2019-2020学年高一数学作业(15).doc

合集下载

2019-2020学年度第二学期高一阶段测试数学答案

2019-2020学年度第二学期高一阶段测试数学答案

2019-2020学年度第二学期高一阶段测试数学试题命题人 周祖国2020.5一.单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.如图,过点M(1,0)的直线与函数y=sin πx(0≤x ≤2)的图象交于A,B 两点, 则OM →•(OA →+OB →)=( ) A .1 B .2 C .3 D .42.如图,在△ABC 中,|BA →|=|BC →|,延长CB 到D,使AC ⊥AD.若AD →=λAB →+μAC →,则λ-μ=( )A .1B .2C .3D .43.下列命题:①向量a →与b →都是单位向量,则a →=b →; ②在△ABC 中,必有AB →+BC →+CA →=0→;③四边形ABCD 是平行四边形,则AB →=DC →; ④若向量a →与b →共线,则存在唯一的实数λ使b →=λa →. 其中正确的是( )A .①②B .②③C .③④D .①④4.函数y=tan(π4x-π2)的部分图象如图,则(OA →+OB →)•AB →=( )A .4B .6C .1D .25.已知e 1→,e 2→是夹角为600的两个单位向量,则a →=2e 1→+e 2→与b →=-3e 1→+2e 2→夹角的余弦值是( )A .12B .- 12C .32D .- 326.设l 是直线,α,β是两个不同的平面( )A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β,l ∥α,则l ⊥β7.长方体ABCD-A 1B 1C 1D 1中,AB=AA 1=2,AD=1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A .1010B .3010C .21510D .310108.如图,在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )二.多项选择题(本大题共4个小题.每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分.选对但不全的得3分,有选错的得0分.) 9.下列命题中正确的是( )A.非零向量a →,b →满足|a →|=|b →|=|a →-b →|,则a →与a →+b →的夹角为300;B.a →•b →>0,则a →与b →的夹角为锐角;C.若AB →2=AB →•AC →+BA →•BC →+CA →•CB →,则△ABC 一定是直角三角形 D.△ABC 的外接圆的圆心为O,半径为1,若AB →+AC →=2AO →,且|OA →|=|CA →|, 则向量BA →在向量BC →方向上的投影向量为32(BC →|BC →|)10.已知复数z 0=1+2i(i 为虚数单位)在复平面内对应的点为P 0,复数z 满足|z-1|=|z-i|, 下列结论正确的是( )A.P 0点的坐标为(1,2)B.复数z 0的共轭复数对应的点与点P 0关于虚轴对称C.复数z 对应的点Z 在一条直线上D.z 0z 0-∈R11.一个正方形纸盒展开后如图所示,在原正方形纸盒中有如下结论: ①AB ⊥EF ②AB 与CM 所成的角为600 ③EF 与MN 是异面直线 ④MN∥CD. 以上四个命题中,正确的是( ) A.① B.② C.③ D.④12.若复数z 满足(1-i)z=3+i(i 是虚数单位),则( ) A.z 的实部是2B.z 的虚部是2iC.z -=1-2iD.|z|= 5三填空题(本大题共4小题,每小题5分,共20分)13.复数乘法(x+yi)(cos θ+isin θ)(x,y ∈R,i 为虚数单位)的几何意义是:将复数x+yi 在复平面内对应的点(x,y)绕原点逆时针旋转θ角,则将点(4,2)绕原点逆时针方向旋转π3得到的点的坐标为__. 14.阿基米德逝世后,有人为他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心, 圆锥的底面是圆柱的下底面.则图案中圆锥、球、圆柱的体积比是________. 15.将正方形ABCD 沿对角线BD 折成直二面角A-BD-C,有如下四个结论:①AC⊥BD ②△ACD 是等边三角形 ③AB 与平面BCD 成600的角 ④AB 与CD 所成的角是600 其中正确结论的序号是________16.已知l,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ②m ∥α ③l ⊥α. 以其中两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 四.解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题12分)如图,在平行四边形ABCD 中,|AB →|=3,|BC →|=2,e 1→=AB →|AB →|,e 2→=AD →|AD →|,AB →与AD →的夹角为π3.(1)若AC →=xe 1→+ye 2→,求x,y 的值; (2)求AC →与BD →的夹角的余弦值.18.(本题10分)已知2i-3是关于x 的方程2x 2+px+q=0的一个根,求实数p-q 的值.19.(本题12分)如图,一个封闭的圆锥型容器,当顶点在上面时,放置于锥体内的水面高度为h 1,且水面高是锥体高的13,即h 1=13h,若将锥顶倒置,底面向上时,水面高为h 2,求h 2的大小.20.(本题12分)在边长为4cm 的正方形ABCD 中,E 、F 分别为BC 、CD 的中点,M 、N 分别为AB 、CF 的中点,现沿AE 、AF 、EF 折叠,使B 、C 、D 三点重合,重合后的点记为B,构成一个三棱锥.(1)请判断MN 与平面AEF 的位置关系,并给出证明;(2)证明:AB ⊥平面BEF; ⇒ (3)求四棱锥E-AFNM 的体积.21.(本题12分)已知平面向量m →=(sinx,3sinx) ,n →=(sinx,-cosx),设函数f(x)=m →•n →. (1)求函数f(x)的单调增区间;(2)在△ABC 中,a,b,c 分别是角A,B,C 的对边,角A 为锐角,若f(A)+sin(2A-π6)=1,b+c=7, △ABC 的面积为23,求a.22.(本题12分)设z 1是虚数,z 2=z 1+1z 1是实数,且-1≤z 2≤1.(1)求|z 1|及z 2的实部的取值范围; (2)若ω=1-z 11+z 1求证:ω为纯虚数;参考答案一. 选择题 BCBB BBBD 二. 多选题 ACD ACD AC CD三. 填空题 (2-3,2+3);1:2:3;①②④;③②⇒① 四. 解答题 17.解析:(1)AC →=AB →+AD →=3e 1→+2e 2→,即x=3,y=2.(2)BD →=AD →-AB →=-3e 1→+2e 2→,∴BD →•AC →=(-3e 1→+2e 2→)•(3e 1→+2e 2→)=4e 2→2-9e 1→2=-5,e 1→•e 2→=cos π3=12, |AC →|=(3e 1→+2e 2→)2=9e 1→2+12e 1→•e 2→+4e 2→2=19, |BD →|=(-3e 1→+2e 2→)2=9e 1→2-12e 1→•e 2→+4e 2→2=7∴cos θ=AC →•BD →|AC →||BD →|=-519⨯7=- 5133133本题考查平面向量基本定理、数量积运算、向量夹角.18.解析:由题意知,2(2i-3)2+p(2i-3)+q=0,整理得,2(5-12i)+p(-3+2i)+q=0,即(10-3p+q)+(-24+2p)i=0,故p=12,q=26.p-q=-14. 本题考查复数运算、复数相等. 19.解析:当锥顶向上时,设圆锥底面半径为r,水的体积为: V=13πr 2h-13π(23r )2(23h )=1981πr 2h.当锥顶向下时,设水面圆半径为r ',则V=13πr '2h 2根据三角形相似知r '=rh 2h ,此时V=13πh 2(rh 2h )2 ∴13πh 2(rh 2h )2=1981πr 2h,故h 2=3193h本题考查圆锥、圆台的体积计算. 20.解析: (1)MN ∥平面AEF.证明:(1)∵MA=MB,NF=NB ∴MN ∥ AF又∵AF ⊂平面AEF,MN ⊄平面AEF ∴MN ∥平面AEF(2)∵在正方形ABCD 中,AB ⊥BE,AD ⊥DF ∴在三棱锥中AB ⊥BE,AB ⊥DF, 又∵BE ∩BF=B ∴AB ⊥平面BEF (3)由题意得,S △BEF =S △CEF =12CE •CF=12⨯2⨯2=2, V E-ABF =V A-BEF =13S △BEF AB=83∵MN ∥ AF,MN=12AF ∴S 梯形MNAF =34S △ABF , ∴V E-MNAF =34V A-BEF =2 本题考查线面平行、线面垂直、棱锥的体积计算.21.解析:(1)f(x)=m →•n →=sin 2x-3sinxcosx=1-cos2x 2-32sin2x=12-(32sin2x+12cos2x)=12-sin(2x+π6)由2k π+π2≤2x+π6≤2k π+3π2(k ∈Z)得,k π+π6≤x ≤k π+2π3(k ∈Z) ∴函数f(x)的单调增区间为[k π+π6,k π+2π3],(k ∈Z)(2)由题意得,12-sin(2A+π6)+sin(2A-π6)=1,化简得,cos2A=- 12 ∵A ∈(0,π2), ∴2A ∈(0,π),2A=2π3,即A=π3 又12bcsinA=23,得bc=8,∴a 2=b 2+c 2-2bccosA=(b+c)2-2bc(1+cosA)=25, ∴a=5本题考查三角恒等变形、正弦函数的图像性质、解三角形.22. 解析:(1)设z 1=x+yi(x,y ∈R 且y ≠0),z 2=z 1+1z 1=(x+yi)+1x+yi =(x+yi)+x-yi x 2+y 2=(x+x x 2+y 2)+(y-y x 2+y 2)i∵z 2是实数∴y-y x 2+y 2=0,又y ≠0,故1-1x 2+y 2=0,即x 2+y 2=1∴|z 1|=x 2+y 2=1,z 2=,由-1≤2x ≤1得,- 12≤x ≤12,∴z 2的实部的取值范围为[- 12,12].(2)ω=1-z 11+z 1=-1+21+z 1=-1+2(x+1)+yi =-1+2(x+1-yi)(x+1)2+y 2=-1+x+1-yi x+1=- yx+1i ∵- 12≤x ≤12∴12≤x+1≤32,又y ≠0,故- yx+1≠0∴ω为纯虚数本题考查复数的概念及运算.。

2019-2020年高一年级10月月考数学试题word版含答案

2019-2020年高一年级10月月考数学试题word版含答案
C.(-,3)∪(3,+∞)D.[-,+∞)
1,x>0,
5.设f(x)=0,x=0,g(x) =则f(g(π))
-1,x<0,
A.1 B.0 C.-1 D.π
6.已知函数f(x),g(x)分别由下表给出:
x
1
2
3
f(x)
1
1
1
x
1
2
3
g(x)
3
2
1
A.1 B.2 C.1或2 D.1或2或3
7.下列函数在指定区间上为单调函数的是()
2019-2020年高一年级10月月考数学试题word版含答案
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,选择一个符合题目要求的选项)
1.下列关系式或说法正确的是()
A.N∈Q B. C.空集是任何集合的真子集D.(1,2)
2.已知集合A={(x, y)|4x+y=6}, B={(x, y)|3x+2y=7},则A∩B=()
A.B.
C.D.
9.如图是某物体做直线运动的v-t图象,由图象可得到的
正确结果是( )
A.物体在前2s内做匀速直线运动
B. t=5 s时物体的加速度大小为0.75 m/s2
C.第3 s内物体的位移为1.5 m
D.物体在加速过程的位移比减速过程的位移大
10.如图是一辆汽车做直线运动的s-t图象,对线段OA、AB、BC、CD所表示的运动,下列说法正确的是
A. OA段运动最快
B. AB段静止
C. CD段表示的运动方向与初始运动方向相反
D. 4h内,汽车的位移大小为30km
二、实验题.(本题共2小题,共18分.请将答案填在答题纸中的横线上或按要求答题)

2019-2020年高一数学考试参考答案

2019-2020年高一数学考试参考答案

2019-2020年高一数学考试参考答案一、选择题(本大题共12小题,每小题5分,共60分.)二、填空题(本大题共6小题,每小题5分,共30分.)13.),1(+∞- 14.1- 15.9;1- 16.4 17.b a c >> 18.2 三、解答题:本大题共6小题,共60分. 解答应写出文字说明,证明过程或演算步骤 . 19.(本题8分) 解:(Ⅰ)原式148121+⨯+=2=. ………………………………4分 (Ⅱ)原式2100lg 3log 33++=7223=++=. …………………8分20.(本题8分)解:(Ⅰ)当4=a 时,}74|{≤≤=x x A ,1|{-<=x x B 或}5>x ,∴}75|{≤<=x x B A . ………………………………4分 (Ⅱ)若A B A = ,则B A ⊆,∴13-<+a 或5>a ,解得4-<a 或5>a . ∴实数a 的取值范围),5()4,(+∞--∞ . …………………………………8分 21.(本题10分)解:(Ⅰ)要使函数)(x f 有意义,只要使0tan ≠x , ∴函数)(x f 的定义域为,|{R x x ∈且},2Z k k x ∈≠π. ………………3分 (Ⅱ)由x x x cos sin tan =,得x x f cos )(=,∴135cos )(==ααf . …………5分 ∵)2,0(πα∈,∴1312cos 1sin 2=-=αα. ………………7分∴4sinsin 4coscos )4cos()4(παπαπαπα-=+=+fB262722131222135-=⨯-⨯=. ………………10分 22.(本题10分)解:(Ⅰ)∵1cos 22sin )(2++=x x x fx x 2cos 2sin +=)42sin(2π+=x , ……………………2分∴)(x f 的最小正周期πωπ==2T . ……………………4分(Ⅱ)由πππππk x k 2234222+≤+≤+得ππππk x k +≤≤+858)(Z k ∈ ∴函数的单调减区间]85,8[ππππk k ++)(Z k ∈. …………………7分(Ⅲ)由43,4[42]2,2[24,4[πππππππ-∈+⇒-∈⇒-∈x x x . ∴当442ππ-=+x 时,即4π-=x 时,)(x f 取得最小值0. …………10分23.(本题12分)解法一:(Ⅰ)连接OP ,PB ,∵P 是弧AB 靠近点B 的三等分点,)0(2>=a a AB ∴a AP PAB 3,6==∠π. ……………………2分∴232336cosa a a AB OP =⨯⨯=⋅=⋅π………………………4分 (Ⅱ)设θ=∠PAB , 则θθcos 2,2a AP POB ==∠,此时向量与的夹角为θ3, ………………………6分 ∴)2cos(cos 23cos cos 222θθθθθ+=⋅=⋅a a P O AP )sin 2sin cos 2(cos cos 22θθθθθ-=a)cos sin 22sin cos 22(cos 22θθθθθ⨯-⨯=a ]2sin )12(cos 2[cos 22θθθ-+=a )12cos 2cos 2(22-+=θθa]89)412(cos 2[22-+=θa , ………………………10分 ∴ 当412cos -=θ时,P O '⋅的最小值为289a -.当12cos =θ时,P O AP ⋅的最大值为22a . ………………12分解法二:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系. ∵P 是弧AB 靠近点B 的三等分点,连接OP ,则3BOP π∠=, …………1分 ∴点P坐标为1()2a .又点A 坐标是(,0)a -,点B 坐标是(,0)a ,∴3()2AP a =,(2,0)AB a =,∴23AP AB a ⋅=.(Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'- ∴(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. ………………6分 ∴22222coscos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+-2221192(cos cos )2168a a θθ=++-222192(cos )48a a θ=+-. ………10分当1cos 4θ=-时,AP OP '⋅有最小值298a -,当cos 1θ=时,AP OP '⋅有最大值22a . …………………12分24.(本题12分)解]:(Ⅰ)…………………………3分(Ⅱ)当]5,1[-∈x 时,54)(2++-=x x x f .)54()3()(2++--+=x x x k x g )53()4(2-+-+=k x k x436202422+--⎪⎭⎫ ⎝⎛--=k k k x , ………………………5分 ∵ 2>k ,∴124<-k. ………………………6分 ① 当1241<-≤-k ,即62≤<k 时,取24kx -=, min )(x g ()[]6410414362022---=+--=k k k . ∵ ,64)10(162<-≤k ,∴064)10(2<--k 则0)(min >x g .………9分② 当124-<-k,即6>k 时,取1-=x ,min )(x g =02>k . 由 ①、②可知,当2>k 时,在]5,1[-∈x 上0)(>x g ,∴在区间]5,1[-上,)3(+=x k y 的图像位于函数)(x f 图像的上方.……12分。

2019-2020学年高一下学期第一次学考数学试题 Word版含解析

2019-2020学年高一下学期第一次学考数学试题 Word版含解析

数学 第Ⅰ卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个命题正确的是( ) A. 两个单位向量一定相等 B. 若a 与b 不共线,则a 与b 都是非零向量 C. 共线的单位向量必相等 D. 两个相等的向量起点、方向、长度必须都相同【★答案★】B 【解析】 【分析】由相等向量、共线向量的概念逐一核对四个选项得★答案★. 【详解】解:两个单位向量一定相等错误,可能方向不同;若a 与b 不共线,则a 与b 都是非零向量正确,原因是零向量与任意向量共线; 共线的单位向量必相等错误,可能是相反向量;两个相等的向量的起点、方向、长度必须相同错误,原因是向量可以平移. 故选:B .【点睛】本题考查命题的真假判断与运用,考查了平行向量、向量相等的概念,属于基础题. 2.下列向量的运算结果为零向量的是( ) A. BC AB +B. PM MN MP ++C. MP GM PQ QG +++D. BC CA AB CD +++【★答案★】C 【解析】 【分析】根据向量加法运算规律,逐项检验,即可求得★答案★. 【详解】对A ,BC AB AB BC AC +=+=; 对B ,PM MN MP PM MP MN MN ++=++=;对C ,()()0MP GM PQ QG GM MP PQ QG GP PG +++=+++=+=;对D ,()0BC CA AB CD AB BC CA CD CD CD +++=+++=+=. 综上所述,只有C 符合题意 故选:C.【点睛】本题解题关键是掌握向量加法运算规律,考查了分析能力和计算能力,属于基础题. 3.函数π()sin(2)3f x x =+的最小正周期为( ) A. 4π B. 2πC. πD.π2【★答案★】C 【解析】 由题意22T ππ==,故选C . 【名师点睛】函数()sin (0,0)y A x B A ωϕω=++>>的性质:(1)max min =+y B A y B A =-,. (2)最小正周期2.T πω=(3)由()ππ2x k k Z ωϕ+=+∈求对称轴. (4)由()ππ2π2π22k x k k Z ωϕ-+≤+≤+∈求增区间;由()π3π2π2π22k x k k Z ωϕ+≤+≤+∈求减区间.4.若向量()1,2AB =,()3,4BC =,则AC =( ) A. ()4,6 B. ()4,6-C. ()2,2--D. ()2,2【★答案★】A 【解析】 【分析】直接根据AC AB BC =+,将坐标代入运算即可得出结果. 【详解】解:()()()1,23,44,6AC AB BC =+=+=. 故选:A【点睛】本题是一道最基本的向量坐标运算题,直接按照运算法则计算即可,属于简单题. 5.已知角α的终边经过点(4,3)-,则cos α=( )A.45B.35C. 35-D. 45-【★答案★】D 【解析】试题分析:由题意可知x=-4,y=3,r=5,所以4cos 5x r α==-.故选D. 考点:三角函数的概念.6.若4cos 5α=-,且α是第三象限角,则tan α=( ) A. 34-B. 43-C.34D.43【★答案★】C 【解析】 【分析】根据同角三角函数基本关系,结合角的范围,先求出正弦,即可求出正切. 【详解】因为4cos 5α=-,且α是第三象限角, 所以23sin 1cos 5αα=--=-, 所以sin 3tan cos 4ααα==. 故选:C .【点睛】本题主要考查由余弦求正切,熟记同角三角函数基本关系即可,属于基础题型. 7.13sin 6π的值为 ( ) A. 12-B.12C. 32-D.32【★答案★】B 【解析】 【分析】利用诱导公式可得所求之值. 【详解】131sinsin 2sin 6662ππππ⎛⎫=+== ⎪⎝⎭,故选B.【点睛】本题考查诱导公式,属于基础题.8.对于非零向量a ,b ,“20a b +=”是“//a b ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【★答案★】A 【解析】【详解】解:因为于非零向量a ,b ,当“20a b +=”时,//a b ,反之,//a b 时,可能3a b =,故“20a b +=”是“//a b ”的充分不必要条件,选A9.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A. 91.5和91.5B. 91.5和92C. 91和91.5D. 92和92【★答案★】A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.510.“双色球”彩票中有33个红色球,每个球的编号分别为01,02,…,33.一位彩民用随机数表法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第6列的数3开始,从左向右读数,则依次选出来的第3个红色球的编号为( ) A. 21 B. 32 C. 09 D. 20【★答案★】C 【解析】 【分析】【详解】根据随机数表法的应用得到数据分别为:21,32,09…..故第三个数据为09. 故★答案★为C .11.2sin 1y x =-+的单调递减区间为( )A. π3(π,ππ),Z 22k k k ++∈ B. π3[π,2ππ],Z 22k k k ++∈ C. ππ[π,π],Z 22k k k -+∈D. ππ(2π,2π),Z 22k k k -+∈【★答案★】D 【解析】 【分析】结合复合函数单调性法则,利用三角函数的图象和性质即可得到结论. 【详解】因为2sin 1y x =-+,所以2sin 1y x =-+的单调递减区间为sin y x =的单调增区间, 由-2π+2k π≤x ≤2k π2π+,k ∈Z, 得函数2sin 1y x =-+的单调递减区间是()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,观察选项可知D 正确, 故选:D.【点睛】本题主要考查三角函数的图象和性质,复合函数单调性法则,属于基础题目. 12.函数y =-sin x ,x ∈π3,22π⎡⎤-⎢⎥⎣⎦的简图是( ) A.B.C.D.【★答案★】D 【解析】 用排除法求解.当x =0时,y =-sin 0=0,故可排除A 、C ; 当x =32π时,y =-sin 32π=1,故可排除B . 选D .第Ⅱ卷二、填空题:本大题共4小题,每小题3分,共12分.13.某学院的A ,B ,C 三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生,B 专业有420名学生,则在该学院的C 专业应抽取 名学生. 【★答案★】40 【解析】【详解】试题分析:该学院的C 专业共有1200-380-420=400,所以,在该学院的C 专业应抽取学生数为400×1201200=40. 考点:本题主要考查分层抽样.点评:简单题,分层抽样应满足:各层样本数÷该层样本容量=抽样比. 14.若sinα<0 且ta nα>0,则α是第 _________ 象限角. 【★答案★】第三象限角 【解析】试题分析:当sinα<0,可知α是第三或第四象限角,又tanα>0, 可知α是第一或第三象限角,所以当sinα<0 且tanα>0, 则α是第三象限角. 考点:三角函数值的象限符号.15.设sin 3x t =-,x ∈R ,求t 的取值范围________________ 【★答案★】24t ≤≤ 【解析】 【分析】由1sin 1x -≤≤建立关于t 的不等式,解不等式即可得解.【详解】因为1sin 1x -≤≤,所以131t -≤-≤,解之得:24t ≤≤.【点睛】本题考查三角函数的值域,考查计算能力,侧重考查对基础知识的理解和掌握,属于基础题.16.已知(2,5)AB =和向量(1,)a y =,若向量//AB a ,则a 的纵坐标y =___________【★答案★】52【解析】 【分析】根据向量平行的条件建立关于y 的方程,求解即可.【详解】因为//AB a ,所以有:2510y ⨯-⨯=,解之得:52y =. 故★答案★为:52【点睛】本题考查向量平行充要条件的应用,考查计算能力,侧重基础知识的理解的掌握,属于基础题.三、解答题:本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.17.某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x ,后取的小球的标号为y ,这样构成有序实数对(),.x y (1)写出这个试验的所有结果;(2)求“第一次取出的小球上的标号为2”的概率.【★答案★】(1)()1,2,()1,3,()1,4,()2,1,()2,3,()2,4,()3,1,()3,2,()3,4,()4,1,()4,2,()4,3;(2)14. 【解析】 【分析】(1)先将第一个小球的可能情况x 列出,再针对每种情况x 列出第二个小球的可能情况y ,注意无放回地取出两个小球,然后写出结果即可;(2)“第一次取出的小球上的标号为2”的试验结果为3种,而这个试验的所有结果为12种,结合古典概型的定义计算概率即可.【详解】(1)当1x =时,2y =,3,4;当2x =时,1y =,3,4;当3x =时,1y =,2,4;当4x =时,1y =,2,3.因此,这个试验的所有结果是()1,2,()1,3,()1,4,()2,1,()2,3,()2,4,()3,1,()3,2,()3,4,()4,1,()4,2,()4,3;(2)记“第一次取出的小球上的标号为2”为事件A ,则()()(){}2,12,32,4A =,,,而这个试验的所有结果为12种,则31()124P A ==. 【点睛】本题考查古典概型,解题关键是熟练掌握列举法的应用,考查分析和计算能力,属于常考题.18.某中学团委组织了“纪念抗日战争胜利73周年”的知识竞赛,从参加竞赛的学生中抽出60名学生,将其成绩(均为整数)分成六段[)40,50,[)50,60,…,[]90,100后,画出如图所示的部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四组的频率,并补全这个频率分布直方图;(2)估计这次竞赛的及格率(60分及以上为及格)和平均分(同一组中的数据用该组区间的中点值代表)【★答案★】(1)0.3 (2)75%;71 【解析】 【分析】(1)利用频率分布直方图中的各组的频率和等于1,求出第四小组的频率,求出纵坐标,补全这个频率分布直方图即可.(2)求出60及以上的分数所在的第三、四、五、六组的频率和;利用组中值估算抽样学生的平均值为各组的中点乘以各组的频率和为平均值. 【详解】解:(1)因为各组的频率和等于1,故第四组的频率:41(0.0250.01520.010.005)100.3p =-+⨯++⨯=, 频率分布直方图第四小组的纵坐标是:0.30.0310=, 则频率分布直方图如下图所示:(2)依题意,60及以上的分数所在的第三、四、五、六组, 频率和为(0.0150.030.0250.005)100.75+++⨯=, 所以,抽样学生成绩的合格率是75%, 利用组中值估算抽样学生的平均分为: 123456455565758595p p p p p p ⋅+⋅+⋅+⋅+⋅+⋅450.1550.15650.15750.3850.25950.0571=⨯+⨯+⨯+⨯+⨯+⨯=,所以估计这次考试的平均分是71.【点睛】本题考查频率分布直方图、等可能事件的概率等.在频率分布直方图中,数据的平均值等于各组的中点乘以各组的频率之和;频率等于纵坐标乘以组距;属于基础题. 19.求下列函数的最大值,并写出使函数取得最大值的自变量x 的集合. (1)11sin 2y x =+; (2)23sin 22y x ⎛⎫=-- ⎪⎝⎭. 【★答案★】(1)max 32y =,对应的自变量x 的集合为2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)max 174y =,对应的自变量x 的集合为32,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【解析】 【分析】(1)根据正弦函数的有界性可得出当sin 1x =时,函数11sin 2y x =+取得最大值,由此可得出对应的自变量x 的集合;(2)根据二次函数的基本性质可得出当sin 1x =-时,函数23sin 22y x ⎛⎫=-- ⎪⎝⎭取得最大值,由此可得出对应的自变量x 的集合.【详解】(1)1sin 1x -≤≤,所以,当sin 1x =时,函数11sin 2y x =+取得最大值max 32y =,此时,对应的自变量x 的集合为2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; (2)1sin 1x -≤≤,由二次函数的基本性质可知,当sin 1x =-时,函数23sin 22y x ⎛⎫=-- ⎪⎝⎭取得最大值2max3171224y ⎛⎫=---= ⎪⎝⎭.此时,对应的自变量x 的集合为32,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【点睛】本题考查利用正弦函数的有界性求函数的最大值,同时也考查了二次函数基本性质的应用,考查计算能力,属于基础题. 20.(1)化简:sin(2)tan()tan()cos()tan(3)πααπαππαπα-+----(2)求证:442sin cos 2sin 1ααα-=- 【★答案★】(1)2tan α;(2)证明见解析. 【解析】 【分析】(1)由题意结合三角函数诱导公式、同角三角函数的商数关系化简即可得解; (2)由题意利用同角三角函数的平方关系即可证明左边等于右边,即可得证. 【详解】(1)原式()()2sin tan tan sin tan tan cos tan cos ααααααααα-⋅⋅-==⋅=-⋅-;(2)证明:左边()()222244sin cos sin cos sincos αααααα=-=+-()22222sin cos sin 1sin 2sin 1ααααα=-=--=-=右边.得证.【点睛】本题考查了三角函数诱导公式的应用,考查了同角三角函数的平方关系、商数关系的应用,属于基础题.21.(1)已知(2,1)a =,(1,3)b =-,(3,5)c =,把,a b 作为一组基底,试用,a b 表示c . (2)在直角坐标系xoy 内,已知点A (-1,-1),B (1,3),C (2,5),证明A 、B 、C 三点共线.【★答案★】(1)2c a b =-;(2)证明见解析.【解析】【分析】(1)设c a b λμ=+,由平面向量基本定理可得2335λμλμ+=⎧⎨-=⎩,解方程即可得解; (2)由题意用坐标表示平面向量()2,4AB =、()3,6AC =,进而可得23AB AC =,即可得证. 【详解】(1)设c a b λμ=+,(2,1)a =,(1,3)b =-,(3,5)c =,∴(3,5)(2,1)(1,3)λμ=+-,∴2335λμλμ+=⎧⎨-=⎩,解得21λμ=⎧⎨=-⎩, ∴2c a b =-;(2)点A (-1,-1),B (1,3),C (2,5),∴()2,4AB =,()3,6AC =, ∴23AB AC =, ∴ A 、B 、C 三点共线.【点睛】本题考查了平面向量线性运算的坐标表示,考查了用基底表示向量及用坐标解决三点共线问题,属于基础题.感谢您的下载!快乐分享,知识无限!。

2019-2020年高一下学期第一次考试数学含答案

2019-2020年高一下学期第一次考试数学含答案

2019-2020年高一下学期第一次考试数学含答案注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂在其它答案标号.第Ⅰ卷(共50分)一:选择题(每小题5分,共5分)1: 圆x 2+y 2+4x-2y+4=0的点到直线y=x-1上的最近距离为( ) (A) 2 2 (B) 2 –1 (C) 2 2 –1 (D) 12: 过点(1,3)P 且在x 轴上的截距和在y 轴上的截距相等的直线方程为( )A.40x y +-=B.30x y -=C.40x y +-=或30x y +=D.40x y +-=或30x y -=3:若过点P(-2,1)作圆(x-3)2+(y+1)2=r 2的切线有且仅有一条,则圆的半径r 为( ) (A) 29 (B) 29 (C)小于 29 (D) 大于294:直线 y=33 x 绕原点按逆时针方向旋转π6后所得直线与圆(x-2)2+y 2=3的位置关系是( )(A )直线过圆心 (B ) 直线与圆相交,但不过圆心 (C )直线与圆相切 (D ) 直线与圆没有公共点 5:若A(1,2),B(-2,3),C(4,y)在同一条直线上,则y 的值是( )(A) 12 (B) 32(C) 1 (D) -16:已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是( ) (A) 4 (B) 2 1313 (C) 5 1326 (D) 7 13267:设点A(2,-3),B(-3,-2),直线l 过点P(1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )(A) k ≥34 或k ≤-4 (B) k ≥34 或k ≤ - 14 (C) -4≤k ≤34 (D) 34 ≤k ≤48:圆x 2+y 2+2x+4y-3=0上到直线x+y+1=0的距离为 2 的点共有( ) (A )1个 (B ) 2个 (C ) 3个 (D )4个9:把直线x-2y+m=0向左平移1个单位后,再向下平移2个单位,与圆C:x 2+y 2+2x-4y=0相切,则实数m 的值是( ) (A) –13或3 (B )13或-3 (C )13或3 (D )-13或-310:若P (2,-1)为圆(x-1)2+y 2=25的弦AB 的中点,则直线AB 方程是( ) (A )x-y-3=0 (B) 2x+y-3=0 (C) x+y-1=0 (D) 2x+y-5=0第Ⅱ卷(共100分)二:填空题(每小题5分,共25分)11、以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是__________________12、设直线L 过点A (2,4),它被平行线x-y+1=0与x-y-1=0所截是线段的中点在直线x+2y-3=0上,则L 的方程是_____________________13、三条直线x+y+1=0,2x-y+8=0和ax+3y-5=0只有两个不同的交点,则a=______________14、过点M (0,4)、被圆(x-1)2+y 2=4截得的线段为2 3 的直线方程为___________________15:设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N . A.存在一条定直线与所有的圆均相切 B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 以上说法正确的是 .三、解答题(共6小题,计75分。

2019-2020学年高一数学苏教版必修1同步练习:2.3 映射的概念 Word版含答案

2019-2020学年高一数学苏教版必修1同步练习:2.3 映射的概念 Word版含答案

姓名,年级:时间:2.3 映射的概念1、下列对应是从集合M 到集合N 的映射的是( )①;:,,M N R f x y x M y N ==→=∈∈1x。

②2;:,,M N R f x y x x M y N ==→=∈∈ ③|:,,|;M N R f x y x M y N +==→=∈∈1x x。

④3;:,,M N R f x y x x M y N ==→=∈∈.A.①② B 。

②③ C.①④ D 。

②④2、已知:f A B →是集合A 到B 的映射,又A B ==R ,对应法则2:23,f x y x x k B →=+-∈且k 在A 中没有原象,则k 的取值范围是( )A 。

(),4-∞-B 。

(1,3)-C 。

[),?-+∞4D 。

(,1)(3,)-∞-⋃+∞3、已知集合A 中元素(),x y 在映射f 下对应B 中元素(),x y x y +-,则B 中元素()4,2-在A 中对应的元素为( ) A. ()1,3 B 。

(1,6) C 。

()2,4 D 。

()2,64、设集合{|02},{|12}A x x B y y =≤≤=≤≤,下列图中能表示从集合A 到集合B 的映射的是( )A 。

B.C. D 。

5、下列对应不是映射的是( )A. B 。

C 。

D 。

6、图中各图表示的对应能构成映射的个数有( )A.3个 B 。

4个 C 。

5个 D 。

6个 7、在下列各对集合M 和Y 中,使对应法则21:1f x x →-可以作为集合M 到Y 的映射的是( ) A 。

{}111,3,5,0,,824M Y ⎧⎫=---=⎨⎬⎩⎭B.{}1113,5,7,0,,,82448M Y ⎧⎫==⎨⎬⎩⎭C 。

{}111,2,3,0,,38M Y ⎧⎫==⎨⎬⎩⎭D 。

{}110,2,4,6,1,,315M Y ⎧⎫==-⎨⎬⎩⎭8、下列对应关系不是映射的是( )A 。

B. C. D.9、集合{04},{02}A x x B y y =≤≤=≤≤,下列不表示从A 到B 的函数的是( ) A.1:2f x y x →=B.1:3f x y x →= C.2:3f x y x →=D.:f x y x →=10、已知映射:,f A B →其中,A B R ==对应法则221:().3xxf x y +→=若对实数,m B ∈在集合A 中存在元素与之对应,则m 的取值范围是( ) A 。

2019-20学年高一下数学试题(原卷版)

2019-20学年高一下数学试题(原卷版)

2019-2020学年尤溪五中高一(下)数学试卷时长:120分钟分值:150分一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合要求的.)1.若,,a b c ∈R 且a b >,则下列不等式成立的是( )A. 22a b >B. 11a b <C. ||||a c b c >D. 2211a b c c >++ 2.若,A B 是ABC ∆的内角,且sin sin A B >,则A 与B 的关系正确的是( )A. A B <B. A B >C. 2A B π+>D. 无法确定3.已知实数1,,,,9a x b --依次成等比数列,则实数x 的值为( )A. 3或-3B. 3C. -3D. 不确定 4.在ABC ∆中,角,A B 的对边分别为,a b ,根据下列条件解三角形,其中有两解的是( )A. 50a =,30b =,60A =B. 30a =,65b =,30A =C. 30a =,60b =,30A =D. 30a =,50b =,30A = 5.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若使得该女子所织布的尺数不少于10尺,则该女子所需的天数至少为( )A. 8B. 7C. 6D. 56.若关于x 的不等式230ax bx ++>的解集为1(1,)2-,其中,a b 为常数,则不等式230x bx a ++<的解集是( )A . (1,2)-B. (2,1)-C. 1(,1)2-D. 1(1,)2- 7.一艘轮船按照北偏东40︒方向,以18海里/时的速度直线航行,一座灯塔原来在轮船的南偏东20︒方向上,经过20分钟的航行,轮船与灯塔的距离为 )A. 6海里B. 12海里C. 6海里或12海里D.8.已知等差数列{}n a 的前n 项和为n S ,0n a ≠,22n n n S a a =+,则11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为( )A . 12n n- B. 1n n + C. 1n n - D. 11n n -+ 9.已知正数x 、y 满足1x y +=,则141x y ++的最小值为( ) A. 2 B. 92 C. 143 D. 5 10.已知正项数列{}n a 单调递增,则使得不等式()211i a x -<对任意(1,2,3,,)i a i k =⋯都成立的x 的取值范围是( ) A. 110,a ⎛⎫ ⎪⎝⎭ B. 120,a ⎛⎫ ⎪⎝⎭ C. 10,k a ⎛⎫ ⎪⎝⎭ D. 20,k a ⎛⎫ ⎪⎝⎭11.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD是角C 的内角平分线,且CD b =,则cos C ( ) A. 18 B. 34C. 23D. 16 12.已知数列{}n a 中,11a =,且11()()2n n n a a n N ++-=-∈,若存在正整数n ,使得1()()0n n t a t a +--<成立,则实数t 的取值范围为( ) A. 213t << B. 112t << C. 2536t << D. 122t << 二.填空题(本大题共4小题,每小题5分,共20分,把答案填在题目的横线上.)13.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.14.已知数列{}n a 中,12019a =,()*13n n a a n N +=∈,则数列{}na 的通项公式为________. 15.已知ABC ∆内角A 、B 、C 的对边分别为a 、b 、c 其面积为S ,且()22b c a +-=,则角A =________.16.每项为正整数的数列{}n a 满足11,231,n n n n n a a a a a +⎧⎪=⎨⎪+⎩是偶数是奇数,且64a =,数列{}n a 的前6项和的最大值为S ,记1a 的所有可能取值的和为T ,则S T -=_______.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤.) 17.已知关于x 的不等式012<-+-a x ax .(1)当2a =时,解关于x 的不等式;(2)当a R ∈时,解关于x 的不等式.18.在ABC ∆中,内角A ,B ,C的对边分别为a ,b ,c ,且sin 3cos a B b A =.(Ⅰ)求角A 的值; (Ⅱ)若ABC ∆的面积为3,ABC ∆的周长为6,求a .19.已知等差数列{}n a 的公差0d ≠,3922a a +=,且125,,a a a 成等比数列;数列{}n b 的前n 项和n S ,且满足21n n S b =-.(1)求数列{}n a ,{}n b 的通项公式;(2)设n n na cb =,求数列{}nc 的前n 项和n T . 20.合肥一中、六中为了加强交流,增进友谊,两校准备举行一场足球赛,由合肥一中版画社的同学设计一幅矩形宣传画,要求画面面积为24000cm ,画面的上、下各留8cm 空白,左、右各留5cm 空白.(1)如何设计画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?(2)设画面的高与宽的比为t ,且29510t ≤≤,求t 为何值时,宣传画所用纸张面积最小? 21.在ABC ∆中,内角、、A B C 的对边分别为a b c 、、.(1)若已知()cos cos c A B a b +=+,判断ABC ∆的形状;(2)若已知BC 边上的高为2a ,求c b b c+的最大值.22.已知数列{}n a 中,11a =,()1122n n na a a a +=++⋯+,数列{}n b 满足112b =,2121()n n n n b b b a ++=+. (1)求数列{}n a 的通项公式;(2)证明:21111(1)n n b b n +->-+; (3)证明:1n b <.。

2020-2021学年高一数学必修第一册(人教A版(2019))(试卷+答案)

2020-2021学年高一数学必修第一册(人教A版(2019))(试卷+答案)

2020-2021学年高一数学必修一单元测试卷第5章 三角函数(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、在平面直角坐标系xOy 中,角与均以Ox 为始边,它们的终边关于x 轴对称,若=αsin 54,则=βsin (A .53B .54C .53-D .-54 2.(2020全国 Ⅱ卷)若α为第四象限角,则( ) A .cos 20α> B .cos 20α< C .sin 20α>D .sin 20α<3..设α是第二象限角,P(x ,4)为其终边上的一点,且cos α=15x ,则tan α=( ) A .43B .34C .-34D .-434. 一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( ) A .2π B .3π C 2 D 35.若4sin cos 3θθ-=,且3π,π4θ⎛⎫∈ ⎪⎝⎭,则sin(π)cos(π)θθ---=( ) A .23- B .23C .43-D .436.(2020全国III 卷)已知2tan tan()74πθθ-+=,则tan θ=( )A .2-B .1-C .1D .27.若2cos 23πα⎛⎫-= ⎪⎝⎭,则()cos 2πα-=( )A . 29- B .29 C . 59- D . 598 (2020海南卷改编)右图是函数sin()y x ωϕ=+的部分图像,则sin()x ωϕ+=( )A .sin()3x π+B .sin(2)3x π-C .)62cos(π-xD .5cos(2)6x π-9. (2020全国卷I )已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=( )A .5B .23C .13D 510. 设函数()sin()3)f x x x ωϕωϕ=++(0,2πωϕ><)的最小正周期为π,且()f x 为偶函数,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增11. 若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( )A .33B .-33C .539D .-69 12. 设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( )A .πB .3π4C .3π2D .7π4二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13. (2020江苏卷)将函数3sin(2)4y x π=+的图象向右平移6π个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 .14. (2020北京) 若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.15. (2020江苏卷)已知22sin ()43πα+=,则sin2α的值是________.16.(2020天津卷改编)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是________三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知π02α<<,4sin 5α=. (1)求tan α及sin 2α的值;(2)求πcos 2sin()2αα++的值.18.(12分)已知f(α)=.(1)化简f(α);(2)若f(α)=,且<α<,求cosα-sinα的值;(3)若α=-,求f(α)的值.19. (12分)(2020·湖北武汉高一期末)一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间.(1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数; (2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米?20.(12分)【2020·天津高三二模】已知函数()()21cos 3sin cos 2f x x x x x =+-∈R (1)求()f x 的最小正周期;(2)讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性;21. (12分)(本小题满分12分)已知α,β为锐角,sin α=17,cos(α+β)=35. (1)求sin ⎝ ⎛⎭⎪⎫α+π6的值; (2)求cos β的值.22.(12分) 已知函数f(x)=sin2x -2sin2x.(1)求函数f(x)的最大值; (2)求函数f(x)的零点的集合.2020-2020学年高一数学必修一第一册提优卷 第5章 三角函数(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、在平面直角坐标系xOy 中,角与均以Ox 为始边,它们的终边关于x 轴对称,若=αsin 54,则=βsin (A .53B .54C .53-D .-54 答案D【解析】角与均以Ox 为始边,且它们的终边关于x 轴对称,=αsin βsin , 又=αsin 54,∴=βsin -54. 故选:D .2.(2020全国 Ⅱ卷)若α为第四象限角,则( ) A .cos 20α> B .cos 20α<C .sin 20α>D .sin 20α<答案:D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<故选D .3..设α是第二象限角,P(x ,4)为其终边上的一点,且cos α=15x ,则tan α=( ) A .43 B .34C .-34D .-43答案:D【解析】:α是第二象限角,所以x<0,r =x 2+16, 所以cos α=x x 2+16=15x ,所以x 2=9,所以x =-3, 所以tan α=-43. 故选D .4. 一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( ) A .2π B .3π CD【答案】C【解析】:设圆内接正方形的边长为a ,所以弧长等于a的圆弧所对的圆心角为l rα===,故选C . 5.若4sin cos 3θθ-=,且3π,π4θ⎛⎫∈ ⎪⎝⎭,则sin(π)cos(π)θθ---=() A .3-B .3C .43-D .43【答案】A【解析】由题意,416sin cos 12sin cos 39θθθθ-=⇒-=, 则72sin cos 09θθ=-<,由于3π,π4θ⎛⎫∈ ⎪⎝⎭, 22sin(π)cos(π)sin cos (sin cos )12sin cos 3θθθθθθθθ---=+=-+=-+=-故选A .6.(2020全国III 卷)已知2tan tan()74πθθ-+=,则tan θ=( )A .2-B .1-C .1D .2答案:D【解析】由题可知1tan 2tan 71tan θθθ+-=-,化解得:22tan 2tan 1tan 77tan θθθθ---=-,解得tan 2θ=.故选D .7.若2cos 23πα⎛⎫-= ⎪⎝⎭,则()cos 2πα-=( )A . 29-B .29C . 59-D .59【答案】C【解析】2cos sin 23παα⎛⎫-== ⎪⎝⎭, ()2225cos 2cos22sin 12139πααα⎛⎫-=-=-=⨯-=- ⎪ ⎪⎝⎭.选C . 8 (2020海南卷改编)右图是函数sin()y x ωϕ=+的部分图像,则sin()x ωϕ+=( )A .sin()3x π+B .sin(2)3x π-C .)62cos(π-x D .5cos(2)6x π- 【答案】:B 、 【解析】由图易知22362T πππ=-=,则T π=,22T πω==,由题意结合图像知,26πϕπ⨯+=,故23πϕ=,则2sin(2)sin(2)sin(2)333y x x x ππππ=+=+-=- sin(2)cos(2)266x x πππ=++=+.故选B .9. (2020全国卷I )已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=( )A .B .23 C .13D 【答案】:A【解析】由3cos28cos 5αα-=,得23(2cos 1)8cos 5αα--=, 得23cos 4cos 40αα--=,化为(3cos 2)(cos 2)0αα+-=,得2cos 3α=-,那么sin 3α=.故选A .10. 设函数()sin())f x x x ωϕωϕ=++(0,2πωϕ><)的最小正周期为π,且()f x 为偶函数,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增【答案】C【解析】()2sin 3f x x πωϕ⎛⎫=+- ⎪⎝⎭,周期为2,2T ππωω===,函数为偶函数,故,326πππϕϕ-=-=-,故()cos2f x x =-,所以函数在(0,)2π上单调递增. 故选C .11. 若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( )A .33 B .-33 C .539 D .-69【答案】C【解析】:根据条件可得α+π4∈⎝ ⎛⎭⎪⎫π4,34π,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,所以sin ⎝ ⎛⎭⎪⎫α+π4=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63, 所以cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=13×33+223×63=539.故选C .12. 设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( )A .πB .3π4C .3π2D .7π4【答案】D【解析】:由题意x ∈⎣⎢⎡⎦⎥⎤0,9π8,则2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π2, 画出函数的大致图象,如图所示.由图可得,当22≤a <1时,方程f (x )=a 恰有三个根. 由2x +π4=π2得x =π8; 由2x +π4=3π2得x =5π8.由图可知,点(x 1,a )与点(x 2,a )关于直线x =π8对称;点(x 2,a )和点(x 3,a )关于x =5π8对称,所以x 1+x 2=π4,x 2+x 3=5π4,所以2x 1+3x 2+x 3=2(x 1+x 2)+(x 2+x 3)=7π4,故选D .二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13. (2020江苏卷)将函数3sin(2)4y x π=+的图象向右平移6π个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 . 【答案】524x π=- 【解析】因为()3sin(2)4f x x π=+,将函数()3sin(2)4f x x π=+的图象向右平移6π个单位长度得()()3sin(2)3sin(2)63412g x f x x x ππππ=-=-+=-,则()y g x =的对称轴为2122x k πππ-=+,k Z ∈,即7242k x ππ=+,k Z ∈,0k =时,724x π=,1k =-时,524x π=-,所以平移后的图象中与y 轴最近的对称轴的方程是524x π=-. 14. (2020北京)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 15. (江苏卷)已知22sin ()43πα+=,则sin2α的值是________.【答案】:13【解析】因为22sin ()43πα+=,由2112sin ()(1cos(2))(1sin2)42223ππααα+=-+=+=,解得1sin 23α=16.(2020天津卷改编)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是________【答案】①③【解析】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确; 51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知π02α<<,4sin 5α=. (1)求tan α及sin 2α的值;(2)求πcos 2sin()2αα++的值.【答案】(1)4tan 3α=,24sin 225α=;(2)825.【解析】(1)因为π02α<<,4sin 5α=,所以3cos 4α=,所以sin 4tan cos 3ααα==,4324sin 22sin cos 25525ααα=⋅=⋅⋅=.(2)原式223382cos 1cos 2()15525αα=-+=⋅-+=.18.(12分)已知f(α)=.(1)化简f(α);(2)若f(α)=,且<α<,求cosα-sinα的值;(3)若α=-,求f(α)的值.【答案】(1)f(α)=sinα·cosα.(2)cosα-sinα=-.(3)-【解析】(1)f(α)==sinα·cosα.(2)由f(α)=sinαcosα=可知(cosα-sinα)2=cos 2α-2sinαcosα+sin 2α=1-2sinαcosα=1-2×=.又∵<α<,∴cosα<sinα,即cosα-sinα<0.∴cosα-sinα=-.(3)∵α=-=-6×2π+,∴f(-)=cos(-)·sin(-)=cos(-6)·sin(-6)=cos ·sin =cos(2π-)·sin(2π-)=cos ·=·(-)=-. 19. (12分)(2020·湖北武汉高一期末)一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间.(1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数; (2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米?【答案】(1)()22sin 1036t h t ππ⎛⎫=-+≥ ⎪⎝⎭;(2)有1s 时间点P 距水面的高度超过2米. 【解析】(1)设水轮上圆心O 正右侧点为A ,y 轴与水面交点为B ,如图所示:设()sin h a t b ωϕ=++,由1OB =,2OP =,可得03BOP π∠=,所以06AOP π∠=.2a ∴=,1b =,6πϕ=-,由题意可知,函数2sin 16h t πω⎛⎫=-+ ⎪⎝⎭的最小正周期为3T =,223T ππω∴==, 所以点P 距离水面的高度h 关于时间t 的函数为()22sin 1036t h t ππ⎛⎫=-+≥ ⎪⎝⎭; (2)由22sin 1236t h ππ⎛⎫=-+>⎪⎝⎭,得21sin 362t ππ⎛⎫-> ⎪⎝⎭, 令[]0,3t ∈,则211,3666t ππππ⎡⎤-∈-⎢⎥⎣⎦, 由256366t ππππ<-<,解得1322<<t ,又31122-=,所以在水轮转动的任意一圈内,有1s 时间点P 距水面的高度超过2米.20.(12分)【2020·天津高三二模】已知函数()()21cos 3cos 2f x x x x x =-∈R (1)求()f x 的最小正周期;(2)讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性;【答案】(1)π;(2)()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上单调递增;在区间,64ππ⎡⎤⎢⎥⎣⎦上单调递减.【解析】(1)依题意,()211cos 231cos 3sin cos 2sin 222226x f x x x x x x +π⎛⎫=+-=+-=+ ⎪⎝⎭所以2T ωπ==π.(2)依题意,令222262k x k πππ-+π≤+≤+π,k ∈Z , 解得36k x k ππ-+π≤≤+π,所以()f x 的单调递增区间为,36k k ππ⎡⎤-+π+π⎢⎥⎣⎦,k ∈Z .设,44A ππ⎡⎤=-⎢⎥⎣⎦,,36B k k ππ⎡⎤=-+π+π⎢⎥⎣⎦,易知,46A B ππ⎡⎤=-⎢⎥⎣⎦,所以当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上单调递增;在区间,64ππ⎡⎤⎢⎥⎣⎦上单调递减.21. (12分)(本小题满分12分)已知α,β为锐角,sin α=17,cos(α+β)=35. (1)求sin ⎝ ⎛⎭⎪⎫α+π6的值; (2)求cos β的值.【答案】(1)5314(2)4+12335 【解析】 (1)∵α为锐角,sin α=17, ∴cos α=1-sin 2α=437,∴sin ⎝ ⎛⎭⎪⎫α+π6=sin αcos π6+cos αsin π6 =17×32+437×12=5314.(2)∵α,β为锐角,∴α+β∈(0,π),由cos(α+β)=35得,sin(α+β)=1-cos 2(α+β)=45,∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=35×437+45×17=4+12335.22.(12分)已知函数f(x)=sin2x-2sin2x.(1)求函数f(x)的最大值;(2)求函数f(x)的零点的集合.【答案】(1)1 (2){x|x=kπ或x=kπ+,k∈Z}【解析】(1)因为f(x)=sin 2x-(1-cos 2x)=2sin(2x+)-1,所以,当2x+=2kπ+,k∈Z,即x=kπ+,k∈Z时,函数f(x)取得最大值1.(2)法一:由(1)及f(x)=0得sin(2x+)=,所以2x+=2kπ+或2x+=2kπ+,k∈Z,即x=kπ或x=kπ+,k∈Z.故函数f(x)的零点的集合为{x|x=kπ或x=kπ+,k∈Z}.法二:由f(x)=0得2sin xcos x=2sin2x,于是sin x=0或cos x=sin x即tan x=. 由sin x=0可知x=kπ;由tan x=可知x=kπ+.故函数f(x)的零点的集合为{x|x=kπ或x=kπ+,k∈Z}.。

北京市东城区2019-2020学年高一上学期期末教学统一检测 数学试题Word版解析

北京市东城区2019-2020学年高一上学期期末教学统一检测 数学试题Word版解析

北京市东城区2019-2020学年上学期期末教学统一检测高一数学试题第一部分(选择题 共30分)一、选择题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,选出符合题目要求的一项并填在表格中.1.符号“U A ð”可表示为 A .}{x x U x A∈∈且B .}{x x U x A∈∉且C .}{x x U∈ D .}{x x A ∉2.sin 43cos13cos43sin13︒︒-︒︒的值等于 A .12B .3 C.2 D.23.下列函数中,既是奇函数又在定义域上是增函数的为 A .1y x =- B .22y x =- C .1y x=D .||y x x = 4.已知1tan()2πα-=-,则cos()+cos 22cos sin παααα+-的值是A.15B.13C.35D. 15.三个数23.0=a ,3.022,3.0log ==c b 之间的大小关系是A .b c a << B.c b a << C.b a c << D.a c b << 6.函数2ln y x =的图象可能是7.函数()e 2xf x x =+-的零点所在的区间是A .()2,1--B .()1,0-C .()0,1D .()1,28.要得到函数sin(2)3y x π=-的图象,只需将x y 2sin =的图象A. 向右平移6π个单位长度 B. 向左平移6π个单位长度 C. 向右平移3π个单位长度 D. 向左平移3π个单位长度9.汽车的油箱是长方体形状容器,它的长是a cm ,宽是b cm ,高是c cm ,汽车开始行驶时油箱内装满汽油,已知汽车的耗油量是n cm 3/km ,汽车行驶的路程y (km )与油箱剩余油量的液面高度x (cm)的函数关系式为A. ()(0)ab y c x x c n =-≤≤ B. ()(0)ny c x x c ab =-≤≤ C. ()(0)c y n x x c ab =-≤≤ D. ()(0)aby n x x c c=-≤≤10.设函数31(),0,()2,0.xx f x x x ⎧≤⎪=⎨⎪>⎩ 若)(a f >1,则a 的取值范围是A .(-1,1)B .),1(+∞-C . (,2)(0,)-∞-+∞ D .(,0)(1,)-∞+∞第二部分(非选择题 共70分)二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在题中横线上.11.已知集合{1,1,2,4},{1,0,2}A B =-=-,则A B =___________.12.若角α的终边经过点(,3)P m -,且54cos -=α,则m 的值为 . 13.求值:12311(2)log 427--= .14.已知2)(x x f y +=是奇函数,且1)1(=f ,则(1)=f - .15.设当x q =时,函数()sin f x x x =-取得最大值,则cos θ= .16.给定k +∈N ,设函数:f ++→N N 满足:对于任意大于k 的正整数n ,()f n n k =-. (1)设1k =,则(2014)=f ;(2)设3k =,且当3n ≤时,()23f n ≤≤,则不同的函数f 的个数为 .三、解答题:本大题共4个小题,共46分,解答应写出文字说明,证明过程或演算步骤.已知:函数()lg(39)xf x =-的定义域为A ,集合}{20,B x x a a R =-<∈.(Ⅰ)求集合A ; (Ⅱ)求A B I .18.(本题满分10分)已知函数2()sin 22sin f x x x =-.(Ⅱ) 求函数()f x 的单调递增区间.19.(本题满分10分) 已知函数()1xf x x =-. (Ⅰ)求(1)(1)f x f x ++-的值;(Ⅱ)用函数单调性的定义证明函数()f x 在(1,)+∞上是减函数.已知函数()2sin(2+)+13f x x π=.(I )当43x π=时,求()f x 值; (II )若存在区间[,]a b (,a b R ∈且a b <),使得()y f x =在[,]a b 上至少含有6个零 点,在满足上述条件的[,]a b 中,求b a -的最小值.21.(本题满分8分)已知函数()f x 的自变量的取值区间为A ,若其值域区间也为A ,则称A 为()f x 的保 值区间.(I )求函数()2f x x =形如[)(),n n R +∞∈的保值区间;(II )函数()()110g x x x=->是否存在形如[](),a b a b <的保值区间?若存在,求出实数,a b 的值,若不存在,请说明理由.北京市东城区2019-2020学年上学期期末教学统一检测高一数学试题参考答案第一部分(选择题 共30分)一、选择题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,选出符合题目要求的一项并填在表格中.1.符号“U A ð”可表示为 A .}{x x U x A∈∈且B .}{x x U x A∈∉且C .}{x x U∈ D .}{x x A ∉2.sin 43cos13cos43sin13︒︒-︒︒的值等于A .12B . 3C .2D .23.下列函数中,既是奇函数又在定义域上是增函数的为 A .1y x =- B .22y x =- C .1y x=D .||y x x =4.已知1tan()2πα-=-,则cos()+cos 22cos sin παααα+-的值是A.15B.13C.35D. 15.三个数23.0=a ,3.022,3.0log ==c b 之间的大小关系是A .b c a << B.c b a << C.b a c << D.a c b <<6.函数2ln y x =的图象可能是7.函数()e 2xf x x =+-的零点所在的区间是A .()2,1--B .()1,0-C .()0,1D .()1,28.要得到函数sin(2)3y x π=-的图象,只需将x y 2sin =的图象A. 向右平移6π个单位长度 B. 向左平移6π个单位长度 C. 向右平移3π个单位长度 D. 向左平移3π个单位长度【解析】9.汽车的油箱是长方体形状容器,它的长是a cm ,宽是b cm ,高是c cm ,汽车开始行驶时油箱内装满汽油,已知汽车的耗油量是n cm 3/km ,汽车行驶的路程y (km )与油箱剩余油量的液面高度x (cm)的函数关系式为A. ()(0)ab y c x x c n =-≤≤ B. ()(0)ny c x x c ab =-≤≤ C. ()(0)c y n x x c ab =-≤≤ D. ()(0)aby n x x c c=-≤≤10.设函数31(),0,()2,0.xx f x x x ⎧≤⎪=⎨⎪>⎩ 若)(a f >1,则a 的取值范围是A .(-1,1)B .),1(+∞-C . (,2)(0,)-∞-+∞ D .(,0)(1,)-∞+∞第二部分(非选择题 共70分)二、填空题:本大题共6小题,每小题4分,共24分.请把答案填在题中横线上.11.已知集合{1,1,2,4},{1,0,2}A B =-=-,则AB =___________.12.若角α的终边经过点(,3)P m -,且54cos -=α,则m 的值为 .13.求值:12311(2)log 427--= .14.已知2)(x x f y +=是奇函数,且1)1(=f ,则(1)=f - .15.设当x q =时,函数()sin f x x x =-取得最大值,则cos θ= .16.给定k +∈N ,设函数:f ++→N N 满足:对于任意大于k 的正整数n ,()f n n k =-. (1)设1k =,则(2014)=f ;(2)设3k =,且当3n ≤时,()23f n ≤≤,则不同的函数f 的个数为 .三、解答题:本大题共4个小题,共46分,解答应写出文字说明,证明过程或演算步骤.17.(本题满分9分)已知:函数()lg(39)x f x =-的定义域为A ,集合}{20,B x x a a R=-<∈.(Ⅰ)求集合A ;(Ⅱ)求A B I .18.(本题满分10分)已知函数2()sin 22sin f x x x =-.(Ⅱ) 求函数()f x 的单调递增区间.19.(本题满分10分) 已知函数()1x f x x =-. (Ⅰ)求(1)(1)f x f x ++-的值;(Ⅱ)用函数单调性的定义证明函数()f x 在(1,)+∞上是减函数.20.(本题满分9分) 已知函数()2sin(2+)+13f x x π=. (I )当43x π=时,求()f x 值; (II )若存在区间[,]a b (,a b R ∈且a b <),使得()y f x =在[,]a b 上至少含有6个零 点,在满足上述条件的[,]a b 中,求b a -的最小值.21.(本题满分8分)已知函数()f x 的自变量的取值区间为A ,若其值域区间也为A ,则称A 为()f x 的保 值区间.(I )求函数()2f x x =形如[)(),n n R +∞∈的保值区间; (II )函数()()110g x x x=->是否存在形如[](),a b a b <的保值区间?若存在,求出实数,a b 的值,若不存在,请说明理由.。

2019-2020年高一下学期期末考试 数学 含答案

2019-2020年高一下学期期末考试 数学 含答案

2019-2020年高一下学期期末考试 数学 含答案一、填空题(本大题共14小题,每小题5分,计70分)1.的值是 .2.化简 .3.函数的定义域是 .4.函数的最小正周期是 .5.若,则点位于第 象限.6.函数取最大值时的值是 .7.若函数的零点则_________.8.函数的递增区间是 .9.为了得到函数)的图象,只需把函数的图象向右平移个___长度单位.10.若,且,则向量与的夹角为 .11.已知扇形的周长为,则该扇形的面积的最大值为 .12.设若函数在上单调递增,则的取值范围是________.13.如图,在△中,则________.14.在直角坐标系中, 如果两点在函数的图象上,那么称为函数的一组关于原点的中心对称点(与看作一组).函数关于原点的中心对称点的组数为 .二、解答题(本大题共6小题,计80分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.A 、B 是单位圆O 上的点,点A 是单位圆与轴正半轴的交点,点在第二象限.记且.(1)求点坐标;(2)求的值.C16.平面内给定三个向量.(1)若,求实数k;(2)若向量满足,且,求向量.17.已知函数(为常数),.(1)若在上是单调增函数,求的取值范围;(2)当时,求的最小值.18.已知的顶点坐标为,,, 点P的横坐标为14,且,点是边上一点,且. (1)求实数的值与点的坐标;(2)求点的坐标;(3)若为线段(含端点)上的一个动点,试求的取值范围.(2)求函数的单调递增区间与对称中心坐标;(3)当时,函数的图像与轴有交点,求实数的取值范围.20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以为上界的有界函数,求实数的取值范围.二、解答题。

2019-2020学年高一数学必修1寒假作业全套打包下载含答案

2019-2020学年高一数学必修1寒假作业全套打包下载含答案

2019-2020学年高一数学必修一寒假作业寒假作业(1)集合1、设集合{}0,1,2A =,则集合{}|,B x y x A y A =-∈∈中元素的个数是( )A.1B.3C.5D.92、考察下列每组对象,能组成一个集合的是( )①一中高一年级聪明的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的正整数;.A.①②B.③④C.②③D.①③3、下列命题中正确的是( )①{}00=;②由1,2,3组成的集合可以表示为{}1,2,3或{}3,2,1;③方程2(1)(2)0x x --=的所有解构成的集合可表示为{}1,1,2;④集合{}|25x x <<可以用列举法表示.A.①和④B.②和③C.②D.以上命题都不对4、已知集合{}()(){}1,2,3,|120,A B x x x x Z ==+-<∈,则AB = ( )A. {}1B. {}1,2C. {}0,1,2,3D. {1,0,1,2,3}- 5、如图,I 是全集,,A B C 是它的子集,则阴影部分所表示的集合是( )A.I ()AB C ð B.I ()AB C ð C.I ()AB C ð D.I ()A B C ð6、集合{}{}|0,|0,R A x ax b B x cx d U =+≠=+≠=,则()(){}|0x ax b cx d ++=等于( )A.R R A B 痧B.R A B ðC.R A B ðD.R R A B 痧7、已知集合{}2|35,Z A x xx =≤≤∈,则集合A 的真子集的个数为( ) A.1 B.2 C.3 D.4 8、已知集合{}{}2|320,|A x x x B x x a =-+==<,若A B Ø,则实数a 的取值范围是( )A. 2a ≤B. 2a <C. 2a >D. 2a ≥9、满足{}{}11,2,3,4,5A ⊆Ø,且A 中所有元素之和为奇数的集合A 的个数是( )A.5B.6C.7D.810、含有三个实数的集合可表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,则20112012a b +的值为( )A.0B.1C.-1D.±111、若{}{},,0,1,2,3,4,0,2,4,8A B A C B C ⊆⊆==,则满足上述条件的集合A 有__________个.12、设全集U R =,集合{}{}|1,|A x x B x x a =>=<-,且U B A Üð,则实数a 的取值范围是__________.13、已知集合{}2|320A x ax x =-+=至多有一个元素,则a 的取值范围是__________.14、已知集合(){}(){},|21,,|3A x y y x B x y y x ==+==+,若a A ∈且a B ∈则a 为__________.15、设,S T 是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(1)(){}|T f x x S =∈;(2)对任意12,x x S ∈,当12x x <时,恒有()()12f x f x <.那么称这两个集合“保序同构”.现给出以下3对集合:①N A =,*N B =;②{}|13A x x =-≤≤,{}|810B x x =-≤≤;③{}|01A x x =<<,R B =.其中,“保序同构”的集合对的序号是__________.(写出所有“保序同构”的集合对的序号)答案以及解析1答案及解析:答案:C2答案及解析:答案:C解析:①“一中高一年级聪明的学生”的标准不确定,因而不能构成集合;②“直角坐标系中横、纵坐标相等的点”的标准确定,能构成集合;③“不小于3的正整数”的标准确定.能构成集合;④”的标准不确定,不能构成集合.3答案及解析:答案:C 解析:①错误,0是元素,{}0表示有一个元素0的集合;②正确,由1,2,3组成的集合可以表示为{}1,2,3或{}3,2,1;③错误,方程2(1)(2)0x x --=的所有解构成的集合可表示为{}1,2;④错误,集合{}|25x x <<不可以用列举法表示.4答案及解析:答案:C解析:()(){}{}{}|120,Z |12,Z 0,1B x x x x x x x =+-<∈=-<<∈=.又因为{}1,2,3A =,所以{}0,1,2,3AB =. 5答案及解析:答案:D解析:由题图可知阴影部分表示的集合含有A 的元素,且含有C 的元素,但不含有B 的元素,故所表示的集合是I ()AB C ð. 6答案及解析:答案:D解析:()(){}|0x ax b cx d ++={}{}|0|0x ax b x cx d =+=+==R R A B 痧 7答案及解析:答案:C 解析:由题意知, 2x =-或2,即{}2,2A =-,故其真子集由3个.8答案及解析:答案:C 解析:{}{}2|3201,2A x x x =-+==,要使A B Ø,只需2a >即可.9答案及解析:答案:C 解析:∵{}1A Ø,∴1A ∈,又{}1,2,3,4,6A ⊆,且A 中所有元素之和为奇数,∴满足条件的集合A 有{}{}{}{}{}{}{}1,2,1,4,1,2,4,1,3,5,1,3,5,2,1,3,5,4,1,2,3,4,5,共7个.故选C.10答案及解析:答案:C 解析:由题意知0b a=,即0b =. 所以21a =且1a ≠,所以1a =-.故()2011201120122012101a b +=-+=-.11答案及解析:答案:8解析:A 中可能含有0,2,4这3个元素,故其A 可以为{}{}{}{}{}{}{}0,2,4,0,2,0,4,2,4,0,2,4,∅,共8个.12答案及解析:答案:1a ≥-解析:∵{}|1U x A x =≤ð,又∵U B A Üð,∴1a -≤,∴1a ≥-.13答案及解析: 答案:98a ≥或0a = 解析:当0a =时,320x -+=,即23x =,32A ⎧⎫=⎨⎬⎩⎭,符合要求;当0a ≠时,2320ax x -+=至多有一个解,所以980a ∆=-≤,所以98a ≥.综上,a 的取值范围为98a ≥或0a =. 14答案及解析:答案:()2,5 解析:设a 为(),x y ,∵a A ∈且a B ∈,∴,x y 是方程组213y x y x =+=+⎧⎨⎩的解,解方程组,得25x y ==⎧⎨⎩,∴a 为()2,5. 15答案及解析:答案:①②③解析:对于①:取()1f x x =-,*N x ∈,所以*N B =,N A =是“保序同构”;对于②:取97()(13)22f x x x =--≤≤, 所以{|13}A x x =-≤≤,{|810}B x x =-≤≤是“保序同构”;对于③:取π()tan π(01)2f x x x ⎛⎫=-<< ⎪⎝⎭,所以{|01}A x x =<<,R B =是“保序同构”,故应填①②③.寒假作业(2)函数的概念1、下列图形中可以表示以{}|01M x x =≤≤为定义域,以{}|01N y y =≤≤为值域的函数的图象是( )A. B. C. D.2、下列各组函数中,表示相等函数的是( )A .x y =与2y = B .1y =与0x y =C .x y =与y = D .x 3y =-与2x 9x 3y -=+3、已知函数()f x =.则m 的取值范围是( )A. (]0,4B. (]0,1C. [)4,+∞D. []0,44、设1,(0)()π,(0)0,(<0)x x f x x x +>⎧⎪==⎨⎪⎩,则[]}{(1)f f f -=( )A.π1+B.0C.πD.-15、已知()21f x x =+,则()()1f f -的值等于( )A.2B.3C.4D.56、下列函数中,表示同一个函数的是( )A. 2y x =与4y =B. y =与y =C. x y x =与()()1010x y x ≥⎧⎪=⎨-<⎪⎩D. 2y x =与2 S a =7、集合{}{}04,02A x x B y y =≤≤=≤≤,下列不表示从A 到B 的函数的是( )A. 1:2f x y x →= B. 1:3f x y x →= C. 2:3f x y x →=D. :f x y →=8、下列函数中,值域为()0,+∞的是( )A. y =B.y =C. 16y x =D. 21y x x =++9、函数21y x =-的定义域是()[],12,5-∞,则其值域是( )A. ()1,1,22⎡⎤-∞⎢⎥⎣⎦B. (),2-∞C. [)1,2,2⎛⎫-∞+∞ ⎪⎝⎭D. ()0,+∞10、定义在R 上的函数()1y f x =+的值域为[],a b ,则()f x 的值域为()A. [],a bB. []1,1a b ++C. []1,1a b --D.无法确定11、若()22144f x x x +=+,则()f x 的解析式为__________.12、函数01x y+=__________.13、定义在R 上的函数()f x 满足()()12f x f x +=.若当01x ≤≤时, ()()1f x x x =-,则当10x -≤≤时, ()f x =__________.14、设函数2()(2)1f x x a x =++-在区间(],2-∞上是减函数,则实数a 的最大值为 . 15、已知函数()[]234,3,1x x f x x =--+∈-,则该函数的值域为__________. 16、若函数()21y f x =-的定义域是[]0,2,则函数()1y f x =+的定义域是__________. 答案以及解析1答案及解析:答案:C 2答案及解析:答案:C解析:逐一考查所给的函数:A.x y =的定义域为R ,2y =的定义域为[)0,+∞,不是同一个函数; B.1y =的定义域为R ,0x y =的定义域为{}x x 0≠,不是同一个函数;C.x y =与y =D.x 3y =-的定义域为R ,2x 9x 3y -=+的定义域为{}x x 3≠-,不是同一个函数; 本题选择C 选项.3答案及解析:答案:D解析:由题意得, 210mx mx ++≥对一切实数恒成立.①当0m =时,不等式变为10≥.对一切实数恒成立,符合题意;②当0m ≠时,应有20,0440m m m m >⎧⇒<≤⎨∆=-≤⎩. 综上知04m ≤≤.4答案及解析:答案:A解析:5答案及解析:答案:D解析:∵()12f -=,∴()()()125f f f -==.6答案及解析:答案:D解析:若两个函数相等,则必满足定义域相同,对应关系相同,缺一不可.7答案及解析:答案:C解析:对于选项C,当4x =时, 823y =>不合题意,故选C 8答案及解析:答案:B解析:A 选项中,y 的值可以取0;C 选项中y 的值可以取负值; 对于D 选项, 2213124x x x ⎛⎫++=++ ⎪⎝⎭,故其值域为3,4⎡⎫+∞⎪⎢⎣⎭ B 选项的值域是()0,+∞故选B9答案及解析:答案:A 解析:函数21y x =-的图像是由反比例函数2y x=的图像向右平移1个单位得到的,根据图像可得答案.10答案及解析:答案:A解析:本题中, ()1y f x =+与()f x 的定义域,对应法则都相同,所以它们的值域也相同. 故选A.11答案及解析:答案:21x -12答案及解析:答案: {|0x x <且1}x ≠- 解析:由1000x x x x +≠⎧⎪⇒<⎨->⎪⎩且1x ≠-,即函数的定义域是{|0x x <且1}x ≠-13答案及解析: 答案:()112x x -+ 解析:方法一:当10x -≤≤时, 011x ≤+≤. 由已知得()()()1111.22f x x x =+=-+ 方法二:(代入法)∵10x -≤≤,∴011x ≤+≤,∴()()()()()11111111222f x f x x x x x =+=+-+=-+⎡⎤⎣⎦. 14答案及解析:答案:-2解析:本题考查函数的单调性.函数()f x 的图象的对称轴为直线22a x -=-,则函数()f x 在2,2a -⎛⎤-∞- ⎥⎝⎦上单调递减,在区间2,2a -⎡⎫-+∞⎪⎢⎣⎭上单调递增,所以222a -≤-,解得2a ≤-.故实数a 的最大值为-2.15答案及解析:答案:250,4⎡⎤⎢⎥⎣⎦解析:函数()[]2232534,3,124x x x x f x ⎛⎫=--+=-+=∈- ⎪⎝⎭ 图像的对称轴为32x =-,开口向下, ()max min 325(1)0,()24f x f f x f ⎛⎫===-= ⎪⎝⎭ 所以该函数的值域为250,4⎡⎤⎢⎥⎣⎦ 16答案及解析:答案:[]2,2- 解析:函数()21y f x =-的定义域是[]0,2,则[]211,3x -∈-∴[]11,3x +∈-解得[]2,2x ∈-,∴函数(1)y f x =+的定义域是[]2,2-寒假作业(3)函数的表示法1、设甲、乙两地距离为()0a a >,小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后.他又以匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数的图象为( )A B C D 2、函数()22f x x x =-的图像是( )A. B. C. D.3、若二次函数的图像开口向上且关于直线1x =对称,并过点(0,0),则此二次函数的解析式可能为( ) A. ()21f x x =-B. ()()211f x x =--+ C. ()()211x x f =-+ D. ()()211f x x =--4、已知函数()21,222,2x x x x x f x ⎧+>⎪=-⎨⎪+≤⎩,则()()1f f = ( ) A. 12-B. 2C. 4D. 115、已知函数()y f x =的对应关系如下表,函数()y f x =的图像是如图的曲线ABC ,其中(1,3),(2,1),(3,2)A B C ,则()2f g ⎡⎤⎣⎦的值为( )A.3B.2C.1D.0 6、下列函数中,不满足()22()f x f x =的是( ) A. ()f x x = B. ()f x x x =- C. ()1f x x =+ D. ()f x x =-7、已知函数()31f x x =-,若()()23f g x x =+,则函数()g x 的解析式为( )A. ()2433g x x =+ B. ()2433g x x =-C. ()4233g x x =+D. ()4233g x x =-8、―水池有2个进水口,1个出水口,进、出水的速度如图甲、乙所示.某天点到6点,该水池的蓄水量如图丙所示(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水; ②3点到4点不进水只出水; ③4点到6点不进水不出水. 则正确论断的个数是( )A.0B.1C.2D.3 9下列给出的函数是分段函数的是( )①②③④A.①②B.①④C.②④D.③④10、已知函数()22,02,0x x x x x f x ≤⎧=⎨->⎩,则()()3f f 的值是( ) A. 24- B. 15- C. 6- D. 1211、已知函数()32f x ax x =-的图像过点(1-,4),则a =__________.12、已知函数()(),f x g x 分别由下表给出:则满足()()()()f g x g f x >的x 的值是__________.13、在平面直角坐标系xOy 中,若直线2y a =与函数1y x a =--的图象只有一个交点,则a 的值为______.14、若0b >,二次函数2261y ax x a =++-的图象为下列四个图象中的一个,则a =__________15、若定义运算,,a b ≥⎧⎨<=⎩⊗b a ba ab 则函数()()2f x x x =⊗-的解析式是_________.答案以及解析1答案及解析:答案:D解析:由题意分三段作图可得. 2答案及解析:答案:C解析:()222,02,0x x x f x x x x ⎧-≥=⎨+<⎩,分段画出其函数图像,可知选C.3答案及解析:答案:D解析:设()2(1)x f c x =-+,由于点(0,0)在图像上,∴2(0)(01)0f c =-+=∴1c =-∴()()f x x -=-2114答案及解析:答案:C解析:由函数的解析式可得2(1)123f =+=,则()()11(3)3432f f f ==+=-5答案及解析:答案:B解析:由题意得()(2)1,2(1)2g f g f ===⎡⎤⎣⎦,故选B 6答案及解析: 答案:C解析:A 中()(2)222f x x f x x ===,B 中()(2)222f x x f x x =-=.C 中()(2)212f x x f x =+≠.D 中()(2)22f f x x x =-=.7答案及解析: 答案:A解析:∵()()3()123f g x g x x =-=+∴3()24g x x =+ 则()2433g x x =+ 8答案及解析:答案:B解析:由题意可知,在0点到3点这段时间,每小时进水量为2, 即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4 点水量减少了1,所以应该是有一个进水口进水,同时出水口出水, 故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错 9答案及解析: 答案: B 解析: 对于②,取得或,对于③,取或,所以②③都不符合题意 10答案及解析:答案:C 解析:∵函数()22,02,0x x x x x f x ≤⎧=⎨->⎩ ∴2(3)2333f =⨯-=-∴()()()()33236ff f =-=⨯-=-故选C11答案及解析:答案:-2解析:∵()32f x ax x =-过点(1-,4),∴24a -+=,∴2a =- 12答案及解析:故满足()()()()f g x g f x >的x 的值为2.13答案及解析: 答案:12-解析:本题考查数形结合思想的应用,解题的关键是作出函数1y x a =--的大致图像, 可由函数y x =的图像通过平移得到, 也可转化为分段函数1y x a =--1,{1,x a x ax a x a--≥=-+-<的图像求解.在同一平面直角坐标系内,作出函数2y a =与1y x a =--的大致图像,如图所示.14答案及解析: 答案:-1解析:因为0b >.所以对称轴不可能是y 轴.图①②不是二次函数()22610y ax x a b =++->的图象,图③④都经过原点,且对称轴都在y 轴右侧,即210a -=,且02ba->,解得1a =-.15答案及解析:答案:(),,f x <⎧=⎨-≥⎩x x 12x x 1解析:当2x x <-,即1x <时, ()f x x =; 当2x x ≥-,即1x ≥时, ()2f x x =-.所以(),,f x <⎧=⎨-≥⎩x x 12x x 1寒假作业(4)函数的单调性与最大(小)值1、已知函数()f x 为奇函数,且当0x >时, ()210f x x x=+>,则()1f -= ( ) A. -2B. 0C. 1D. 22、已知函数53()353f x x x x =---+,若()(2)6f a f a +->,则实数a 的取值范围是( ) A.(,1)-∞B.(,3)-∞C.(1,)+∞D.(3,)+∞3、已知函数()f x 是R 上的增函数,(0,1),(3,1)A B -是其图象上的两点,那么1()1f x -<<的解集是( ) A.(3,0)-B.(0,3)C.[)(,1)3,-∞-⋃+∞D.[)(,0)1,-∞⋃+∞4、函数()y f x =的图像如图所示,其增区间是( )A.[]4,4-B.[][]4,31,4--⋃C.[]3,1-D.[]3,4-5、已知函数(3)5(1)()2(1)a x x f x ax x -+≤⎧⎪=⎨>⎪⎩是R 上的减函数,则实数a 的取值范围是( ) A.(0,2)B.(]0,2C.(0,3)D.(]0,36、若函数()f x 在区间(,)a b 上是增函数,在区间(,)b c 上也是增函数,则函数()f x 在区间(,)(,)a b b c ⋃上( )A.必是增函数B.必是减函数C.是增函数或减函数D.无法确定单调性7、设函数()f x 是(),-∞+∞上的减函数,若R a ∈,则()A. ()()2f a f a >B. ()()2f a f a <C. ()()2f a a f a +< D.()()21f a f a +<8、函数11y x =-在区间[]2,3上的最小值为( ) A.2B.12 C.13 D.12-9、下列函数中,在区间()0,2上为增函数的是( ) A.3y x =- B.21y x =+ C.1y x= D.y x =- 10、下列结论中,正确的是( )A.函数y kx =(k 为常数,且0k <)在R 上是增函数B.函数2y x =在R 上是增函数 C.函数1y x=在定义域内是减函数 D.1y x=在(),0-∞上是减函数 11、设函数2()(2)1f x x a x =++-在区间(],2-∞上是减函数,则实数a 的最大值为 . 12、函数()f x 的定义域为 A ,若 12,x x A ∈ 且12()()f x f x =时总有12x x =,则称()f x 为单函数。

2019-2020年高一数学试题 含答案

2019-2020年高一数学试题 含答案

2019-2020年高一数学试题 含答案一.选择题:本大题共10个小题,每小题5分,共50分,把答案填写在答题卡相应的位置上.1.已知a >b ,ab ≠0,则下列不等式中:①a 2>b 2;②b1a 1<;③a 3>b 3;④a 2+b 2>2ab ,恒成立的不等式的个数是A .1个B .2个C .3个D .4个2.一只小狗在如图所示的方砖上走来走去,求最终停在阴影方砖上的概率为A .103B .51C .31 D.1253.在△ABC 中,若CBA sin sin cos =,则△ABC 的形状为 A .锐角三角形 B .直角三角形 C .等腰三角形 D . 钝角三角形4.某人最近7天收到的聊天信息数分别是5,10,6,8,9,7,11,则该组数据的方差为A.724 B .4C.716D .35.某射手射中10环、9环、8环的概率分别为0.24,0.28,0.19,那么,在一次射击训练中,该射手射击一次不够9环的概率为 A.0.48 B .0.52 C.0.71 D .0.296.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格(60分为及格)人数为 A.45 B .51 C.54 D .577.设a >0,b >0,若3是b a 339与的等比中项,则b1a 2+的最小值为A.1 B .13+34 C.23 D .32213+8.如果执行第8题图的程序框图,输出的结果为A.43 B .69 C.72 D .549.数列{a n }满足a n+1=⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤1a 211a 221a 0a 2n n n n ,,,若a 1=53,则a 2014=A.51B.52C.53D.5410.在△ABC 中,sin 2A ≤sin 2B+sin 2C ﹣sinBsinC ,则A 的取值范围是A.(0,6π]B.[6π,π)C.(0,3π]D.[3π,π)二.填空题:本大题共5个小题,每小题5分,共25分,把答案填写在答题卡相第2题图 第8题图 第6题图第12题图应的位置上.11.某算法的程序框图如图所示,若输入量S=1,a=5,则输出S= .(考点:程序框图)12.甲、乙两人在9天每天加工零件的个数用茎叶图表示如下图,则这9天甲、乙加工零件个数的中位数之和为 .(考点:茎叶图与中位数综合)13.已知S n 为等差数列{a n }的前n 项和,且a 6+a 7=18,则S 12= .(考点:数列的性质)14.设实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-1x 0y x 201y x 2,则z=x+3y 的最小值为 .(考点:线性规划)15.如图所示,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB=15m ,AC=25m ,∠BCM=30°,则tan θ的最大值 . (考点:解三角形应用)三.解答题:本大题共6个小题,共75分,把答案填写在答题卡相应的位置上. 16.(10分)甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(I )设(i ,j ),表示甲乙抽到的牌的数字,如甲抽到红桃2,乙抽到红桃3,记为(2,3),请写出甲乙二人抽到的牌的所有情况;(II )若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(考点:概率应用)第11题图 第15题图17.(12分)在等差数列{a n }和等比数列{b n }中,a 1=1,b 1=2,b n >0(n ∈N *),且b 1,a 2,b 2成等差数列,a 2,b 2,a 3+2成等比数列. (I )求数列{a n }、{b n }的通项公式;(II )设c n =a b n ,求数列{c n }的前n 项和S n .(考点:等差、等比数列综合)18.(12分)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打时间x (单位:小时)与当于投篮命中率y 之间的关系:(I )根据上表的数据,求出y 关于x 的线性回归方程a x y b +=∧;(II )预测小李该月6号打6小时篮球的投篮命中率为多少?(考点:线性回归应用)19.(12分)学校食堂定期向精英米业以每吨1500元的价格购买大米,每次购买大米需支付运输费用100元,已知食堂每天需食用大米1吨,储存大米的费用为每吨每天2元,假设食堂每次均在用完大米的当天购买.(I )问食堂每隔多少天购买一次大米,能使平均每天所支付的费用最少?(II )若购买量大,精英米业推出价格优惠措施,一次购买量不少于20吨时可享受九五折优惠,问食堂能否接受此优惠措施?请说明理由.(考点:不等式应用)20.(14分)在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2≥++CcosC对一切实数x恒成立.46xsin(I)求cosC的取值范围;(II)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.(考点:不等式与解三角形综合)试卷说明:本套模拟试题卷按照2014年重庆市四区联合调研抽测考试高一数学试题模板改编而成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档