位置检测装置

位置检测装置
位置检测装置

位置检测装置

一、测试目的

位置检测装置

位置检测装置是数控系统的重要组成部分,在闭环或半闭环控制的数控机床中,必须利用位置检测装置把机床运动部件的实际位移量随时检测出来,与给定的控制值(指令信号)进行比较,从而控制驱动元件正确运转,使工作台(或刀具)按规定的轨迹和坐标移动。一、数控机床对检测装置的基本要求:

1)稳定可靠、抗干扰能力强。数控机床的工作环境存在油污、潮湿、灰尘、冲击振动等,检测装置要能够在这样的恶劣环境下工作稳定,并且受环境温度影响小,能够抵抗较强的电磁干扰。

2)满足精度和速度的要求。为保证数控机床的精度和效率,检测装置必须具有足够的精度和检测速度,位置检测装置分辨率应高于数控机床的分辨率一个数量级。

3)安装维护方便、成本低廉。受机床结构和应用环境的限制,要求位置检测装置体积小巧,便于安装调试。尽量选用价格低廉,性能价格比高的检测装置。

数控机床加工精度,在很大程度上取决于数控机床位置检测装置的精度,因此,位置检测装置是数控机床的关键部件之一,它对于提高数控机床的加工精度有决定性的作用。

二、组成部分

位置检测装置的主要性能指标:

1. 精度符合输出量与输入量之间特定函数关系的准确程度称作精度,数控机床用传感器要满足高精度和高速实时测量的要求。

2. 分辨率位置检测装置能检测的最小位置变化量称作分辨率。分辨率应适应机床精度和伺服系统的要求。

分辨率的高低,对系统的性能和运行平稳性具有很大的影响。检测装置的分辨率一般按机床加工精度的1

/3~1/10选取,也就是说,位置检测装置的分辨率要高于机床加工精度。

3. 灵敏度输出信号的变化量相对于输入信号变化量的比值为灵敏度。实时测量装置不但要灵敏度高,而

且输出、输入关系中各点的灵敏度应该是一致的。

4. 迟滞对某一输入量,传感器的正行程的输出量与反行程的输出量的不一致,称为迟滞。数控伺服系统

的传感器要求迟滞小。 5. 测量范围和量程传感器的测量范围要满足系统的要求,并留有余地。

6. 零漂与温漂零漂与温漂是在输入量没有变化时,随时间和温度的变化,位置检测装置的输出量发生了

变化。传感器的漂移量是其重要性能标志,零漂和温漂反映了随时间和温度的改变,传感器测量精度的微小变化。

三、工作原理

位置检测装置分类:

1. 按输出信号的形式分类:

数字式:将被测量以数字形式表示,测量信号一般为电脉冲。

模拟式:将被测量以连续变化的物理量来表示(电压相位 / 电压幅值变化) 2. 按测量基点的类型分类:

增量式:只测量位移增量,并用数字脉冲的个数表示单位位移的数量。

绝对式:测量的是被测部件在某一绝对坐标系中的绝对坐标位置。 3. 按位置检测元件的运动形式分类:

直线式:测量直线位移。回转式:测量角位移

位置检测装置

姓名:

班级:

学号:

2014年11月10日

第六章习题(位置检测装置)

第6章数控机床的检测装置 一、填空题 1、位置检测装置是由检测元件(传感器)和信号处理装置组成的。 2、数控系统中的检测装置分为位移,速度和电流三种类型。 二、选择题 1、鉴向倍频电路是光栅测量系统的组成之一,下列不属于鉴向倍频电路的作用是(D) (A)辨向(B)细分(C)提高光栅的分辨力(D)放大 2、下列不属于编码器在数控机床中的应用的是(C) (A)位移测量(B)主轴控制(C)转速控制 (D)“零点脉冲”信号用于回参考点控制 3、下列那一项是衡量感应同步器精度的主要参数(A) (A)节距(B)定尺长(C)滑迟长(D)相移 答案为: 三、是非判断题 1、对机床的直线位移采用回转型检测装置测量称为直接测量。 答:错误。应该是称为间接测量。 2、当正弦绕组与定尺绕组对齐时,余弦绕组与定尺绕组相差1/2节距。 答:错误。应该是相差1/4节距。 3、脉冲编码器、旋转变压器、圆磁栅、数字脉冲编码器、直线感应同步器均是位移传感器。 答:错误。数字脉冲编码器是速度传感器。 四、简答题 1、莫尔条纹具有哪些特性? 答:1)光学放大作用; 2)均化误差作用; 3)莫尔条纹移动与栅距移动成比例。

2、简述数控机床对位置检测装置有哪些要求。举例说明检测装置的类型。 答:数控机床对位置检测装置的要求: 1)受温度、湿度的影响小,工作可靠,能长期保持精度,抗干扰能力强。 2)在机床执行部件移动范围内,能满足精度和速度的要求。 3)使用维护方便,适应机床工作环境。 4)成本低。 检测装置分类:位移传感器,如旋转变压器、光栅尺等;速度传感器,如测速发电机、数字脉冲编码器等;电流传感器,如霍尔电流传感器。 五、问答及设计题 一、某数控车采用步进电机作进给驱动,步进电机的步距角为1.8度,丝杠螺距为4mm,编码器与主轴连接方式如下, Z1,Z2,Z3,Z4分别为80,40,40,20,编码器每转1500个脉冲,问加工螺距P=6mm螺纹时,工作台走一个脉冲当量时对应的编码器脉冲是多少? 解:Z4 =20; Z3=40;步进电机转一圈需要360 /1.8=200 个脉冲,工作台平移4mm 需要步进电机转2圈及400个脉冲。加工一个P=6mm的螺纹,步进电机需要转400X6/4=600个脉冲; Z2=40 ,Z1=80 ;主轴转一圈,编码器转两圈,发3000个脉冲;加工一个螺纹时主轴转一圈螺距为P 6mm所以步进电机需要600个脉冲,对应此时编码器发3000个脉冲。 二、某带光电编码器的伺服电动机与滚珠丝杠直连(传动比为1:1),光电编码器为1200脉冲/转,丝杠螺距为6mm,则数控系统位置控制中断时间内计数600脉冲,这段时间内,工作台移动多少mm?

一种永磁同步电机转子初始位置的判断方法

说明书摘要 本发明公开一种永磁同步电机转子初始位置的判断方法,步骤是:首先利用脉振高频电压注入法得到初次估计的转子位置,然后在初次估计的交轴上注入一个正方向扰动信号,再估计转子位置,根据估计得到的转速方向判断磁极极性,得到电机转子初始位置。此种方法可解决脉振高频电压信号注入法检测转子初始位置时磁极极性的收敛问题,无需在直轴上注入正负方向的脉冲电流,可以有效地实现转子初始位置估算。

摘要附图

1、一种永磁同步电机转子初始位置的判断方法,其特征在于包括如下步骤: (1)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,给定?q 轴电压?0q u =; (2)检测电机的两相电流,并经过Clarke 和Park 坐标系变换,得到??d q -估计同步旋转坐标系的?q 轴电流?q i ,并依照以下步骤估计转子的位置和转速:首先,将检测得到的?q 轴电流?q i 乘以调制信号cos()t h u t ω=;然后,对相乘后所得的信号低通滤波,得到?q 轴电流?q i 的幅值信号()f θ?;最后,对该幅值信号()f θ?进行PI 调节,得到估计转速?ω ,对估计转速?ω积分得到估计的转子位置; (3)重复步骤(2),直至估计的转子位置收敛为一恒定值,即为初次估计 的转子位置?first θ; (4)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,在?q 轴注入一个正方向扰动信号,重复步骤(2),直至电机转过一定角度γ,0γ>; (5)根据步骤(3)估计得到的转速方向判断磁极极性,当转速为正时,收 敛的磁极极性为N 极,转子初始位置??=initial first θθ;当转速为负时,收敛的磁极极性为S 极,转子初始位置??=initial first θθπ+。 2、如权利要求1所述的一种永磁同步电机转子初始位置的判断方法,其特 征在于:所述步骤(1)中,采用转子的估计位置?θ进行Park 逆变换,获得实际两相静止坐标系下电压的给定值?u α和?u β。

位置检测装置

第4章 数控检测装置 4.1数控检测装置的概述 检测元件是闭环、半闭环伺服系统的重要组成部分。在闭环数控系统中,必须利用位置检测装置把机床运动部件的实际位移量随时检测出来,与给定的控制值(指令信号)进行比较,从而控制驱动元件准确运转,使工作台(或刀具)按规定的轨迹和坐标移动。因此,位置检测装置是数控机床的关键部件之一,它的精度直接影响数控机床的定位精度和加工精度。为此,对位置检测装置提出如下要求: (1)高可靠性和高抗干扰性; (2)满足精度和速度要求; (3)使用、维护方便,适合机床的运行环境; (4)成本低,寿命长。 对于不同类型的数控机床,因工作条件和检测要求不同,可以采用不同的检测方式。 ∑==n i i Z Z 1总 4.1.1对位置检测装置的要求 在数控机床中,数控装置是依靠指令值与位置检测装置的反馈值进行比较,以此来控制工作台运动的。位置检测装置是CNC 系统的重要组成部分。在闭环系统中,它的主要作用是检测位移量,并将检测的反馈信号和数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件,使其向着消除偏差的方向运动,直到偏差为零为止。为了提高数控机床的加工精度,必须提高测量元件和测量系统的精度,不同的数控机床对测量元件和测量系统的精度要求、允许的最高移动速度各不相同。现在检测元件与系统的最高水平是:被检测部件的最高移动速度至240m/min 时,其检测位移的分辨率(能检测的最小位移量)可达1μm ,相当于24m/min 时可达0.1μm 。最高分辨率可达0.01μm 。因此,研制和选用性能优越的检测装置是很重要的。 。 ‘ 数控机床对位置检测装置的要求如下: (1)受温度、湿度的影响小,工作可靠,能长期保持精度,抗干扰能力强; (2)在机床执行部件移动范围内,能满足精度和速度的要求; (3)使用维护方便,适应机床工作环境; (4)成本低; (5)易于实现高速的动态测量。 4.1.2检测装置的分类 按工作条件和测量要求的不同,测量方式亦有不同的划分方法,位置检测装置分类如表4—1所示。 表4—l 位置检测装置分类

伺服转子初始位置的检测

采用增量式光电编码器作为位置检测元件的PMSM伺服电机,必须要在系统刚上电时就测得电机精确的初始位置。因为在永磁伺服驱动系统中,电机转子的位置检测与初始定位是系统构成与运行的基本条件,也是矢量控制解耦的必要条件。只有永磁同步电机的转子位置能够准确知道,才可以按照矢量控制的一系列方程,将永磁同步电机等效变换成dq坐标系上的等效模型,系统才能按照类似他励直流电机的控制方法对永磁同步电机进行控制,从而可以达到他励直流电机构成的伺服传动系统的性能指标要求。使用增量式光电编码器测量电机位置的伺服系统中, 系统上电后需要先检测出电机的初始位置。电机的初始位置不仅影响伺服系统的定位精度, 而且会对电机的快速启动性能造成一定的影响。 在系统刚刚上电,电机尚未运行时,系统开始测量转子的初始位置,此过程只需要电流环工作,根据伺服系统运行要求,在寻找初始位置的过程中,只允许有很微小的抖动,并且要求很快回归原位。 假设,采用H45-8-2500-WL型光电编码器,电机转动过程中,编码器输出的信号:A(/A)、B(/B)、Z(/Z)、U(/U)、V(/V)和W(/W),如图1(b)所示。其中A(/A)、B(/B)两组信号为相差相位角的同频率信号,分辨率为2500PPR,通过判断两组脉冲的相位可以判断出电机的旋转方向,这两组信号经4倍频之后,电机空间位置的分辨率变为10000PPR。脉冲Z (/Z)是同步信号,电机每旋转一周产生一个信号,其产生的位置固定,即电机转子转到该位置时发出信号(零位信号)。 如图1所示为伺服电机混合式光电编码器的码盘结构及输出信号波形。码盘的中间码道为刻有高密度的增量式透光缝隙(2000,2500,3000PPR等),两边分布两组互成的三个缝隙,受光元件(Photo-Diode Array)接收到发光元件(LED)通过缝隙的光线而产生互差的三相信号,经过放大整形后输出矩形波信号U(/U)、V(/V)和W(/W)。利用这些信号的组合状态来分别代表磁极在空间的不同位置。U(/U)、V(/V)和W(/W)三相脉冲信号每转的脉冲个数与电机的极对数相一致。根据U(/U)、V(/V)和W (/W)三相脉冲的高低电平关系可以判断电机磁极的当前位置。其过程是:电机启动前,通过U(/U)、V(/V)和W(/W)三相脉冲的状态估算出电机磁极位置,即当前的角度,一旦电机旋转起来,光电编码器的增量式部分可以精确地检测出位置值。这里,伺服电机极对数为4对极,则每相输出信号U(/U)、V(/V)和W(/W)的周期为空间,在每个周期中可以组合成6种状态,每种状态代表空间角度范围为。

基于高频电压注入法的永磁同步电机转子初始位置检测1

基于高频电压注入法的永磁同步电机转子初始位置检测 Initial Rotor Position Inspection of PMSM Based on Rotating High Frequency Voltage Signal Injection 北京航空航天大学自动化科学与电气工程学院蔡名飞周元钧 摘要:为了解决新型无位置传感器永磁同步电机的起动问题,提出了一种在电机静止状态下检测转子位置的新方法。 该方法在算法上改进了传统的旋转高频电压注入法,使得可以更为快速、准确的检测出转子初始(均扫位置。并且针对传统旋转高频电压注人法无法检测出转子永磁体极性问题,在dq旋转坐标系下,通过分析永磁同步卜匕机d轴磁链和定子电流之间的关系,利用d轴电流的泰勒级数展开,提出J’根据定子铁芯非线性磁化特性获得判另}J N/S极极性信息的新方一案。最后,建立了系统仿真模型。仿真结果验证了这种方法的有效性和可行性。此方法同样适用于永磁同步电机在中、低速时的转子位置检测。 关键词:永磁同步电机转子初始位置旋转高频注人非线性磁化特性N/S极极性 1引言 永磁同步电机高精态、高动态性能的速度、位置控制,都需要准确的转子位置信息。如果位置检测误差较大,会导致电机不能正常起动、运行。传统方法是通过机械式传感器来测量转子的速度和位置。但机械式传感器减低了系统的可靠性,增加了系统的成本;同时传感器对环境有着严格的要求,电磁干扰、温度、湿度、振动对它的测量精度都有影响。特别针对某些航空伺服电机,长期工作在恶劣、复杂的环境中,所以研究无位置传感器不仅可 以减少航空电机成本,而且可以减少不必要的引线,将大大提高整个系统的可靠性〔‘]。 最简单的无位置传感器控制方法是文献「2]提出的基于对检测到的电机反电动势进行积分,这种方法虽然简单,但是在零速或低速阶段因为反电动太小,难以检测而失败。后来人们又提出了高频注人法,其主要思想是用电机固有的空间凸极或凸极效应可以实现对转子位置的检测,这种方法与转速没有直接关系,有效克服了反电动势法的 缺陷。文献〔3]提出通过处理电流高频响应,采取求导取极值计算电机的初始位置,但这种方法存在震荡现象,高频电流也会因滤波器移相导致检测误差,并且也没有给出电 机N/S极极性检测方法。文献【4]提出在电机中注人幅值相同、方向不同的系列脉冲,检测并比较相应电流的大小来估计转子的位置。这种方法可行但是对注入脉冲的电压幅 值和时间控制要求比较高,操作复杂,检测时间过长。文献[[5][6]通过注人高频信号引起PMSM的d,q轴磁链饱和程度差异实现初始位置检测,这种方法高频电流信号提取复 杂,容易带来计算误差,难以做到转子位置的实时检测跟踪。文献〔7l所使用的电机经过特殊设计,不具普遍性,仅适用于理论研究。 为了解决以上方法的存在的问题,本文提出了一种基于旋转高频电压注人法的永磁同步电机转子初始位置检测的新方法。在电机静止状态下,通过向电机定子三相绕组中注入高频电压信号,利用电机凸极效应,通过处理高频电流响应,得出转子的位置信号。为此,本文进行了仿真研究,实现了转子d轴位置和N/S极极性的快速、准确检测。 2高频激励下的永磁同步电机的数学模型

第六章 数控机床的检测装置

第六章数控机床的检测装置 一、填空题 1、位置检测装置是由检测元件(传感器)和信号处理装置组成的。 2、数控系统中的检测装置分为位移,速度和电流三种类型。 二、选择题 1、鉴向倍频电路是光栅测量系统的组成之一,下列不属于鉴向倍频电路的作用是(D)(A)辨向(B)细分(C)提高光栅的分辨力(D)放大 2、下列不属于编码器在数控机床中的应用的是(C) (A)位移测量(B)主轴控制(C)转速控制 (D)“零点脉冲”信号用于回参考点控制 3、下列那一项是衡量感应同步器精度的主要参数(A) (A)节距(B)定尺长(C)滑迟长(D)相移 三、是非判断题 1、对机床的直线位移采用回转型检测装置测量称为直接测量。 答:错误。应该是称为间接测量。 2、当正弦绕组与定尺绕组对齐时,余弦绕组与定尺绕组相差1/2节距。 答:错误。应该是相差1/4节距。 3、脉冲编码器、旋转变压器、圆磁栅、数字脉冲编码器、直线感应同步器均是位移传感器。 答:错误。数字脉冲编码器是速度传感器。 四、简答题 1、莫尔条纹具有哪些特性? 答:1)光学放大作用; 2)均化误差作用; 3)莫尔条纹移动与栅距移动成比例。 2、简述数控机床对位置检测装置有哪些要求。举例说明检测装置的类型。 答:数控机床对位置检测装置的要求: 1)受温度、湿度的影响小,工作可靠,能长期保持精度,抗干扰能力强。

2)在机床执行部件移动范围内,能满足精度和速度的要求。 3)使用维护方便,适应机床工作环境。 4)成本低。 检测装置分类:位移传感器,如旋转变压器、光栅尺等;速度传感器,如测速发电机、数字脉冲编码器等;电流传感器,如霍尔电流传感器。 五、问答及设计题 1.某数控车采用步进电机作进给驱动,步进电机的步距角为1.8度,丝杠螺距为4mm,编码器与主轴连接方式如下, Z1,Z2,Z3,Z4分别为80,40,40,20,编码器每转1500个脉冲,问加工螺距P=6mm螺纹时,工作台走一个脉冲当量时对应的编码器脉冲是多少? 解:Z4 =20; Z3=40;步进电机转一圈需要360 /1.8=200 个脉冲,工作台平移4mm 需要步进电机转2圈及400个脉冲。加工一个P=6mm的螺纹,步进电机需要转400X6/4=600个脉冲; Z2=40 ,Z1=80 ;主轴转一圈,编码器转两圈,发3000个脉冲;加工一个螺纹时主轴转一圈螺距为P 6mm所以步进电机需要600个脉冲,对应此时编码器发3000个脉冲。 2.某带光电编码器的伺服电动机与滚珠丝杠直连(传动比为1:1),光电编码器为1200脉冲/转,丝杠螺距为6mm,则数控系统位置控制中断时间内计数600脉冲,这段时间内,工作台移动多少mm? 解:因为伺服电动机与滚珠丝杠直连,传动比为1:1,且丝杠螺距为6mm。所以伺服电动机转一圈,滚珠丝杠也转一圈,工作台移动距离为螺距,即6mm。因为光电编码器为1200脉冲/转(即电机转一圈的脉冲也是1200),而计数600脉冲。所以电机转了600/1200=0.5圈,即转了半圈。因为滚珠丝杠转一圈,工作台移动距离6mm。所以滚珠丝杠转半圈,工作台移动距离3mm。

位置检测装置

位置检测装置 一、测试目的 位置检测装置 位置检测装置是数控系统的重要组成部分,在闭环或半闭环控制的数控机床中,必须利用位置检测装置把机床运动部件的实际位移量随时检测出来,与给定的控制值(指令信号)进行比较,从而控制驱动元件正确运转,使工作台(或刀具)按规定的轨迹和坐标移动。一、数控机床对检测装置的基本要求: 1)稳定可靠、抗干扰能力强。数控机床的工作环境存在油污、潮湿、灰尘、冲击振动等,检测装置要能够在这样的恶劣环境下工作稳定,并且受环境温度影响小,能够抵抗较强的电磁干扰。 2)满足精度和速度的要求。为保证数控机床的精度和效率,检测装置必须具有足够的精度和检测速度,位置检测装置分辨率应高于数控机床的分辨率一个数量级。 3)安装维护方便、成本低廉。受机床结构和应用环境的限制,要求位置检测装置体积小巧,便于安装调试。尽量选用价格低廉,性能价格比高的检测装置。 数控机床加工精度,在很大程度上取决于数控机床位置检测装置的精度,因此,位置检测装置是数控机床的关键部件之一,它对于提高数控机床的加工精度有决定性的作用。 二、组成部分 位置检测装置的主要性能指标:

1. 精度符合输出量与输入量之间特定函数关系的准确程度称作精度,数控机床用传感器要满足高精度和高速实时测量的要求。 2. 分辨率位置检测装置能检测的最小位置变化量称作分辨率。分辨率应适应机床精度和伺服系统的要求。 分辨率的高低,对系统的性能和运行平稳性具有很大的影响。检测装置的分辨率一般按机床加工精度的1 /3~1/10选取,也就是说,位置检测装置的分辨率要高于机床加工精度。 3. 灵敏度输出信号的变化量相对于输入信号变化量的比值为灵敏度。实时测量装置不但要灵敏度高,而 且输出、输入关系中各点的灵敏度应该是一致的。 4. 迟滞对某一输入量,传感器的正行程的输出量与反行程的输出量的不一致,称为迟滞。数控伺服系统 的传感器要求迟滞小。 5. 测量范围和量程传感器的测量范围要满足系统的要求,并留有余地。 6. 零漂与温漂零漂与温漂是在输入量没有变化时,随时间和温度的变化,位置检测装置的输出量发生了 变化。传感器的漂移量是其重要性能标志,零漂和温漂反映了随时间和温度的改变,传感器测量精度的微小变化。

数控机床常用的位置检测装置

数控机床常用的位置检测装置——旋转变压器 旋转变压器是数控机床常用的电磁检测装置,它是一种角位移检测元件。 (1)旋转变压器结构旋转变压器由定子和转子组成,根据转子电信号引入、引出方式的不同,可将其分为有刷和无刷两种。由于有刷旋转变压器的可靠性难以得到保证,所以它的应用很少。下面将着重介绍无刷旋转变压器,它没有电刷与集电环,由分解糟和变压器两大部分组成。其中,分解糟的结构与有刷旋转变压器基本相同,由定子和转子组成,定子和转子上都有绕组。变压器的一次绕组绕在与分解器转子轴固定在一起转动;它的二次绕组绕在与转子同心的定子轴线上。分解器定子绕组接外加定子绕组的励磁电压,它的转子绕组输出信号接在变压器的一次绕组,从变压器的二次绕组引出最后的输出信号。 (2)旋转变压器工作原理无刷旋转变压器工作原理,定子绕组是变压器的一次绕组,转子绕组是变压器的二次绕组。当励磁电压加到定子绕组时,由于电磁效应,转子绕组就会产生感应电压。当转子运转时,转子绕组的感应电压会按照转子转过的角位移量呈正弦(或余弦)规律变化,其频率与励磁电压的频率相同。这时,如果测量旋转变压器二次绕组感应电压的幅值或相位,就可以计算出转子转角的变化规律。在数控机床伺服系统(3)一般用旋转变压器测量进给丝杠的转角,通过转换间接地测量工作台的直线位移。 (3)旋转变压器的应用旋转变压器的应用有两种工作方式,鉴相式工作方式和鉴幅式 工作方式。 在鉴相式工作方式中,旋转变压器定子两相正向绕组分别加上幅值相等、频率相同,而相位差为90。的正弦交流电压。旋转变压器转子绕组中的感应电动势与定子绕组中的励磁电压同频率,但相位不同。测量转子绕组输出电压的相位角,即可测量得转子相对于定子的空间转角位置。 在鉴幅式工作方式中,定子两相绕组加的是频率相同、相位角相同,而幅值分别按正弦、余弦变化的交流电压。

相关文档
最新文档