一次方程与方程组专题复习

合集下载

一次函数与方程、不等式、方程组复习

一次函数与方程、不等式、方程组复习

19.2.3 一次函数与方程、不等式、方程组复习讲学稿知识点1.解关于x 的方程kx+b=0,从数量上看:已知函数y=kx+b 的 为0,•求相应的 的值.从图象上看,相当于已知直线y=kx+b ,确定它与 •轴的交点的 .2、解关于x 的不等式kx+b>mx+n 从图象上看:(1)当自变量x 取何值时,直线y=(k-m )x+b-n 上的点在x 轴的上方.或(2)当x 取何值时,直线y=kx+b 上的点在直线y=mx+n 上相应的点的上方.(不等号为“<”时是同样的道理) 3求两直线的交点坐标方法是:联立两直线的解析式组成方程组,方程组的解就是交点的纵横坐标。

当两直线平行时,K 相等,且方程组无解。

练习1.直线y=kx+3与x 轴的交点是(1,0),则k 的值是 。

2.已知直线y=kx+b 与直线y=3x-1交于y 轴同一点,则b 的值是 。

3.直线y=3x+6与x 轴的交点的横坐标x 的值是方程2x+a=0的解,则a•的值是______.4.已知直线y=2x+8与x 轴和y 轴的交点的坐标分别是_______、_______.•与两条坐标轴围成的三角形的面积是__________.5.已知mx+n=0的解是x=-2,则直线y=mx+n 与x•轴的交点坐标是________. 6.方程3x+2=8的解是__________,则函数y=3x+2在自变量x 等于_________•时的函数值是 .7、如图,是直线y=kx+b 的图象,当x ______时,0=y ;当x ______时,0y >;当x _________时,0<y 。

当x ______时,kx+b 2<,当x ______时,kx+b 2>则它的解析式是_______________;8、(1)当___________时,1y =2y 的值;(2)当___________时,1y ≤2y 的值;(3)当___________时,1y >2y 的值;9、已知直线y=-2x+1与y=kx 交于点(-2,a ),则a= ,k= 10、直线l 1:b x k y +=11与直线l 2:x k y 22=在同一平面直角坐标系中,图象如图所示,则关于x 的不等式b x k x k +>12的解集为11、若直线31y x =-与y x k =-的交点在第四象限,则k 的取值范围是( ) 12.如图1,一次函数y =kx +b 的图象经过A 、B 两点,则不等式b kx +>0的解集为:13.已知直线y 1=-x +1与y 2=ax +b ,当x >-2时,y 1>y 2,当x <-2时,y 1<y 2,则直线y 1=-x +1与y 2=ax +b 的交点坐标为: 14、一次函数y=4x-3与y= - 4x-3的图象的交点坐标是 15、函数3y ax =-的图象与4y bx =+的图象交于x 轴上一点,那么a ∶b 等于 。

中考数学一轮复习代数篇方程与一次方程组及解法

中考数学一轮复习代数篇方程与一次方程组及解法

中考复习之方程与一次方程(组)及解法知识考点:了解等式和方程、一元一次方程(组)的概念,掌握等式的基本性质,能正确熟练地解一元一次方程,会对方程的解进行检验。

明确解方程组的基本思想是化归思想,并能用加减消元法和代入消元法解一次方程组。

精典例题:【例1】解方程:12733)1(2-=-++x x x 分析:依据方程的同解原理,突出基本步骤,去分母时防止漏乘,注意移项时要改变符号。

答案:712=x 【例2】若关于x 的方程:4)2(35)3(10--=+-x k x x k 与方程321)1(25x x -=+-的解相同,求k 的值。

分析:由“解相同”的定义,将方程321)1(25x x -=+-的解代入第一个方程,建立一个关于k 的方程,解之即可。

答案:k =4【例3】在代数式m by ax ++中,当x =2,y =3,m =4时,它的值是零;当x =-3,y =-6,m =4时,它的值是4;求a 、b 的值。

分析:由代数式值的定义得关于a 、b 的二元一次方程组,侧重分析如何选择使用加减法或代入法消元。

答案:⎪⎩⎪⎨⎧=-=3107b a 探索与创新:【问题一】要把面值为10元的人民币换成2元或1元的零钱,现有足够的面值为2元、1元的人民币,那么共有换法( )A 、5种B 、6种C 、8种D 、10种 略解:首先把实际问题转化成数学问题,设需2元、1元的人民币各为x 、y 张(x 、y 为非负数),则有:x y y x 210102-=⇒=+,0≤x ≤5且x 为整数⇒x =0、1、2、3、4、5。

答案:B【问题二】如图是某风景区的旅游路线示意图,其中B 、C 、D 为风景点,E 为两条路的交叉点,图中数据为相应两点的路程(单位:千米)。

一学生从A 处出发以2千米/小时的速度步行游览,每个景点的逗留时间均为0.5小时。

(1)当他沿着路线A →D →C →E →A 游览回到A 处时,共用了3小时,求CE 的长; (2)若此学生打算从A 处出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A 处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其它因素)。

中考数学一轮复习课件一次方程与方程组

中考数学一轮复习课件一次方程与方程组

二元一次方程的解与二元一次方程组的解是不同的概念,前者一般有无数个,后者一般只有唯一一个,不能混为一谈.另外,在验证或作结论时,一定要正确把握关键词,往往一词之差,意义就大不相同了,如“一个解”与“唯一解”的区别等.
202X
CIICK HERE TO ADD A TITLE
单击添加副标题
第6课 一次方程与方程组 主讲:吴倩
等式及其性质 用等号“=”来表示相等关系的式子,叫做等式.
考点一 等式及方程的有关概念
等式的性质:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.
温馨提示: 在等式两边都除以同一个代数式时,一定要保证这个代数式的值__不为0
要点梳理
1.定义: (1)含有未知数的 叫做方程; (2)只含有 未知数,且未知数的次数是 ,这样的 整式方程叫做一元一次方程; (3)将两个或两个以上的方程合在一起,就构成了一个方程 组.总共含有 ,且未知数的次数是 , 这样的方程组叫做二元一次方程组.
B
3.(2011·江津)已知3是关于x的方程2x-a=1的解,则a的值是( ) A.-5 B.5 C.7 D.2 解析:∵x=3是方程的解,∴2×3-a=1,a=5.
B
4.(2011·肇庆)方程组 的解是( ) A. B. C. D. 解析:当 时,x-y=2-0=2,2x+y=2×2+0=4, 可知是方程组的公共解.
2.灵活选用代入法或加减法解二元一次方程组
衬底1
基础自测
1.(2011·邵阳)请写出一个解为x=2的一元一次方程:________. 答案:x=2,x-2=0 ,2x-3=1……,答案不唯一. 2.(2011·益阳)二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( ) A. B. C. D. 解析:当 时,左边x-2y=1-2×1=-1≠右边.

中考数学总复习《一次方程(组)》专项测试卷含答案

中考数学总复习《一次方程(组)》专项测试卷含答案

中考数学总复习《一次方程(组)》专项测试卷含答案学校:___________班级:___________姓名:___________考号:___________【A 层·基础过关】1.把方程x 2-x -13=1去分母后,正确的是( )A .3x -2(x -1)=1B .3x -2(x -1)=6C .3x -2x -2=6D .3x +2x -2=62.下面4组数值中,哪组是二元一次方程x +2y =5的解( ) A.{x =1y =1 B.{x =1y =2 C.{x =2y =2 D.{x =-1y =-23.(2024·毕节织金一模)程大位的《算法统宗》是我国古代数学名著,其中有一道这样的题目:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问房客各几何?题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就会有7人没地方住;若每间房住9人,则空出一间房.问有多少房间,多少客人?如果设房间有x 间,客人y 人,由题意可列方程组( ) A.{y =7x -7y =9(x +1) B.{y =7x +7y =9(x -1)C.{x =7y -7x =9(y -1)D.{y =7x -9y =9x -74.(2024·滨州中考)解方程:2x -13=x+12.5.(2024·连云港中考)我市将5月21日设立为连云港市“人才日”,以最大诚意礼遇人才,让人才与城市“双向奔赴”.活动主办方分两次共邮购了200把绘有西游文化的折扇作为当天一项活动的纪念品.折扇单价为8元,其中邮费和优惠方式如表所示:邮购数量1~99100以上(含100)邮寄费用 总价的10% 免费邮寄 折扇价格不优惠打九折若两次邮购折扇共花费1504元,求两次邮购的折扇各多少把?【B 层·能力提升】6.已知关于x ,y 的二元一次方程组{2x -y =2m +1-x +2y =m -4,的解满足x +y =3,则m 的值为( ) A.0B.1C.2D.37.某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( ) A.5种B.6种C.7种D.8种8.(2024·宜宾中考)某果农将采摘的荔枝分装为大箱和小箱销售,其中每个大箱装4千克荔枝,每个小箱装3千克荔枝.该果农现采摘有32千克荔枝,根据市场销售需求,大小箱都要装满,则所装的箱数最多为( ) A.8箱B.9箱C.10箱D.11箱9.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为 .-1 -6 1 0 a -4 -52-310.关于x ,y 的二元一次方程组{2x +3y =3+a x +2y =6,的解满足x +y >2√2,写出a 的一个整数值.11.(2024·河南中考)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50 g,营养成分表如下.(1)若要从这两种食品中摄入4 600 kJ热量和70 g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90 g,且热量最低,应如何选用这两种食品?【C层·素养挑战】12.某大型物流公司急需将170吨物资运送到甲、乙两地,现有A,B两种车型可供选择,每辆车的运载能力和运费表示如下:(假设每辆车均达到最大满载量)车型A B汽车运载量(吨/辆)58汽车运费(元/辆)600800(1)若要将全部物资用A,B两种车型来运送,运费恰好是18 000元,问需A,B两种车型各几辆?(2)因特殊情况安排,部分司机参与其他活动,该物流公司经理调拨一种载重量为10吨的C 型车加入运送,恰好一次性全部运送完成,已知车辆总数为22辆(三种车辆都有),试通过计算判断有几种运送方案.参考答案【A 层·基础过关】1.把方程x 2-x -13=1去分母后,正确的是(B)A .3x -2(x -1)=1B .3x -2(x -1)=6C .3x -2x -2=6D .3x +2x -2=62.下面4组数值中,哪组是二元一次方程x +2y =5的解(B) A.{x =1y =1 B.{x =1y =2 C.{x =2y =2 D.{x =-1y =-23.(2024·毕节织金一模)程大位的《算法统宗》是我国古代数学名著,其中有一道这样的题目:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问房客各几何?题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就会有7人没地方住;若每间房住9人,则空出一间房.问有多少房间,多少客人?如果设房间有x 间,客人y 人,由题意可列方程组(B) A.{y =7x -7y =9(x +1) B.{y =7x +7y =9(x -1)C.{x =7y -7x =9(y -1)D.{y =7x -9y =9x -74.(2024·滨州中考)解方程:2x -13=x+12.【解析】去分母,得2(2x -1)=3(x +1) 去括号,得4x -2=3x +3 移项,得4x -3x =3+2 合并同类项,得x =5.5.(2024·连云港中考)我市将5月21日设立为连云港市“人才日”,以最大诚意礼遇人才,让人才与城市“双向奔赴”.活动主办方分两次共邮购了200把绘有西游文化的折扇作为当天一项活动的纪念品.折扇单价为8元,其中邮费和优惠方式如表所示:邮购数量 1~99 100以上(含100)邮寄费用 总价的10% 免费邮寄 折扇价格不优惠打九折若两次邮购折扇共花费1504元,求两次邮购的折扇各多少把? 【解析】如果每次购买都是100把 则200×8×0.9=1 440(元)≠1 504(元)∴一次购买多于100把,另一次购买少于100把 设一次邮购折扇x (x >100)把,则另一次邮购折扇(200-x )把 ∴0.9×8x +8×(1+10%)(200-x )=1 504 ∴x =160 ∴200-x =40.答:两次邮购的折扇分别是160把和40把.【B 层·能力提升】6.已知关于x ,y 的二元一次方程组{2x -y =2m +1-x +2y =m -4,的解满足x +y =3,则m 的值为(C) A.0B.1C.2D.37.某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有(B) A.5种B.6种C.7种D.8种8.(2024·宜宾中考)某果农将采摘的荔枝分装为大箱和小箱销售,其中每个大箱装4千克荔枝,每个小箱装3千克荔枝.该果农现采摘有32千克荔枝,根据市场销售需求,大小箱都要装满,则所装的箱数最多为(C) A.8箱B.9箱C.10箱D.11箱9.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为 -2 .-1 -6 1 0 a -4 -52-310.关于x ,y 的二元一次方程组{2x +3y =3+a x +2y =6,的解满足x +y >2√2,写出a 的一个整数值 6(答案不唯一) .11.(2024·河南中考)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A ,B 两种食品作为午餐.这两种食品每包质量均为50 g,营养成分表如下.(1)若要从这两种食品中摄入4 600 kJ 热量和70 g 蛋白质,应选用A ,B 两种食品各多少包?【解析】(1)设选用A 种食品x 包,B 种食品y 包 根据题意得:{700x +900y =4 60010x +15y =70,解得{x =4y =2.答:应选用A 种食品4包,B 种食品2包.(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90 g,且热量最低,应如何选用这两种食品?【解析】(2)设选用A 种食品m 包,则选用B 种食品(7-m )包 根据题意得:10m +15(7-m )≥90,解得m ≤3.设每份午餐的总热量为w kJ,则w =700m +900(7-m ),即w =-200m +6 300 ∵-200<0∴w 随m 的增大而减小∴当m =3时,w 取得最小值,此时7-m =7-3=4. 答:应选用A 种食品3包,B 种食品4包.【C 层·素养挑战】12.某大型物流公司急需将170吨物资运送到甲、乙两地,现有A ,B 两种车型可供选择,每辆车的运载能力和运费表示如下:(假设每辆车均达到最大满载量)车型A B汽车运载量(吨/辆)58汽车运费(元/辆)600800(1)若要将全部物资用A,B两种车型来运送,运费恰好是18 000元,问需A,B两种车型各几辆?【解析】(1)设需A型车x辆,B型车y辆由题意得:{5x+8y=170600x+800y=18000解得{x=10y=15.答:需A型车10辆,需B型车15辆.(2)因特殊情况安排,部分司机参与其他活动,该物流公司经理调拨一种载重量为10吨的C型车加入运送,恰好一次性全部运送完成,已知车辆总数为22辆(三种车辆都有),试通过计算判断有几种运送方案.【解析】(2)设需A型车a辆,B型车b辆,C型车(22-a-b)辆由题意得:5a+8b+10(22-a-b)=170整理得:a=10-25b∵a,b均为正整数,且a+b<22∴{a=8b=5或{a=6b=10或{a=4b=15有3种运送方案:①A型车8辆,B型车5辆,C型车9辆;②A型车6辆,B型车10辆,C型车6辆;③A型车4辆,B型车15辆,C型车3辆.。

金华地区中考第一轮《第5讲:一次方程与方程组》复习课件

金华地区中考第一轮《第5讲:一次方程与方程组》复习课件

①×3+②×2 得 5a=-5,即 a=-1,
把 a=-1 代入①得 b=-3,
则原式=a2-b2=1-9=-8
解析:第 1 题利用二元一次方程的定义得出关于 m,n 的一次方程;第 2 题把 x 与 y 的值代入方程组求出 a 与 b 的值,代入原式计算即可得到结果.
1.方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知 数的值叫做方程的解.
1.(2016·大连)方程 2x+3=7 的解是( D ) A.x=5 B.x=4 C.x=3.5 D.x=2
x=3
x+2y=5 2.(2016·温州)方程组3x-2y=7 的解是
y=1

x+2y=5, 3.(2016·金华)解方程组x+y=2. 【解析】直接用加减法解答即可.
解:xx++2yy==25
解方程的一般步骤及每步的理论根据和注意点:
去分母―根―据→等式性质 2注―― 意→点勿 分漏 子乘 是不 两含 项分 以母 上的 的项 代, 数式须加上括号.
去括号―根―据→去 法括 则号注―― 意→点括勿号漏前乘是括“号-内”某号一,项括. 号
分配律
内各项都要变号.
移项―根―据→(移等项式法性则质1)注――意→点移勿项漏要项变. 号,
合并同类项―根―据→ 合项并法同则类注――意→点数系母不数及变相它.加的指,字
6.下列方程变形中,正确的是( D ) A.方程 3x-2=2x+1,移项,得 3x-2x=-1+2 B.方程 3-x=2-5(x-1),去括号,得 3-x=2-5x-1 C.方程23t=32,未知数系数化为 1,得 t=1 D.方程x0-.21-0x.5=1 化成 5(x-1)-2x=1
14.若方程 3x+2a=12 和方程 2x-4=2 的解相同,求 a 的值.

2024年新沪科版7年级上册数学全册课件 第3章 小结与复习

2024年新沪科版7年级上册数学全册课件 第3章 小结与复习
二、二(三)元一次方程组的有关概念
两个
一次
一次
两个
4. 三元一次方程组的概念:由三个_____方程组成的含有_______未知数的方程组叫作三元一次方程组.
一次
三个
三、等式的性质
c
3. 如果 a = b,那么 b = a.(对称性)4. 如果 a = b,b = c,那么 a = c.(传递性)
(5)和、差、倍、分问题中基本量之间的关系: ① 增长率 = 原有量×增长率; 现有量 = 原有量 + 增长量. ② 降低量 = 原有量×降低率; 现有量 = 原有量 - 降低量.
(6)百分率问题中基本量之间的关系: ① 浓度问题:浓度=溶质质量÷溶液质量; ② 增长率问题:原量×(1+增长率) = 增长后的量; 原量×(1 - 减少率) = 减少后的量.
四、一元一次方程的解法
五、二元一次方程组的解法
(1)代入法:从一个方程中求出某一个未知数的表述式,再把它“代入”另一个方程,进行求解,这种方法叫作代入消元法,简称代入法.
(2)加减法:把方程的两边分别相加或相减消去一个未知数的方法,叫作加减消元法,简称加减法.
六、三元一次方程组的解法
消元法:通过消元,把一个较复杂的三元一次方程组转化为容易易解的阶梯形的方程组,从而通过回代得出其解,整个求解过程称为用消元法解三元一次方程组.
考点四 二(三)元一次方程组的解法
例5 解下列方程组


解:由①得,x = 3 + 2y. ③ 将③代入②中,3(3 + 2y) - 8y = 13. 解得 y = -2. 将 y = -2 代入③中,得 x = -1. 所以原方程组的解为
提示:先用分配律、去括号简化方程,再求解较容易.

一元一次方程、二元一次方程(组)复习-(例题)

一元一次方程、二元一次方程(组)复习-(例题)

一元一次方程、二元一次方程(组)复习-(例题)(1)一元一次方程概念及其解: 1、若()6232=--m xm 是关于x 的一元一次方程,则m 的值是2、若关于x 的方程332x a +=的解是正数,则a 的取值范围是3、关于x 的方程,ax+3=4x+1的解为正整数,则正整数a 的值为4、当1b =时,关于x 的方程()()322387a x b x x -+-=-有无数个解,则a 等于5、若2-=x 是关于x 的方程m x x -=+2143的解,则m = 方程32=-x 的解是6、解方程:432.50.20.05x x ---=7、m 为何值时,代数式3152--m m 的值与代数式27m -的值的和等于5?(2)二元一次方程(组)概念及其解:1、 若方程456m n m n x y -+-=是二元一次方程,则____m =,____n =.2、二元一次方程3x+2y=15的正整数解为 .3、 分析: ①方程组12x y x y +=⎧⎨+=⎩的解 ②方程组1222x y x y +=⎧⎨+=⎩的解 .4、已知⎩⎨⎧=-=21y x 是方程3mx+2y=1的解,则m=已知关于x 、y 的方程组3,7ax by bx ay +=⎧⎨+=⎩的解是2,1x y =⎧⎨=⎩ ,求a b +=5、在方程2x -5y =6中,用含x 的代数式表示y ,则y = 。

6、若关于x 、y 的⎩⎨⎧==+1-4t y -x 2ty x ,用含x 的代数式表示y ,则y = 。

7、若关于x 的方程2x – 4= 3m 和x+2=m 有相同的解,则m 的值是8、已知二元一次方程x+2y -4=0,当x 与y 互为相反数,x=_______,y=_______. 9、已知(2x+3y-18)2+|4x+5y-32|=0,则4x-3y 的值等于_______________. 10、如果7xy+73ab和24y2x-7ab-是同类项,那么x=_______,y=_______.11、代数式ax 2+bx 中当x=2时,值是6,当x=3时,值是12,则a=_______,b=______. 12、已知:x+2y-3z=04x-5y+2z=0,则x ∶y ∶z = .13、已知关于x 、y 的方程组⎩⎨⎧=-+=+122y x m y x 的x 、y 的值之和等于2,m=14、已知关于y x ,的方程组 ⎩⎨⎧225453-=+=-by ax y x 和⎩⎨⎧8432=--=+by ax y x 有相同解,求ba )(-值;15、小明和小文同解一个二元一次方程组{ax+by=16bx+ay=1 ① ②小明把方程①抄错,求得的解为{x=1y=3-,小文把方程②抄错,求得的解为{x=3y=2,求原方程组的解。

新沪科版七上数学专题复习:一次方程与方程组【创新课件】

新沪科版七上数学专题复习:一次方程与方程组【创新课件】

期末复习专题 12.[期末·合肥肥西县]解方程组.
m2 +n3=13, 解:化简原方程m3 -组n4,=得3.34mm+ -23nn= =7386,.②① ①×3+②×2,得 17m=306,解得 m=18. 把 m=18 代入①, 得 3×18+2n=78,解得 n=12.所以mn==1128.,
期末复习专题
3.若关于x的方程ax+3=4x+1的解 为正整数,则整数a 的值为( A ) A.2或3 B.4 C.5 D.6
期末复习专题
4.已知方程组aaxx- +bbyy= =42,的解为xy==12,,则 2a-3b 的值为( B ) A.4 B.6 C.-6 D.-4
解得ab= =- 1,1.
期末复习专题
6.下列各方程组中,三元一次方程组有( B )
x+y=3, ①y+z=4,
z+x=2;
x+y-z=5,
②1x-y+z=-3, 2x-y+2z=1;
x+3y-z=1,
x+y-z=7,
③2x-y+z=3, ④xyz=1,
期末复习专题
13.在等式y=ax2+bx+c中,当x=1时,y=0; 当x=2时,y=4;当x=3时,y=10.当x=4时, y解的:值由是题多意少得?a4+ a+b+ 2b+c=c=0,4, 解得ab==11,, 9a+3b+c=10, c=-2. 所以等式为 y=x2+x-2. 当 x=4 时,y=42+4-2=18.
期末复习专题
8.如图,图中标有相同字母的物体的质量相 同,若A的质量为20 g,当天平处于平衡状 态时,B的质量为__1_0__g___.
期末复习专题
9.解方程. -25(3y+2)=110-32(y-1).
解:去分母,得-4(3y+2)=1-15(y-1). 去括号,得-12y-8=1-15y+15. 移项、合并同类项,得3y=24. 系数化为1,得y=8.

中考总复习:《一次方程及方程组》知识网络及经典例题解析

中考总复习:《一次方程及方程组》知识网络及经典例题解析

中考总复习:《一次方程及方程组》知识网络及经典例题解析【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:0(0)ax b a +=≠.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释:解一元一次方程的一般步骤 步骤名 称 方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2 去括号 去括号法则(可先分配再去括号)乘法分配律 注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边等式性质1移项一定要改变符号说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组. 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 要点诠释:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0. 3. 二元一次方程组的解法(1) 代入消元法; (2) 加减消元法. 要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y =0时,求x 的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤:1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释:列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程2n 731x 157--=是关于x 的一元一次方程,则n 的值为( ). A.2 B.4 C.3 D.1 【思路点拨】未知数x 的指数是1即可. 【答案】B ;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解. 举一反三:【变式1】已知关于x 的方程4x-3m=2的解是x=5,则m 的值为 . 【答案】由题意可知4×5-3m =2,∴m=6.【变式2】若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.【答案】a=0,b=11.2.一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,结果还剩下6公顷麦田未收割.这块麦田一共有多少公顷?【思路点拨】设这块麦田一共有x 公顷,根据上午收割了麦田的25%,则剩余x (1﹣25%)公顷,再利用下午收割了剩下麦田的20%,则剩余x (1﹣25%)(1﹣20%)公顷,进而求出即可. 【答案与解析】解:设这块麦田一共有x 公顷, 根据题意得出:x (1﹣25%)(1﹣20%)=6, 解得:x=10,答:这块麦田一共有10公顷.【总结升华】此题主要考查了一元一次方程的应用,正确表示出两次剩余小麦的亩数是解题关键.举一反三:【变式】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .()130%80%2080x +⨯= B . 30%80%2080x ⋅⋅= C . 208030%80%x ⨯⨯= D . 30%208080%x ⋅=⨯【答案】成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .类型二、二元一次方程组及其应用3.解下列方程组. (1)(2).【思路点拨】代入消元法或加减消元法均可. 【答案与解析】 解:(1),将②代入①得:2(﹣2y+3)+3y=7, 去括号得:﹣4y+6+3y=7, 解得:y=﹣1,将y=﹣1代入②得:x=2+3=5, 则方程组的解;(2),①×4+②×3得:17m=34, 解得:m=2,将m=2代入①得:4+3n=13, 解得:n=3, 则方程组的解为.【总结升华】解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度.举一反三:① ②【变式1解方程组【答案】方程②化为,再用加减法解,答案:【变式2】解方程组⎩⎨⎧=++=.36,5:4:3::c b a c b a【答案】a=9,b=12,c=15.4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?【思路点拨】根据题意找出等量关系式,列出方程或方程组解题. 【答案与解析】(1)地面总面积为:(6x +2y +18)m 2; (2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). 【总结升华】注意不要丢掉题中的单位. 举一反三:【变式】利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A.73cm B.74cm C.75cm D.76cm【答案】设桌子高度为acm,木块竖放为bcm,木块横放为ccm.则80,a=7570a b ca c b+-=⎧⎨+-=⎩解得.故选C.类型三、一次方程(组)的综合运用5.某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解.【答案与解析】方法一:设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程 1000x+(60–x)(1000+2000)=100000,解得:x=40,∴60-x =60-40=20答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.方法二:设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x,y人,根据题意列出方程组:601000(10002000)100000 x yx y+=⎧⎨++=⎩解得:2040 yx=⎧⎨=⎩答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.【总结升华】本题考查理解题意的能力,关键是找到人数和钱数作为等量关系.举一反三:【变式】某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上票价10元/人8元/人5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 【答案】设甲班有x 人,乙班有y 人,由题意得:8109205()515x y x y +=⎧⎨+=⎩ 解得:5548x y =⎧⎨=⎩. 答:甲班有55人,乙班有48人.6.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”; 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少? 【思路点拨】根据甲、乙、丙三位同学提供的信息找出等量关系列出方程组求解. 【答案与解析】设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. 【总结升华】通过甲、乙、丙三位同学调查结果找到车流量的等量关系式是解题的关键.。

一次方程(组)复习教案

一次方程(组)复习教案

一次方程(组)复习教案教学目标:1. 掌握一次方程的概念和解法。

2. 学会解一次方程组的方法和技巧。

3. 能够应用一次方程(组)解决实际问题。

教学内容:1. 一次方程的定义和解法。

2. 一次方程组的定义和解法。

3. 一次方程(组)的解的判定。

4. 一次方程(组)的应用。

教学步骤:一、导入:1. 复习一次方程的概念和解法。

2. 引入一次方程组的定义和解法。

二、新课内容:1. 讲解一次方程的解法,包括解的定义、解的判定、解的求法。

2. 讲解一次方程组的解法,包括解的定义、解的判定、解的求法。

三、实例解析:1. 提供几个一次方程的实例,让学生独立求解,并判断解的正确性。

2. 提供几个一次方程组的实例,让学生独立求解,并判断解的正确性。

四、练习:1. 让学生做一些一次方程的练习题,巩固解法。

2. 让学生做一些一次方程组的练习题,巩固解法。

五、应用拓展:1. 提供一些实际问题,让学生应用一次方程(组)解决。

2. 讨论一次方程(组)在实际问题中的应用和意义。

教学评价:1. 课后作业:布置一些一次方程(组)的练习题,检验学生掌握情况。

2. 课堂问答:提问学生一次方程(组)的概念和解法,检验学生理解情况。

教学资源:1. 教案、PPT、练习题。

2. 教材、辅导书。

教学时间:1. 课时:45分钟。

2. 备课时间:1小时。

一次方程(组)复习教案教学目标:1. 掌握一次方程的概念和解法。

2. 学会解一次方程组的方法和技巧。

3. 能够应用一次方程(组)解决实际问题。

教学内容:1. 一次方程的定义和解法。

2. 一次方程组的定义和解法。

3. 一次方程(组)的解的判定。

4. 一次方程(组)的应用。

教学步骤:六、巩固练习:1. 提供几个一次方程的实例,让学生独立求解,并判断解的正确性。

2. 提供几个一次方程组的实例,让学生独立求解,并判断解的正确性。

七、拓展提升:1. 提供一些一次方程(组)的综合性实例,让学生独立求解。

2. 引导学生探讨一次方程(组)在不同情境下的应用。

【数学中考一轮复习】一次方程(组) (含答案)

【数学中考一轮复习】一次方程(组)  (含答案)

第三章 方程(组)与不等式(组)3.1 一次方程(组)考点突破考点一 一元一次方程及其解法 典例1 解方程:131223=+--x x . 思路导引方程两边每一项都要乘各分母的最小公倍数6,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.规律总结解一元一次方程的一般步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化1.注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项. 跟踪训练11.一元一次方程2x +1=3的解是x =___________.2.解方程:312122-+=--x x x .3.以下是圆圆解方程13321=--+x x 的解答过程. 解:去分母,得3(x +1)-2(x-3)=1. 去括号,得3x +1-2x +3=1. 移项,合并同类项,得x =-3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.考点二 一元一次方程的应用典例2为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?思路导引设甲工程队每天掘进x米,则乙工程队每天掘进x-2米.根据“甲工程队独立工作2天的工作量+甲乙合作1天的工作量=26米”列出方程,然后求工作时间.规律总结本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 跟踪训练21.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250元C.270元D.300元2.暑假期间,亮视眼镜店开展学生配镜优惠活动,某款式眼镜的广告如图所示,请你为广告牌填上原价.原价:___________元.3.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?考点三二元一次方程组的解法典例3 解二元一次方程组:⎩⎨⎧=+=+.93822y x y x ,思路导引方程组利用加减消元法或代入消元法求出解即可.规律总结此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 跟踪训练3解方程组⎩⎨⎧7.=y +3x ,1=y -x考点四 二元一次方程组的应用典例4 某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天? 思路导引设改进加工方法前用了x 天,改进加工方法后用了y 天,根据6天共加工竹笋22吨,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.规律总结本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 跟踪训练41.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳长y 尺,那么可列方程组为( )A.⎩⎨⎧-=+=15.05.4x y x yB.⎩⎨⎧-=+=125.4x y x yC.⎩⎨⎧-=-=15.05.4x y x yD.⎩⎨⎧-=-=125.4x y x y 2.某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有_________名. 3.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?中考真题1.(2020·重庆)解一元一次方程x x 311)1(21-=+时,去分母正确的是( )A.3(x +1)=1-2xB.2(x +1)=1-3xC.2(x +1)=6-3xD.3(x +1)=6-2x2.(2020·嘉兴)用加减消元法解二元一次方程组⎩⎨⎧②1=y -2x ①,4=3y +x 时,下列方法中无法消元的是( )A.①×2-②B.②×(-3)-①C.①×(-2)+②D.①-②×3 3.(2020·内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子去量竿,却比竿子短一托”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( ) A.21x =(x-5)-5 B.21x =(x +5)+5 C.2x =(x-5)-5 D.2x =(x +5)+54.(2020·鸡西)若⎩⎨⎧1=b 2=a 是二元一次方程组⎪⎩⎪⎨⎧=-=+2523by ax by ax 的解,则x +2y 的算术平方根为( )A.3B.3,-3C.3D.3,-35.(2020·齐齐哈尔)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( )A.3种B.4种C.5种D.6种6.(2020·绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210 km ,它们各自单独行驶并返回的最远距离是105 km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A. 120 km B. 140 km C. 160 km D.180 km7.(2020·株洲)关于x 的方程3x-8=x 的解为x =___________.8.(2020·北京)方程组⎩⎨⎧7=y +3x ,1=y -x 的解为___________.9.(2020·沈阳)二元一次方程组⎩⎨⎧1=y -2x 5,=y +x 的解是__________.10.(2020·南京)已知x ,y 满足方程组⎩⎨⎧,3=y +2x ,1-=3y +x 则x +y 的值为__________.11.(2020·绍兴)若关于x ,y 的二元一次方程组⎩⎨⎧0=A 2=y +x 的解为⎩⎨⎧,1=y ,1=x 则多项式A 可以是______________(写出一个即可).12.(2020·江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,右下图符号表示一个两位数,则这个两位数是____________.13.(2020·常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是__________次.14.(2020·湖北)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.15.(2020·淄博)解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+.22128213y x y x ,16.(2020·广东)已知关于x ,y 的方程组⎩⎨⎧=+-=+431032y x y ax 与⎩⎨⎧=+=-152by x y x ,的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.17.(2020·山西)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.(2020·黄冈)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?参考答案考点突破典例1 解:去分母得:3(x—3)—2(2x+1)=6,去括号得:3x-9-4x-2-6,移项得:-x=17,系数化为1得:x=-17.跟踪训练11.12.解:去分母,得:6-3(x-2)=6+2(2x-1),去括号,得:6x-3x+6=6+4x-2,移项,得:63.x-4x-6-6-2,合并同类项,得:-x=-2,系数化为1,得:x-2.3.解:圆圆的解答过程有错误, 正确的解答过程如下:去分母,得3(x +1)-2(x-3)=6. 去括号,得3x +3-2x +6=6. 移项,合并同类项,得x =-3.典例2 解:设甲工程队每天掘进x 米,则乙工程队每天掘进(x-2)米, 由题意,得2x +(x +x-2)=26,解得:x-7. 所以乙工程队每天掘进5米,5726146+-=10(天), 答:甲乙两个工程队还需联合工作10天. 跟踪训练 2 1. D 2. 2003,解:设这些学生共有x 人,根据题意得286=-xx ,解得x =48.答:这些学生共有48人.典例3 解:⎩⎨⎧=+=+,②,①93822y x y x ,法1:②-①×3,得2x =3,解得:23=x ,把23=x 代入①,得y =-1, ∴原方程组的解为⎪⎩⎪⎨⎧-==123y x .法2:由②得:2x +3(2.x-y )=9, 把①代入上式,解得:23=x .把23=x 代入①,得y =-1, ∴原方程组的解为⎪⎩⎪⎨⎧-==123y x .跟踪训练 3解:⎩⎨⎧,②7=y +3x ,①1=y -x①+②得:4x =8,解得:x =2, 把x =2代入①得:y =1,则该方程组的解为⎩⎨⎧1=y 2=x .典例4 解:设改进加工方法前用了x 天,改进加工方法后用了y 天,依题意,得:⎩⎨⎧,22=5y +3x ,6=y +x 解得:⎩⎨⎧ 2.=y ,4=x答:该合作社改进加工方法前用了4天,改进加工方法后用了2天. 跟踪训练4 1.A 2. 233.解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:⎩⎨⎧==,90)y -x )4+6,90)y +6x ((解得:⎩⎨⎧ 3.=y ,12=x答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时. (2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:31290312--=+a a ,解得:a =4225. 答:甲、丙两地相距4225千米.中考真题1.D2.D3.A4.C5. B6. B7.4 8. ⎩⎨⎧==12y x 9.⎩⎨⎧==32y x 10.1 11,答案不唯一,如x-y12. 25 13.4 14. 915.解:⎪⎪⎩⎪⎪⎨⎧=-=+②,①.22128213y x y x①+②,得:5x-10,解得x=2,把x =2代入①,得:6+21y =8,解得y =4, 所以原方程组的解为⎩⎨⎧==42y x .16.解:(1)由题意列方程组;⎩⎨⎧=-=+24y x y x ,解得⎩⎨⎧==13y x .将x =3,y =1分别代入31032-=+y ax 和x +by =15,解得34-=a ,b =12, ∴34-=a ,b =12.(2)012342=+-x x ,解得322484834=-±=x .这个三角形是等腰直角三角形. 理由如下:∵(23)2+(23)2=(26)2, ∴该三角形是等腰直角三角形. 17.解:设该电饭煲的进价为x 元.根据题意,得(1+50%)x ·80%-128=568.解得 =580. 答:该电饭煲的进价为580元.18.解:设每盒羊角春牌绿茶需要 元,每盒九孔牌藕粉需要y 元,依题意,得: ⎩⎨⎧,300=3y +x ,960=4y +6x 解得:⎩⎨⎧60.=y ,120=x答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.。

2024年新沪科版7年级上册数学教学课件 第3章 1次方程与方程组 复习题

2024年新沪科版7年级上册数学教学课件 第3章 1次方程与方程组 复习题
8.甲便民服务点有工作人员27人,乙便民服务点有工作人员19人.现有 20 名志愿者前来支援. 要使甲便民服务点的工作人员数是乙便民服务点的 2 倍,应怎样分配前来的志愿者?
【教材P133 第8题】
解:设应分配给甲便民服务点 x 人,则分配给乙便民服务点(20-x)人.根据题意,得 27 + x =2[19 + (20-x)].解方程,得 x = 17. 所以 20-x =20-17 = 3.答: 应分配给甲便民服务点 17 人,乙便民服务点 3 人.
两边同除以 7,得 x = 4.
移项,得 10x–3x = 33 - 5.
去括号,得 10x + 5 = 3x + 33.
(2) .
去分母,得 6(y - 3) = 5y - 9(y - 7).
合并同类项,得 10y = 81.
两边同除以 10,得 y = .
移项,得 6y–5y + 9y = 63 + 18.
去括号,得 6y - 18 = 5y - 9y + 63.
3. 解下列方程组:
(1)
3x – 2y = 10,4x – 3y = 13;
(2)
2x + 3y - 2 = 0,4x – 9y + 1 = 0;
复习题
沪科版七年级上册
1. 解下列一元一次方程:
【教材P132 第1题】
(1)7x = -3x + 5; (2)3x - 27 = 15 – 3x;
A 组
1. 解下列一元一次方程:
【教材P132 第1题】
(1)7x = -3x + 5; (2)3x - 27 = 15 – 3x;
(3)12-3(2-y) = 6y + 5; (4)6(y+7)-3 = 4(3 – y) + 3.

一次方程(组)专题复习PPT

一次方程(组)专题复习PPT
首页 上页 15 下页
列二元一次方程组解应用题
首页 上页 16 下页
1.行程问题:
1.相遇问题
:甲的路程+乙的路程=总
的路程(环形跑道):甲的路程+乙的路程=一圈长
2.追及问题:
同地不同时:快者的路程=慢者的路程
同时不同地:快者的路程-慢者的路程=原来相距路 程(环形跑道): 快者的路程-慢者的路程=一圈长
(1)方程组中同一未知数的系数相等或相反数.
3x -y= -8 ① 3x -2y= -8 ① x +y= 5 ② 3x +y= 5 ②
(2)方程组中同一未知数的系数是变成相
同或相反数.
3x -2y= -8

2x +3y= 5 ②
首页 上页 10 下页
知识点6:列方程(组)解决 实际问题的一般步骤(应用题)
首页 上页 22 下页
一.基本知识
二元一次方程 二元一次方程的一个解 二元一次方程组
结构: 实际背景
二元一次方程及二元一次方程组
求解
应用
二元一次方程组的解 解二元一次方程组 列二元一次方程组解应用题 二元一次方程与一次函数
思想
消代 元入
消 员
方法 解



加 减 消 元
图 象 法
数与 的一 关次 系函
3.顺逆问题:
顺速=静速+水(风)速 逆速=静速-水(风)速
首页 上页 17 下页
问题1:甲、乙二人以不变的速度在环形路上
跑步,如果同时同地出发,相向而行,每隔2分钟 相遇一次;如果同向而行,每隔6分钟相遇一次.
已知甲比乙跑得快,甲、乙每分钟各跑多少圈?
首页 上页 18 下页

沪科版七年级上数学期末复习课件(第三章一次方程与方程组)(28张ppt)

沪科版七年级上数学期末复习课件(第三章一次方程与方程组)(28张ppt)

数学·沪科版(HK)
第3章 |复习(二)
5x= 6y, 解:(1) x= 2y- 40.
(2)是二元一次方程组.
方法技巧 (1)在方程中 “元” 是指未知数,“二元”就是指方程中 有且只有两个未知数;(2)“未知数的次数是 1”是指含有未 1 知数的项(单项式)的次数是 1, 如前面 xy= 中 xy 这一项的次 2 1 数是 2,所以 xy= 不是二元一次方程;(3) 二元一次方程的 2 左边和右边都必须是关于未知数的整式.
数学·沪科版(HK)
第3章 |复习(二)
[解析] 方程组中 y 项的系数相等,可以采用减法消去 y. 方法技巧 用加减消元法解方程组的一般步骤: (1)方程组的两个方程中, 如果同一个未知数的系数既不互为 相反数又不相等,那么就用适当的数乘方程的两边,使同一个未 知数的系数互为相反数或相等; (2)把两个方程的两边分别相加或相减,消去一个未知数,得 到一个一元一次方程; (3)解这个一元一次方程,求得一个未知数的值; (4)将这个求得的未知数的值代入原方程组中的任意一个方 程中,求出另一个未知数的值,并把求得的两个未知数的值用符 号 “{”联立起来.
获 利 为 : 7500×10× 6 + 4500× 5× 16 = 810000(元 ).所以,应选方案三.
数学·沪科版(HK)
解:设每个笔记本 x 元,每支钢笔 y 元,依题意 得:
x+ 3y= 18, 2x+ 5y= 31, x= 3, 解得: y= 5.
答:设每个笔记本 3 元,每支钢笔 5 元.
数学·沪科版(HK)
第3章 |复习(二)
[ 解析 ] 首先用未知数设出买一支钢笔和一本笔记 本所需的费用,然后根据关键语“购买 1 个笔记本和 3 支钢笔,则需要 18 元;如果买 2 个笔记本和 5 支钢笔, 则需要 31 元”,列方程组求出未知数的值,即可得解.

中考总复习一次方程及方程组--知识讲解

中考总复习一次方程及方程组--知识讲解

中考总复习一次方程及方程组--知识讲解一、一次方程1.1一次方程的定义一次方程是指未知数的最高次数为1的方程,可以用下面的形式表示:ax + b = 0其中,a和b为已知数,a≠0,x为未知数。

1.2方程的解求解一次方程的过程,就是要确定使等式成立的未知数的值。

将未知数的值代入等式,若等式成立,则该值为方程的解。

1.3解一次方程的方法1.3.1移项法对于一次方程ax+b=0,可以通过移项来求解,具体步骤如下:- 将一次方程两边的常数项b移到方程的右边,得到ax = -b-再将一次方程两边的系数项a移到方程的右边(即除以a),得到x=-b/a1.3.2代入法代入法是指将一次方程的已知数代入方程,然后求解未知数的值。

具体步骤如下:-将方程的已知数代入未知数的位置,得到一个带有未知数的一次方程-再求解带有未知数的一次方程,得到未知数的值1.4解一次方程的注意事项当解一次方程时,需要注意以下几点:-方程的两边同时加上(或减去)相同的数,等号的两边仍然相等。

即可以将方程中的数移到等号的另一边。

-方程的两边同时乘以(或除以一个不为0的数),等号的两边仍然相等。

即可以将方程中的系数移到等号的另一边。

二、一次方程组2.1一次方程组的定义一次方程组是指多个一次方程组成的方程组,可以用下面的形式表示:a₁x+b₁y+c₁=0a₂x+b₂y+c₂=0其中,a₁、b₁、c₁、a₂、b₂、c₂为已知数,a₁、b₁、a₂、b₂≠0,x和y为未知数。

2.2方程组的解求解一次方程组的过程,就是要确定使所有方程都成立的未知数的值。

将未知数的值代入所有方程,若所有方程都成立,则该值为方程组的解。

2.3解一次方程组的方法2.3.1代入法代入法是指将一个方程的解代入其他方程中,然后求解代入后的方程,得到未知数的值。

具体步骤如下:-解一个方程,得到其中一个未知数的解-将这个未知数的解代入另一个方程中,得到一个只有一个未知数的一次方程-求解这个一次方程,得到另一个未知数的解2.3.2消元法消元法是指通过对一次方程组中的方程进行加、减、乘、除等运算,将方程组中的未知数逐渐消去,从而得到只含一个未知数的方程。

一次方程(组)复习教案

一次方程(组)复习教案

一次方程(组)复习教案第一章:一次方程的定义与解法1.1 方程的定义:解释方程的概念,方程是一个含有未知数的等式。

强调方程中的等号表示两边的值相等。

1.2 一次方程的定义:介绍一次方程的概念,一次方程是最高次数为1的方程。

举例说明一次方程的一般形式:ax + b = 0。

1.3 解一次方程的步骤:讲解解一次方程的步骤,包括:1. 将方程写成标准形式ax + b = 0。

2. 移项,将未知数移到方程的一边,常数移到另一边。

3. 化简方程,消去系数。

4. 求解未知数的值。

1.4 解一次方程的练习:提供一些练习题,让学生根据解一次方程的步骤求解。

引导学生运用加减法、乘除法等运算来化简方程。

第二章:二元一次方程的定义与解法2.1 二元一次方程的定义:介绍二元一次方程的概念,二元一次方程是含有两个未知数的一次方程。

举例说明二元一次方程的一般形式:ax + = c。

2.2 解二元一次方程的步骤:讲解解二元一次方程的步骤,包括:1. 将方程组写成标准形式,即两个方程分别写成ax + = c 的形式。

2. 利用代入法或消元法求解未知数的值。

3. 检验解的可行性,确保解满足原方程组的所有方程。

2.3 解二元一次方程组的练习:提供一些练习题,让学生根据解二元一次方程的步骤求解。

引导学生运用代入法、消元法等方法来求解方程组。

第三章:一次方程与一次不等式的关系3.1 一次方程与一次不等式的定义:介绍一次方程与一次不等式的概念,一次方程是等式,而一次不等式是不等号连接的两个表达式。

举例说明一次不等式的一般形式:ax + b > c 或ax + b ≤c。

3.2 一次方程与一次不等式的关系:解释一次方程的解集是一次不等式的解集的特殊情况。

讲解如何从一次方程的解集中找出满足一次不等式的解。

3.3 解一次不等式的步骤:讲解解一次不等式的步骤,包括:1. 将不等式写成标准形式,即ax + b ≤c 或ax + b > c。

一元一次方程和二元一次方程组 中考 复习

一元一次方程和二元一次方程组   中考 复习
一元一次方程与方程组
一元一次方程的有关概念
只有一个未知数 一元一次方程 未知数的次数为1
分母不含有字母

a-2+3=0 1、如果6x
是关于x的一元一次 方程,则a= 。
2、方程
a 2x
2
5x
m 3
是 23 )
一元一次方程,则a和m分别为(
B A 2和4 ,
B -2 和 4 ,
解:去分母,得 2(3x 1) 1 4 x 1 去分母 2(3x 1) 6 (4 x 1) 去括号,得 移项,得 ∴
6x 2 1 4 x 1
去括号, 6x 2 6 4x 1
6x 4x 1 1 2
移项,合并同类项,10 x 9
x)= 1 + x =
合并同类项,得 6x= 2.5
5 两边同除以6, 得x= 12
例:解方程:
3x 5 3 x (1) 1 6 3
(2) x 0.01 x 1 0.02 0.5 0.03 0.6
x=5
11 x 14
2. 有个粗心的同学在解方程
5 y 7 6

1.下列解方程的步骤中,从哪一步开始出现错误 ( A )
x 2 1 x 4 3 2
去分母,得24-2x-4=3-3x
(1)
移项,得3x-2x=3-24+4
合并同类项,得x=-17 A. (1) C. (3) B.(2)
(2)
(3)
D.都没有错误
下面方程的解法对吗?若不对,请改正 。 3x 1 4x 1 不对 1 解方程 3 6
两边同时除以10, x
9 10
1 10 x 2,即x 5

中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析

中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析

中考数学复习 一次方程与方程组 专题复习练习1. 设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c ,则2x =3y2. 若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤23. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( )A .⎩⎪⎨⎪⎧x =5,y =1 B .⎩⎪⎨⎪⎧x =4,y =2 C .⎩⎪⎨⎪⎧x =-5,y =-1 D .⎩⎪⎨⎪⎧x =-4,y =-2 4. 若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( )A .1B .3C .-14D .745. 利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6, ②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26. 若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .27. 春节前夕,某服装专卖店按标价打折销售.小明去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给小明40元,则这两件衣服的原标价各是( ) A .100元、300元 B .100元、200元 C .200元、300元 D .150元、200元8. 某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x -y =20B .x +y =20C .5x -2y =60D .5x +2y =60 9. 学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .⎩⎪⎨⎪⎧x +y =10,49x +37y =466B .⎩⎪⎨⎪⎧x +y =10,37x +49y =466C .⎩⎪⎨⎪⎧x +y =466,49x +37y =10 D .⎩⎪⎨⎪⎧x +y =466,37x +49y =10 10. 甲、乙两名运动员在长为100 m 的直道AB(A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5 m/s ,乙跑步的速度为4 m/s ,则起跑后100 s 内,两人相遇的次数为( ) A .5 B .4 C .3 D .211. 已知x ,y 满足方程组⎩⎪⎨⎪⎧x -2y =5,x +2y =-3,则x 2-4y 2的值为 .12. 王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2kg ,则甲种药材买了 kg.13. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折; ③一次性购书超过200元,一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元.14. 解方程组:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7. ②15. 解方程组:⎩⎪⎨⎪⎧2x +y =4,x -y =-1.16. 用消元法解方程组⎩⎪⎨⎪⎧x -3y =5, ①4x -3y =2 ②时,两名同学的解法如下:解法一:由①-②,得3x =3. 解法二:由②,得3x +(x -3y)=2.③(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处画“ ╳ ”; (2)请选择一种你喜欢的方法,完成解答.17. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0.求满足条件的m 的整数值.18. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,求m ,n 的值.19. 随着“互联网+”时代的到来,一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/千米计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如下表:(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11千米,用了14分钟,那么小华的打车总费用为多少?20. 目前节能灯在城市已基本普及,为响应号召,某商场计划用3 800元购进甲、乙两种节能灯共120盏,这两种节能灯的进价、售价如下表:(1)甲、乙两种节能灯各购进多少盏?(2)全部售完120盏节能灯后,该商场获利多少元?答案与解析: 1. B 2. C 3. B4. D 解析: 把方程组的解代入方程组中得到关于a ,b 的二元一次方程组,解方程组求出a ,b 的值,即得所求代数式的值.把⎩⎪⎨⎪⎧x =a ,y =b代入二元一次方程组,得⎩⎪⎨⎪⎧a +b =3,3a -5b =4,解得⎩⎪⎨⎪⎧a =198,b =58,a -b =198-58=74.故选D .5. D6. B7. A 解析:设这两件衣服的原标价各是x 元、y 元.则可列方程组⎩⎪⎨⎪⎧0.7x +0.5y =260,0.5x +0.7y =260-40,解得⎩⎪⎨⎪⎧x =300,y =100,∴这两件衣服的原标价各是300元、100元.故选A . 8. C 9. A10. B 解析:设两人相遇的次数为x.依题意,得100×25+4x =100,解得x =4.5,∵x 为整数,∴x 取4.故选B . 11. -15解析:⎩⎪⎨⎪⎧x -2y =5, ①x +2y =-3, ②①×②,得(x -2y)(x +2y)=x 2-4y 2=-15.12. 5 解析:设甲种药材买了x kg ,则乙种药材买了(x -2)kg.依题意,得20x +60(x -2)=280,解得x =5.∴甲种药材买了5 kg. 13. 248元或296元解析;设第一次购书的原价为x 元,则第二次购书的原价为3x 元.依题意,得①当0<x≤1003时,x +3x =229.4, 解得x =57.35(舍去);②当1003<x≤2003时,x +910×3x=229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x≤100时,x +710×3x=229.4,解得x =74, 此时两次购书原价总和为4x =4×74=296;④当100<x ≤200时,910x +710×3x=229.4,解得x≈76.47(舍去);⑤当x>200时,710x +710×3x=229.4,解得x≈81.93(舍去).综上可知,小丽这两次购书原价的总和是248元或296元.14. 解:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7, ②由②,得x =7-3y.将x =7-3y 代入①,得3(7-3y)-2y =-1,解得y =2.将y =2代入x =7-3y ,得x =1.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 15. 解:⎩⎪⎨⎪⎧2x +y =4, ①x -y =-1, ②①+②,得3x =3,解得x =1.将x =1代入②,得1-y =-1,解得y =2.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2.16. 解:(1)解法一中的计算有误(标记略).(2)由①-②,得-3x =3,解得x =-1.把x =-1代入①,得-1-3y =5,解得y =-2,∴原方程组的解是⎩⎪⎨⎪⎧x =-1,y =-2.把①代入③,得3x +5=2.17. 解:①+②,得3x +y =3m +4.③ ②-①,得x +5y =m +4.④∵关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0,∴将③④代入不等式组,得⎩⎪⎨⎪⎧3m +4≤0,m +4>0,解得-4<m≤-43.∴满足条件的m 的整数值为-3,-2.18. 解:把⎩⎪⎨⎪⎧x =1,y =2代入原方程组,得⎩⎪⎨⎪⎧m +2n =7, ①2m -6n =4,②由①,得m =7-2n.③把③代入②,得2(7-2n)-6n =4, 解得n =1.把n =1代入③,得m =5. ∴m ,n 的值分别为5,1.19. 解:(1)根据题意,得⎩⎪⎨⎪⎧8x +8y =12,10x +12y =16,解得⎩⎪⎨⎪⎧x =1,y =12.(2)11×1+14×12=18(元).答:小华的打车总费用是18元.20. 解:(1)设购进甲种节能灯x 盏,乙种节能灯y 盏.由题意,得⎩⎪⎨⎪⎧25x +45y =3 800,x +y =120,解得⎩⎪⎨⎪⎧x =80,y =40.答:购进甲种节能灯80盏,乙种节能灯40盏.(2)根据题意,得80×(30-25)+40×(60-45)=1 000(元).答:全部售完120盏节能灯后,该商场获利1 000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变式2-1
(2016泰安)某学校是乒乓球体育传统项目学校,为进
一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横 拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的 单价为2元,若购买20副直拍球拍和15副横拍球拍花费9 000元;购 买10副横拍球拍比购买5副直拍球拍多花费1 600元.求两种球拍 每副各多少元.
知识点二
一元一次方程及其解法
一个 未知数,并且含有未知数 整式 的方
1.一元一次方程:只含有④ 的项的次数都是⑤ 1
,等号两边都是⑥
程叫做一元一次方程.一元一次方程的一般形式是

ax+b=0(a≠0)
.
2.解一元一次方程的步骤 (1)去分母:方程的两边同乘分母的最小公倍数,注意不要漏乘不 含分母的项; (2)去括号:注意括号前是负号时,去掉括号后,原来括号内的每一 项都要改变符号; (3)移项:将含有未知数的项移到方程一边,常数项移到另一边,注 意移项要改变符号; (4)合并同类项:化方程为ax=b(a≠0)的最简形式; (5)未知数的系数化为1:方程两边同除以未知数的系数,得到未知 数的值,注意分子、分母不要颠倒.
方法技巧
方程(组)的解一定适合原方程(组),把方程(组)的
解代入原方程(组)得到关于未知数的方程(组),进而求出未知数
的值及关于未知数的代数式的值.
考点二
例2
一次方程(组)的应用
(2018泰安)夏季来临,某超市试销A、B两种型号的风扇,两
周内共销售30台,销售收入5 300元,A型风扇每台200元,B型风扇 每台150元,则A、B两种型号的风扇分别销售了多少台?若设A型
x 5, ① 是方程组的解; y 1
②当a=-2时,x,y的值互为相反数;
③当a=1时,方程组的解也是方程x+y=4-a的解;
④若x≤1,则1≤y≤4. 其中正确的是 ②③④ (填写序号即可).
解析 解原方程组得x=1+2a,y=1-a,∵-3≤a≤1,∴-5≤x≤3,0≤y ≤4.∴结论①错误;当a=-2时,x=1+2a=-3,y=1-a=3,x,y的值互为相 反数,结论②正确;当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a两边相 等,结论③正确;当x≤1时,1+2a≤1,解得a≤0,且-3≤a≤1,∴-3≤
变式2-2
(2017肥城模拟)在肥城中学举行的“我爱祖国”征文
活动中,七年级和八年级共收到征文118篇,且七年级收到的征文 篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的 征文有多少篇.
x 2 解析 设八年级收到的征文有x篇,则七年级收到的征文有 2 x x 2 篇,根据题意列方程得x+ =118, 解得x=80,所以 -2=38. 2 2
a≤0,∴1≤1-a≤4,∴1≤y≤4,结论④正确,所以正确的为②③④.
变式1-3
x y 1, 解方程组 4 x y 8.
x y 1①, 解析 ②-①得3x=-9,解得x=-3, 4 x y 8②, x 3, 把x=-3代入①中,得y=4,即方程组的解为 y 4.
解析 设直拍球拍每副x元,横拍球拍每副y元,由题意得,
20( x 20) 15( y 20) 9 000, 5( x 20) 1 600 10( y 20), x 220, 解得 y 260.
答:直拍球拍每副220元,横拍球拍每副260元.
或存在倍数关系时,一般采用加减消元法.
x y 3, x a, 例1 (2018枣庄)若二元一次方程组 3 的解为 x 5 y 4 y b, 7 则a-b = 4 .
解析
①+②,得4a-4b=7,
7 则a-b= , 4 7 故答案为 . 4
所得的结果仍是等式.即如果a=b,那么a ± c =b ± c; 性质2:等式两边都② 乘(或除以)同一个不为0 的数(或式
子),所得的结果仍是等式.即如果a=b,
a b 那么ac = bc , = (c≠0). c c
2.方程:含有未知数的③
等式
叫做方程.
3.方程的解:使方程左右两边相等的未知数的值叫做方程的解. 4.解方程:求方程的解的过程叫做解方程.
个二元一次方程组的解.
4.二元一次方程组的解法:解二元一次方程组的基本思想是 消元 ,方法一般有 代入 消元法和加减消元法.
知识点四
三元一次方程组的解法
1.三元一次方程组:含有三个未知数的一次方程组叫做三元一次 方程组. 2.三元一次方程组的解:三元一次方程组中方程的公共解,叫做这
个三元一次方程组的解.
3.三元一次方程组的解法:三元一次方程组 二元一次方程组 一元一次方程.
ห้องสมุดไป่ตู้识点五
一次方程(组)的应用
1.列一次方程(组)解决实际问题的一般步骤 (1)审:审清题意,分清题目中的已知量和未知量; (2)设:设未知数,可直接设也可间接设; (3)列:找出适当的等量关系,列方程(组); (4)解:解方程(组); (5)验:检验所得答案是否正确以及是否符合题意; (6)答:规范作答.
风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为
(
x y 5 300 A. 200 x 150 y 30 x y 30 C. 200 x 150 y 5 300
C
)
x y 5 300 B. 150 x 200 y 30 x y 30 D. 150 x 200 y 5 300
变式1-4
3x y 2, 解方程组 5 x 2 y 7.
3x y 2, ① 解析 5 由①得y=3x-2,将y=3x-2代入②中得5x+2(3x x 2 y 7, ② x 1, -2)=7,解得x=1,所以y=1,所以方程组的解为 y 1.
答:七年级收到的征文有38篇.
方法技巧
1.列方程(组)解应用题的关键是准确找出题目中的
相等关系,正确列出方程(组). 2.设未知数可以采用直接设法也可以采用间接设法. 3.要根据应用题的实际意义检验求得的解是否符合题意,不符合 题意的要舍去
随堂巩固训练
一、选择题 1.(2017东平一模)方程2x+3=7的解是 ( A.X =5 C.X =3.5 B.x =4 D.x =2 D )
解法二:
3 3 a , a , 2 解得 2 故答案为 b 1 . b 1 . 2 2
4.(2017泰山二模)王经理到襄阳出差带回襄阳特产——孔明菜若 干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋, 还差3袋,则王经理带回孔明菜 解析 设王经理分给了x个朋友, 由题意得5x+3=6x-3,解得x=6, ∴5x+3=33(袋), 故王经理带回孔明菜33袋. 33 袋.
一次方程与方程组专题复习
基础知识过关
知识点一 等式的基本性质及方程的相关概念
知识点二
知识点三 知识点四 知识点五
一元一次方程及其解法
二元一次方程(组)及其解法 三元一次方程组的解法 一次方程(组)的应用
知识点一
等式的基本性质及方程的相关概念
1.等式的基本性质 性质1:等式两边都① 加上(或减去) 同一个数(或式子),
知识点三
二元一次方程(组)及其解法
两个
的⑩
1.二元一次方程:方程中含有⑧
知数的项的次数都是⑨ 1
未知数,并且含有未
整式方程 叫做二
元一次方程.二元一次方程的一般形式是ax +by +c =0(a、b、c
是常数,且a≠0,b≠0).
2.二元一次方程组:含有两个未知数的一次方程组叫做二元一次 方程组. 3.二元一次方程组的解:二元一次方程组中方程的公共解叫做这
适的等量关系设未知数,根据等量关系列方程(组).
考点聚焦
考点一 考点二 方程(组)的解 一次方程(组)的应用
考点一
方程(组)的解
中考解题指导 根据二元一次方程组的特点,选择适当的方法解
方程组.(1)方程中有一个未知数的系数为1或-1时,一般采用代入 消元法.(2)当两个方程中的某个未知数的系数相同或互为相反数
a b 3 ①, x a, x y 3, 将 代入方程组 得 y b 3 x 5 y 4, 3a 5b 4②,
变式1-1 已知关于x,y的方程x ,n的值分别是 ( A.1,-1 B.-1,1 A )
2m-n-2
+4y
5.(2017新泰一模)用一条长40 cm的绳子围成一个面积为64 cm 的矩形.设矩形的一边长为x cm,则可列方程为
2
x(20-x)=64
.
解析 因为矩形的一边长为x cm,则该边的邻边长为(20-x)cm,因 为矩形的面积为64 cm ,所以x(20-x)=64.
2
三、解答题
6.某运动员在一场篮球比赛中的技术统计如下表所示:
m+n+1
=6是二元一次方程,则m
1 4 C. ,- 3 3
1 4 D.- , 3 3
解析
2m n 2 1, m 1, 根据二元一次方程的定义可得 解得 m n 1 1, n 1.
变式1-2 下列结论:
x 3 y 4 a, 已知关于x,y的方程组 其中-3≤a≤1,给出 x y 3 a ,
2.应用题中的常见题型及其基本数量关系
常见题型 利润问题 基本数量关系 利润=售价-进价 利润率=利润/成本×100% 利息问题 工程问题 行程问题 顺水逆水 利息=本金×利率×期数 工作量=工作效率×工作时间 路程=速度×时间 顺水速度=水速+静水速度 逆水速度=静水速度-水速
相关文档
最新文档