解一元一次不等式PPT课件
合集下载
人教版七年级数学下册《一元一次不等式》PPT优质教学课件
(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.
人教版数学《一元一次不等式》_完美课件
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
知2-讲
(2) 去分母,得3(2+x)≥2(2x-1). 去括号,得 6+3x ≥4 x-2 . 移项,得 3x- 4x ≤ -2-6 . 合并同类项,得 -x ≥ -8 . 系数化为1,得x ≤ 8 . 这个不等式的解集在数轴上的表示如图所示 .
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
总结
知2-讲
一元一次不等式的解法与一元一次方程的解法 类似,其根据是不等式的基本性质,其步骤是:去 分母、去括号、移项、合并同类项、将未知数的系 数化为 1.
步骤
根据
1 去分母
不等式的基本性质 3
2 去括号
单项式乘以多项式法则
3 移项
不等式的基本性质 3
4
合并同类项,得ax>b, 合并同类项法则 或ax<b (a≠0)
5
两边同除以a(或乘
1 a
)
不等式的基本性质 3
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
B.1
C.-1
D.0
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
知识点 2 一元一次不等式的解法
知2-讲
解一元一次不等式与解一元一次方程的步骤类似. 解
《一元一次不等式》完整版PPT1
变式:若x=2是不等式2x-a-2<0的一个解,则a可取的最小正整数为( ) 变式:不等式4-3x≥2x-6的非负整数解有( ) 只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.
移项
不等式的性质1
m≥2 B.
有一次,鲁班的手不慎被一片小草叶子割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.
73
64
7.(课本P124 T2)当x或y满足什么条件时,下列关系式成立? (1)2(x+1)大于或等于1; (2)4x与7的和不小于6; (3)y与1的差不大于2y与3的差; (4)3y与7的和的四分之一小于-2.
拓展提升 8.解关于x的一元一次不等式 x+8>4x+m(m是常数).
变式:不等式 x+8>4x+m (m是常数) 的解集是 x<3,则 m=_____.
A.±1 B. 1 C. -1 D. 0
问题思考 解一元一次方程
2(1+x)=3
解:去括号 2+2x=3
移项 2x=3-2
合并同类项 2x=1
系数化为1
x1 2
解一元一次不等式 2(1+x)<3
Hale Waihona Puke 在数轴上表示解集?典例分析
例 解下列不等式,并在数轴上表示解集. 变式:不等式 x+8>4x+m (m是常数) 的解集是 x<3,则 m=_____.
(1)x +1>2x; (2) +2>0; ③移项、合并同类项,得-x>-13;
2 3个 D.
C.
1
①去分母,得5(x+2)>3(2x-1);
A.
(课本P124 T1)解下列不等式,并在数轴上表示解集:
x
湘教版初中数学八年级上册. 一元一次不等式组 课件 _精品PPT
不等式组的解集 x﹥-3
x
>
-5,
x
≤-3
x-
5
<
0,
x
+
3<
0
-5﹤x≤-3 x<-3
x-
5>
0,
x
+
3
<
0
无解
湘教版初中数学八年级上册. 一元一次不等式组 课件 _精品课件
湘教版初中数学八年级上册. 一元一次不等式组 课件 _精品课件
2. 解下列不等式方程组:
(1)
2x-
4
<
x +1,
解不等式②,得
x >6.
湘教版初中数学八年级上册. 一元一次不等式组 课件 _精品课件
湘教版初中数学八年级上册. 一元一次不等式组 课件 _精品课件
把不等式①、②的解集在数轴上表示出来, 如图:
-2 0
6
由图可知,不等式①、②的解集的公共部分就
是x>6,所以这个不等式组的解集是x>6.
湘教版初中数学八年级上册. 一元一次不等式组 课件 _精品课件
第4章 一元一次不等式组
4.5 一元一次不等式组
动脑筋
一个长方形足球场的宽为70m,如果它的周长 大于350m,面积小于7630m2,求这个足球场的长 的取值范围,并判断这个足球场是否可以进行国际 足球比赛.(注:用于国际比赛的足球场的长在100 至110m之间,宽在64至75m之间.)
如果设足球场的长为x m,那么它的 周长就是2(x+70)m,面积为70x m2.
求不等式组的解集的过程,叫作解不等式组.
湘教版初中数学八年级上册. 一元一次不等式组 课件 _精品课件
课件《一元一次不等式》完美PPT课件_人教版1
平均速度是4km/h,他们最远能登上哪座山顶?(图 现用甲,乙两种运输车将56吨救灾物资运往灾区,甲种车载重为6吨,乙种运输车载重为5吨,案排车辆不超过10辆,则甲种运输车至
少安排(
) A。
中数字表示出发点到山顶的路程.) 一个长方形的长为x米,宽为50米,如果它的周长不小于280米,那么 x应满足的不等式为 (
分析 本题涉及的数量关系是: 销售额-成本-税费≥纯利润(900元).
解 设每套童装的售价是x元.
则
40·x-90×40-40·x·10%≥900.
解这个不等式,得
x ≥ 125.
答:每套童装的售价至少是125元.
议一议
应用一元一次不等式解决实际问题的步骤有哪些?
找出不等关系 实际问题
设未知数
列不等式
你能用关于x的 一个式子刻画水 位需满足的高度
要求吗?
145≤x≤175
热身题:
根据题意列不等式: 1. a的5倍与7的和不大于0: (5a+7)≤0 2.同样一款毛衣,在A,B两店都有卖,A店标价68元,B店不只68元,
用x表示B店这种毛衣的标价( x>68 )
3.甲有m元钱,乙有1150元钱,甲的钱数不足乙的钱数的一半,则m满 足的关系式是(m< 2 ×150)
他们在山顶休息了2 h,又上午7点到下午4点之间总共相隔9 h,即所用时间应少于或等于9 h.
如现果用要 甲获,得乙不两A低种于运2输9x0车+0元(将3的526纯-吨x利救)润≥灾4,物8每资套运童往装B灾的区2售,x价甲-至(种3少2车是-载x多重)≥少为4元68?吨,乙种C运输2车x载+(重3为25-吨x),≤案48排车辆不D超2过x1≥0辆48,则甲种运输车至
一元一次不等式课件(共21张PPT)
随堂演练
基础巩固
1. 若代数式 2x 3 的值是非负数,则x的
7
取值范围是( B )
3
A.x≥ 2
C.x>
3 2
B.x≥ 3
2
D.x> 3
2
2.如图所示,图中阴影部分表示x的取值范 围,则下列表示中正确的是( B )
A.-3>x>2 C.-3≤x≤2
B.-3<x≤2 D.-3<x<2
3.当x或y满足什么条件时,下列关系成立?
系数化为1得:x≥8.
08
(2) 2 x ≥ 2x 1
2
3
解:去分母得:3(2+x)≥2(2x-1);
去括号得:6+3x≥4x-2; 移项得:3x-4x ≥ -2-6; 合并同类项得:-x ≥ -8;
将解集用数轴表 示,则如下图:
系数化为1得:x≤8.
0
8
小 结 解一元一次不等式的一般步骤
01
(3)未知数的次数都是1.
含有一个未知数,未知数次数是1的 不等式,叫做一元一次不等式.
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3; (2) 2 x ≥ 2x 1
2
3
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3;
解:去括号得:2+2x<3; 将解集用数轴表
移项得:2x<3-2;
03
05
通过解这两个不等式,
去 分 母
你02能归纳出移解一元0一4 次 不等式的一项般步骤吗?
系数 化为
去
合并
1
括
同类
号
项
练 习 1.解下列不等式和方程(不等式
的解集要在数轴上表示出来)
解一元一次不等式(第1课时)(课件)七年级数学下册精品课件(苏科版)
新知归纳 一元一次不等式的概念
只含有一个未知数,并且未知数的次数都是1,系数不等于0. 像这样的不等式,叫做一元一次不等式.
新知巩固
1.判断下列各式是否是一元一次不等式? 否 否 是 否
x>0 是
8>4 否
新知巩固
2.已知3x2-m +70>100是关于x的一元一次不等式,则m=__1__. 解:2-m=1,m=1.
解:因为(m-1)x|m|+3>0是关于x的一元一次不等式, 所以m-1≠0,|m|=1,解得m=-1.
课堂检测
6. 若不等式ax-2>0的解集为x<-2,则关于y的方程ay+2=0 的解为___y_=__2____.
7. 用※定义一种新运算:对于任意数m和n,规定m※n=m2n-mn-3n. 如1※2=12×2-1×2-3×2=-6. 若3※k≥-6,则k的取值范围 是__2__.
将m=1代入不等式,得3x +70>100
如何解这个 不等式呢?
知识回顾
解一元一次方程的一般步骤和依据是什么?
解一元一次方程的一般步骤是: 去分母,去括号,移项,合并同类项,系数化为1.
解一元一次方程的依据是等式的性质.
新知探索
解一元一次不等式能不能采取类似的步骤呢?
请你类比一元一次方程的解法,探索如何解元一次不等式 3x +70>100?说出每一步变形的依据.
0
-6 0
新知巩固
2.当x取什么值时,代数式2x-4的值大于代数式3x+1的值? 解:根据题意,得 2x-4>3x+1 2x-3x>1+4 -x>5 x<-5 当x<-5时,代数式2x-4的值大于代数式3x+1的值.
新知巩固
3.求一元一次不等式10(x+4)+x ≤73的非负整数解. 解: 10x+40+x≤73 11x≤33 x≤3
含有绝对值的一元一次不等式及其解法课件
绝对值的三角不等式
对于任何实数x和y,有||x||y||≤|x+y|≤|x|+|y||。
02
含有绝对值的一元一次不等式
含有绝对值的一元一次不等式的定义
绝对值的定义
绝对值表示一个数距离0的距离,即一个数到0点的距离。对于任意实数x,如果 x≥0,那么|x|=x;如果x<0,那么|x|=-x。
含有绝对值的一元一次不等式的定义
05
含有绝对值的一元一次不等式的综合练习
基础练习题
总结词
掌握基本解法
详细描述
针对含有绝对值的一元一次不等式的基本形式,提供一些简单的练习题,帮助 学生理解绝对值的概念和基本解法。:在基础练习题的基础上,增加一些需要应用技巧的题目,如涉及多个 绝对值符号或复杂不等式结构的题目。
03
含有绝对值的一元一次不等式的解法技巧
零点分段法
01
总结词
通过将数轴分为几个区间,根据绝对值的定义,将不等式转化为若干个
一元一次不等式组进行求解。
02 03
详细描述
首先确定绝对值函数的零点,然后将数轴分为几个区间,根据绝对值的 定义,将原不等式转化为若干个一元一次不等式组,最后分别求解这些 不等式组。
解不等式。
图象法
画出绝对值函数的图象,然后根 据图象求解不等式。
含有绝对值的一元一次不等式的应用
解决实际问题
含有绝对值的一元一次不等式在 解决实际问题中有着广泛的应用 ,例如在物理学、工程学、经济 学等领域中都可以见到。
数学问题求解
在数学问题中,含有绝对值的一 元一次不等式也是常见的题型, 通过解决这类问题可以提高学生 的数学思维能力和解题技巧。
含有绝对值的一元一 次不等式及其解法课 件
对于任何实数x和y,有||x||y||≤|x+y|≤|x|+|y||。
02
含有绝对值的一元一次不等式
含有绝对值的一元一次不等式的定义
绝对值的定义
绝对值表示一个数距离0的距离,即一个数到0点的距离。对于任意实数x,如果 x≥0,那么|x|=x;如果x<0,那么|x|=-x。
含有绝对值的一元一次不等式的定义
05
含有绝对值的一元一次不等式的综合练习
基础练习题
总结词
掌握基本解法
详细描述
针对含有绝对值的一元一次不等式的基本形式,提供一些简单的练习题,帮助 学生理解绝对值的概念和基本解法。:在基础练习题的基础上,增加一些需要应用技巧的题目,如涉及多个 绝对值符号或复杂不等式结构的题目。
03
含有绝对值的一元一次不等式的解法技巧
零点分段法
01
总结词
通过将数轴分为几个区间,根据绝对值的定义,将不等式转化为若干个
一元一次不等式组进行求解。
02 03
详细描述
首先确定绝对值函数的零点,然后将数轴分为几个区间,根据绝对值的 定义,将原不等式转化为若干个一元一次不等式组,最后分别求解这些 不等式组。
解不等式。
图象法
画出绝对值函数的图象,然后根 据图象求解不等式。
含有绝对值的一元一次不等式的应用
解决实际问题
含有绝对值的一元一次不等式在 解决实际问题中有着广泛的应用 ,例如在物理学、工程学、经济 学等领域中都可以见到。
数学问题求解
在数学问题中,含有绝对值的一 元一次不等式也是常见的题型, 通过解决这类问题可以提高学生 的数学思维能力和解题技巧。
含有绝对值的一元一 次不等式及其解法课 件
2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用
解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.
浙教版八年级数学上册3.4一元一次不等式组课件(共21张PPT)
2(x+70) >350 70x <7560
定义: 一般地,由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一次不等式组.
下列式子中,哪些是一元一次不等式组?
x 1 (1) x 3
√
2 x x 1 (2) x 8 4x 1
√
x y 0 (3) 不是 2 x y 1
练一练:
1.解下列各一元一次不等式组
2 x 1 x 1 (1) x 8 4 x 1
5 x 23( x 1) (2) 1 3 x 1 7 x 2 2
2.求出问题3中宽是多少。
例3. 求下列不等式组的解集:
x 3, (1) x 7.
x3
x 1, (4) x 4.
解:原不等式组的解集为 -3 -2 -1 0
1
2 3 4 5
x 1
小小取小
例3. 求下列不等式组的解集:
x 3, (5) x 7.
解:原不等式组的解集为
0
1 2 3 4 5 6 7 8 9
3 x7
x 1, (6) x 4.
1 解: 解不等式①,得 X< 2 12 解不等式②,得 X> 5
3X 2 X 2.5 4 2
②
把① ,②两个不等式的解表示在数轴上 所以原不等式组无解
-3 -2 -1 0 1 2 3 4 5 6
解一元一次不等式组的步骤: (1)分别求出各不等式的解 (2)将它们的解表示在同一数轴上 (3)求原不等式组的解(即为它们解的公共部分).
(5)2-x<x≤6-2x
x2 x 2 (4) 不是 x 1 0
√
定义: 一般地,由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一次不等式组.
下列式子中,哪些是一元一次不等式组?
x 1 (1) x 3
√
2 x x 1 (2) x 8 4x 1
√
x y 0 (3) 不是 2 x y 1
练一练:
1.解下列各一元一次不等式组
2 x 1 x 1 (1) x 8 4 x 1
5 x 23( x 1) (2) 1 3 x 1 7 x 2 2
2.求出问题3中宽是多少。
例3. 求下列不等式组的解集:
x 3, (1) x 7.
x3
x 1, (4) x 4.
解:原不等式组的解集为 -3 -2 -1 0
1
2 3 4 5
x 1
小小取小
例3. 求下列不等式组的解集:
x 3, (5) x 7.
解:原不等式组的解集为
0
1 2 3 4 5 6 7 8 9
3 x7
x 1, (6) x 4.
1 解: 解不等式①,得 X< 2 12 解不等式②,得 X> 5
3X 2 X 2.5 4 2
②
把① ,②两个不等式的解表示在数轴上 所以原不等式组无解
-3 -2 -1 0 1 2 3 4 5 6
解一元一次不等式组的步骤: (1)分别求出各不等式的解 (2)将它们的解表示在同一数轴上 (3)求原不等式组的解(即为它们解的公共部分).
(5)2-x<x≤6-2x
x2 x 2 (4) 不是 x 1 0
√
七下数学课件: 解一元一次不等式(课件)
即-x>-10,
再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;
利用不等式的性质解不等式
根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
5)-
x<-2
6)3x+5<0
5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,
1
得- 5x×(-5)> -2×(-5),即x>10;
>
性质三:不等式的两边乘(或除)同一个负数,不等号方向发生改变。
表示为:如果a>b,c<0,那么ac<bc (或
<
)
)
学习目标
学习目标
1、掌握不等式的性质。
2、运用不等式性质解不等式。
3、用数轴表示不等式的解集。
重点
用数轴表示不等式的解集。
难点
运用不等式的性质解不等式。
练一练
设a>b,用“<”“>”填空并回答是根据不等式的哪一条基本性质.
【详解】
解:解不等式3x−a≤0,得x≤3,
∵不等式的正整数解是1,2,3,
∴3≤3<4,
解得9≤a<12.
故答案为:9≤a<12.
解一元一次不等式
不等式(x-m)/3>3-m的解集为x>1,则m的值为___.
【解析】
去分母得,x﹣m>3(3﹣m),
去括号得,x﹣m>9﹣3m,
移项,合并同类项得,x>9﹣2m.
∵此不等式的解集为x>1,
∴9﹣2m=1,解得m=4.
课后回顾
课后回顾
再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;
利用不等式的性质解不等式
根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
5)-
x<-2
6)3x+5<0
5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,
1
得- 5x×(-5)> -2×(-5),即x>10;
>
性质三:不等式的两边乘(或除)同一个负数,不等号方向发生改变。
表示为:如果a>b,c<0,那么ac<bc (或
<
)
)
学习目标
学习目标
1、掌握不等式的性质。
2、运用不等式性质解不等式。
3、用数轴表示不等式的解集。
重点
用数轴表示不等式的解集。
难点
运用不等式的性质解不等式。
练一练
设a>b,用“<”“>”填空并回答是根据不等式的哪一条基本性质.
【详解】
解:解不等式3x−a≤0,得x≤3,
∵不等式的正整数解是1,2,3,
∴3≤3<4,
解得9≤a<12.
故答案为:9≤a<12.
解一元一次不等式
不等式(x-m)/3>3-m的解集为x>1,则m的值为___.
【解析】
去分母得,x﹣m>3(3﹣m),
去括号得,x﹣m>9﹣3m,
移项,合并同类项得,x>9﹣2m.
∵此不等式的解集为x>1,
∴9﹣2m=1,解得m=4.
课后回顾
课后回顾
一元一次不等式的应用ppt课件
5
5
探究新知
应用一元一次不等式可以刻画和解决很多实际生活
中的有关数量不等关系的问题.
6
6ห้องสมุดไป่ตู้
探究新知
列不等式解应用题的一般步骤:
审题
1
检验解的合理性
列出不等式
2
设未知数
3
4
解不等式
5
6
作答
7
7
探究新知
例1 有一家庭工厂投资2万元购进一台机器,生产某种商品.这种
商品每个的成本是3元,出售价是5元,应付的税款和其他费
>1 000
卡费,设按标价累计购物金额为x元,当x_______时,办理购
物“金卡”省钱.
解析:在办理购物“金卡”省钱时,
满足的关系式为:标价x-标价×0.9>购卡费.
即:x-0.9x>100,解得x>1 000.
14
14
探究新知
例5
一水果店进了某种水果1吨,进价是7元/千克,售价定为10元/千克.
3. 初步体会一元一次不等式的应用价值,形成严谨的学习态
度和独立思考的习惯.
2
2
新课导入
复习回顾
你还记得应用一元一次方程解实际问题的步骤吗?
审题
1
列出方程
2
设未知数
3
检验解的合理性
4
解方程
5
6
作答
我们能用列方程的方法解决一些现实生活中数量相
等关系的问题. 实际上,现实生活中还存在着许多数量
之间不相等的关系.这些问题应该如何来解决呢?
步骤类似,可概括为:“审、设、列、解、验、答”六步,
其不同点是方程是找相等关系,不等式是找不等关系.
11
5
探究新知
应用一元一次不等式可以刻画和解决很多实际生活
中的有关数量不等关系的问题.
6
6ห้องสมุดไป่ตู้
探究新知
列不等式解应用题的一般步骤:
审题
1
检验解的合理性
列出不等式
2
设未知数
3
4
解不等式
5
6
作答
7
7
探究新知
例1 有一家庭工厂投资2万元购进一台机器,生产某种商品.这种
商品每个的成本是3元,出售价是5元,应付的税款和其他费
>1 000
卡费,设按标价累计购物金额为x元,当x_______时,办理购
物“金卡”省钱.
解析:在办理购物“金卡”省钱时,
满足的关系式为:标价x-标价×0.9>购卡费.
即:x-0.9x>100,解得x>1 000.
14
14
探究新知
例5
一水果店进了某种水果1吨,进价是7元/千克,售价定为10元/千克.
3. 初步体会一元一次不等式的应用价值,形成严谨的学习态
度和独立思考的习惯.
2
2
新课导入
复习回顾
你还记得应用一元一次方程解实际问题的步骤吗?
审题
1
列出方程
2
设未知数
3
检验解的合理性
4
解方程
5
6
作答
我们能用列方程的方法解决一些现实生活中数量相
等关系的问题. 实际上,现实生活中还存在着许多数量
之间不相等的关系.这些问题应该如何来解决呢?
步骤类似,可概括为:“审、设、列、解、验、答”六步,
其不同点是方程是找相等关系,不等式是找不等关系.
11
人教版七年级下册数学课件:9.3一元一次不等式组(共32张PPT)
不等式组的解集为空集 即:不等式组无解
大大小小解不了
例1:利用数轴判断下列不等式组是否有解集?如有,请写出。
x 2 (1)x 3
-2 0 3
不等式组的解集是X>3
(2)xx
2 3
-2 0 3
不等式组的解集是X< -2
x 2 (3)x 3
-2 0 3
不等式的解集是-2<X<3
x 2
(4)x 3
是 1、0、-1、-2、-3
∴m 必须满足-4<m≤-3
x ≥-5 (1)不等式组 x> -2 的解集是 ( B )
A. x ≥-5 B. x >-2 C. 无解 D.5 x 2
(2)不等式组
x≥2
x≤1
的解集是( C )
x x A. ≥2 B. x≤2 C. 无解 D. =2.
(3)不等式组
不等式组的解集为 x< 1
两小取小
例2.写出下列不等式组的解集:
x 1 (2)x 3
01 2 3
不等式组的解集为 x>3
两大取大
例2.写出下列不等式组的解集:
x 1 (3)x 3
01 2 3
不等式组的解集为 1<x< 3
大小小大中间找
例2.写出下列不等式组的解集:
x 1 (4)x 3
01 2 3
1、
1 2
x
1
7
3 2
x
2 (x+2) < x+5
2、
3 (x-2)+8 >2x
5x 2 3(x 1) ①
1 2
x
1
7
3 2
x
②
解:解不等式①,得 x 5 2
大大小小解不了
例1:利用数轴判断下列不等式组是否有解集?如有,请写出。
x 2 (1)x 3
-2 0 3
不等式组的解集是X>3
(2)xx
2 3
-2 0 3
不等式组的解集是X< -2
x 2 (3)x 3
-2 0 3
不等式的解集是-2<X<3
x 2
(4)x 3
是 1、0、-1、-2、-3
∴m 必须满足-4<m≤-3
x ≥-5 (1)不等式组 x> -2 的解集是 ( B )
A. x ≥-5 B. x >-2 C. 无解 D.5 x 2
(2)不等式组
x≥2
x≤1
的解集是( C )
x x A. ≥2 B. x≤2 C. 无解 D. =2.
(3)不等式组
不等式组的解集为 x< 1
两小取小
例2.写出下列不等式组的解集:
x 1 (2)x 3
01 2 3
不等式组的解集为 x>3
两大取大
例2.写出下列不等式组的解集:
x 1 (3)x 3
01 2 3
不等式组的解集为 1<x< 3
大小小大中间找
例2.写出下列不等式组的解集:
x 1 (4)x 3
01 2 3
1、
1 2
x
1
7
3 2
x
2 (x+2) < x+5
2、
3 (x-2)+8 >2x
5x 2 3(x 1) ①
1 2
x
1
7
3 2
x
②
解:解不等式①,得 x 5 2
一元一次不等式(组)的解法课件(共22张PPT)
我们在初中已经知道,在上述问题情境列出的不 等式中,未知数的个数是1,且它的次数为1,这样的 整式不等式称为一元一次不等式.使不等式成立的未 知数的值的集合,通常称为这个不等式的解集. 试一试:利用一元一次不等式解答本章导语中提到的 问题(2).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
很多实际问题,通过设未知数列关系式,得到
的是一元一次不等式.上面解一元一次不等式的步 骤对于任意一个一元一次不等式都有效.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 1.解不等式2x 1 x 2>7x 1
32
解:由原不等式可得
数学
基础模块(上册)
第二章 不等式
2.2.2 一元一次不等式(组)的解法
人民教育出版社
第二章 不等式 2.2.2 一元一次不等式(组)的解法
学习目标
知识目标 能力目标
理解一元一次不等式(组)概念及其解集的学习,掌握一元一次不等式(组) 的解题方法
学生运用分组探讨、合作学习,掌握一元一次不等式(组)的解题方法,提 高一元一次不等式(组)解决实际问题能力
12(x+1)+2(x-2)>21x-6,(原式两边同乘以6)
12x+12+2x-4>21x-6,
(分配律)
12x-14
(合并同类项)
x<2.
(不等式的性质)
所以,原不等式的解集是{x丨x<2},即(- ,2).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
很多实际问题,通过设未知数列关系式,得到
的是一元一次不等式.上面解一元一次不等式的步 骤对于任意一个一元一次不等式都有效.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 1.解不等式2x 1 x 2>7x 1
32
解:由原不等式可得
数学
基础模块(上册)
第二章 不等式
2.2.2 一元一次不等式(组)的解法
人民教育出版社
第二章 不等式 2.2.2 一元一次不等式(组)的解法
学习目标
知识目标 能力目标
理解一元一次不等式(组)概念及其解集的学习,掌握一元一次不等式(组) 的解题方法
学生运用分组探讨、合作学习,掌握一元一次不等式(组)的解题方法,提 高一元一次不等式(组)解决实际问题能力
12(x+1)+2(x-2)>21x-6,(原式两边同乘以6)
12x+12+2x-4>21x-6,
(分配律)
12x-14
(合并同类项)
x<2.
(不等式的性质)
所以,原不等式的解集是{x丨x<2},即(- ,2).
浙教版八年级上3.3一元一次不等式ppt课件
1、能使不等式成立的未知数的值的全体, 叫做不等式的解集,简称不等式的解
2、求不等式解集的过程叫解不等式.
2024/7/29
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1. 判断题
⑴ X=2是x﹣1﹥0的解 。 ( ⑵ x﹣1﹥0的解是x=2。 ( ⑶ x﹣1﹥0的解x>1 。 ( ⑷ x﹣1﹥0的解是x>2 。 (
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
与解一元一次方程的步骤类似可得解 一元一次不等式的步骤:
①去分母; ②去括号;
③移项;
④合并同类项;
⑤两边都除以未 知数的系数.(注 意系数的符号)
2024/7/29
解:
7m+3
2m-3=<
去分母,得
2
小组合作:完成工作
2(2m-3)=7m< +3
去括号,得
4m-6=<7m+3
移项,得
4m-7m=<6+3
不等式基本性质23 单项式乘以多项式法则
不等式基本性质12
合并同类项,得
-3m=<9
合并同类项法则
两边都除以-3,得
m=>-3 不等式基本性质23
怎么变向了?
2024/7/29
课堂小结
通过本堂课的学习 我学会了… …
我体会到… … 我感到困惑的是… …
2024/7/29
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
2、求不等式解集的过程叫解不等式.
2024/7/29
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1. 判断题
⑴ X=2是x﹣1﹥0的解 。 ( ⑵ x﹣1﹥0的解是x=2。 ( ⑶ x﹣1﹥0的解x>1 。 ( ⑷ x﹣1﹥0的解是x>2 。 (
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
与解一元一次方程的步骤类似可得解 一元一次不等式的步骤:
①去分母; ②去括号;
③移项;
④合并同类项;
⑤两边都除以未 知数的系数.(注 意系数的符号)
2024/7/29
解:
7m+3
2m-3=<
去分母,得
2
小组合作:完成工作
2(2m-3)=7m< +3
去括号,得
4m-6=<7m+3
移项,得
4m-7m=<6+3
不等式基本性质23 单项式乘以多项式法则
不等式基本性质12
合并同类项,得
-3m=<9
合并同类项法则
两边都除以-3,得
m=>-3 不等式基本性质23
怎么变向了?
2024/7/29
课堂小结
通过本堂课的学习 我学会了… …
我体会到… … 我感到困惑的是… …
2024/7/29
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 2x-1<4x+13 (2) 25x 3 ≤ x312x
解(1) -2x-1<4x+13
移项得,得 2x- 4x <1+13
即 - 2x <14 系数化为“1”,得 x> - 7
∴原不等式的解集是 x > -7 它在数轴上表示如下图:
2021
7
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 x
(2) 2(5x +3) ≤ x-3(1-2x)
解:去括号,得 10x+6≤ x -3+6x
移项,得 10x-x-6x ≤- 6-3
合并同类项,得 3x ≤ -9 系数化“1”,得 x ≤ -3 ∴原不等式的解集是 x≤-3
它在数轴上表示如下图
-4 -3 -2 -1 0 1 2 x
2021
8
解一元一次不等式的步骤:
2021
1
1、你能说出下列不等式的解集吗?
(1) 2x>-8
(2)-2x>6
(3) 1 x ≤ 0 3
(1) x 4
(2) x 3
(3) x ≥ 0
Байду номын сангаас
2021
2
2、你能解下列方程并说出它们的特点 吗?
(1) 3-2x = 8-3x (2)3(y+2)= 8 -2(y-1)
3 5x x3
3
5
2021
3
1、如果我们把上面方程改成下列相应的不等 式,你能说出它们的共同特点吗?
(1) 3-2x > 8-3x (2)3(y+2) < 8 -2(y-1)
3
5 x x 3
≥
3
5
2021
4
一元一次不等式的定义:
(1) 只含有(一个)未知数.
(2)含有未知数的项的最高次数是 ( 1 ).
(3)含有未知数的式子是( 整式).(如果含有分母, 分母中不能含有未知数). 化简后满足以上
11
(1) 只含有一个未知数.
(2)含有未知数的项的最高次数是 1.
(3)含有未知数的式子是整式.(如果含
有分母, 分母中不能含有未知数). 化简后
满足以上三个条件的不等式.就是一元一
次不等式.
2021
12
去分母; 去括号; 移项; 合并同类项; 系数化“1”。
2021
13
( 三)个条件的不等式.就是一元一次不等式.
2021
5
请判断下列各式中哪些是一元一次不等式?
是的在括号内打“√”不是的在括内打“×”.
1 30
﹝ ×﹞
23x2y1
3 1 5x 1
3
4xx12x
﹝ ×﹞ ﹝ √﹞ ﹝ ×﹞
5 1 1 0
x
2021
﹝× ﹞
6
(一元一次不等式的解法)
例1 解一元一次不等式,并把它的解集在数轴上表示出来.
去分母; (每一项都要乘以分母的最
小公倍数)
去括号;(括号前是负号括号里各项要变号.)
移 合并项同;类项;(含边有,移未项知要数变的号项)常移到不等号左
系数化“1”. (两边同除以(乘以)负数时 不等号要改变方向).
2021
9
4、尝试练习: 求出下列各题解集,并将解 集在数轴上表示来.
(1) 3-2x > 8-3x
(2)3(y+2) < 8 -2(y-1)
3
5 x x 3
≥
3
5
2021
10
1. 将例4中的“大于”改为“不大于” 并完成该题.
2. 解下列不等式,并把解集在数轴上表示出来.
15x123x32 3x 4 1≥ x 2
2
3
3
0.1x0.2x13 0.02 0.5
比一比,看 谁做得又快又
好!
2021
解(1) -2x-1<4x+13
移项得,得 2x- 4x <1+13
即 - 2x <14 系数化为“1”,得 x> - 7
∴原不等式的解集是 x > -7 它在数轴上表示如下图:
2021
7
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 x
(2) 2(5x +3) ≤ x-3(1-2x)
解:去括号,得 10x+6≤ x -3+6x
移项,得 10x-x-6x ≤- 6-3
合并同类项,得 3x ≤ -9 系数化“1”,得 x ≤ -3 ∴原不等式的解集是 x≤-3
它在数轴上表示如下图
-4 -3 -2 -1 0 1 2 x
2021
8
解一元一次不等式的步骤:
2021
1
1、你能说出下列不等式的解集吗?
(1) 2x>-8
(2)-2x>6
(3) 1 x ≤ 0 3
(1) x 4
(2) x 3
(3) x ≥ 0
Байду номын сангаас
2021
2
2、你能解下列方程并说出它们的特点 吗?
(1) 3-2x = 8-3x (2)3(y+2)= 8 -2(y-1)
3 5x x3
3
5
2021
3
1、如果我们把上面方程改成下列相应的不等 式,你能说出它们的共同特点吗?
(1) 3-2x > 8-3x (2)3(y+2) < 8 -2(y-1)
3
5 x x 3
≥
3
5
2021
4
一元一次不等式的定义:
(1) 只含有(一个)未知数.
(2)含有未知数的项的最高次数是 ( 1 ).
(3)含有未知数的式子是( 整式).(如果含有分母, 分母中不能含有未知数). 化简后满足以上
11
(1) 只含有一个未知数.
(2)含有未知数的项的最高次数是 1.
(3)含有未知数的式子是整式.(如果含
有分母, 分母中不能含有未知数). 化简后
满足以上三个条件的不等式.就是一元一
次不等式.
2021
12
去分母; 去括号; 移项; 合并同类项; 系数化“1”。
2021
13
( 三)个条件的不等式.就是一元一次不等式.
2021
5
请判断下列各式中哪些是一元一次不等式?
是的在括号内打“√”不是的在括内打“×”.
1 30
﹝ ×﹞
23x2y1
3 1 5x 1
3
4xx12x
﹝ ×﹞ ﹝ √﹞ ﹝ ×﹞
5 1 1 0
x
2021
﹝× ﹞
6
(一元一次不等式的解法)
例1 解一元一次不等式,并把它的解集在数轴上表示出来.
去分母; (每一项都要乘以分母的最
小公倍数)
去括号;(括号前是负号括号里各项要变号.)
移 合并项同;类项;(含边有,移未项知要数变的号项)常移到不等号左
系数化“1”. (两边同除以(乘以)负数时 不等号要改变方向).
2021
9
4、尝试练习: 求出下列各题解集,并将解 集在数轴上表示来.
(1) 3-2x > 8-3x
(2)3(y+2) < 8 -2(y-1)
3
5 x x 3
≥
3
5
2021
10
1. 将例4中的“大于”改为“不大于” 并完成该题.
2. 解下列不等式,并把解集在数轴上表示出来.
15x123x32 3x 4 1≥ x 2
2
3
3
0.1x0.2x13 0.02 0.5
比一比,看 谁做得又快又
好!
2021