ=-+,则()1,2B 为函数()f x 的图象的一个最高点,又点B 与其相邻的最高点的距离为4,所以242πω=,可得4πω=,再将点()1,2B 代入求出4πϕ=即可求出()1sin 2f x x π=+,最后令322222k x k πππππ+≤≤+解之即可求出函数()f x 的单调递减区间;(2)根据函数()f x 的最小正周期4,则()()()()()()()()()()1220195041234123f f f f f f f f f f ++⋅⋅⋅+=++++++⎡⎤⎣⎦求出()1f 、()2f 、()3f 、()4f 的值代入计算即可.解:(1)因为())2=+a x ωϕ,22,22⎛⎫=- ⎪ ⎪⎝⎭b ())1cos2()22∴=⋅=-+=-+ f x a b x x ωϕωϕ()max 2∴=f x ,则点()1,2B 为函数()f x 的图象的一个最高点.点B 与其相邻的最高点的距离为4,242∴=πω,得4πω=. 函数()f x 的图象过点()1,2B ,1cos 222⎛⎫∴-+=⎪⎝⎭πϕ即sin 21=ϕ.02πϕ<<,4πϕ∴=.()1cos 21sin 442⎛⎫∴=-+=+ ⎪⎝⎭f x x x πππ,由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈.()f x ∴的单调递减区间是[]41,43++k k ,k Z ∈.(2)由(1)知,()1sin2=+f x x π,()f x ∴是周期为4的周期函数,且()12f =,()21f =,()30f =,()41f =()()()()12344∴+++=f f f f 而201945043=⨯+,()()()12201945042102019∴++⋅⋅⋅+=⨯+++=f f f 5.思路引导:(1)根据平面向量数量积运算求解出函数()•f x m n b =+,利用函数()f x 的图象关于直线6x π=对称,且[]0,3ω∈可得1ω=,结合三角函数的性质可得其单调区间;(2)当70,12x π⎡⎤∈⎢⎥⎣⎦时,求出函数()f x 的单调性,函数()f x 有且只有一个零点,利用其单调性求解求实数b 的取值范围.试题解析:解:向量),1m x ω=,()cos ,cos21n x x ωω=+,()2•cos cos 1f x m n b x x x bωωω=+=+++133sin2cos2sin 222262x x b x b πωωω⎛⎫=+++=+++ ⎪⎝⎭(1)∵函数()f x 图象关于直线6x π=对称,∴()2•662k k Z πππωπ+=+∈,解得:()31k k Z ω=+∈,∵[]0,3ω∈,∴1ω=,∴()3sin 262f x x b π⎛⎫=+++ ⎪⎝⎭,由222262k x k πππππ-≤+≤+,解得:()36k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由(1)知()3sin 262f x x b π⎛⎫=+++ ⎪⎝⎭,∵70,12x π⎡⎤∈⎢⎥⎣⎦,∴42,663x πππ⎡⎤+∈⎢⎥⎣⎦,∴2,662x πππ⎡⎤+∈⎢⎥⎣⎦,即0,6x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增;42,663x πππ⎡⎤+∈⎢⎥⎣⎦,即7,612x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减.又()03f f π⎛⎫=⎪⎝⎭,∴当70312f f ππ⎛⎫⎛⎫>≥⎪ ⎪⎝⎭⎝⎭或06f π⎛⎫= ⎪⎝⎭时函数()f x 有且只有一个零点.即435sinsin326b ππ≤--<或3102b ++=,所以满足条件的3352,22b ⎛⎤-⎧⎫∈-⋃- ⎨⎬⎥ ⎩⎭⎝⎦.6.【详解】(I )()21cos21sin sin cosx sin222x f x a b x x x -=⋅=+⋅=+ 21sin 2242x π⎛⎫=-+ ⎪⎝⎭,令242x k k Z πππ-=+∈,,解得328k x k Z ππ=+∈.∴f x ()的对称轴方程为328k x k Z ππ=+∈,.(II )由1f x ()≥得1sin 21242x π⎛⎫-+≥ ⎪⎝⎭,即sin 242x π⎛⎫-≥⎪⎝⎭,∴3222444k x k k Z πππππ+≤-≤+∈,.故x 的取值集合为42xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭,.(Ⅲ)∵63x ππ⎡⎤∈⎢⎥⎣⎦,,∴5212412x πππ≤-≤,又∵sin y x =在02π⎡⎤⎢⎥⎣⎦,上是增函数,∴5sinsin 212412x sin πππ⎛⎫≤-≤ ⎪⎝⎭,又5sinsin 12644πππ⎛⎫=+=⎪⎝⎭,∴()f x 在63x ππ⎡⎤∈⎢⎥⎣⎦,时的最大值是()2621332424max f x ++=⨯+=,∵2f x m -()<恒成立,∴2max m f x ->(),即354m ->,∴实数m 的取值范围是35,4⎛⎫-+∞ ⎪ ⎪⎝⎭.7.【思路引导】(1)设D (t ,0)(0≤t ≤1),利用二次函数的性质求得它的最小值.(2)由题意得⋅=m n1sin (2x 4π+),再利用正弦函数的定义域和值域求出它的最小值.解:(I )设(,0)(01)D t t ≤≤,又22,22C ⎛⎫-⎪ ⎪⎝⎭所以22OC OD t ⎛⎫+=-+ ⎪ ⎪⎝⎭所以22211||122OC OD t t +=-++=-+21(01)22t t ⎛=-+≤≤ ⎪⎝⎭所以当2t =时,||OC OD +uuu r uuu r最小值为2.(II )由题意得(cos ,sin )C x x ,(cos 1,sin )m BC x x ==+则221cos sin 2sin cos 1cos 2sin 2m n x x x x x x⋅=-+-=--124x π⎛⎫=-+ ⎪⎝⎭因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52444x πππ≤+≤所以当242x ππ+=时,即8x π=时,sin 24x π⎛⎫+ ⎪⎝⎭取得最大值1所以8x π=时,124m n x π⎛⎫⋅=-+ ⎪⎝⎭取得最小值1所以m n ⋅的最小值为18x π=8.解:(1)(p = ,()cos ,sin q x x = ,且//p q u r r,sin x x ∴=,则tan x =222222sin cos cos 2tan 1231sin 2cos sin cos tan 14x x x x x x x x x ---∴-===++;(2)()cos 2sin 6f x p q x x x π⎛⎫=⋅=+=+ ⎪⎝⎭ ,由题意可得()52sin 22sin 2366g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()5222262k x k k Z πππππ-+≤+≤+∈,得()236k x k k Z ππππ-+≤≤-+∈.∴函数()y g x =的单调递增区间为()2,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦.9.【思路引导】(1)先通过数量积求出5()26f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数即可求出最大值.(2)方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根表示()f x a =与y 在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,画出()f x 在0,2π⎡⎤⎢⎥⎣⎦的图像易得a 的取值范围.【详解】(1)2333()3sin cos sin 2222f x x x x x =⋅-=--=-+m n 35(1cos 2)sin 2cos 2222226x x x x π⎛⎫+-=-+=+ ⎪⎝⎭.当52262x k πππ+=+,即6x k ππ=-,k ∈Z 时,函数f (x )取得最大值.(2)由于0,2x π⎡⎤∈⎢⎥⎣⎦时,55112,666x πππ⎡⎤+∈⎢⎥⎣⎦.而函数()g x x =在区间53,62ππ⎡⎤⎢⎥⎣⎦上单调递减,在区间311,26ππ⎡⎤⎢⎣⎦上单调递增.又113,622g g ππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,562g π⎛⎫= ⎪⎝⎭.结合图象(如图),所以方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根时,2a ⎛∈- ⎝⎦.故实数a 的取值范围为2⎛- ⎝⎦.10.【思路引导】(1)通过向量的数量积,把OA ,OB的坐标,代入函数解析式,利用向量积的运算求得函数解析式,进而得到函数()f x 的最小正周期和单调递减区间;(2)通过x ∈[0,2π],求出相位的范围,然后求出函数的最大值,利用最大值为2,直接求得a .解:(1)由题意()()22cos ,1,(,,OA x OB x a x R a R a ==-∈∈ 是常数)所以()22cos cos212sin 216f x x x a x x a x a π⎛⎫=++=+++=+++ ⎪⎝⎭,∴()f x 的最小正周期为22ππ=,令3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,所以()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,72,666x πππ⎡⎤+∈⎢⎥⎣⎦,∴当7266x ππ+=,即2x π=时,()f x 有最小值a ,所以2a =.。

(2021年整理)江苏高考数学复习平面向量与复数热点探究训练3三角函数与平面向量

(2021年整理)江苏高考数学复习平面向量与复数热点探究训练3三角函数与平面向量

量编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)江苏高考数学复习平面向量与复数热点探究训练3三角函数与平面向量)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)江苏高考数学复习平面向量与复数热点探究训练3三角函数与平面向量的全部内容。

数与平面向量编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)江苏高考数学复习平面向量与复数热点探究训练3三角函数与平面向量这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)江苏高考数学复习平面向量与复数热点探究训练3三角函数与平面向量〉这篇文档的全部内容。

第六章平面向量与复数热点探究训练3 三角函数与平面向量A组基础达标(建议用时:30分钟)1.(2017·南通二调)在斜三角形ABC中,tan A+tan B+tan A tan B=1.(1)求C的值;(2)若A=15°,AB=2,求△ABC的周长.[解](1)因为tan A+tan B+tan A tan B=1,即tan A+tan B=1-tan A tan B,因为在斜三角形ABC中,1-tan A tan B≠0,所以tan(A+B)=错误!=1,即tan(180°-C)=1,亦即tan C=-1,因为0°<C〈180°,所以C=135°.6分(2)在△ABC中,A=15°,C=135°,则B=180°-A-C=30°,由正弦定理错误!=错误!=错误!,得错误!=错误!=错误!=2,故BC=2sin 15°=2sin错误!=2错误!=错误!,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=错误!+1+错误!=错误!。

2021年高考数学(理科)课件:专题二 三角函数与平面向量

2021年高考数学(理科)课件:专题二 三角函数与平面向量

故 sin(2B-A)=sin 2Bcos A-cos 2Bsin A
=45×- 55-35×2 5 5=-2 5 5.
【互动探究】 2.(2017 年天津)在△ABC 中,内角 A,B,C 所对的边分别 为 a,b,c.已知 a>b,a=5,c=6,sin B=35. (1)求 b 和 sin A 的值; (2)求 sin2A+π4的值.
题型 2 三角函数和解三角形 有关三角知识与解三角形的综合是全国各地的高考题中的 一种重要题型,对于这类题,通常是先利用正弦定理或者余弦 定理,将边的关系转化为只含有角的关系,再利用三角知识来 处理.本题考查解三角形、三角恒等变换、两角和差公式以及正 弦定理的应用.
例 2:(2017 年天津)在△ABC 中,内角 A,B,C 所对的边
专题二 三角函数与平面向量
题型 1 三角函数的图象与性质 注意对基本三角函数 y=sin x,y=cos x 的图象与性质的理 解与记忆,有关三角函数的五点作图、图象的平移、由图象求 解析式、周期、单调区间、最值和奇偶性等问题的求解,通常 先将给出的函数转化为 y=Asin(ωx+φ)的形式,再利用整体代 换的方法求解.
分别为 a,b,c.已知 asin A=4bsin B,ac= 5(a2-b2-c2).
(1)求 cos A 的值;
(2)求 sin(2B-A)的值.
解:(1)由 asin A=4bsin B,及sina A=sinb B,得 a=2b.由 ac

5(a2-b2-c2),及余弦定理,得
cos
A=b2+2cb2c-a2=-
5 5 ac ac
=- 55.
(2)由(1),可得 sin A=2 5 5,代入 asin A=4bsin B,得 sin B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题03 三角函数与平面向量综合问题(答题指导)【题型解读】▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式.(2)构造f (x )=a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin Bb =31313.(2)由(1)及a <c ,得cos A =21313, 所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝⎛⎭⎪⎫π6+B =12. 因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。

相关文档
最新文档