2016年高考数学文科程序框图
2016年全国统一高考数学试卷文科全国一附带答案解析
2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,+b n+1=nb n.(Ⅱ)由(I)知:(3n﹣1)b n+1即3b n=b n.+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016山西高考文科数学真题及答案
2016山西高考文科数学真题及答案注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )。
(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【参考答案】B【答案解析】集合A 与集合B 公共元素有3,5,故{}35A B ⋂=,选B 。
【试题点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=( )。
(A )-3(B )-2(C )2(D )3 【参考答案】A【答案解析】设i a a i a i )21(2))(21(++-=++,由已知,得a a 212+=-,解得3-=a ,选A. 【试题点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 (A )13(B )12(C )13(D )56【参考答案】A【答案解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有2种,故概率为31,选A. 【试题点评】本题在高考数学(理)提高班讲座 第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b=( )。
2016年高考文科数学陕西卷试题与答案
2016年普通高等学校招生全国统一考试【陕西省】文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3},B={x|x 2<9},则A ∩B=( ) A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}2.设复数z 满足z+i=3-i,则z =( ) A.-1+2iB.1-2iC.3+2iD.3-2i3.函数y=Asin(ωx+φ)的部分图象如图所示,则( )A.y=2sin (2x -π6) B.y=2sin (2x -π3) C.y=2sin (x +π6)D.y=2sin (x +π3)4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB.323π C.8π D.4π5.设F为抛物线C:y2=4x的焦点,曲线y=kx(k>0)与C交于点P,PF⊥x轴,则k=( )A.12B.1 C.32D.26.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-43B.-34C.√3D.27.下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.3109.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7B.12C.17D.3410.下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=xB.y=lg xC.y=2xD.y=√x11.函数f(x)=cos 2x+6cos (π2-x)的最大值为( ) A.4B.5C.6D.712.已知函数f(x)(x ∈R)满足f(x)=f(2-x),若函数y=|x 2-2x-3|与y=f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1mx i =( )A.0B.mC.2mD.4m第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.已知向量a=(m,4),b=(3,-2),且a ∥b,则m= .14.若x,y 满足约束条件{x -y +1≥0,x +y -3≥0,x -3≤0,则z=x-2y 的最小值为 .15.△ABC 的内角A,B,C 的对边分别为a,b,c,若cos A=45,cos C=513,a=1,则b= . 16.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.18.(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010 (Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度平均保费的估计值.19.(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D'EF的位置.(Ⅰ)证明:AC⊥HD';(Ⅱ)若AB=5,AC=6,AE=54,OD'=2√2,求五棱锥D'-ABCFE的体积.20.(本小题满分12分)已知函数f(x)=(x+1)ln x-a(x-1).(Ⅰ)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程; (Ⅱ)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.21.(本小题满分12分)已知A是椭圆E:x24+y23=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,证明:√3<k<2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,在正方形ABCD 中,E,G 分别在边DA,DC 上(不与端点重合),且DE=DG,过D 点作DF ⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F 四点共圆;(Ⅱ)若AB=1,E 为DA 的中点,求四边形BCGF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是{x =tcosα,y =tsinα(t 为参数),l 与C 交于A,B 两点,|AB|=√10,求l 的斜率.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x -12|+|x +12|,M 为不等式f(x)<2的解集. (Ⅰ)求M;(Ⅱ)证明:当a,b ∈M 时,|a+b|<|1+ab|.2016年普通高等学校招生全国统一考试文科数学答案第Ⅰ卷一. 选择题(1)【答案】D (2)【答案】C (3) 【答案】A (4) 【答案】A (5)【答案】D(6) 【答案】A(7) 【答案】C(8) 【答案】B(9)【答案】C(10) 【答案】D (11)【答案】B(12) 【答案】B二.填空题(13)【答案】6-(14)【答案】5-(15)【答案】2113(16)【答案】1和3三、解答题(17)(本小题满分12分) 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 根据等差数列的性质求1a ,d ,从而求得n a ;(Ⅱ)根据已知条件求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦, 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 考点:等茶数列的性质,数列的求和. 【结束】(18)(本小题满分12分) 【答案】(Ⅰ)由6050200+求P(A)的估计值;(Ⅱ)由3030200+求P(B)的估计值;(III )根据平均值得计算公式求解. 【解析】 试题分析:试题解析:(Ⅰ)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200+=, 故P(A)的估计值为0.55.(Ⅱ)事件B 发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3200+=, 故P(B)的估计值为0.3. (Ⅲ)由题所求分布列为:调查200名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.3020.10 1.1925a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=,因此,续保人本年度平均保费估计值为1.1925a. 考点:样本的频率、平均值的计算. 【结束】(19)(本小题满分12分) 【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)证明.'⊥OD OH 再证'⊥OD 平面.ABC 最后呢五棱锥体积.试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD . (II )由//EF AC 得1.4==OH AE DO AD 由5,6==AB AC 得 4.===DO BO所以1, 3.'===OH D H DH于是2222219,''+=+==OD OH D H 故.'⊥OD OH'ABCEF D -由(I )知'⊥AC HD ,又,'⊥=AC BD BD HD H ,所以⊥AC 平面,'BHD 于是.'⊥AC OD 又由,'⊥=OD OH AC OH O ,所以,'⊥OD 平面.ABC又由=EF DH AC DO 得9.2=EF 五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S所以五棱锥体积169342=⨯⨯=V 考点:空间中的线面关系判断,几何体的体积. 【结束】(20)(本小题满分12分)【答案】(Ⅰ)220.x y +-=;(Ⅱ)(],2.-∞. 【解析】试题分析:(Ⅰ)先求定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,对实数a 分类讨论,用导数法求解. 试题解析:(I )()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x,(1)2,(1)0.'=-=f f 曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(II )当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x ,则 222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x ,(i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;'ABCEF D -(ii )当2>a 时,令()0'=g x 得1211=-=-+x a x a ,由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()0<g x .综上,a 的取值范围是(],2.-∞ 考点:导数的几何意义,函数的单调性. 【结束】(21)(本小题满分12分)【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k . 试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故1||2|AM x =+=.由题设,直线AN 的方程为1(2)y x k=-+,故同理可得||AN =.由2||||AM AN =得2223443kk k=++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又260,(2)60f f =<=>,因此()f t 在(0,)+∞有唯一的零点,且零点k 在2)2k <<. 考点:椭圆的性质,直线与椭圆的位置关系. 【结束】请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲 【答案】(Ⅰ)详见解析;(Ⅱ)12. 【解析】试题分析:(Ⅰ)证,DGF CBF ∆~∆再证,,,B C G F 四点共圆;(Ⅱ)证明,Rt BCG Rt BFG ∆~∆四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍.试题解析:(I )因为DF EC ⊥,所以,DEF CDF ∆~∆则有,,DF DE DGGDF DEF FCB CF CD CB∠=∠=∠== 所以,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠ 由此0180,CGF CBF ∠+∠=所以,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB , 由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ 因此四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=考点:三角形相似、全等,四点共圆 【结束】(23)(本小题满分10分)选修4—4:坐标系与参数方程【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±. 【解析】试题分析:(I )利用222x y ρ=+,cos x ρθ=可得C 的极坐标方程;(II )先将直线l 的参数方程化为普通方程,再利用弦长公式可得l 的斜率.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 83αα==±,所以l . 考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式. 【结束】(24)(本小题满分10分)选修4—5:不等式选讲【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析. 【解析】试题分析:(I )先去掉绝对值,再分12x <-,1122x -≤≤和12x >三种情况解不等式,即可得M ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b ∈M 时,1a b ab +<+.试题解析:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时,()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此|||1|.a b ab +<+考点:绝对值不等式,不等式的证明. 【结束】一、选择题1.D 由已知得B={x|-3<x<3},∵A={1,2,3},∴A ∩B={1,2},故选D.2.C z=3-2i,所以z =3+2i,故选C.3.A 由题图可知A=2,T 2=π3-(-π6)=π2,则T=π,所以ω=2,则y=2sin(2x+φ),因为题图经过点(π3,2),所以2sin (2×π3+φ)=2,所以2π3+φ=2kπ+π2,k ∈Z,即φ=2kπ-π6,k ∈Z,当k=0时,φ=-π6,所以y=2sin (2x -π6),故选A.4.A 设正方体的棱长为a,则a 3=8,解得a=2.设球的半径为R,则2R=√3a,即R=√3,所以球的表面积S=4πR 2=12π.故选A. 5.D 由题意得点P 的坐标为(1,2).把点P 的坐标代入y=kx (k>0)得k=1×2=2,故选D.6.A 由圆的方程可知圆心为(1,4).由点到直线的距离公式可得√a 2+1=1,解得a=-43,故选A.7.C 由三视图知圆锥的高为2√3,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C. 8.B 行人在红灯亮起的25秒内到达该路口,即满足至少需要等待15秒才出现绿灯,根据几何概型的概率公式知所求事件的概率P=2540=58,故选B.9.C 执行程序框图,输入a 为2时,s=0×2+2=2,k=1,此时k>2不成立;再输入a 为2时,s=2×2+2=6,k=2,此时k>2不成立;再输入a 为5,s=6×2+5=17,k=3,此时k>2成立,结束循环,输出s 为17,故选C. 10.D 函数y=10lg x的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lgx 的值域为R,排除B,故选D.11.B f(x)=1-2sin 2x+6sin x=-2(sinx -32)2+112,当sin x=1时, f(x)取得最大值5,故选B.12.B 由题意可知f(x)的图象关于直线x=1对称,而y=|x -2x-3|=|(x-1)-4|的图象也关于直线x=1对称,所以两个图象的交点关于直线x=1对称,且每对关于直线x=1对称的交点的横坐标之和为2,所以∑i=1mx i =m,故选B.二、填空题 13.答案 -6解析 因为a ∥b,所以m 3=4-2,解得m=-6.14.答案 -5解析 由约束条件画出可行域,如图中阴影部分所示(包括边界).当直线x-2y-z=0过点B(3,4)时,z 取得最小值,z min =3-2×4=-5.15.答案2113解析 由cos C=513,0<C<π,得sin C=1213. 由cos A=45,0<A<π,得sin A=35. 所以sin B=sin[π-(A+C)]=sin(A+C) =sin Acos C+sin Ccos A=6365,根据正弦定理得b=asinB sinA=2113.16.答案 1和3解析 丙的卡片上的数字之和不是5,则丙有两种情况:①丙的卡片上的数字为1和2,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和3,满足题意;②丙的卡片上的数字为1和3,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和2,这时甲与乙的卡片上有相同的数字2,与已知矛盾,故情况②不符合,所以甲的卡片上的数字为1和3.祝福语祝你考试成功!。
2016年湖北省高考数学试卷(文科)(全国新课标ⅰ)
2016年湖北省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.﹣3 B.﹣2 C.2 D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C 于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年湖北省高考数学试卷(文科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.﹣3 B.﹣2 C.2 D.3【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.3【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D10.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.=×2××2×2=.所以四面体PDEF的体积V=×DE×S△PEF19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C 于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增;②当a<0时,若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;x→﹣∞,f(x)→+∞.f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,f(x)在(1,+∞)单调递增,又x≤1时,f(x)<0,所以f(x)不存在两个零点.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).。
2016届高考数学大一轮总复习(人教新课标文科)配套文档 12.3 算法与程序框图
§12。
3算法与程序框图1.算法与程序框图(1)算法①算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.②应用:算法通常可以编成计算机程序,让计算机执行并解决问题.(2)程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构名称内容顺序结构条件结构循环结构定义由若干个依次执行的步骤组成,这是任何一算法的流程根据条件是否成立有不同的流从某处开始,按照一定的条件反复执行某些个算法都离不开的基本结构向,条件结构就是处理这种过程的结构步骤的结构,反复执行的步骤称为循环体程序框图3.(1)输入语句、输出语句、赋值语句的格式与功能语句一般格式功能输入语句INPUT“提示内容”;变量输入信息输出语句PRINT“提示内容";表达式输出常量、变量的值和系统信息赋值语句变量=表达式将表达式所代表的值赋给变量(2①程序框图中的条件结构与条件语句相对应.②条件语句的格式a.IF-THEN格式IF 条件THEN语句体END IFb.IF—THEN—ELSE格式IF 条件THEN语句体1ELSE语句体2END IF(3)循环语句①程序框图中的循环结构与循环语句相对应.②循环语句的格式a.UNTIL语句b.WHILE语句DO WHILE条件循环体循环体LOOP UNTIL条件WEND【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×")(1)算法只能解决一个问题,不能重复使用.(×)(2)程序框图中的图形符号可以由个人来确定.(×)(3)输入框只能紧接开始框,输出框只能紧接结束框.(×)(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的.(√)(5)5=x是赋值语句.(×)(6)输入语句可以同时给多个变量赋值.(√)1.已知一个算法:(1)m=a。
(2)如果b〈m,则m=b,输出m;否则执行第(3)步.(3)如果c<m,则m=c,输出m。
2016年新课标高考真题全国三卷文科数学
2016年新课标高考真题全国三卷文科数学一、单选题1.设集合4 = {0,2,4,6,8,10}1 = {4,8},则QB =A. {4,8}B. {0, 2,6}C. {0, 2, 6,10}D. {0,2, 4, 6, 8,10}2.若z = 4 + 3i,则高=()A. 1B. -1C. l+UD.D D D D3. (2016高考新课标HI,理3)已知向量方1 堂)前=(今]则乙4c=A. 30 °B. 45 0C. 60 °D. 120 °4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15:B点表示四月的平均最低气温约为5二.下面叙述不正确的是( )▼.均・低气* 一▼均MT*A.各月的平均最低气温都在0匚以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20:j的月份有5个5.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M, 1,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是6.若tan6 =:,则cos26 =( )D- IA. B- 一! C.青7.已知a = = 3^c = 252,则D. c < a < b8 .执行下面的程序框图,如果输入的a=4, b=6,那么输出的n=() (W)n = =5][。
=6-0]■:[a = b + 司CWA. 3B. 4C. 5D. 69 .在△4BC 中,F = p BC 边上的高等于则sin/=10 .如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多11 .在封闭的直三棱柱— 内有一个体积为V 的球,若48 = 6,BC = 8,/& = 3,则该球体枳V 的最大值是932A. 4TTB. -7TC. 67rD. —n2312 .己知。
2016年-2017年普通高等学校招生全国统一考试数学文试题(全国卷2,参考版解析)
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2016年高考新课标Ⅱ卷文数试题参考解析一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
1. 已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =I ,故选D. 2. 设复数z 满足i 3i z +=-,则z =(A )12i -+ (B )12i - (C )32i + (D )32i - 【答案】C【解析】由3z i i +=-得,32z i =-,故选C. 3. 函数=sin()y A x ωϕ+ 的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=【答案】A4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B )323π (C )8π (D )4π 【答案】A【解析】因为正方体的体积为8,所以正方体的体对角线长为233,所以球面的表面积为243)12ππ⋅=,故选A.5. 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12 (B )1 (C )32(D )2【答案】D【解析】(1,0)F ,又因为曲线(0)ky k x=>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D.6. 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =(A )−43 (B )−34(C )3 (D )2 【答案】A【解析】圆心为(1,4),半径2r =,所以2211a =+,解得43a =-,故选A.7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为 (A )710 (B )58 (C )38 (D )310【答案】B【解析】至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 9. 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34【答案】C【解析】第一次运算,a=2,s=2,n=2,k=1,不满足k>n; 第二次运算,a=2,s=2226⨯+=,k=2,不满足k>n; 第三次运算,a=5,s=62517⨯+=,k=3,满足k>n , 输出s=17,故选C .10. 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是 (A )y =x (B )y =lg x (C )y =2x(D )y x=【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .11. 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5(C )6(D )7【答案】B【解析】因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5,选B.12. 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数 y =|x 2-2x -3| 与 y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m 【答案】B【解析】因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 二.填空题:共4小题,每小题5分.13. 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6-【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.14. 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________.【答案】5-15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin(C)sin cos cos sin 65B A AC A C =+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==.16. 有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+= (I )求{n a }的通项公式;(II)设nb =[na ],求数列{nb }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2【试题分析】(I )先设{}n a 的首项和公差,再利用已知条件可得1a 和d ,进而可得{}n a 的通项公式;(II )根据{}n b 的通项公式的特点,采用分组求和法,即可得数列{}n b 的前10项和.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
2016年天津高考数学试题(文)(解析版)
2016 年一般高等学校招生全国一致考试(天津卷)数学(文史类)第 I 卷一、选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的.(1)已知会合A{1,2,3} , B { y | y2x 1, x A},则AI B=()( A ){1,3}( B){1,2}( C){ 2,3}( D){1,2,3}【答案】 A【分析】试题剖析: B {1,3,5}, A I B {1,3} ,选A.考点:会合运算(2)甲、乙两人下棋,两人下成和棋的概率是1,甲获胜的概率是1,则甲不输的概率为()(A)5(B)2(C)12(D)13 6563【答案】 A考点:概率(3)将一个长方形沿相邻三个面的对角线截去一个棱锥,获得的几何体的正视图与俯视图以下图,则该几何体的侧(左)视图为()【答案】 B【分析】试题剖析:由题意得截去的是长方体前右上方极点,应选B 考点:三视图(4)已知双曲线x2y21(a 0,b 0) 的焦距为2 5 ,且双曲线的一条渐近线与直线2x y 0 垂直,a2b2则双曲线的方程为()x2y21( B)x2y2( A )1 44(C) 3x23y21(D) 3x2 3 y21 205520【答案】 A考点:双曲线渐近线(5)设x 0,y R x y x| y |”的(),则“”是“(A)充要条件( B)充足而不用要条件( C)必需而不充足条件( D)既不充足也不用要条件【答案】 C【分析】试题剖析: 34,3| 4 | ,所以充足性不建立; x | y | y x y ,必需性建立,应选C 考点:充要关系(6)已知 f ( x) 是定义在 R 上的偶函数, 且在区间 (,0) 上单一递加, 若实数 a 知足 f (2|a 1| ) f ( 2 ) ,则 a 的取值范围是( )(A )( ,1)(B ) (,1) (3, ) (C )(1,3)(D ) (3,)2222 22【答案】 C【分析】试题剖析:由题意得 f ( 2|a 1|) f (2|a 1|22|a 1|11132)22| a 1| a ,应选 C2 22考点:利用函数性质解不等式(7)已知 △ABC 是边长为 1 的等边三角形,点D, E 分别是边 AB, BC 的中点,连结 DE 并延伸到点 F ,使得 DE 2EF ,则 AF BC 的值为()( A )【答案】 B5 1 1 11(B )8( C )( D )848【分析】uuur r uuur ruuur 1 uuur1 rruuur 3 uuur3 r r试题剖析:设 BAa , BCb ,∴ DEAC(ba) , DFDE4(ba) ,222uuur uuuruuur1 r 3 rr5r3ruuur uuur5 r r3 r 25 3 1,应选 B.AFADDF2a4(ba) ab ,∴ AFBC 4a bb84 8444考点:向量数目积(8)已知函数 f ( x)sin2x 1sin x 1 ( 0) ,xR .若 f ( x) 在区间 ( ,2 ) 内没有零点, 则的222 取值范围是( )(A ) (0, 1](B ) (0, 1][5,1) ( C ) (0, 5]( D ) (0, 1] [1,5]84 888 48【答案】 D考点:解简单三角方程第Ⅱ卷注意事项:1、用黑色墨水的钢笔或署名笔将答案写在答题卡上.2、本卷共 12 小题,合计110 分.二、填空题:本大题共 6 小题,每题 5 分,共 30 分.(9) i 是虚数单位,复数z 知足 (1i ) z 2 ,则z的实部为_______.【答案】 1【分析】试题剖析:(1i )z2z21i,所以 z 的实部为11i考点:复数观点(10)已知函数f (x)(2+1)x ,f( )为 f (x) 的导函数,则 f (0) 的值为__________.x e x【答案】 3【分析】试题剖析: Q f( x)(2 x+3)e x ,f(0) 3.考点:导数(11)阅读右侧的程序框图,运转相应的程序,则输出S 的值为_______.【答案】 4考点:循环构造流程图(12)已知圆 C 的圆心在 x 轴的正半轴上,点M (0,5) 在圆C上,且圆心到直线 2x y 0的距离为 4 5,5则圆 C 的方程为 __________.【答案】 ( x 2)2y29.【分析】试题剖析:设 C ( a,0),( a0) ,则| 2a |4 5a2, r225 3 ,故圆C的方程为 ( x2) 2y29.55考点:直线与圆地点关系(13)如图,AB 是圆的直径,弦 CD 与 AB 订交于点 E,BE=2AE =2,BD=ED ,则线段 CE 的长为 __________.【答案】2 33考点:订交弦定理x2(4a3) x3a, x0且a 1)在 R上单调递减,且关于 x的方程(14) 已知函数f ( x)log a ( x1)1,x0(a 0| f ( x) | 2x恰有两个不相等的实数解,则 a 的取值范围是 _________. 31 2 【答案】[ , )3 3 【分析】试题剖析:由函数 f ( x) 在R上单一递减得4a30,013,又方程 | f ( x) | 2x 2a 1,3a 1a恰343有两个不相等的实数解,所以3a2,1 1 62a 1,所以 a 的取值范围是[1,2)a3733考点:函数综合三、解答题:本大题共 6 小题,共80 分.(15)(本小题满分 13分)在 ABC 中,内角A, B,C所对应的边分别为a,b,c,已知a sin 2B3b sin A .(Ⅰ )求 B;1(Ⅱ )若cosA,求 sinC 的值 .3【答案】(Ⅰ) B261(Ⅱ)66考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理(16)(本小题满分 13 分 )某化肥厂生产甲、乙两种混淆肥料,需要A,B,C 三种主要原料 .生产 1 车皮甲种肥料和生产 1 车皮乙中肥料所需三种原料的吨数以下表所示:现有 A 种原料 200 吨, B 种原料 360 吨, C 种原料 300 吨,在此基础上生产甲乙两种肥料.已知生产1 车皮甲种肥料,产生的收益为2 万元;生产 1 车皮乙种肥料,产生的收益为3 万元 .分别用 x,y 表示生产甲、乙两种肥料的车皮数.(Ⅰ )用 x,y 列出知足生产条件的数学关系式,并画出相应的平面地区;(Ⅱ )问分别生产甲、乙两种肥料各多少车皮,可以产生最大的收益?并求出此最大收益.【答案】(Ⅰ)详看法析(Ⅱ)生产甲种肥料20 车皮,乙种肥料24 车皮时收益最大,且最大收益为112 万元试4x5y2008x5 y360题分析:(Ⅰ)解:由已知x, y 知足的数学关系式为 3x10 y300 ,该二元一次不等式组所表示的地区x 0y 0为图 1 中的暗影部分 .y8x+5y=360 10O104x+5y=200(1)x3x+10y=300y8x+5y=360M10xO102x+3y=z3x+10y=3004x+5y=2002x+3y=0(2)考点:线性规划(17)(本小题满分 13 分 )如图,四边形 ABCD 是平行四边形,平面 AED ⊥平面 ABCD ,EF||AB ,AB=2 ,BC=EF=1 ,AE= 6 ,DE=3 ,∠ BAD=60o , G 为 BC 的中点 .(Ⅰ )求证: FG||平面 BED ;(Ⅱ )求证:平面BED ⊥平面 AED ;(Ⅲ )求直线 EF 与平面 BED 所成角的正弦值.5【答案】(Ⅰ)详看法析(Ⅱ)详看法析(Ⅲ)6(Ⅱ)证明:在 ABD 中,AD1, AB2,BAD 600,由余弦定理可 BD 3 ,从而可得ADB900,即BD AD ,又由于平面AED平面 ABCD , BD平面 ABCD ;平面 AED 平面ABCD AD ,所以BD平面 AED .又由于 BD平面 BED ,所以平面 BED平面 AED .(Ⅲ)解:由于 EF // AB,所以直线 EF 与平面 BED 所成角即为直线AB 与平面BED 所成角.过点 A 作AH DE 于点 H ,连结 BH ,又由于平面 BED平面 AED ED ,由(Ⅱ)知AH平面 BED ,所以直线AB 与平面 BED 所成角即为ABH .在 ADE 中,AD1, DE3, AE 6 ,由余弦定理可得cos ADE 2,所以 sin ADE5,所以 AH AD sin ADE5,在 Rt AHB 中,333sin ABH AH5AB 与平面 BED 所成角的正弦值为5 AB,所以直线.66考点:直线与平面平行和垂直、平面与平面垂直、直线与平面所成角(18)(本小题满分 13 分 )已知 a n是等比数列,前n项和为 S n n N,且112,S663 . a1a2a3(Ⅰ )求a n的通项公式;(Ⅱ )若对随意的n N , b n是 log 2 a n和 log 2 a n 1的等差中项,求数列n2的前 2n 项和 .1 b n【答案】(Ⅰ) a n2n 1(Ⅱ) 2n2(Ⅱ)解:由题意得b n 1(log 2a n log 2 a n 1 )1(log 2 2n 1log 2 2n ) n1,即数列 { b n } 是首项222为1,公差为 1的等差数列. 2设数列 {(1) n b n2 } 的前 n 项和为 T n,则T2n ( b12b22 )( b32b42 )(b22n 1 b22n )b1 b2b2 n2n(b1b2 n )2n22考点:等差数列、等比数列及其前n 项和(19)(本小题满分14 分)设椭圆 x2y21(a 3 )的右焦点为F,右极点为A,已知113e,此中 Oa23|OF | |OA| |FA |为原点, e为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点 A 的直线l与椭圆交于点B ( B 不在x轴上),垂直于l的直线与l交于点 M ,与 y 轴交于点 H ,若 BF HF ,且MOAMAO ,求直线的 l 斜率.【答案】(Ⅰ)x2y261(Ⅱ)443( 2)设直线的斜率为 k(k0) ,则直线l的方程为 y k( x2) ,x2y21,设 B( x B , y B ) ,由方程组43消去 y ,y k(x 2),整理得 (4 k23) x216k 2 x16k 2120,解得x2或 x8k 2 6 ,4k23由题意得 x B 8k4k226,从而 yB12k,3234kuuur uuur94k 2,12k) ,由( 1)知F (1,0),设H (0, y H),有FH( 1, y H ) ,BF(234k 24k3考点:椭圆的标准方程和几何性质,直线方程(20)(本小题满分14 分)设函数 f x x3ax b, x R ,此中a,b R( )(Ⅰ)求 f (x) 的单一区间;(Ⅱ)若 f (x) 存在极值点x0,且f ( x1) f (x0 ) ,此中 x1x0,求证: x1 2x00 ;1(Ⅲ)设 a0 ,函数g( x)| f ( x) | ,求证: g( x) 在区间 [1,1] 上的最大值不小于....4【答案】(Ⅰ)递减区间为 (3a ,3a) ,递加区间为 ( ,3a) , (3a, ) .(Ⅱ)详看法析(Ⅲ)3333详看法析【分析】试题剖析:(Ⅰ)先求函数的导数: f ( x) 3x2 a ,再依据导函数零点能否存在状况,分类议论:①当a0时,有 f ( x)3x 2 a 0 恒建立,所以 f (x) 的单一增区间为 (, ) .②当 a 0 时,存在三个单一区间试题分析:( 1)解:由 f (x)x 3 ax b ,可得 f ( x) 3x 2a ,下边分两种状况议论:①当 a0 时,有 f ( x)3x 2 a 0 恒建立,所以 f (x) 的单一增区间为 (, ) .②当 a 0 时,令 f ( x)0 ,解得 x3a 3a 或 x .33当 x 变化时, f ( x) 、 f ( x) 的变化状况以下表:x( ,3a ) 3a (3a , 3a ) 3a 3a , ) (333333f ( x)单一递加极大值单一递减极小值单一递加f ( x)所以 f ( x) 的单一递减区间为(3a , 3a) ,单一递加区间为 (,3a) , (3a, ) .3333( 2)证明:由于 f (x) 存在极值点,所以由( 1)知 a 0 且 x 00 .由题意得 f (x 0 ) 3x 02 a0 ,即 x 02a ,3从而f ( x 0 ) x 03ax 0 b2ax 0 b ,38a2a又f ( 2x 0 )8x 03 2ax 0 bx 0 2ax 0 b x 0 b f ( x 0 ) ,且 2x 0 x 0 ,3 3由题意及( 1)知,存在独一实数x 1 知足 f ( x 1 ) f ( x 0 ) ,且 x 1 x 0 ,所以 x 12x 0 ,所以 x1 +2 x0 =0 .( 3 )证明:设g( x) 在区间 [ 1,1]上的最大值为M , max{ x, y} 表示 x , y 两数的最大值,下边分三种状况议论:②当3a 3 时,23a13a3a123a ,43333由( 1)和( 2)知f (1) f ( 2 3a ) f (3a) , f (1) f (23a ) f (3a ),3333所以 f ( x) 在区间 [1,1]上的取值范围为 [ f (3a), f (3a)] ,33所以 max{| f (3a|,| f (3a) |}max{|2a3a b |,|2a3a b |} 3399max{|2a3a b |,|2a3a2a3a| b |23331 99b |}944.94考点:导数的运算,利用导数研究函数的性质、证明不等式。
2016年北京高考数学真题及答案(文科)
数学(文)(北京卷) 第 1 页(共 10 页)绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试数 学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|24}A x x =<<,{|3B x x =<或5}x >,则A B =I(A ){|25}x x << (B ){|4x x <或5}x > (C ){|23}x x << (D ){|2x x <或5}x >(2)复数12i2i+=- (A )i (B )1i + (C )i -(D )1i -(3)执行如图所示的程序框图,输出的s 值为(A )8 (B )9 (C )27 (D )36(4)下列函数中,在区间(1,1)-上为减函数的是(A )11y x=- (B )cos y x = (C )ln(1)y x =+(D )2x y -=数学(文)(北京卷) 第 2 页(共 10 页)(5)圆22(1)2x y ++=的圆心到直线3y x =+的距离为(A )1 (B )2 (C(D)(6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(A )15(B )25 (C )825(D )925(7)已知(2,5),(4,1)A B .若点(,)P x y 在线段AB 上,则2x y -的最大值为(A )1- (B )3 (C )7(D )8(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(A )2号学生进入30秒跳绳决赛 (B )5号学生进入30秒跳绳决赛 (C )8号学生进入30秒跳绳决赛(D )9号学生进入30秒跳绳决赛数学(文)(北京卷) 第 3 页(共 10 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2016年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )A. {1,3}B. {3,5}C. {5,7}D. {1,7}2. 设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则=a( )A. 3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ( )A.13 B.12 C. 23D. 564. ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知a =,2c =,2cos 3A =,则b =( )A.B.C. 2D. 35. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C. 23D. 346. 将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为( )A. 2sin(2)4y x π=+ B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=-D. 2sin(2)3y x π=-7. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A. 17πB. 18πC. 20πD. 28π 8. 若0a b >>,01c <<,则( )A. log log a b c c <B. log log c c a b <C. cca b <D. ab c c>9. 函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D10. 执行如图的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足 ( )A. 2y x =B. 3y x =C. 4y x =D. 5y x =11. 平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A.B.C.D.1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A. []1,1-B. 11,3⎡⎤-⎢⎥⎣⎦C. 11,33⎡⎤-⎢⎥⎣⎦D. 11,3⎡⎤--⎢⎥⎣⎦姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13. 设向量a 1(),x x =+,b (1,2)=,且a ⊥b ,则x = .14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 15. 设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若||AB =则圆C的面积为 .16. 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足11b =,213b =,11n n n n a b b nb +++=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求{}n b 的前n 项和. 18.(本小题满分12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =.顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若19n =,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2C y px =(0)p >于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求||||OH ON ;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.(本小题满分12分)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点,C D 在⊙O 上,且,,,A B C D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.{3,5}A B=a-=,由已知,得213/ 13数学试卷 第10页(共39页)数学试卷 第11页(共39页) 数学试卷 第12页(共39页)平面ABB1D平面1n所成角等于所成角的正弦值为5/ 13数学试卷 第16页(共39页)数学试卷 第17页(共39页) 数学试卷 第18页(共39页)【解析】由题意,0a b x =+,3【提示】根据向量垂直的充要条件便可得出0a b =,进行向量数量积的坐标运算即可得出关于的值.【考点】向量的数量积,坐标运算7/ 13作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.7z77z数学试卷第22页(共39页)数学试卷第23页(共39页)数学试卷第24页(共39页)18.【答案】(Ⅰ)因为P在平面ABC内的正投影为D,所以AB PD⊥.9/ 13数学试卷第29页(共39页)数学试卷第30页(共39页)11 / 13))(1,)+∞时,(,ln(2)),1,+a -,1)(ln(2),)a -+∞时,单调递增,在1,ln((2))a -单调递减)在(,1)-∞ln 2a ,则f数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)同理可证,'OO CD ⊥,所以//AB CD .13/ 13。
2016年广西高考数学试卷及答案(文科)(全国新课标ⅲ)
2016年广西高考数学试卷(文科)(全国新课标Ⅲ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10} 2.(5分)若z=4+3i,则=()A.1 B.﹣1 C.+i D.﹣i3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.B.C.D.6.(5分)若tanθ=,则cos2θ=()A.B.C.D.7.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b8.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.69.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.10.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90 D.8111.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB. C.6πD.12.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设x,y满足约束条件,则z=2x+3y﹣5的最小值为.14.(5分)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.15.(5分)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|=.16.(5分)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是.三、解答题(共5小题,满分60分)17.(12分)已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a 2,a3;(2)求{a n}的通项公式.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.(12分)设函数f(x)=lnx﹣x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>c x.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.2016年广西高考数学试卷(文科)(全国新课标Ⅲ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}【解答】解:集合A={0,2,4,6,8,10},B={4,8},则∁A B={0,2,6,10}.故选:C.2.(5分)若z=4+3i,则=()A.1 B.﹣1 C.+i D.﹣i【解答】解:z=4+3i,则===﹣i.故选:D.3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选A.4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个【解答】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确C.三月和十一月的平均最高气温基本相同,都为10°,正确D.平均最高气温高于20℃的月份有7,8两个月,故D错误,故选:D5.(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.B.C.D.【解答】解:从M,I,N中任取一个字母,再从1,2,3,4,5中任取一个数字,取法总数为:(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)共15种.其中只有一个是小敏的密码前两位.由随机事件发生的概率可得,小敏输入一次密码能够成功开机的概率是.故选:C.6.(5分)若tanθ=,则cos2θ=()A.B.C.D.【解答】解:∵t anθ=,∴cos2θ=2cos2θ﹣1=﹣1=﹣1=.故选:D.7.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【解答】解:∵a==,b=,c==,综上可得:b<a<c,故选A8.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.6【解答】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4满足条件s>16,退出循环,输出n的值为4.故选:B.9.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.【解答】解:∵在△ABC中,B=,BC边上的高等于BC,∴AB=BC,由余弦定理得:AC===BC,故BC•BC=AB•AC•sinA=•BC•BC•sinA,∴sinA=,故选:D10.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90 D.81【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的斜四棱柱,其底面面积为:3×6=18,侧面的面积为:(3×3+3×)×2=18+18,故棱柱的表面积为:18×2+18+18=54+18.故选:B.11.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB. C.6πD.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r==2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值=,故选:B12.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),令x=﹣c,代入椭圆方程可得y=±b=±,可得P(﹣c,±),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为=,化简可得=,即为a=3c,可得e==.故选:A.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设x,y满足约束条件,则z=2x+3y﹣5的最小值为﹣10.【解答】解:由约束条件作出可行域如图,联立,解得,即A(﹣1,﹣1).化目标函数z=2x+3y﹣5为.由图可知,当直线过A时,直线在y轴上的截距最小,z有最小值为2×(﹣1)+3×(﹣1)﹣5=﹣10.故答案为:﹣10.14.(5分)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.15.(5分)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|=4.【解答】解:由题意,圆心到直线的距离d==3,∴|AB|=2=2,∵直线l:x﹣y+6=0∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.16.(5分)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是y=2x.【解答】解:已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,设x>0,则﹣x<0,∴f(x)=f(﹣x)=e x﹣1+x,则f′(x)=e x﹣1+1,f′(1)=e0+1=2.∴曲线y=f(x)在点(1,2)处的切线方程是y﹣2=2(x﹣1).即y=2x.故答案为:y=2x.三、解答题(共5小题,满分60分)17.(12分)已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.【解答】解:(1)根据题意,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0,当n=1时,有a12﹣(2a2﹣1)a1﹣2a2=0,而a1=1,则有1﹣(2a2﹣1)﹣2a2=0,解可得a2=,当n=2时,有a22﹣(2a3﹣1)a2﹣2a3=0,又由a2=,解可得a3=,故a2=,a3=;(2)根据题意,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0,变形可得(a n﹣2a n+1)(a n+1)=0,即有a n=2a n+1或a n=﹣1,又由数列{a n}各项都为正数,则有a n=2a n+1,故数列{a n}是首项为a1=1,公比为的等比数列,则a n=1×()n﹣1=()n﹣1,故a n=()n﹣1.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:∵r==≈≈≈0.993,∵0.993>0.75,故y与t之间存在较强的正相关关系;(2)==≈≈0.103,=﹣≈1.331﹣0.103×4≈0.92,∴y关于t的回归方程=0.10t+0.92,2016年对应的t值为9,故=0.10×9+0.92=1.82,预测2016年我国生活垃圾无害化处理量为1.82亿吨.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)取BC中点E,连结EN,EM,∵N为PC的中点,∴NE是△PBC的中位线∴NE∥PB,又∵AD∥BC,∴BE∥AD,∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,∴BE=BC=AM=2,∴四边形ABEM是平行四边形,∴EM∥AB,∴平面NEM∥平面PAB,∵MN⊂平面NEM,∴MN∥平面PAB.解:(Ⅱ)取AC中点F,连结NF,∵NF是△PAC的中位线,∴NF∥PA,NF==2,又∵PA⊥面ABCD,∴NF⊥面ABCD,如图,延长BC至G,使得CG=AM,连结GM,∵AM CG,∴四边形AGCM是平行四边形,∴AC=MG=3,又∵ME=3,EC=CG=2,∴△MEG的高h=,∴S===2,△BCM===.∴四面体N﹣BCM的体积V N﹣BCM20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S=|FN||y1﹣y2|,△ABF∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.21.(12分)设函数f(x)=lnx﹣x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>c x.【解答】解:(1)函数f(x)=lnx﹣x+1的导数为f′(x)=﹣1,由f′(x)>0,可得0<x<1;由f′(x)<0,可得x>1.即有f(x)的增区间为(0,1);减区间为(1,+∞);(2)证明:当x∈(1,+∞)时,1<<x,即为lnx<x﹣1<xlnx.由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,可得f(x)<f(1)=0,即有lnx<x﹣1;设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,即有xlnx>x﹣1,则原不等式成立;(3)证明:设G(x)=1+(c﹣1)x﹣c x,则需要证明:当x∈(0,1)时,G(x)>0(c>1);G′(x)=c﹣1﹣c x lnc,G′′(x)=﹣(lnc)2c x<0,∴G′(x)在(0,1)单调递减,而G′(0)=c﹣1﹣lnc,G′(1)=c﹣1﹣clnc,由(1)中f(x)的单调性,可得G′(0)=c﹣1﹣lnc>0,由(2)可得G′(1)=c﹣1﹣clnc=c(1﹣lnc)﹣1<0,∴∃t∈(0,1),使得G′(t)=0,即x∈(0,t)时,G′(x)>0,x∈(t,1)时,G′(x)<0;即G(x)在(0,t)递增,在(t,1)递减;又因为:G(0)=G(1)=0,∴x∈(0,1)时G(x)>0成立,不等式得证;即c>1,当x∈(0,1)时,1+(c﹣1)x>c x.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.【解答】(1)解:连接PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,由⊙O中的中点为P,可得∠4=∠5,在△EBC中,∠1=∠2+∠3,又∠D=∠3+∠4,∠2=∠5,即有∠2=∠4,则∠D=∠1,则四点E,C,D,F共圆,可得∠EFD+∠PCD=180°,由∠PFB=∠EFD=2∠PCD,即有3∠PCD=180°,可得∠PCD=60°;(2)证明:由C,D,E,F共圆,由EC的垂直平分线与FD的垂直平分线交于点G可得G为圆心,即有GC=GD,则G在CD的中垂线,又CD为圆G的弦,则OG⊥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).。
2016年高考文科数学试卷及答案解析(新课标全国1卷)【WORD版】
绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试 1文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致.2。
第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3。
考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(—4,-3),则向量BC=(A)(—7,-4)(B)(7,4) (C)(-1,4) (D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2—I (B)-2+I (C)2—I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1。
高考数学文科知识点框图
数列是特殊的函数
列表法 等差数列与等比数列的类比 an=a1+(n-1)d an+am=ap+ar an=a1qn
-1
通项公式 求和公式 性质 判断
anam=apar
Sn=
n(a1 an ) n(n 1)d = na1 2 2
叠加法 叠乘法 q 构造等比数列{an+ } p-1
①an+1-an=f (n) ② an + 1 = f (n ) an
原命题:若 p 则 q
互否
逆命题:若 q 则 p
互否
否命题:若p 则q
三个二次的关系
z= (x-a)2+(y-b)2:构造距离 和定值,积最大;积定值,和最小 应用时注意:一正二定三相等 a+b 2ab ≤ ab≤ ≤ 2 a+b a2+b2 2
基本不等式: a+b ab≤ 2
最值问题 变形
高考数学文科知识点框图
第 4 页 共 8 页
第四部分
解析几何
倾斜角和斜率
倾斜角的变化与斜率的变化 重合 A1B2-A2B1=0
a·b 设→ a 与→ b 夹角,则 cos=—— → → | a |·| b | → →
(2k+1)-2 k- 2 ;⑤对称轴 x= ,对称中心为( ,b)(k∈Z). || 2 模 加、减、数乘 |→ a |= (x2-x1)2+(y2-y1)2 几何意义:平行四边形法则、三角形法则 → a·b b 在→ a 方向上的投影为|→ b |cos=—— → 投影
①图象可由正弦曲线经过平移、 伸缩得到, 但要注意先平移后伸缩与先伸缩后平移不同; ②图象也可以用五点作图法;③用整体代换求单调区间(注意的符号) ; ④最小正周期 T= 概念 线性运算 基本定理 平面向量 坐标表示 几何意义 数量积 夹角公式 共线(平行) 共线与垂直 垂直 正弦定理 解三角形 余弦定理 面积 实际应用 1 1 S△= ah= absinC 2 2 解的个数的讨论 → a ∥→ b → b =→ a x1y2-x2y1=0 → a ⊥→ b → b ·→ a =0 x1x2+y1y2=0
2016年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )A. {1,3}B. {3,5}C. {5,7}D. {1,7}2. 设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则=a( )A. 3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ( )A.13 B.12 C. 23D. 564. ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知a =,2c =,2cos 3A =,则b =( )A.B.C. 2D. 35. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C. 23D. 346. 将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为( )A. 2sin(2)4y x π=+ B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=-D. 2sin(2)3y x π=-7. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A. 17πB. 18πC. 20πD. 28π 8. 若0a b >>,01c <<,则( )A. log log a b c c <B. log log c c a b <C. cca b <D. ab c c>9. 函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D10. 执行如图的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足 ( )A. 2y x =B. 3y x =C. 4y x =D. 5y x =11. 平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A.B.C.D.1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A. []1,1-B. 11,3⎡⎤-⎢⎥⎣⎦C. 11,33⎡⎤-⎢⎥⎣⎦D. 11,3⎡⎤--⎢⎥⎣⎦姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13. 设向量a 1(),x x =+,b (1,2)=,且a ⊥b ,则x = .14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 15. 设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若||AB =则圆C的面积为 .16. 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足11b =,213b =,11n n n n a b b nb +++=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求{}n b 的前n 项和. 18.(本小题满分12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =.顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若19n =,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2C y px =(0)p >于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求||||OH ON ;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.(本小题满分12分)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点,C D 在⊙O 上,且,,,A B C D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.{3,5}A B=a-=,由已知,得213/ 13数学试卷 第10页(共39页)数学试卷 第11页(共39页) 数学试卷 第12页(共39页)平面ABB1D平面1n所成角等于所成角的正弦值为5/ 13数学试卷 第16页(共39页)数学试卷 第17页(共39页) 数学试卷 第18页(共39页)【解析】由题意,0a b x =+,3【提示】根据向量垂直的充要条件便可得出0a b =,进行向量数量积的坐标运算即可得出关于的值.【考点】向量的数量积,坐标运算7/ 13作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.7z77z数学试卷第22页(共39页)数学试卷第23页(共39页)数学试卷第24页(共39页)18.【答案】(Ⅰ)因为P在平面ABC内的正投影为D,所以AB PD⊥.9/ 13数学试卷第29页(共39页)数学试卷第30页(共39页)11 / 13))(1,)+∞时,(,ln(2)),1,+a -,1)(ln(2),)a -+∞时,单调递增,在1,ln((2))a -单调递减)在(,1)-∞ln 2a ,则f数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)同理可证,'OO CD ⊥,所以//AB CD .13/ 13。
2016年高考数学试卷附标准答案与解析
高考数学试卷一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2016•真题)设i是虚数单位,则复数在复平面内对应的点位于()3.(5分)(2016•真题)设p:1<x<2,q:2x>1,则p是q成立的()=1 .﹣y2=1﹣x2=1=15.(5分)(2016•真题)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正6.(5分)(2016•真题)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()7.(5分)(2016•真题)一个四面体的三视图如图所示,则该四面体的表面积是()+++228.(5分)(2016•真题)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()|=1 .⊥•=1 4+)⊥9.(5分)(2016•真题)函数f(x)=的图象如图所示,则下列结论成立的是()10.(5分)(2016•真题)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()二.填空题(每小题5分,共25分)11.(5分)(2016•真题)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2016•真题)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2016•真题)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)(2016•真题)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2016•真题)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2016•真题)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)(2016•真题)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2016•真题)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2016•真题)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2016•真题)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2016•真题)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.高考数学试卷一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2016•真题)设i是虚数单位,则复数在复平面内对应的点位于()=i3.(5分)(2016•真题)设p:1<x<2,q:2x>1,则p是q成立的()=1 .﹣y2=1﹣x2=1=1y=5.(5分)(2016•真题)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正6.(5分)(2016•真题)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()则对应的标准差为=7.(5分)(2016•真题)一个四面体的三视图如图所示,则该四面体的表面积是()+++22×2×1+2××+×2×1.8.(5分)(2016•真题)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()|=1.⊥•=1 4+)⊥,根据已知三角形为等边三角形解之.的等边三角形,,满足=2,=2+,又,,=4×1×2×cos120°=﹣,=4,所以4),所以9.(5分)(2016•真题)函数f(x)=的图象如图所示,则下列结论成立的是(),∴b>﹣﹣10.(5分)(2016•真题)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()x=2x+=2x=∴2×+φ=2kπ+,,可解得:φ=2kπ+(2x+2kπ+)2x+))﹣4+2π)>4+=Asin>>﹣4+2π>>,而2x+)在区间(,二.填空题(每小题5分,共25分)11.(5分)(2016•真题)(x3+)7的展开式中的x5的系数是35 (用数字填写答案)=;∴r=4,可得:12.(5分)(2016•真题)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是 6 .θ=y=xθ=θ=y=xd=(ρ∈13.(5分)(2016•真题)执行如图所示的程序框图(算法流程图),输出的n为 4时不满足条件,,,14.(5分)(2016•真题)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1 .项和为:15.(5分)(2016•真题)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2016•真题)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.解:∵∠A=AC=3…4中,由正弦定理可得:,…8AD=== (12)17.(12分)(2016•真题)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)=.=.=.=200 300 400+300×+400×18.(12分)(2016•真题)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.,时,时,因为=19.(13分)(2016•真题)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.=的一个法向量为===,,得=∴cos(,==的余弦值为20.(13分)(2016•真题)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.即,可得=1,线段,∴=.,∴==1NS,解得∴a=3的方程为:21.(13分)(2016•真题)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.的最大值.,)递增,,f′((;或,当时,参与本试卷答题和审题的老师有:刘长柏;changq;双曲线;maths;742048;w3239003;qiss;孙佑中;雪狼王;cst(排名不分先后)菁优网2016年6月13日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年高考数学文科程序框图
1、(2016年北京高考)执行如图所示的程序框图,输出的s值为
(A)8
(B)9
(C)27
(D)36
【答案】B
2、(2016年江苏省高考)如图是一个算法的流程图,则输出的a的值是▲ .
【答案】9
3、(2016年山东高考)执行右边的程序框图,若输入n的值为3,则输出的S的值为_______.
【答案】1
4、(2016年四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为
(A)35 (B) 20 (C)18 (D)9
【答案】C
5、(2016年天津高考)阅读右边的程序框图,运行相应的程序,则输出S 的值为_______.
【答案】4
6、(2016年全国I 卷高考)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足
(A )2y x =
(B )3y x =
(C )4y x =
(D )5y x =
【答案】C
7、(2016年全国II 卷高考)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s =( )
(A)7 (B)12 (C)17 (D)34 【答案】C
8、(2016年全国III卷高考)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=
(A)3 (B)4 (C)5 (D)6
【答案】B。