能源相关外文翻译

合集下载

能源专业外文翻译--来自太阳的能源

能源专业外文翻译--来自太阳的能源

外文原文:ENERGY FROM THE SUNThe sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy can be converted directly or indirectly into other forms of energy, such as heat and electricity. The major drawbacks (problems, or issues to overcome) of solar energy are: (1) the intermittent and variable manner in which it arrives at the earth's surface and, (2) the large area required to collect it at a useful rate. Solar energy is used for heating water for domestic use, space heating of buildings, drying agricultural products, and generating electrical energy.In the 1830s, the British astronomer John Herschel used a solar collector box to cook food during an expedition to Africa. Now, people are trying to use the sun's energy for lots of things.Electric utilities are trying photovoltaics, a process by which solar energy is converted directly to electricity. Electricity can be produced directly from solar energy using photovoltaic devices or indirectly from steam generators using solar thermal collectors to heat a working fluid. Out of the 14 known solar electric generating units operating in the US at the end of 2004, 10 of these are in California, and 4 in Arizona. No statistics are being collected on solar plants that produce less than 1 megawatt of electricity, so there may be smaller solar plants in a number of other states. PHOTOVOLTAIC ENERGYPhotovoltaic energy is the conversion of sunlight into electricity through a photovoltaic (PVs) cell, commonly called a solar cell. A photovoltaic cell is a nonmechanical device usually made from silicon alloys.Sunlight is composed of photons, or particles of solar energy. These photons contain various amounts of energy corresponding to the different wavelengths of the solar spectrum. When photons strike a photovoltaic cell, they may be reflected, pass right through, or be absorbed. Only the absorbed photons provide energy to generate electricity. When enough sunlight (energy) is absorbed by the material (a semiconductor), electrons are dislodged from the material's atoms. Special treatment of the material surface during manufacturing makes the front surface of the cell more receptive to free electrons, so the electrons naturally migrate to the surface.When the electrons leave their position, holes are formed. When many electrons, each carrying a negative charge, travel toward the front surface of the cell, the resulting imbalance of charge between the cell's front and back surfaces creates a voltage potential like the negative and positive terminals of a battery. When the two surfaces are connected through an external load, electricity flows.The photovoltaic cell is the basic building block of a PV system. Individual cells can vary in size from about 1 cm (1/2 inch) to about 10 cm (4 inches) across. However, one cell only produces 1 or 2 watts, which isn't enough power for most applications. To increase power output, cells are electrically connected into a packaged weather-tight module. Modules can be further connected to form an array. The term array refers to the entire generating plant, whether it is made up of one or several thousand modules. As many modules as needed can be connected to form the array size (power output) needed.The performance of a photovoltaic array is dependent upon sunlight. Climate conditions (e.g., clouds, fog) have a significant effect on the amount of solar energy received by a PV array and, in turn, its performance. Most current technology photovoltaic modules are about 10 percent efficient in converting sunlight with further research being conducted to raise this efficiency to 20 percent.The pv cell was discovered in 1954 by Bell Telephone researchers examining the sensitivity of a properly prepared silicon wafer to sunlight. Beginning in the late 1950s, pvs were used to power U.S. space satellites. The success of PVs in space generated commercial applications for pv technology. The simplest photovoltaic systems power many of the small calculators and wrist watches used everyday. More complicated systems provide electricity to pump water, power communications equipment, and even provide electricity to our homes.Photovoltaic conversion is useful for several reasons. Conversion from sunlight to electricity is direct, so that bulky mechanical generator systems are unnecessary. The modular characteristic of photovoltaic energy allows arrays to be installed quickly and in any size required or allowed.Also, the environmental impact of a photovoltaic system is minimal, requiring no water for system cooling and generating no by-products. Photovoltaic cells, like batteries, generate direct current (DC) which is generally used for small loads (electronic equipment). When DC from photovoltaic cells is used for commercial applications or sold to electric utilities using the electric grid, it must be converted to alternating current (AC) using inverters, solid state devices that convert DC power to AC. Historically, pvs have been used at remote sites to provide electricity. However, a market for distributed generation from PVs may be developing with the unbundling of transmission and distribution costs due to electric deregulation. The siting of numerous small-scale generators in electric distribution feeders could improve the economics and reliability of the distribution system.SOLAR THERMAL HEATThe major applications of solar thermal energy at present are heating swimming pools, heating water for domestic use, and space heating of buildings. For these purposes, the general practice is to use flat-plate solar-energy collectors with a fixed orientation (position).Where space heating is the main consideration, the highest efficiency with a fixed flat-plate collector is obtained if it faces approximately south and slopes at an angle to the horizon equal to the latitude plus about 15 degrees. Solar collectors fall into two general categories: nonconcentrating and concentrating.In the nonconcentrating type, the collector area (i.e. the area that intercepts the solar radiation) is the same as the absorber area (i.e., the area absorbing the radiation).In concentrating collectors, the area intercepting the solar radiation is greater, sometimes hundreds of times greater, than the absorber area. Where temperatures below about 200o F are sufficient, such as for space heating, flat-plate collectors of the nonconcentrating type are generally used.There are many flat-plate collector designs but generally all consist of (1) a flat-plate absorber, which intercepts and absorbs the solar energy, (2) a transparent cover(s) that allows solar energy to pass through but reduces heat loss from the absorber, (3) a heat-transport fluid (air or water) flowing through tubes to remove heat from the absorber, and (4) a heat insulating backing.Solar space heating systems can be classified as passive or active. In passive heating systems, the air is circulated past a solar heat surface(s) and through the building by convection (i.e. less dense warm air tends to rise while more dense cooler air moves downward) without the use of mechanical equipment. In active heating systems, fans and pumps are used to circulate the air or the heat absorbing fluid.SOLAR THERMAL POWER PLANTSSolar thermal power plants use the sun's rays to heat a fluid, from which heat transfer systems may be used to produce steam. The steam, in turn, is converted into mechanical energy in a turbine and into electricity from a conventional generator coupled to the turbine. Solar thermal power generation is essentially the same as conventional technologies except that in conventional technologies the energy source is from the stored energy in fossil fuels released by combustion. Solar thermal technologies use concentrator systems due to the high temperatures needed for the working fluid.PARABOLIC TROUGHThe parabolic trough is used in the largest solar power facility in the world located in the Mojave Desert at Kramer Junction, California. This facility has operated since the 1980 and accounted for the majority of solar electricity produced by the electric power sector in 2004.A parabolic trough collector has a linear parabolic-shaped reflector that focuses the sun's radiation on a linear receiver located at the focus of the parabola. The collector tracks the sun along one axis from east to west during the day to ensure that the sun is continuously focused on the receiver. Because of its parabolic shape, a trough can focus the sun at 30 to 100 times its normal intensity (concentration ratio) on a receiver pipe located along the focal line of the trough, achieving operating temperatures over 400 degrees Celcius.A collector field consists of a large field of single-axis tracking parabolic trough collectors. The solar field is modular in nature and is composed of many parallel rows of solar collectors aligned on a north-south horizontal axis. A working (heat transfer) fluid is heated as it circulates through the receivers and returns to a series of heat exchangers at a central location where the fluid is used to generate high-pressure superheated steam. The steam is then fed to a conventional steam turbine/generator to produce electricity. After the working fluid passes through the heat exchangers, the cooled fluid is recirculated through the solar field. The plant is usually designed to operate at full rated power using solar energy alone, given sufficient solar energy. However, all plants are hybrid solar/fossil plants that have a fossil-fired capability that can be used to supplement the solar output during periods of low solar energy. The Luz plant is a natural gas hybrid.SOLAR DISHA solar dish/engine system utilizes concentrating solar collectors that track the sun on two axes, concentrating the energy at the focal point of the dish because it is always pointed at the sun. The solar dish's concentration ratio is much higher that the solar trough, typically over 2,000, with a working fluid temperature over 750o C. The power-generating equipment used with a solar dish can be mounted at the focal point of the dish, making it well suited for remote operations or, as with the solar trough, the energy may be collected from a number of installations and converted to electricity at a central point. The engine in a solar dish/engine system converts heat to mechanical power by compressing the working fluid when it is cold, heating the compressed working fluid, and then expanding the fluid through a turbine or with a piston to produce work. The engine is coupled to an electric generator to convert the mechanical power to electric power.SOLAR POWER TOWERA solar power tower or central receiver generates electricity from sunlight by focusing concentrated solar energy on a tower-mounted heat exchanger (receiver). This system uses hundreds to thousands of flat sun-tracking mirrors called heliostats to reflect and concentrate the sun's energy onto a central receiver tower. The energy can be concentrated as much as 1,500times that of the energy coming in from the sun. Energy losses from thermal-energy transport are minimized as solar energy is being directly transferred by reflection from the heliostats to a single receiver, rather than being moved through a transfer medium to one central location, as with parabolic troughs. Power towers must be large to be economical. This is a promising technology for large-scale grid-connected power plants. Though power towers are in the early stages of development compared with parabolic trough technology, a number of test facilities have been constructed around the world.Last Revised: July 2008Sources: Energy Information Administration, Electric Power Annual,Form EIA-860, Annual Electric Generator Report database.中文译文:来自太阳的能源太阳产生能量已有数十亿年,太阳能是太阳辐射到地球的能量。

新能源经济【外文翻译】

新能源经济【外文翻译】

(2011届)本科毕业设计(论文)外文翻译原文:THE NEW ENERGY ECONOMYEveryone agrees it's time, but the obstacles go well beyond matters of technology. Why real change will take nothing less than a new American revolutionTo describe what's needed to wean the country off fossil fuels, people often use the word transition. But transition is too smooth. It suggests steadiness, even inevitability, as if the endpoint is predetermined.The outcome of the tremendous push that's now underway to change how the United States and other countries obtain and consume energy is anything but predetermined. There are no definite answers to questions about the role one source of energy or another will play 15 or 20 years from now, no clear sense about the type of fuel (if any) people will put in their cars, no consensus on how quickly any of this can happen or at what cost.Nor is the change likely to be smooth and quiet. Instead, it will probably be disruptive, breaking down existing ways of thinking and acting. Not that disruption is bad: Joseph Schumpeter, the famous Austro-Hungarian economist, once spoke of "creative destruction," whereby new technologies and ideas replace old ones, which themselves are overthrown by newer, more progressive ones.Already, 2009 has been a year of visions, of prophecies. President Barack Obama's inaugural address offered one such vision: doubling alternative energy production in the next three years, updating and expanding the nation's energy infrastructure, saving billions of dollars in energy costs through improved energy efficiency. Think tanks, businesses, industry groups, and environmentalists have laid out their own plans, some more aggressive and some less so.The sheer number of these plans, not to mention the interest percolating up from nearly all corners of American life, suggests, as Energy Secretary Steven Chu puts it, that "the landscape is changing."Clean energy is, of course, a narrative that has been slowly developing in the UnitedStates over the past four decades or so, at least since President Jimmy Carter's administration. In the past, its visibility and its urgency have ebbed and flowed with the price of oil. Today, however, it's not just the wild fluctuation in oil prices that is driving the discussion. There is the economic crisis. There is the burgeoning climate crisis, with its implicit call for global cooperation. And there are fresh concerns about national security in an age of emboldened oil cartels and nuclear ambitions. Addressing each of these priorities raises its own set of questions. At the moment, there is no consensus on how aggressively the United States should reduce greenhouse gas emissions over the few next decades or, more broadly still, the proper role of fossil fuels and renewable energy.Meanw hile, almost every potential contributor to a “green energy economy"--wind and solar power, befouls, nuclear power, energy efficiency--faces hurdles well beyond the technology of each system. Regulatory policies or economic issues stand in the way of massive, quick deployment of any of these.And so, today, a new mentality is emerging among almost all the major energy players, from wind developers in the Dakotas to coal-plant operators in North Carolina: Energy issues can no longer be treated as piecemeal policy items left up to states and hodgepodge federal legislation to decide but instead must be addressed nationally, in a sweeping manner.Want the country running on flex-fuel vehicles? "It's just a few hundred dollars more per vehicles," says retired Gen. Wesley Clark, the 2004 presidential candidate and now cochairman of Growth Energy, a group representing several of the nation's largest ethanol producers. "What would encourage an automobile manufacturer to believe he should do it would be a government policy that says we are moving in that direction."Want more wind power? "The critical thing we are talking about here is national policy and the signals it sends to people," says Denise Bode, CEO of the American Wind Energy Association. "There is tremendous demand for wind power, but there is not enough transmission."The idea that a nation should have a clear-cut national energy policy sounds obvious enough. In the United States, however, the truth is that energy has not always beenconsidered a national issue, and in some ways it still isn't.Nowhere is this more obvious than with the transmission grid, a sprawling jumble of wires and mechanical connections dating back 50, 80, even 100 years in some places. Today, the grid is divided into more than 140 "balancing areas" to help manage the distribution of power. But some are so localized that they can't communicate with their next-door neighbors. As a result, extra power in one region is often wasted rather than being sent to a place that needs it.So if wind power, solar power, and plug-in electric vehicles are to be big players in the country's energy future, as many hope, this antiquated system for delivering electricity will have to change. The grid must be retooled, and new high-capacity power lines are needed to carry wind-generated electricity from the Midwest to the East and West coasts. To get those high-power lines approved, Bode and other advocates say, the federal government needs more authority to override nasty squabbles between states, environmentalists, and other interest groups that have typically stalled such efforts. The federal government, the thinking goes, already has the authority to build natural gas pipelines across state lines, and electricity should be no different. That sentiment seems to be gaining ground even among regulators who once opposed it, although there are many issues still to be worked out. As Chu says, "If we just take the view that we are going to cram something down someone's throat, this is not a constructive way of doing business" (interview, Page 32). Infrastructure is only one part of the battle to make national energy problems a national issue. Another is technology. Even though wind power technology is relatively mature--it was the country's largest provider of clean electricity last year--most other renewable sources still need work. Improvements to photovoltaic cells could reduce solar power costs significantly. New drilling technologies could help geothermal spread across a larger geographic range. Advancements in befouls, in particular to the enzymes needed to break down grasses and woods to produce ethanol, would have a major impact. Meanwhile, fossil fuels face their own technological challenges. If coal is to stay around for a while, it'll most likely be because of still-developing methods to capture carbon dioxide emissions before they enter the atmosphere.Scientific breakthroughs don't come cheap. The economic stimulus package set aside $21.5 billion for scientific research, signaling that Washington is taking a much more active role in basic energy issues after years of declining budgets at national labs. But this is just the groundwork. The most powerful force to remake the energy America uses could be government policies: climate change legislation, which would set a price on carbon dioxide emissions, and a national renewable-electricity standard, which would require the United States to get a certain portion of its electricity from renewable energy. Both rules could have far-reaching impacts, forcing industries to massively reconsider their operations, giving financial investor’s confidence to pump money into wind farms, solar fields, and other industries, and convincing the coal industry that it's worth investing billions in technology to reduce emissions.The consequences of climate change legislation, in fact, are expected to be so great that companies typically opposed to government regulation are asking Congress to go ahead and act just so that they can have some certainty about where to put their money.What Washington won't do--not in theory, anyway--is pick specific winners. "The market will decide what the mix will be," says Matt Rogers, a former director at McKinsey & Co. and now one of Chu's top advisers. "It will be interesting to see what the market brings forward." Of course, in reality, Congress's record is one of subsidizing some industries but not others. Even within the befoul world, corn-based ethanol is heavily supported, but some others, such as befoul made from algae, receive almost no backing.In this new era of national energy, one of the primary questions facing the country is that of timing. When should things happen? And how soon can they occur? "Broadly, what scares me is that we want to do this in an incremental fashion. We want this to come across as painlessly as possible," say Rich Wells, vice president of energy at Dow Chemical. "We need a breakthrough mentality."It has become a cliché to say that there is no "silver bullet" for the nation's energy and climate problems. Most experts prefer to think about energy solutions as a collection of options to be deployed in tandem. Perhaps the most widely quoted example is the "wedge model," developed by Princeton University professors Stephen Pocola andRobert Soochow in 2004. It outlined 15 wedges, each one representing a way to significantly reduce greenhouse gas emissions over the next 50 years. Among them: raising the fuel economy of 2 billion cars from 30 mpg to 60 mpg and doubling nuclear capacity worldwide.Only some of these, of course, are realistic in the shorter term. "If you're only going to do one, the top one is always energy efficiency," says Dow's Wells. "It is for the most part the easiest, cheapest fuel out there." Amory Loins, chief scientist at the nonprofit Rocky Mountain Institute, agrees, saying that energy savings from highly fuel-efficient cars would be equivalent to "finding a Saudi Arabia under Detroit." Perhaps the biggest barrier for buildings has been the upfront cost of doing retrofits, with the need to convince people that the costs can be quickly recouped by lower energy bills. The stimulus package is taking a stab at this, setting aside $5 billion for home weatherization.Meanwhile, everyone else is jockeying for position. The befoul industry wants Congress to lift the cap on how much ethanol can be blended into gasoline. The nuclear industry is asking Congress to cough up billions to insure new nuclear power plants; wind and solar industries are asking for transmission superhighways. Detroit wants more in government bailout money. And coal wants money to research carbon capture technology. The great energy nationalization is here.译文:新能源经济每个国家都希望开发新能晕,但局限于开发的障碍以及技术问题。

热能与动力工程专业外文翻译、中英对照、英汉互译

热能与动力工程专业外文翻译、中英对照、英汉互译

毕业设计外文翻译原文标题:Proposal for a high efficiency LNGpower-generation System utilizing wasteheat from the combined cycle中文标题:一个高效的利用液化天然气联合循环余热的发电系统学院名称:能源与动力工程学院专业名称:热能与动力工程Proposal for a high efficiency LNG power-generation system utilizing waste heat from the combined cycleY. Hisazumi*, Y. Yamasaki, S. SugiyamaEngineering Department, Osaka Gas Co., 1-2 Hiranomachi 4-chome Chuo-ku, Osaka 541, Japan Accepted 9 September 1998AbstractHigh-efficiency power-generation with an LNG vaporizing system isproposed: it utilizesthe LNG's cold energy to the best potential limit. This system can be applied to LNG vaporizers in gas companies or electric power companies and recovers the LNG's cold energy as electric power. The system consists of a Rankine cycle using a Freon mixture, natural-gas. Rankine cycle and a combined cycle with gas and steam turbines. The heat sources for this system are the latent heat from the steam-turbine's condenser and the sensible heat of exhaust gas from the waste-heat recovery boiler. In order to find out the optimal condition of the system, several factors, such as gas turbine combustion pressure, steam pressure, condensing temperature in combined cycle, composition of mixture Freon, and natural gas vaporizing pressure are evaluated by simulation. The results of these studies show that in the total system, about 400 kWh can be generated by vaporizing 1 ton of LNG, including about 60 kWh/LNG ton recovered from the LNG cold energy when supplying NG in 3.6 MPa.. About 8.2MWh can be produced by using 1 ton of LNG as fuel, compared with about 7 MWh by the conventional combined system. A net efficiency of over 53%HHV could be achieved by the proposed system. In the case of the LNG terminal receiving 5 million tons of LNG per year, this system can generate 240 MW and reduce the power of the sea water pump by more than 2MW. 1998 Elsevier Science Ltd. All rights reserved.1. IntroductionIn the fiscal year 1994, the amount of LNG imported to Japan reached about 43 million tons; of this 31 million tons were used as fuel for power generation. As shown in Fig. 1, about 20% of the LNG imported was used for power generation [2]. Fig. 2 shows the major LNG power generation systems now in operation and their outputs. Several commercial LNG power generation plants have been constructed since 1979, and their total output has reached approximately 73 MW. Among the new power-generation plants without CO2 emission, this value of 73 MW is second to the 450 MW input of geo-thermal power generation plants in Japan, with the exception of power generation by refuse incinerators, and is much larger compared with the 35 MW output of solar-power plants and the 14 MW output of wind-power stations.Table 1 shows the LNG power generation plants constructed in Japan. The economics of LNG power generation became worse as the appreciation of the yen madethe cost of energy kept constant but while raising the construction cost; the adoption of the combined cycle utilizing gas-turbine and steam turbine (hereafter called combined cycle) increased the gas send-out pressure and lowered the power output per ton of LNG. Therefore, no LNG powergeneration plants were constructed in the 1990s due to lower cost effectiveness of the systems.As for the thermal power plant using natural gas as fuel, the steam turbine produced only about 6 MWh of power output per ton of LNG. But recently, improvement in blade-cooling technology and materials of the gas turbine enabled a 1400℃class turbine to be designed and increased the combustion pressure up to 3 MPa. Therefore, as shown in Fig. 3, the heat efficiency of the combined cycle has been improved and the electrical output from 1 ton of LNG has reached about 7MWh.In this paper, a proposal is made for the high-efficiency LNG power generation system based on a new concept which fully utilizes the cold energy without discarding it into the sea. The system is composed of the combined cycle and the LNG power-generation plant.2. High-efficiency LNG power-generation system2.1. Basic componentsFig.4 shows the process flow diagram of the high-efficiency LNG power-generation system. This complex system consists of the combined cycle and the LNG power generation cycle. The combined cycle is composed of a gas turbine (GAS-T) and a steam turbine (ST-T) using natural gas (NG) as fuel, while the LNG power generation cycle is composed of a Freon (uorocarbon) mixture turbine (FR-T) and a natural-gas turbine (NG-HT, NG-LT) using the latent heat of condensation from the exhaust steam and the sensible heat of the exhaust gas as heat sources. The plate fin type heat exchanger can be used for the LNG/natural gas (LNG-CON) and LNG/ Freon mixture (FR-CON). The shell-and-tube type can be selected as exchangers for exhaust steam/natural gas (LNG-VAP),exhaust steam/Freon mixture(FR-VAP), and exhaust gas/natural gas (NG-SH) applications according to the operating conditions.Ice thickness on the surface of the heat-exchanger tubes becomes a problem as heat is exchanged between exhaust gas and cold natural gas or Freon mixture. The ice thickness can be estimated by the technology of heat transfer between LNG and sea water, thus enabling one to avoid blockages due to ice inside the tubes.In addition, stable and continuous send-out of gas is made possible by using a bypass system, even if turbines and pumps for the Freon mixture and natural gas circulating systems (FR-RP, LNG-RP) stop.2.2. Features of the systemThe practical use of the following existing technologies in combination shows the high feasibility of the proposed system:. Power generation using Freon or hydrocarbon type Rankine cycle,. Power generation by natural-gas direct expansion],. TRI-EX type vaporizer which vaporizes LNG by using an intermediate medium or vacuum type LNG vaporizer.The Freon mixture is made up of the HFC type, which is a fluorocarbon consisting of H, F, and C and has no adverse influence on the ozone layer; it enables reduction in exergy loss at the heat exchanger and increases itscirculating flow rate to be achieved.The effective recovery of cold exergy and pressure exergy is made possible by the combined system using natural gas and Freon mixture Rankine cycle.Fig. 5 shows the temperature-heat duty relation when vaporizing 1 kg of LNG in the system shown in Fig. 4. Separation of the condensed natural-gas in two sections enables an increase in the heat duty between Freon (FR) and LNG, and a reduction of difference in temperature of LNG and natural gas between the inlet and outlet of the heat exchanger.3. Evaluation of the characteristics of the proposed system3.1. Process simulationThe characteristics of this system were evaluated by using process simulator. The followings are the conditions used for the calculation:Effciencies of rotating machines LNG compositionGas turbine (GAS-T) 88% CH4 89.39%Steam turbine (ST-T) 85% C2H6 8.65%Natural-gas turbine (NG-HT, LT) 88% C3H8 1.55%Freon turbine (FR-T) 88% iC4H10 0.20%Air compressor (AIR-C) 85% nC4H10 0.15%LNG pump (LNG-MP, RP) 70% iC5H12 0.01%Freon pump (FR-RP) 70% N2 0.05%Natural gas gross heat-value: 10,510 kcal/Nm3AIR/NG flow ratio of gas turbine: 323.2. Effects of send-out pressure of the natural gasWhen natural-gas is sent out at 3.5 or 1.8 MPa, evaluations were made of the effects of send-out pressure of the LNG and change in superheating temperature of the natural gas on the total output of the high pressure (NG-HT) and the low pressure (NG-LT) natural-gas expansion-turbines. Fig. 6 shows the results of this calculation, where self consumption of power is calculated from the power, raising the pressure of the LNG up to the inlet pressure of the turbine minus the power required for the original send-out pressure. In both cases, the inlet pressure rise for the turbine causes an increase of self consumption power, but brings about a greater out-put. About 7 MPa of the inlet pressure of the turbine is appropriate considering the pressure tolerance of the heat exchangers.When the superheating temperature of the natural gas at the inlet to the turbine becomes high, the recovery of power increases, but the temperature of the exhaust gas from the outlet of the natural-gas super heater (NG-SH) declines, thus indicating that there is a limitation to superheating gas.3.3. Effects of combustion pressure of the gas turbineThe outputs of the gas turbine and the steam turbine, and the efficiency per gross heating value were evaluated by changing the combustion pressure of the gas turbine operating at 1300℃turbine-inlet temperature - see Fig. 7.If the combustion pressure of the gas turbine becomes high, the output of the gas turbine increases, but the output of the steam turbine decreases because the rise in combustion pressure causes a lowering of the exhaust-gas temperature at the outlet of the gas turbine and consequently a decline in the steam temperature at the inlet of the steam turbine. However, the overall efficiency of the turbines increases upon increasing the combustion pressure because the increment of gas-turbine output exceeds the decrement of steam turbine output. As a result, taking the pressure loss into account, it is appropriate to set the send-out pressure of the natural gas at the LNG terminal at 3.5 MPa.(FR-vap),3.4. Effects of Inlet pressure of the steam turbineFig. 8 shows the relations between the steam-turbines output and exhaust gas temperatures by changing the steam pressure in the range of 3-7 MPa. As the steam pressure increases, the output of the steam turbine rises and the temperature of the exhaust gases also increase. Besides, the power required for the water-supply pump increases with a rise in the steam pressure. Therefore, the current combined cycles operate at steam pressure of 7 MPa or more because the increment of the output of steam turbine exceeds the additional power required for the water-supply pump.3.5. Rankine cycle using a Freon-mixture refrigerant.The Freon refrigerant was selected from the HFC refrigerants on the basis of marketability, boiling point and freezing-point. Table 2 shows the physical properties of HFC Freon.When only HFC-23 is used as the medium, because of its low freezing-point it never freezes even if heat is exchanged between the LNG and HFC-23. But if HFC-23 is heated by the exhaust steam of the steam turbine, the pressure rises approximately up to the critical pressure. Therefore, the use of HFC-23 is not cost effective, because it is then necessary to set a high design pressure. To cope with this problem, we evaluated the compound refrigerant composed of HFC-134a (with high boiling point) and HFC-23.Fig. 9 shows saturated vapor pressure at various temperatures, the boiling point and the dew point at atmospheric pressure for mixtures of HFC-23 andHFC-134a of various compositions. The saturated pressure at each temperature rises with the increasing mole ratio of HFC-23: Hence, 40-45% of the mole ratio of HFC-23 is the optimal value considering the design pressure of the equipment.Fig. 10 shows the plots of the output of the Freon turbine versus the condensing temperature of the steam turbine when changing the composition of the HFC-23. In this figure, the turbine outlet pressure is determined in such a way that thedifference in temperature between the LNG and Freon mixture is not less than 5℃in the Freon condenser (FR-CON). The Freon turbine's inlet-pressure is set to the saturatedtemperature of the Freon mixture, i.e. less than 2℃from the steam-condensing temperature.This figure indicates that the output of the turbine scarcely correlates with the mole ratio of HFC-23. The higher the steam-condensing temperature becomes, the greater the output per ton of LNG the turbine produces, but in such a case, it is necessary to evaluate the system as a whole because more fuel is required, as described below. The result indicates that the optimal mole composition of HFC-23 and HFC-134a is 40%/60% considering both design pressure and the output of the turbine.3.6. Comprehensive evaluation from the viewpoint of the steam-condensing Temperature.As the dew point of the exhaust gas is 42℃, it is wise to set the exit temperature of the exhaust gas from the natural-gas super heater (NG-SH) to 80℃or more in order to prevent white smoke from the smoke stack. Table 3 shows the effect of the steam-condensing temperature on the generated output of the total system. The lower steam-condensing temperature brings about a higher efficiency of the total system, but also causes a lowering in the inlet temperature of natural-gas turbine. Therefore, it is appropriate to set the steam-condensing temperature at approximately 30℃.When the condensing temperature is 30C, the generated outputs per ton of LNG of the combined cycle and LNG power generation plant are 342.83 and67.55 kWh, respectively, resulting in 402.64 kWh of total generated output aftersubtracting the self-use power. As 48.94 kg of fuel is used for operating the system, the generated outputs of the combined cycle and the total system reach about 7 and 8.2 MWh, per ton of fuel respectively.3.7. Evaluation of exergyNatural-gas is liquefied at an LNG liquefaction terminal, with the consumption of about 380 kWh/LNG-ton: 1 ton of LNG having about 250 kWh of physical exergy as cold exergy and 13.5 MWh of chemical exergy. Fig. 11 shows the result of evaluating the exergy of the system shown in Fig. 4 under the optimal condition. The total output of Freon and natural gas turbines is 67.5 kWh, and the effective recovery percentage of cold exergy is 56%. As 90 kWh out of the pressure exergy can be recovered as output, about 157 kWh of net recovery can be obtained, which indicates the recovery percentage reaches about 63% for 250 kWh of LNG cold exergy. This conversion efficiency is higher than that achieved from chemical exergy to electric power.Most of the exergy loss occurs in the heat exchanger and the turbine, and in mixing with re-condensed LNG. As for the turbines, the loss of energy may be improved by using high-efficiency turbines. On the other hand, modification of the heat exchanger to reduce the energy loss may cause increased complexity of the system and is difficult to be done from the economic viewpoint. Though the recovery.percentage of cold energy in this system is low compared with the 80% in air-separation equipment, this system has the advantage of recovering a large amount of the available cold energy.4. ConclusionThe paper has proposed a high-efficiency LNG power generation system in combination with a combined-cycle power generation system fueled by natural-gas. The system utilizes LNG cold energy and it requires no sea water as a heat source.This system can be applied to LNG vaporization and send-out processes of gas companies or electric-power companies. The system recovers LNG coldenergy as an electric-power output without wasting it into sea water. The system consists of Rankine cycle with Freon mixture and a natural-gas Rankine cycle using the latent heat of exhaust steam from the steam turbine and the sensible heat of exhaust gas from the waste-heat recovery boiler. To improve the total efficiency of the system, a simulation was conducted to evaluate several factors, such as the composition of the Freon mixture, natural gas send-out pressure, as well as the combustion pressure steam inlet pressure, and steam-condensing temperature of the combined cycle. As a result, not less than 60 kWh/LNG-ton of output was generated even at a high natural-gas send-out pressure of 3.5 MPa. This value is considerably higher than the output generated at a LNG send-out pressure of 3 or 4 MPa, as given in Table 2.The system can produce about 400 kWh of net output when vaporizing 1 ton of LNG. While the conventional combined-cycle system in operation generates about 7 MWh when 1 ton of LNG is used as fuel, the system using the same amount of fuel generates about 8.2 MWh with a high degree of efficiency: a not-less-than 53% conversion efficiency was achieved per gross heat value.In the case of an LNG terminal receiving 5 million tons of LNG per year, this system can generate a power of about 240 MW when 600 t of LNG is used in an hour. With the elimination of about 24,000 tons per hour of sea water, which has been used for vaporizing 600 t/h of LNG in the conventional system, no less than 2 MW of electric power for operating sea water pumps can be saved.The proposed system emits no CO2, and can generate a large amount of electricity with high cost efficiency when incorporated into a combined cycle, with no use of sea water. Therefore, we consider that installation of this system is the one of the most favorable means of investment to put a new energy source or energy-saving equipment to practical use.To realize the full potential of this system, it is necessary to understand the heat characteristics of the Freon mixture, the icing and heat transfer characteristics of exhaust steam, the controllability of total system and the characteristics against partial load.References[1] The Center for Promotion of Natural gas Foundation. Research and development report of cold energy utilizing system, 1994[2] Japan's Energy and Economy Research Center. Energy and economy statistical data in 1995[3] Abe. Operating results and future prospect of a recent combined-cycle power generation plant. Thermal and Nuclear Power 1995;46(6):33-41[4] Maertens J. Design of Rankine cycles for power generation. Int. Refrig. 1986;9:137-43[5] Terada, Nakamoto. Power generation utilizing LNG cold. Thermal and Nuclear Power Generation 1986;37(10):66-71[6] Ooka, Ueda, Akasaka. Advanced LNG vaporizer and power generation utilizing LNG cold. Chemical Engineering 1981;45(3):187-90[7] Miura. The development of LNG vaporizer using vacuum steam heat (VSV). Journal of Japan Gas Society 1992;45:34-6[8] Nagai. Software-package and the usage. Chemical Equipment1994;August:31-7[9] Daikin Co. Ltd. Freon Data Sheet of HFC23一个高效的利用液化天然气联合循环余热的发电系统日本大阪541燃气有限公司工程部1-2平野町4肖梅中央谷,1998年9月概述本文提出了一个高效液化天然气气化发电系统,它是利用液化天然气冷能的最佳潜能极限。

能源类外文文献翻译(译文1)

能源类外文文献翻译(译文1)

太阳能蒸馏:一种有前途的供水代替技术,它使用免费的能源,技术简单,清洁Hassan E.S.Fath埃及,亚历山大,亚历山大大学机械学院工程系摘要:太阳能蒸馏为盐水淡化提供了一种替代技术,它使用免费的能源、技术简单、清洁,为人类提供所需的部分淡水。

太阳能蒸馏系统的发展已经证明:当天气情况良好,并且需求不太大时,比如少于200立方米/天,它在海水淡化过程中有一定的适用性。

太阳能蒸馏器的产量低这个问题迫使科学家研究许多提高蒸馏器产量和热效率,以此来降低产水的费用。

本文对许多最新发展的单效和多效太阳能蒸馏器进行了整体评论和技术评估。

同时,对蒸馏器构造的发展、各部件在运行过程中出现的问题、对环境的影响也进行了阐述。

关键词:太阳能;海水淡化1.简介在淡水需求超出了淡水资源所能满足的量的地方,对低质量的水进行去盐处理是一种合适的淡水来源途径。

对盐水或海水脱盐处理取得淡水满足了社会基本的需求。

一般说来,它不会对环境造成严重的损害作用。

因此,进行海水淡化的工序和工厂在数量上和能力上都有了巨大的进步。

许多不同的海水淡化技术被用来从盐水中分离淡水,包括有:多级闪蒸(MSF)、多效(ME)、蒸汽压缩(VC)、反渗透(RO)、离子交换、电渗析、相变和溶剂萃取。

但是,这些技术只能产生少量的淡水,因而是昂贵的。

另一方面,用来驱动这些技术的传统能源也会对环境产生消极的作用。

而太阳能蒸馏为盐水淡化技术提供了一种有前途的替代处理过程,它使用免费的能源,技术简单,清洁,并能为人类提供所需的部分淡水。

太阳能蒸馏系统的发展已经证明:当天气情况良好,并且需求不太大时,比如少于200立方米/天,它在海水淡化过程中有一定的适用性。

太阳能蒸馏器的产量和热效率,以此来最小化产水费用。

这些方法中包括被动的和主动的单效蒸馏器。

一些工作者也曾试图都产生的水蒸气在外部凝结(在额外的凝结表面上)。

另一方面,浪费的凝结潜热也被利用,从而增加馏出水的产量和提高效率。

能源专业外文翻译--燃料电池及其发展前景1

能源专业外文翻译--燃料电池及其发展前景1

外文原文:Fuel Cells and Their ProspectsA fuel cell is an electrochemical conversion device. It produces electricity fromfuel (on the anode side) and an oxidant (on the cathode side), which react in the presence of an electrolyte. The reactants flow into the cell, and the reaction products flow out of it, while the electrolyte remains within it. Fuel cells can operate virtually continuously as long as the necessary flows are maintained.Fuel cells are different from electrochemical cell batteries in that they consume reactant from an external source, which must be replenished--a thermodynamically open system. By contrast batteries store electrical energy chemically and hence represent a thermodynamically closed system.Many combinations of fuel and oxidant are possible. A hydrogen cell uses hydrogen as fuel and oxygen (usually from air) as oxidant. Other fuels include hydrocarbons and alcohols. Other oxidants include chlorine and chlorine dioxide.Fuel cell designA fuel cell works by catalysis, separating the component electrons and protonsof the reactant fuel, and forcing the electrons to travel though a circuit, hence converting them to electrical power. The catalyst typically comprises a platinum group metal or alloy. Another catalytic process takes the electrons back in, combining them with the protons and oxidant to form waste products (typically simple compounds like water and carbon dioxide).A typical fuel cell produces a voltage from 0.6 V to 0.7 V at full rated load.Voltage decreases as current increases, due to several factors:•Activation loss•Ohmic loss (voltage drop due to resistance of the cell components and interconnects)•Mass transport loss (depletion of reactants at catalyst sites under high loads, causing rapid loss of voltage)To deliver the desired amount of energy, the fuel cells can be combined in series and parallel circuits, where series yield higher voltage, and parallel allows a stronger current to be drawn. Such a design is called a fuel cell stack. Further, the cell surface area can be increased, to allow stronger current from each cell.Proton exchange fuel cellsIn the archetypal hydrogen–oxygen proton exchange membrane fuel cell (PEMFC) design, a proton-conducting polymer membrane, (the electrolyte), separates the anode and cathode sides. This was called a "solid polymer electrolyte fuel cell" (SPEFC) in the early 1970s, before the proton exchange mechanism was well-understood. (Notice that "polymer electrolyte membrane" and "proton exchange mechanism" result in the same acronym.)On the anode side, hydrogen diffuses to the anode catalyst where it later dissociates into protons and electrons. These protons often react with oxidants causing them to become what is commonly referred to as multi-facilitated proton membranes (MFPM). The protons are conducted through the membrane to the cathode, but the electrons are forced to travel in an external circuit (supplying power) because the membrane is electrically insulating. On the cathode catalyst, oxygen molecules react with the electrons (which have traveled through the external circuit) and protons to form water — in this example, the only waste product, either liquid or vapor.In addition to this pure hydrogen type, there are hydrocarbon fuels for fuel cells, including diesel, methanol (see: direct-methanol fuel cells and indirect methanol fuel cells) and chemical hydrides. The waste products with these types of fuel are carbon dioxide and water.The materials used in fuel cells differ by type. In a typical membrane electrode assembly (MEA), the electrode–bipolar plates are usually made of metal, nickel or carbon nanotubes, and are coated with a catalyst (like platinum, nano iron powders or palladium) for higher efficiency. Carbon paper separates them from the electrolyte. The electrolyte could be ceramic or a membrane.Oxygen ion exchange fuel cellsIn a solid oxide fuel cell design, the anode and cathode are separated by an electrolyte that is conductive to oxygen ions but non-conductive to electrons. The electrolyte is typically made from zirconia doped with yttria.On the cathode side, oxygen catalytically reacts with a supply of electrons to become oxygen ions, which diffuse through the electrolyte to the anode side. On the anode side, the oxygen ions react with hydrogen to form water and free electrons. A load connected externally between the anode and cathode completes the electrical circuit.Fuel cell design issuesCostsIn 2002, typical cells had a catalyst content of US$1000 per-kilowatt of electric power output. In 2008 UTC Power has 400kw Fuel cells for $1,000,000 per 400kW installed costs. The goal is to reduce the cost in order to compete with current market technologies including gasoline internal combustion engines. Many companies are working on techniques to reduce cost in a variety of ways including reducing the amount of platinum needed in each individual cell. Ballard Power Systems have experiments with a catalyst enhanced with carbon silk which allows a 30% reduction (1 mg/cm2 to 0.7 mg/cm2) in platinum usage without reduction in performance.The production costs of the PEM (proton exchange membrane). The Nafion membrane currently costs €400/m². In 2005 Ballard Power Systems announced that its fuel cells will use Solupor, a porous polyethylene film patented by DSM.Water and air management (in PEMFC). In this type of fuel cell, the membrane must be hydrated, requiring water to be evaporated at precisely the same rate that it is produced. If water is evaporated too quickly, the membrane dries, resistance across it increases, and eventually it will crack, creating a gas "short circuit" where hydrogen and oxygen combine directly, generating heat that will damage the fuel cell. If the water is evaporated too slowly, the electrodes will flood, preventing the reactants from reaching the catalyst and stopping the reaction. Methods to manage water in cells are being developed like electroosmotic pumps focusing on flow control. Just as in a combustion engine, a steady ratio between the reactant and oxygen is necessary to keep the fuel cell operating efficiently.Temperature managementThe same temperature must be maintained throughout the cell in order to prevent destruction of the cell through thermal loading. This is particularly challenging as the 2H2 + O2 =2H2O reaction is highly exothermic, so a large quantity of heat is generated within the fuel cell.Durability, service life, and special requirements for some type of cells Stationary fuel cell applications typically require more than 40,000 hours of reliable operation at a temperature of -35°C to40°C, while automotive fuel cells require a 5,000 hour lifespan (the equivalent of 150,000 miles) under extreme temperatures. Automotive engines must also be able to start reliably at -30 °C and have a high power to volume ratio (typically 2.5 kW per liter).HistoryThe principle of the fuel cell was discovered by German scientist Christian Friedrich Schönbein in 1838 and published in one of the scientific magazines of thetime. Based on this work, the first fuel cell was demonstrated by Welsh scientist Sir William Robert Grove in the February 1839 edition of the Philosophical Magazine and Journal of Science, and later sketched, in 1842, in the same journal. The fuel cell he made used similar materials to today's phosphoric-acid fuel cell.In 1955, W. Thomas Grubb, a chemist working for the General Electric Company (GE), further modified the original fuel cell design by using a sulphonated polystyrene ion-exchange membrane as the electrolyte. Three years later another GE chemist, Leonard Niedrach, devised a way of depositing platinum onto the membrane, which served as catalyst for the necessary hydrogen oxidation and oxygen reduction reactions. This became known as the“Grubb-Niedrach fuel cell”. GE went on to develop this technology with NASA and McDonnell Aircraft, leading to its use during Project Gemini. This was the first commercial use of a fuel cell. It wasn't until 1959 that British engineer Francis Thomas Bacon successfully developed a 5 kW stationary fuel cell. In 1959, a team led by Harry Ihrig built a 15 kW fuel cell tractor for Allis-Chalmers which was demonstrated across the US at state fairs. This system used potassium hydroxide as the electrolyte and compressed hydrogen and oxygen as the reactants. Later in 1959, Bacon and his colleagues demonstrated a practical five-kilowatt unit capable of powering a welding machine. In the 1960s, Pratt and Whitney licensed Bacon's U.S. patents for use in the U.S. space program to supply electricity and drinking water (hydrogen and oxygen being readily available from the spacecraft tanks).United Technologies Corporation's UTC Power subsidiary was the first company to manufacture and commercialize a large, stationary fuel cell system for use as a co-generation power plant in hospitals, universities and large office buildings. UTC Power continues to market this fuel cell as the PureCell 200, a 200 kW system (although soon to be replaced by a 400 kW version, expected for sale in late 2009). UTC Power continues to be the sole supplier of fuel cells to NASA for use in space vehicles, having supplied the Apollo missions, and currently the Space Shuttle program, and is developing fuel cells for automobiles, buses, and cell phone towers; the company has demonstrated the first fuel cell capable of starting under freezing conditions with its proton exchange membrane automotive fuel cell.Fuel cell efficiencyThe efficiency of a fuel cell is dependent on the amount of power drawn from it. Drawing more power means drawing more current, which increases the losses in the fuel cell. As a general rule, the more power (current) drawn, the lower the efficiency.Most losses manifest themselves as a voltage drop in the cell, so the efficiency of a cell is almost proportional to its voltage. For this reason, it is common to show graphs of voltage versus current (so-called polarization curves) for fuel cells. A typical cell running at 0.7 V has an efficiency of about 50%, meaning that 50% of the energy content of the hydrogen is converted into electrical energy; the remaining 50% will be converted into heat. (Depending on the fuel cell system design, some fuel might leave the system unreacted, constituting an additional loss.)For a hydrogen cell operating at standard conditions with no reactant leaks, the efficiency is equal to the cell voltage divided by 1.48 V, based on the enthalpy, or heating value, of the reaction. For the same cell, the second law efficiency is equal to cell voltage divided by 1.23 V. (This voltage varies with fuel used, and quality and temperature of the cell.) The difference between these numbers represents the difference between the reaction's enthalpy and Gibbs free energy. This difference always appears as heat, along with any losses in electrical conversion efficiency.Fuel cells do not operate on a thermal cycle. As such, they are not constrained, as combustion engines are, in the same way by thermodynamic limits, such as Carnot cycle efficiency. At times this is misrepresented by saying that fuel cells are exempt from the laws of thermodynamics, because most people think of thermodynamics in terms of combustion processes (enthalpy of formation). The laws of thermodynamics also hold for chemical processes (Gibbs free energy) like fuel cells, but the maximum theoretical efficiency is higher (83% efficient at 298K) than the Otto cycle thermal efficiency (60% for compression ratio of 10 and specific heat ratio of 1.4). Comparing limits imposed by thermodynamics is not a good predictor of practically achievable efficiencies. Also, if propulsion is the goal, electrical output of the fuel cell has to still be converted into mechanical power with the corresponding inefficiency. In reference to the exemption claim, the correct claim is that the "limitations imposed by the second law of thermodynamics on the operation of fuel cells are much less severe than the limitations imposed on conventional energy conversion systems". Consequently, they can have very high efficiencies in converting chemical energy to electrical energy, especially when they are operated at low power density, and using pure hydrogen and oxygen as reactants.In practice, for a fuel cell operating on air (rather than bottled oxygen), losses due to the air supply system must also be taken into account. This refers to the pressurization of the air and dehumidifying it. This reduces the efficiency significantlyand brings it near to that of a compression ignition engine. Furthermore fuel cell efficiency decreases as load increases.The tank-to-wheel efficiency of a fuel cell vehicle is about 45% at low loads and shows average values of about 36% when a driving cycle like the NEDC (New European Driving Cycle) is used as test procedure. The comparable NEDC value for a Diesel vehicle is 22%. In 2008 Honda released a car with fuel stack claiming a 60% tank-to-wheel efficiency.Fuel cells cannot store energy like a battery, but in some applications, such as stand-alone power plants based on discontinuous sources such as solar or wind power, they are combined with electrolyzers and storage systems to form an energy storage system. The overall efficiency (electricity to hydrogen and back to electricity) of such plants (known as round-trip efficiency) is between 30 and 50%, depending on conditions. While a much cheaper lead-acid battery might return about 90%, the electrolyzer/fuel cell system can store indefinite quantities of hydrogen, and is therefore better suited for long-term storage.中文译文:燃料电池及其发展前景燃料电池是一种电化学转换装置。

生物质能源外文翻译外文文献英文文献中国的生物质能源

生物质能源外文翻译外文文献英文文献中国的生物质能源

China’s Biomass EnergyChina leads the world in its energy reservation and is the second largest energy producer and consumer in the world. It is estimated that China has 4000 billion tons of potential primary energy reservation. However, per capita energy resource quantity and consuming quantity is far smaller than the world average level. The main characteristics of China’s energy exploration and utilization are as follows.1. Coal is the primary energy; exploration and utilization of renewable resources is supplementary. China’s explored reserves of coal resource accounts for over 90% of the primary energy total, such as coal, oil, natural gas, water energy and nuclear energy. Coal is dominant id China’s energy production and consumption.on.2. Energy consumption volume is increasing while energy utilization efficiency is comparatively low. As the economic scale expands, China’s energy consumption is on the constant increase. Under the influences of capital, technology, energy price, etc, China’s energy utilization efficiency is far lower than that of the developed countries. Energy comprehensive utilization efficiency is 32% and the overall energy systematic efficiency 9.3%. These numbers are only half of the developed country level.3. With the sustained increase of energy consumption, the coal-dominant energy structure has caused urban air pollution while with the excessive consumption of bio-mass energy giving rise to ecological destruction, the pressure on ecological environment is more and more severe. According to the World Bank, the economic loss caused by air and water pollution in China, approximately accounts for 3%--8% of GNP.4. The energy structure is getting more and more pluralized. By the middle of the 1990’s, energy self-sufficiency rate was 98%, while at present China is the second largest crude oil importer only after USA.The rapid development of China’s economy is based on the sufficient supply of energy, however, the higher-than-normal oil price on the international market together wit h China’s ever-increasing energy demand will be a serious subject faced withChina’s development road.More than 3200 places of terrestrial heat have been discovered in China, 225 of them could be used for power generation. It is estimated that the exploitable reserve of terrestrial heat in China is equal to the power of 462.65 billion tons of standard coal. In recent years, the use of terrestrial heat in our country has increased by 7%. We have usedChina will adopt the sustainable energy development str ategy of an “energy saving prioritized, plural structured, and environment friendly” nature in the coming 20 years. We will adopt the international energy strategy and strive to quadruple GDP with double energy consumption with the help of mechanism innovation and technological advancement. The following specific goals are expected to reach under the sustained energy development strategy: energy consumption of per unit GNP will be reduced by 20% on the level of the end of the 10th five-year plan; primary energy demand will be less than 2.5 billion tons of standard coal by 2020, saving 0.8 billion tons; coal consumption ratio is controlled under 60%, renewable energy utilization reaches 525 million standard coal (power generation by renewable energy stands at 100 million kilowatt); oil importing reliance is controlled under around 60%; the reduction rate of main pollutants is 45%--60%.The Development of New Energy in ChinaNew energy and renewable energy only started to develop in China. As pointed out in the Annual Report of China’s New Energy Industry released in January, 2007, China will largely increase the rate of new energy such as wind power, solar power, and biomass power in the overall energy consumption. The report says, our first step is; the new energy installed capacity will be 120 million kw by 2020, that is 12% of China’s total installed power capacity. We will have a boost of power generation by using wind, bio-energy and solar energy. The second step is; the percentage of new energy consumption will increased dramatically comparing to other kind of energies. By 2050, the new energy will account for 30%--40% of the total energy demand of China. Now l would like to give you a brief introduction on wind power, biomass energy, solar energy and terrestrial energy in China.Wind PowerThere are abundant wind power within our huge territory and along our long coastline. According to the survey of China meteorological Academy, based on the results of 900 weather stations, there is 253 million kw of wind power reserve 10 m below our earth. There is a great potential of wind power in the coastal area of eastern China 2---15 meters below sea level. Therefor ,we have a promising future in wind power generation there.Compiled by China Energy Comprehensive Use Association and European Wind Power Society, in a Report named Wind Force 12 in China, it is expected that China will have 40 million kw of wind power capacity in 2020, if is could develop fully. Then, the wind power will go beyond nuclear power and become the third largest power source in China. If that is true, China’s annual wind power generation would go up to 80 billion kwh, it could be enough for 80 million people. Meantime, it would reduce 48 million tons of CO2 emission.The report also says that China will need over 25 thousand of large wind generators by the year 2020, wind power sale will increase to morethan 300 billion yuan, that will create at least 150 thousand of job opportunities. It indicates that in the past 5 years, the cost of wind power will reduce by 20%, its technology cost is one of the lowest which can be decreased among the renewable energies.Biomass energyAccording to the Outline for Mid-- long Term Development of Renewable Energy in China, the goal of renewable energy development in the next 15 years is; by 2020, the renewable energy will occupy 16% in the energy structure of China. Among them, the production of ethanol is going up to 10 million tons; bio-diesel fuel 2 million tons; and the major part of the biomass energy development target are bio-energy power generation, Firedamp projects biomass liquid fuel and Biomass solid fuel. The biomass project in China has made great progress now, but it is still in an initial stages.According to the Supporting Policy of Bio-energy and Bio-chemistrydevelopment jointly promulgated by several ministries, China will give favorable treatments to support biomass energy development in the following aspects: setting up risk fund system, providing flexible loss subsidy; subsidies for raw material bases and demonstration projects; tax reduction is included. We can predict that the biomass energy in China will be developed rapidly in years to come.Terrestrial Energy12604.6 GWH of terrestrial heat till 2005 with an installed capacity of 3687 MWT, which rank number 1 and number 3 in the world respectively.We use the high heat to generate power and low middle heat to daily purposes. three thermo-power plants have been build in Tibet now, the total installed capacity in China is 29 mw. Terrestrial heat Floors have seen both economical and environmental benefit in the northern part of China as well as in big or medium cities such as: Beijing, Tianjin, Xi’an and Anshan. It is growing fast in agricultural areas like green house (terrestrial),breed aquatics, irrigation, in health care, recreation and tourism ,too China tops the world in utilization of terrestrial heat, but it is only 0.5% of our total energy. Terrestrial power is only 0.35% of the world total generation. We still have a long way to go in developing and utilizing the terrestrial heat.Ocean EnergyExperts have pointed out, while we are exploring petroleum, natural gas, coal and petrification energy, China ought to focus on the future, exploring the promising ocean energy. The clean, renewable ocean energy is the key source of solving the global energy problem, exploiting of ocean energy has been aroused much attention in USA, UK and Australia, some of the experiments have entered a phase of trial operation and evaluation. However, China, Japan and other eastern Asian counties have not realized the true meaning of ocean energy exploration.China’s Energy StrategyIn order to achieve the goal of building a well-off society and face the severe challenge of the long-term energy development, it is of overriding significance for China to adopt the right energy development strategy. Drawing upon the successful experiences of the developed countries and also proceeding from its nationalcondition, China will establish a long and middle term sustainable energy strategy that is in accordance with increasing energy efficiency and protecting the environment.中国的生物质能源中国的能源蕴藏量位居世界前列,同时也是世界第二大能源生产国与消费国。

关于能源的英语作文六级

关于能源的英语作文六级

关于能源的英语作文六级英文回答:Energy is crucial for human civilization. It powers our homes, industries, and transportation systems. Without energy, modern society as we know it would cease to exist. There are many different sources of energy, includingfossil fuels, renewable energy sources, and nuclear power. Each source has its own advantages and disadvantages.Fossil fuels, such as coal, oil, and natural gas, are the most common sources of energy today. They arerelatively cheap and easy to extract, and they have a high energy density. However, fossil fuels are also a major source of pollution, and they contribute to climate change.Renewable energy sources, such as solar, wind, and geothermal energy, are becoming increasingly popular. These sources are clean and sustainable, and they do not contribute to climate change. However, renewable energysources can be intermittent, and they can be more expensive than fossil fuels.Nuclear power is a low-carbon source of energy that can be used to generate electricity on a large scale. However, nuclear power also has its risks, such as the potential for accidents and the disposal of radioactive waste.The choice of which energy source to use is a complex one. There is no single "best" source of energy, and the best choice will vary depending on the specific circumstances. However, it is clear that we need to move away from fossil fuels and towards cleaner and more sustainable sources of energy.中文回答:能源对于人类文明至关重要。

外文资料及翻译

外文资料及翻译

外文翻译ANALYSIS OF HVAC SYSTEM ENERGYCONSERVATIONIN BUILDINGSABSTRACTE conomic development and people's increasing demand for energy, but the nature of the energy is not inexhaustible. Environment and energy issues become increasingly acute, if no measures are taken, then the energy will limit the rapid economic development of the question.With the improvement of living standard, building energy consumption in the proportion of total energy consumption is increasing. In developed countries, building energy consumption accounts for 40% of total energy consumption of the community, while the country despite the low level of socio-economic development, but the building energy consumption has nearly 30% of total energy consumption, and still rising. Therefore, in western countries or in China, building energy consumption is affecting the socio-economic status of the overall development of the question. In building energy consumption, the energy consumption for HVAC systems has accounted for 30% of building energy consumption -50%, with the extensive application of HVAC, energy consumption for HVAC systems will further increase Great. HVAC systems are often coupled with high-quality electric energy, and our power and relatively tight in some areas, lack of energy supply and demand which is bound to lead to further intensification of contradictions. Therefore, energy-saving heating, higher professional requirements is inevitable across the board.KEYWORDS:energy-saving,HVAC1. Energy saving design measures should be takenRapid changes in science and technology today, area HVAC new technologiesemerge, we can achieve a variety of ways of energy saving HVAC systems.1.1 Starting from the design, selecting, designing HVAC systems, so that the efficient state of the economy running.Design is a leading engineering, system design will directly affect its performance. The building load calculation is an important part of the design, a common problem is that the current design of short duration, many designers to save time, wrong use of the design manual for the design or preliminary design estimates of cold, heat load with the unit construction area of cold, heat load index, direct construction design stage as hot and cold load to determine the basis, often making the total load is too large, resulting in heating equipment, air conditioning is too large, higher initial investment, operating costs, increased energy consumption.1.2 using the new energy-saving air-conditioning and heating comfort and healthy mannerAffect human thermal comfort environment of many parameters, different environmental parameters can get the same effect of thermal comfort, but for different heat and moisture parameters of the environment of its energy consumption air conditioning system is not the same.1.3 Actual situation of a reasonable choice of cold and heat sources, seek to achieve diversification of cold and heat sourceWith the extensive application of HVAC systems on non-renewable energy consumption also rose sharply, while the broken part of the ecological environment are becoming increasingly intensified. How to choose a reasonable heating sources, has caused widespread concern of all parties.1.4 to enhance the use of hot and cold recycling of the work, to achieve maximum energyHVAC systems to improve energy efficiency is one of the ways to achieve energy-saving air-conditioning. Heat recovery system installed mainly through energy recovery, with the air from wind energy to deal with new, fresh air can reduce the energy required for processing, reducing the load, to save energy. In the choice of heat recovery, the should be integrated with the local climate Tiao Jian, Jing Ji situation, Gong Cheng actual situation of harmful exhaust gases of the situation in avariety of factors Deng integrated to determine the Xuanyong suitable heat recovery, so as to achieve Hua Jiao Shao's investment, recovery of more heat (cold) the amount of purpose.1.5 focus on development of renewable energy, and actively promoting new energyAs the air-conditioning systems used in high-grade, non-renewable energy resources and environmental problems caused by the increasingly prominent, have to develop some reasonable and effective renewable energy to ease the current tensions. To heat (cold) and solar and other renewable resources used in air conditioning and refrigeration, has certain advantages, but also clean and pollution-free. Ground Source Heat Pump is a use of shallow and deep earth energy, including soil, groundwater, surface water, seawater, sewage, etc. as a cold source in winter and summer heat is not only heating but also a new central air-conditioning system cooling.2. Saving design problemsAchieve energy-saving HVAC systems, now has a lot of mature conditions, but in practical applications there are some problems:2.1 The issue of public awareness of energy conservationThe past is not enough public understanding of energy, and on the air conditioning is also very one-sided view. For a comfort of air conditioning system or heating system, should the human body has a very good comfort. But the prevailing view now is: the colder the better air-conditioning, heating the more heat the better. This is obviously we seek the comfort of air conditioning is contrary to the view. In fact, this not only greatly increase the energy consumption of air conditioning heating, indoor and outdoor temperature and because of the increase, but also to the human body's adaptability to different environmental decline, lowering the body immunity. Therefore, we need to improve advocacy efforts to change public to the traditional understanding of air conditioning and heating, vigorous publicity and promotion in accordance with building standards and the cold heat energy metering devices to collect tolls, raise public consciousness of energy.2.2 The design concept of the problemReasonable energy-saving design is a prerequisite. At present, some designers due to inadequate attention to design empirical value when applied blindly, resulting in the increase of the initial investment, energy consumption surprising, therefore recommended that the government functions and the energy-saving review body, to increase the monitoring of the HVAC air-conditioning energy saving efforts enhance staff awareness of energy conservation design, so that energy conservation is implemented.2.3 The promotion of new technologies issueNew technology in the HVAC system for energy conservation provides a new direction. Such as ground source heat pump systems, solar cooling and heating system, not only to achieve efficient use of renewable energy, and can bring significant economic benefits, is worth promoting. However, as with any new technology, these new technologies are often high in cost, and the geographical conditions of use have certain limitations, and technically there are still many areas for improvement to improve. Therefore, new energy-efficient technologies, we should be according to local conditions, sum up experience, and actively promote.3. ConclusionHVAC systems saving energy in the building occupies a very important position, should attract enough attention to the designer. Designers should be from a design point of view fully into account the high and strict compliance with energy standards energy saving ideas to run through all aspects of the construction sector. Energy-saving technologies and renewable energy recycling, the Government and other relevant departments should support and vigorously promoted. And the design, construction, supervision, quality supervision, municipal administration and other departments should cooperate closely and pay close attention to implementing a cold, heat metering devices to collect tolls, so people really get benefit from energy efficient building, energy-saving construction and non-heating energy efficient building can not have the same charge standard. At the same time to raise public awareness of energy conservation, and vigorously promote the development of new energy-saving technologies to achieve sustainable development of society.References[1] "residential design standard" DBJ14-037-2006.[2] "Public Buildings Energy Efficiency Design Standards" DBJ14-036-2006.[3] "Technical Specification for radiant heating" JGJ142-2004.析暖通空调系统在建筑中的节能问题摘要经济的发展使人们对能源的需求不断增加,但是自然界的能源并不是取之不尽,用之不竭的。

能源类毕业论文外文及中文翻译

能源类毕业论文外文及中文翻译

土耳其的能源需求M. Mucuk andD。

Uysal经济学,经济和行政学院,塞尔丘克大学法律系,42075,科尼亚,土耳其摘要:本研究的目的是预测在土耳其使用Box-Jenkins方法论2007 —2015年期间的一次能源需求.由能源和自然资源部规定的期限1970至2006年的年度数据进行的研究中使用。

考虑到单位根检验的结果,能源需求的系列是一阶差分平稳。

位居其后的替代模型可以发现,最合适的模型是能源需求的系列ARIMA(3,1,3)。

根据这个模型,估计结果表明,能源需求也将继续增加的趋势,在预测期内。

据预计,在一次能源需求将在2015年达到119。

472 T OE与相比,应设计用于在土耳其的需求不断增加2006.因此能源政策增加约22%。

介绍经济政策的最终目标是维持社会福利水平的增加。

有必要通过有效地利用资源,以实现在社会福利的增加,以增加产量.出于这个原因,可以看出,已内化到新的增长模式的技术因素是一个快速发展。

在技术的发展也有助于在对能源的需求的增加。

事实上,在与工业革命发生在18世纪末和19世纪初,生产过程中采用新技术,以及无论在国家的基础,并在全球范围内增加能源消耗带来的。

然而,随着工业化在一起因素,例如人口和城市化也起到了作用,显著作为能源消费的增加解释变量.能量需求,这取决于上面提到的因素,表现出动态结构的未来值,是非常重要的在于要今天实施的政策方面,由于所使用在我们的日常生活中的大部分能量资源具有一个不平衡各地区和储量分布中一直在稳步下降。

上面提到的局限性迫使国家在考虑到可持续增长做出预测已经塑造他们的能源政策。

本研究的目的是预测在土耳其通过Box-Jenkins方法的基础上规定的期限1970年至2006年的年度数据对能源的需求期间二零零七年至2015年。

土耳其是不被认为是丰富的化石燃料,诸如石油,天然气和煤炭的国家之列。

出于这个原因,正确的能量需求预测携带在设计在国内实施的策略一个显著值。

(节选)新能源材料外文翻译----Ti3C2 MXene作为金属(Li、Na、K、Ca)离子电池的高容量电极

(节选)新能源材料外文翻译----Ti3C2  MXene作为金属(Li、Na、K、Ca)离子电池的高容量电极
二维材料作为金属离子电池的主要材料具有特殊性,归因于它们独特的形态学特点,表面完整的暴露可以加快离子扩散和提供更多的离子插入通道。最近,二维早期过度金属碳化物和碳氮化物的一个族系通过MAX相的原子在室温下使用氢氟酸(HF)选择性刻蚀的方法被合成,称为“MXenes”。MAX相是三元金属碳化物的一个很大的族系(超过60个相),成分为Mn+1AXn,其中M是一个早期过度金属,A是A组基础元素之一,X是指碳或者氮,n可以是1或2或3。目前,下列MXenes已用试验方法合成:Ti3C2,Ti2C,(Ti0.5Nb0.5)2C,Ta4C3,(V0.5Cr0.5)3C2,Ti3CN,V2C和Nb2C。由于这些发现,MXenes赢得了很大的关注并且呈现出有趣的性能。例如,多层MXenes的导电性可与多层石墨烯相比拟。在MXenes系统的实验发现之后不久关于不同性能的理论研究也开始了。Shein和Ivanovskii曾研究其结构特点和MXene Tin+1Cn与Tin+1Nn(n=1,2,3)之间的稳定性关系。密度泛函理论(DFT)的计算显示MXenes在可调带隙作用下能够成为半导体,可调带隙可以通过改变表面终端来控制,但是没有终端的MXenes是金属的并且有希望拥有最高的导电性。Ivanovskiiet al.利用密度泛函理论估计出MXenes的内面弹性常数,超过了500GPa,这意味着MXenes有希望拥有比结构钢(400GPa)更高的刚性。
MXenes有希望成为锂离子电池和锂离子电容器的电极材料。尽管MXenes对于Li的容量与商业的石墨电极锂离子电池(372,mAh/g)相近,MXenes表现出杰出的处理高循环率的能力。例如,对于无添加剂终止的Ti3C2,在36℃的循环效率下,可获得110mAh/g的可逆容。注意,石墨不能处理这样的高循环速率。这是因为Ti3C2对锂原子C2(0.07eV)上的扩散势垒区比锐钛矿TiO2(0.35—0.65eV)和石墨的小。然而,电子性能的研究和MXenes的应用需要利用其它金属离子电池。目前还没有使用MXenes电极的钠离子电池或其它金属离子电池的数据被报道。在这篇文章中,我们选择Ti3C2作为例子和最佳研究MXene并且利用第一性原理密度泛函理论计算,就它作为不同金属(Li、Na、K和Ca)离子电池的电极材料表现的性能作报告。

新能源汽车外文翻译文献

新能源汽车外文翻译文献

新能源汽车外文翻译文献Electric Cars: XXX?As the XXX crises。

wars。

and increasing oil n。

the need for alternative XXX not a renewable resource。

and we must find a replacement before XXX and social progress。

the n of electric cars XXX.Faced with high XXX costs。

growing XXX。

XXX and American automakers。

XXX Prius has e the world's best-selling hybrid car。

Tesla Motors。

a new American automaker。

has launched its first battery-powered car。

the Tesla Roadster。

As of the end of 2010.XXX hybrid car。

and XXX a similar plan is underway.Currently。

XXX vehicles。

XXX。

key components。

and system n。

They have established a research institute with "three verticals" of hybrid electric vehicles。

pure electric vehicles。

and fuel cell vehicles。

and "three horizontals" of vehicle controlsystems。

motor drive systems。

and power XXX industry。

光伏发电系统外文翻译文献

光伏发电系统外文翻译文献

文献信息:文献标题:A New Controller Scheme for Photovoltaics Power Generation Systems(光伏发电系统的一种新的控制方案)国外作者:Tamer T.N.Khatib,Azah Mohamed,Nowshad Amin文献出处:《European Journal of Scientific Research》,2009,Vol.33 No.3, pp515-524字数统计:英文1337单词,7006字符;中文2149汉字外文文献:A New Controller Scheme for Photovoltaics PowerGeneration SystemsAbstract:This paper presents a new controller scheme for photovoltaic (PV) power generation systems. The proposed PV controller scheme controls both the boost converter and the battery charger by using a microcontroller in order to extract maximum power from the PV array and control the charging process of the battery. The objective of the paper is to present a cost effective boost converter design and an improved maximum power point tracking algorithm for the PV system. A MATLAB based simulation model of the proposed standalone PV system has been developed to evaluate the feasibility of the system in ensuring maximum power point operation.1.IntroductionRecently, the installation of PV generation systems is rapidly growing due to concerns related to environment, global warming, energy security, technology improvements and decreasing costs. PV generation system is considered as a clean and environmentally-friendly source of energy. The main applications of PV systems are in either standalone or grid connected configurations. Standalone PV generationsystems are attractive as indispensable electricity source for remote areas. However, PV generation systems have two major problems which are related to low conversion efficiency of about 9 to 12 % especially in low irradiation conditions and the amount of electric power generated by PV arrays varies continuously with weather conditions. Therefore, many research works are done to increase the efficiency of the energy produced from the PV arrays.The solar cell V-I characteristics is nonlinear and varies with irradiation and temperature. But there is a unique point on the V-I and P-V curves, called as the maximum power point (MPP), at which at this point the PV system is said to operate with maximum efficiency and produces its maximum power output. The location of the MPP is not known but can be traced by either through calculation models or search algorithms. Thus, maximum power point tracking (MPPT) techniques are needed to maintain the PV array’s operating point at its MPP. Many MPPT techniques have been proposed in the literature in which the techniques vary in many aspects, including simplicity, convergence speed, hardware implementation and range of effectiveness. However, the most widely used MPPT technique is the perturbation and observation (P&O) method. This paper presents a simple MPPT algorithm which can be easily implemented and adopted for low cost PV applications. The objective of this paper is to design a novel PV controller scheme with improved MPPT method.The proposed standalone PV controller implementation takes into account mathematical model of each component as well as actual component specification. The dc–dc or boost converter is the front-end component connected between the PV array and the load. The conventional boost converter may cause serious reverse recovery problem and increase the rating of all devices. As a result, the conversion efficiency is degraded and the electromagnetic interference problem becomes severe under this situation. To increase the conversion efficiency, many modified step-up converter topologies have been investigated by several researchers. V oltage clamped techniques have been incorporated in the converter design to overcome the severe reverse-recovery problem of the output diodes. In this paper, focus is also given in the boost converter design. Another important component in the standalone PV systemsis the charge controller which is used to save the battery from possible damage due to over-charging and over-discharging. Studies showed that the life time of a battery can be degraded without using a charge controller.The proposed new controller scheme for the standalone PV system controls both the boost converter and the charge controller in two control steps. The first step is to control the boost converter so as to extract the maximum power point of the PV modules. Here, a high step-up converter is considered for the purpose of stepping up the PV voltage and consequently reducing the number of series-connected PV modules and to maintain a constant dc bus voltage. A microcontroller is used for data acquisition that gets PV module operating current and voltage and is also used to program the MPPT algorithm. The controller adopts the pulse width modulation (PWM) technique to increase the duty cycle of the generated pulses as the PV voltage decreases so as to obtain a stable output voltage and current close to the maximum power point. The second control step is to control the charge controller for the purpose of protecting the batteries. By controlling the charging current using the PWM technique and controlling the battery voltage during charging, voltages higher than the gassing voltage can be avoided.2.Design of the Proposed Photovoltaic SystemMost of the standalone PV systems operate in one mode only such that the PV system charges the battery which in turns supply power to the load. In this mode of operation, the life cycle time of the battery may be reduced due to continuous charging and discharging of the battery. The proposed standalone PV system as shown in terms of a block diagram in Figure 1 is designed to operate in two modes: PV system supplies power directly to loads and when the radiation goes down and the produced energy is not enough, the PV system will charge the battery which in turns supply power to the load. To manage these modes of operation, a controller is connected to the boost converter by observing the PV output power.3.MethodologyFor the purpose of estimating the mathematical models developed for the proposed standalone PV system, simulations were carried in terms of the MATLAB codes. Each PV module considered in the simulation has a rating of 80 Watt at 1000 W/m2, 21.2 V open circuit voltage, 5A short circuit current. The PV module is connected to a block of batteries with of sizing 60 Ah, 48 V.4.Results and DiscussionThe simulation results of the standalone PV system using a simple MPPT algorithm and an improved boost converter design are described in this section. Simulations were carried out for the PV system operating above 30o C ambient temperature and under different values of irradiation. Figure 9 shows the PV array I-V characteristic curve at various irradiation values. From the figure, it is observed that the PV current increase linearly as the irradiation value is increased. However, the PV voltage increases in logarithmic pattern as the irradiation increases. Figure 10 shows the PV array I-V characteristic curve at various temperature values. It is noted from the figure that, the PV voltage decreases as the ambient temperature is increased.Figure 4 compares the PV array P-V characteristics obtained from using the proposed MPPT algorithm and the classical MPPT P&O algorithm. From this figure, it can be seen that by using the proposed MPPT algorithm, the operating point of PV array is much closer to the MPP compared to the using the classical P&O algorithm.In addition, the proposed boost converter is able to give a stable output voltage as shown in Figure 5. In terms of PV array current, it can be seen from Figure 6 that the PV current is closer to the MPP current when using the improved MPPT algorithm. Thus, the track operating point is improved by using the proposed MPPT algorithm. In terms of efficiency of the standalone PV system which is calculated by dividing the load power with the maximum power of PV array, it is noted that the efficiency of the system is better with the proposed MPPT algorithm as compared to using the classical P&O algorithm as shown in Figure 7.5.ConclusionThis paper has presented an efficient standalone PV controller by incorporating an improved boost converter design and a new controller scheme which incorporates both a simple MPPT algorithm and a battery charging algorithm. The simulation results show that the PV controller using the simple MPPT algorithm has provided more power and better efficiency (91%) than the classical P&O algorithm. In addition, the proposed boost converter design gives a better converter efficiency of about 93%. Such a PV controller design can provide efficient and stable power supply for remote mobile applications.中文译文:光伏发电系统的一种新的控制方案摘要:本文提出了一种新的光伏(PV)发电系统控制器方案。

新能源汽车外文翻译文献

新能源汽车外文翻译文献

新能源汽车外文翻译文献(文档含英文原文和中文翻译)电动车:正在进行的绿色交通革命?随着世界上持续的能源危机,战争和石油消费以及汽车数量的增加,能源日益减少,有一天它会消失得无影无踪。

石油并不是可再生资源。

在石油消耗枯竭之前必须找到一种能源与之替代。

随着科技的发展和社会进步,电动车的发明将会有效的缓解这一燃眉之急。

电动汽车将成为理想的交通工具。

面临能源成本居高不下、消费者和政府更加重视环境保护的情况下,世界汽车制造商正加大对可替代能源性混合动力汽车技术的开发投资。

该技术能极大削减燃料消费,减少温室气体排放。

许多人把目光投向了日本和美国的汽车制造商,关心他们开发混合动力和电池电动车的进展情况。

丰田普锐斯一跃成为世界上销量最好的混合动力车。

美国的新兴汽车制造商,Tesla Motors,推出了该公司首部电池电力车,名为Tesla Roadster。

截至2010年底,通用汽车公司计划推出备受赞誉的V olt混合动力汽车,而克莱斯勒公司最近已经宣布同样的计划正在进行之中。

目前,中国在新能源汽车的自主创新过程中,坚持了政府支持,以核心技术、关键部件和系统集成为重点的原则,确立了以混合电动汽车、纯电动汽车、燃料电池汽车为“三纵”,以整车控制系统、电机驱动系统、动力蓄电池/燃料电池为“三横”的研发布局,通过产学研紧密合作,中国混合动力汽车的自主创新取得了重大进展。

形成了具有完全自主知识产权的动力系统技术平台,建立了混合动力汽车技术开发体系。

混合动力汽车的核心是电池(包括电池管理系统)技术。

除此之外,还包括发动机技术、电机控制技术、整车控制技术等,发动机和电机之间动力的转换和衔接也是重点。

从目前情况来看,中国已经建立起了混合动力汽车动力系统技术平台和产学研合作研发体系,取得了一系列突破性成果,为整车开发奠定了坚实的基础。

截止到2009年1月31日,在混合动力车辆技术领域,中国知识产权局受理并公开的中国专利申请为1116件。

外文翻译

外文翻译

B. R. Stern1 and J. J. Kneiss2,†1EA Engineering, Science, and Technology, Silver Spring, MD 20910, USA2Oxygenated Fuels Association, Arlington, V A 22209, USAKey words: methyl tertiary-butyl ether, MTBE, oxygenated fuels, reformulated gasoline, healthOxygenates are liquid fuel compounds that add oxygen to gasoline and help reduce harmful gasoline emissions, while expanding the total available supply of motor fuels in the USA. reformulated with oxygenates is a major step toward developing a sustainable, clean transportation fuel for the 21st century. Despite improvements in motor vehicle technology over the past 25 years, cars and trucks remain a major source of air pollution in the USA.1 The development of reformulated fuels is part of a comprehensive national strategy for reducing motor vehicle pollution, as described in the 1990 Clean Air Act Amendments. Oxygenates are currently used in more than 30% of the US gasoline pool. By the end of the century, this figure is expected to reach as much as 70% .在美国,增氧剂是一种液体燃料,添加于汽油中增氧氧并帮助减少有害汽油排放量,同时扩大汽车燃料总的可用供应。

外文翻译--来自太阳的能源

外文翻译--来自太阳的能源

英文资料ENERGY FROM THE SUNThe sun has produced energy for billions of years.Solar energy is the solar radiation that reaches the earth. Solar energy can be converted directly or indirectly into other forms of energy, such as heat and electricity.The major drawbacks (problems, or issues to overcome) of solar energy are: (1) the intermittent and variable manner in which it arrives at the earth's surface and, (2) the large area required to collect it at a useful rate. Solar energy is used for heating water for domestic use, space heating of buildings, drying agricultural products, and generating electrical energy.In the 1830s, the British astronomer John Herschel used a solar collector box to cook food during an expedition to Africa.Now,people are trying to use the sun's energy for lots of things.Electric utilities are trying photovoltaics, a process by which solar energy is converted directly to electricity.Electricity can be produced directly from solar energy using photovoltaic devices or indirectly from steam generators using solar thermal collectors to heat a working fluid. Out of the 14 known solar electric generating units operating in the US at the end of 2004, 10 of these are in California, and 4 in Arizona. No statistics are being collected on solar plants that produce less than 1 megawatt of electricity, so there may be smaller solar plants in a number of other states. PHOTOVOLTAIC ENERGYPhotovoltaic energy is the conversion of sunlight into electricity through a photovoltaic (PVs) cell,commonly called a solar cell. A photovoltaic cell is a nonmechanical device usually made from silicon alloys.Sunlight is composed of photons, or particles of solar energy. These photons contain various amounts of energy corresponding to the different wavelengths of the solar spectrum. When photons strike a photovoltaic cell, they may be reflected, pass right through, or be absorbed. Only the absorbed photons provide energy to generate electricity.When enough sunlight (energy) is absorbed by the material (a semiconductor), electrons are dislodged from the material's atoms. Special treatment of the material surface during manufacturing makes the front surface of the cell more receptive to free electrons,so the electrons naturally migrate to the surface.When the electrons leave their position, holes are formed. When many electrons,each carrying a negative charge, travel toward the front surface of the cell, the resulting imbalance of charge between the cell's front and back surfaces creates a voltage potential like the negative and positive terminals of a battery.When the two surfaces are connected through an external load, electricity flows.The photovoltaic cell is the basic building block of a PV system. Individual cells can vary in size from about 1 cm (1/2 inch) to about 10 cm (4 inches) across.However, one cell only produces 1 or 2 watts, which isn't enough power for most applications.To increase power output, cells are electrically connected into a packaged weather-tight module. Modules can be further connected to form an array. The term array refers to the entire generating plant, whether it is made up of one or several thousand modules. As many modules as needed can be connected to form the array size(power output) needed.The performance of a photovoltaic array is dependent upon sunlight. Climate conditions (e.g., clouds, fog) have a significant effect on the amount of solar energy received by a PV array and, in turn, its performance. Most current technology photovoltaic modules are about 10 percent efficient in converting sunlight with further research being conducted to raise this efficiency to 20 percent.The pv cell was discovered in 1954 by Bell Telephone researchers examining the sensitivity of a properly prepared silicon wafer to sunlight. Beginning in the late 1950s, pvs were used to power U.S. space satellites.The success of PVs in space generated commercial applications for pv technology. The simplest photovoltaic systems power many of the small calculators and wrist watches used everyday. More complicated systems provide electricity to pump water, power communications equipment, and even provide electricity to our homes.Photovoltaic conversion is useful for several reasons. Conversion from sunlight to electricity is direct, so that bulky mechanical generator systems are unnecessary. The modular characteristic of photovoltaic energy allows arrays to be installed quickly and in any size required or allowed.Also, the environmental impact of a photovoltaic system is minimal, requiring no water for system cooling and generating no by-products. Photovoltaic cells,like batteries,generate direct current (DC) which is generally used for small loads (electronic equipment). When DC from photovoltaic cells is used for commercial applications or sold to electric utilities using the electric grid, it must be converted to alternating current (AC) using inverters,solid state devices that convert DC power to AC. Historically, pvs have been used at remote sites to provide electricity. However, a market for distributed generation from PVs may be developing with the unbundling of transmission and distribution costs due to electric deregulation. The siting of numerous small-scale generators in electric distribution feeders could improve the economics and reliability of the distribution system.SOLAR THERMAL HEATThe major applications of solar thermal energy at present are heating swimming pools, heating water for domestic use, and space heating of buildings. For these purposes, the general practice is to use flat-plate solar-energy collectors with a fixed orientation (position).Where space heating is the main consideration, the highest efficiency with a fixed flat-plate collector is obtained if it faces approximately south and slopes at an angle to the horizon equal to the latitude plus about 15 degrees. Solar collectors fall into two general categories: nonconcentrating and concentrating.In the nonconcentrating type, the collector area (i.e. the area that intercepts the solar radiation)is the same as the absorber area (i.e., the area absorbing the radiation).In concentrating collectors,the area intercepting the solar radiation is greater, sometimes hundreds of times greater, than the absorber area. Where temperatures below about 200o F are sufficient,such as for space heating,flat-plate collectors of the nonconcentrating type are generally used.There are many flat-plate collector designs but generally all consist of (1) a flat-plate absorber, which intercepts and absorbs the solar energy, (2) a transparent cover(s) that allows solar energy to pass through but reduces heat loss from the absorber, (3) a heat-transport fluid (air or water) flowing through tubes to remove heat from the absorber,and(4) a heat insulating backing.Solar space heating systems can be classified as passive or active.In passive heating systems, the air is circulated past a solar heat surface(s) and through the building by convection (i.e. less dense warm air tends to rise while more dense cooler air moves downward) without the use of mechanical equipment. In active heating systems, fans and pumps are used to circulate the air or the heat absorbing fluid.SOLAR THERMAL POWER PLANTSSolar thermal power plants use the sun's rays to heat a fluid, from which heat transfer systems may be used to produce steam. The steam, in turn, is converted into mechanical energy in a turbine and into electricity from a conventional generator coupled to the turbine.Solar thermal power generation is essentially the same as conventional technologies except that in conventional technologies the energy source is from the stored energy in fossil fuels released by combustion. Solar thermal technologies use concentrator systems due to the high temperatures needed for the working fluid.PARABOLIC TROUGHThe parabolic trough is used in the largest solar power facility in the world located in the Mojave Desert at Kramer Junction, California. This facility has operated since the 1980 and accounted for the majority of solar electricity produced by the electric power sector in2004.A parabolic trough collector has a linear parabolic-shaped reflector that focuses the sun's radiation on a linear receiver located at the focus of the parabola. The collector tracks the sun along one axis from east to west during the day to ensure that the sun is continuously focused on the receiver.Because of its parabolic shape, a trough can focus the sun at 30 to 100 times its normal intensity (concentration ratio) on a receiver pipe located along the focal line of the trough, achieving operating temperatures over400degrees Celcius.A collector field consists of a large field of single-axis tracking parabolic trough collectors. The solar field is modular in nature and is composed of many parallel rows of solar collectors aligned on a north-south horizontal axis. A working (heat transfer) fluid is heated as it circulates through the receivers and returns to a series of heat exchangers at a central location where the fluid is used to generate high-pressure superheated steam. The steam is then fed to a conventional steam turbine/generator to produce electricity.After the working fluid passes through the heat exchangers, the cooled fluid is recirculated through the solar field.The plant is usually designed to operate at full rated power using solar energy alone, given sufficient solar energy. However, all plants are hybrid solar/fossil plants that have a fossil-fired capability that can be used to supplement the solar output during periods of low solar energy. The Luz plant is a natural gas hybrid.SOLAR DISHA solar dish/engine system utilizes concentrating solar collectors that track the sun on two axes, concentrating the energy at the focal point of the dish because it is always pointed at the sun. The solar dish's concentration ratio is much higher that the solar trough, typically over 2,000,owith a working fluid temperature over 750 C. The power-generating equipment used with a solar dish can be mounted at the focal point of the dish, making it well suited for remote operations or, as with the solar trough, the energy may be collected from a number of installations and converted to electricity at a central point. The engine in a solar dish/engine system converts heat to mechanical power by compressing the working fluid when it is cold, heating the compressed working fluid, and then expanding the fluid through a turbine or with a piston to produce work. The engine is coupled to an electric generator to convert the mechanical power to electric power. SOLAR POWER TOWERA solar power tower or central receiver generates electricity from sunlight by focusing concentrated solar energy on a tower-mounted heat exchanger (receiver).This system uses hundreds to thousands of flat sun-tracking mirrors called heliostats to reflect and concentrate the sun's energy onto a central receiver tower. The energy can be concentrated as much as 1,500 times that of the energy coming in from the sun. Energy losses from thermal-energy transport areminimized as solar energy is being directly transferred by reflection from the heliostats to a single receiver,rather than being moved through a transfer medium to one central location,as with parabolic troughs. Power towers must be large to be economical. This is a promising technology for large-scale grid-connected power plants.Though power towers are in the early stages of development compared with parabolic trough technology, a number of test facilities have been constructed around the world.Last Revised:July 2008Sources: Energy Information Administration, Electric Power Annual, Form EIA-860, Annual Electric Generator Report database.来自太阳的能源太阳产生能量已有数十亿年,太阳能是太阳辐射到地球的能量。

外文翻译 外文文献 英文文献 国内混合动力汽车发展

外文翻译 外文文献 英文文献 国内混合动力汽车发展

China Hybrid Electric Vehicle DevelopmentWith the depletion of oil resources, increase awareness of environmental protection, hybrid vehicles and electric vehicles will become the first decades of the new century, the development of mainstream cars and automobile industry become the consensus of all of the industry. The Chinese government also has the National High Technology Research and Development Program (863 Program) specifically listed, including hybrid vehicles, including electric cars of major projects. At present, China's independent innovation of new energy vehicles in the process, adhere to the government support to core technology, key components and system integration focusing on the principles established in hybrid electric vehicles, pure electric vehicles, fuel cell vehicles as a "three vertical "To vehicle control systems, motor drive systems, power battery / fuel cell for the "three horizontal" distribution of R & D, through close links between production cooperation, China's independent innovation of hybrid cars has made significant progress.With completely independent intellectual property rights form the power system technology platform, established a hybrid electric vehicle technology development. Is the core of hybrid vehicles batteries (including battery management system) technology. In addition, also include engine technology, motor control, vehicle control technology, engine and electrical interface between the power conversion and is also the key. From the current situation, China has established a hybrid electric vehicle power system through Cooperative R & D technology platforms and systems, made a series of breakthroughs for vehicle development has laid a solid foundation. As of January 31, 2009,Technology in hybrid vehicles, China Intellectual Property Office to receive and open for the 1116 patent applications in China. In 1116 patent applications, invention 782 (authority for the 107), utility model for the 334.Mastered the entire vehicle key development, the formation of a capability to develop various types of electric vehicles. Hybrid cars in China in systems integration, reliability, fuel economy and other aspects of the marked progress in achieving fueleconomy of different technical solutions can be 10% -40%. Meanwhile, the hybrid vehicle automotive enterprises and industrial R & D investment significantly enhanced, accelerating the pace of industrialization. Currently, domestic automakers have hybrid vehicles as the next major competitive products in the strategic high priority, FAW, Dongfeng, SAIC Motor, Changan, Chery, BYD, etc. have put a lot of manpower, material resources,Hybrid prototyping has been completed, and some models have achieved low-volume market.FAW GroupDevelopment Goal: By 2012, the Group plans to build an annual capacity of 11,000 hybrid cars, hybrid bus production base of 1000.FAW Group since 1999 and a new energy vehicles for theoretical research and development work, and the development of a red car performance hybrid sample. "15" period, the FAW Group is committed to the national "863" major project in the "red card in series hybrid electric vehicle research and development" mission, officially began the research and development of new energy vehicles. Beginning in 2006, FAW B70 in the Besturn, based on the technology for hybrid-based research, the original longitudinal into transverse engine assembly engine assembly, using a transverse engine and dual-motor hybrid technology. At the same time, FAW also pay close attention to the engine, mechanical and electrical integration, transmission, vehicle control networks, vehicle control systems development, the current FAW hybrid electric car has achieved 42% fuel saving effect, reached the international advanced level.Jiefang CA6100HEV Hybrid Electric BusFAW "Liberation brand CA6100HEV Hybrid Electric Bus" project is a national "863" electric vehicle major projects funded project, with pure electric drive, the engine alone drives (and charge), the joint drive motor starts the engine, and sliding regenerative braking 5 kinds of basic operation. The power hybrid electric bus and economy to the leading level, 38% fuel economy than traditional buses, emissions reduced by 30%.Red Flag CA7180AE hybrid carsRed Flag hybrid cars CA7180AE according to the national "863 Plan" is the first in complete with industrial prospects of the car, it is built on the basis of red car with good performance and operational smoothness. Series which is a hybrid sedan, the luxury car ,0-100km acceleration time of 14s, fuel-efficient than traditional cars by about 50%, Euro Ⅲemission standard.Besturn B70 hybrid carsBesturn B70 Hybrid cars using petrol - electric hybrid approach. Dual motor power system programs, mixed degree of 40/103, is all mixed (Full-Hybrid, also known as re-mixed) configurations. Besturn B70 Hybrid cars are petrol version costs two to three times Besturn models, mass production will be gradually reduced after the costs, even if this hybrid version Besturn market, the price certainly higher than the existing Besturn models, but high the price of petrol will not exceed 30% version of Besturn models.SAICDevelopment Goals: 2010 launch in the mixed hybrid cars, plug-in 2012, SAIC strong mix of cars and pure electric cars will be on the market.In the R & D on new energy vehicles, SAIC made clear to focus on hybrid, fuel cell for the direction, and speed up the development of alternative products. Hybrid vehicles, fuel cell vehicles, alternative fuel vehicles as a new energy strategy SAIC three key.2010 SAIC Roewe 750 hybrid cars in the mix will be put on the market, during the World Expo in Shanghai, SAIC will put 150 hybrid cars in the Expo Line on the River Run. 2012 Roewe 550 plug-in hybrid cars will be strong market, the current car's power system has been launched early development and progress.Apply the new hybrid bus moving on the 1stApply the new hybrid bus moving on the 1st Academy of Engineering by the SAIC and Shanghai Jiaotong University and other units jointly developed with independent intellectual property rights. Existing cities in the Sunwin Bus Powerplatform, "the new dynamic application No. 1" uses a parallel hybrid electric vehicle drive program, so that hybrid electric vehicle operating conditions in the electric air-conditioning, steering, braking and other accessories still able to work without additional electric system, while use of super capacitors, to improve starting power, braking energy recovery efficiency, thereby enhancing vehicle dynamic performance, reduce fuel consumption. Car length 10m, width 2.5m, high-3.2m, can accommodate 76 people.Roewe 750 hybrid carsRoewe 750 hybrid cars in the mixed system with BSG (Belt drive start generating one machine), with "smart stop zero-emission" and "environmental protection and the power of both the" two prominent features of a top speed of 205 km / h, the maximum added driving range of up to 500 km. As for the industrialization of SAIC's first own-brand hybrid car, the Roewe 750 hybrid integrated hybrid fuel-efficient cars can achieve rates of around 20%.Dongfeng Motor GroupDevelopment Goals: Plans move into 33 billion in 10 years to develop a range of environmentally friendly hybrid vehicles, including cars.EQ7200HEV hybrid carsEQ7200HEV hybrid cars are "863" project of major projects and major strategic projects of Dongfeng Motor Corporation. The car is EQ7200-Ⅱmodel (Fengshen Bluebird cars) is based on an electronically controlled automatic transmission with innovative electromechanical coupling in parallel programs, configure DC brushless motor and nickel-hydrogen batteries, plans to "10 5 "during the industrialization. Industrialization, the vehicle cost more than EQ7200 cars increase in costs ≤30%.EQ61100HEV Hybrid Electric BusEQ61100HEV electric hybrid bus by Dongfeng Vehicle Company Limited Joint Beijing Jiaotong University, Beijing, China Textile Co., Ltd. and Hunan sharp Electromechanical Technology Co., Ltd. jointly developed Shenzhou. EQ61100HEV hybrid electric bus with switched reluctance motor, Cummins ISBe1504 cylinder common rail electronic injection diesel engine, new chassis design of the system,electronically controlled automatic transmission and innovative electromechanical coupling parallel program. In the annual output reached 200, the vehicle cost more than the increase in automobile engine equipped with 6CT ≤30%.China ChanganDevelopment Goals: the next three years, the formation of different grades, different purposes, carry a different system of mixed platforms, weak mix of scale, strong mixed industrial R & D capabilities, covering commercial, A grade, B grade, C grade products. 2014 will achieve sales of new energy vehicles 150 000 2020 sales of new energy vehicles for more than 500,000."Eleventh Five-Year Plan" period, Chang-an increased investment in clean energy vehicles, a diversified energy technologies to carry out exploratory research. Environmental protection through energy-saving models continues to introduce new technology to lead the industry to upgrade and fully utilize and mobilize global resources, Chang'an in the middle hybrid cars, hybrid cars and other technological strength of the field are explored. Chang's first hybrid car long Anjie Xun HEV was successfully listed in June 2009; the first batch of 20 hybrid taxis Long An Zhixiang in January of this year officially put into operation in Chongqing.CheryDevelopment Goals: after 2010, more than half of Chery's products carry different levels of hybrid systems.From 2003 to 2008, mainly mixed with moderate Chery hybrid cars and energy saving system development, and industrialization; Chery in Wuhu, a taxi has been carried out on probation, fuel consumption will be reduced by 10% to 30% to reach Europe ⅣStandard. Since 2004, Chery hybrid cars mainly for the development of strong and industrialization. Chery hybrid car fuel consumption target to reach 100 km 3 liters, to reach Europe and the United States emissions regulations.Chery A5BSGChery A5BSG is a weak parallel hybrid electric car, using fuel engines, electric engines complementary mode, the two different power sources in the car while driving to work together or separately, through this combination to achieve the leastfuel consumption and exhaust emissions, in order to achieve fuel efficiency and environmental protection purposes. Compared with the conventional car, the car in urban conditions can save 10% -15% of fuel and reduce carbon dioxide emissions by about 12%, while costs increased by only about 25% -30%.Chery A5ISGChery A5 ISG hybrid power system consists of "1.3L gasoline engine + 5-speed manual transmission +10 kW motor +144 V Ni-MH battery," the composition of the battery system used by the Johnson Controls developed "plug-in" nickel metal hydride (Ni-MH), motor with permanent magnet synchronous motor and with the motor control system, inverter and DC / DC converters. The system enables the vehicle power to 1.6L displacement level and rate of 30% fuel savings and significantly reduce the emissions of Euro V standards.Cherry A3ISGChery A3 ISG has 1.3L473F gasoline engine and equipped with 10KW motor. By gasoline engines and electric motors with torque overlay approach to dynamic mixed to provide the best vehicle power operating efficiency and energy saving environmental protection goals. Chery A3 ISG also has Stop_Restart the idling stop function such as flame start to start (BSG function), to reduce red light in the vehicle stopped or suspended when the fuel consumption and emissions expenses.FY 2BSGFY 2 BSG carry 1.5LSQR477F inline four-cylinder engine configuration BSG start / stop and so one electric motor, red light in the vehicle stopped the driver into the gap, it will automatically enter standby mode to turn off the engine, starting moments after the entry block automatically start the engine. FY 2 BSG vehicle average fuel consumption than the 1.5L petrol cars reduce about 5-10%, average fuel consumption can be reduced up to 15%.BYD AutoDevelopment Goal: to electric cars as a transitional mode, the electric car as the ultimate goal, the development of new energy cars BYD.BYD follow the "independent research and development, independent production, independent brand" development path, and the "core technology, vertical integration" development strategy, as the transition to dual-mode electric vehicles, electric vehicles as the ultimate goal, the development of BYD new energy vehicles.国内混合动力汽车发展随着石油资源的枯竭、人们环保意识的提高,混合动力汽车及电动汽车将成为新世纪前几十年汽车发展的主流,并成为我国汽车界所有业内人士的共识。

新能源汽车中英文对照外文翻译文献

新能源汽车中英文对照外文翻译文献

中英文对照外文翻译The Investigation Of Car new energy'S PresentCondition And DevelopmentAs the world energy crisis, and the war and the energy consumption of oil -- and are full of energy, in one day, someday it will disappear without a trace. Oil is not in resources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress of the society, people invented the electric car. Electric cars will become the most ideal of transportation.In the development of world each aspect is fruitful, especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of applications, the application of the electronic device, cars, and electronic technology not only to improve and enhance the quality and the traditional automobile electrical performance, but also improve the automobile fuel economy, performance, reliability and emissions purification. Widely used in automobile electronic products not only reduces the cost and reduce the complexity of the maintenance. From the fuel injection engine ignition devices, air control and emission control and fault diagnosis to the body auxiliary devices are generallyused in electronic control technology, auto development mainly electromechanical integration. Widely used in automotive electronic control ignition system mainly electronic control fuel injection system, electronic control ignition system, electronic control automatic transmission, electronic control (ABS/ASR) control system, electronic control suspension system, electronic control power steering system, vehicle dynamic control system, the airbag systems, active belt system, electronic control system and the automatic air-conditioning and GPS navigation system etc. With the system response, the use function of quick car, high reliability, guarantees of engine power and reduce fuel consumption and emission regulations meet standards.The car is essential to modern traffic tools. And electric cars bring us infinite joy will give us the physical and mental relaxation. Take for example, automatic transmission in road, can not on the clutch, can achieve automatic shift and engine flameout, not so effective improve the driving convenience lighten the fatigue strength. Automatic transmission consists mainly of hydraulic torque converter, gear transmission, pump, hydraulic control system, electronic control system and oil cooling system, etc. The electronic control of suspension is mainly used to cushion the impact of the body and the road to reduce vibration that car getting smooth-going andstability. When the vehicle in the car when the road uneven road can according to automatically adjust the height. When the car ratio of height, low set to gas or oil cylinder filling or oil. If is opposite, gas or diarrhea. To ensure and improve the level of driving cars driving stability. Variable force power steering system can significantly change the driver for the work efficiency and the state, so widely used in electric cars. VDC to vehicle performance has important function it can according to the need of active braking to change the wheels of the car,car motions of state and optimum control performance, and increased automobile adhesion, controlling and stability. Besides these, appear beyond 4WS 4WD electric cars can greatly improve the performance of the value and ascending simultaneously. ABS braking distance is reduced and can keep turning skills effectively improve the stability of the directions simultaneously reduce tyre wear. The airbag appear in large programs protected the driver and passenger's safety, and greatly reduce automobile in collision of drivers and passengers in the buffer, to protect the safety of life.Intelligent electronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and traffic facilities and to judge whether the vehicles and drivers in danger, has the independent pathfinding, navigation, avoid bump, no parking fees etc. Function. Effectively improve the safe transport of manipulation, reduce the pilot fatigue, improve passenger comfort. Of course battery electric vehicle is the key, the electric car battery mainly has: the use of lead-acid batteries, nickel cadmium battery, the battery, sodium sulfide sodium sulfide lithium battery, the battery, the battery, the flywheel zinc - air fuel cell and solar battery, the battery. In many kind of cells, the fuel cell is by far the most want to solve the problem of energy shortage car. Fuel cells have high pollution characteristics, different from other battery, the battery, need not only external constantly supply of fuel and electricity can continuously steadily. Fuel cell vehicles (FCEV) can be matched with the car engine performance and fuel economy and emission in the aspects of superior internal-combustion vehicles.Along with the computer and electronic product constantly upgrading electric car, open class in mature technology and perfected, that drive more safe, convenientand flexible, comfortable. Now, the electric car from ordinary consumers distance is still very far away, only a few people in bandwagon. Electric cars with traditional to compete in the market, the carwill was electric cars and intelligent car replaced. This is the question that day after timing will come. ABS, GPS, and various new 4WD 4WS, electronic products and the modern era, excellent performance auto tacit understanding is tie-in, bring us unparalleled precision driving comfort and safety of driving.First, the development of natural gas vehicleReduce pollution to protect the environment, many countries have issued a series of government regulations and the introduction of a number of incentive policies to promote the development of gas vehicle, such as the development of more stringent vehicle emission standards, in the natural gas supply, car purchase taxes and fees, equipment supply, gas station construction grant funds, tax incentives. or the purchase of alternative fuel vehicles and the construction of stations in detail the provisions of the tax relief, but also enacted a tax cut that the use of natural gas and natural gas companies exempt from motor vehicle fuel sales tax. There are more than 40 states in accordance with the policy of the federal government, law, drawn up on the mandatory state and encourage the use of clean fuel CNG vehicles, such as policies and measures to promote the CNG filling station development and construction of motor vehicles. At present, more than 40 countries around the world have a gas car, mainly in the rich natural gas resources in Italy, New Zealand, Argentina, Brazil and other countries and stricter environmental regulations the United States, Japan and other countries.Second, natural gas vehicle (CNG) fuel and other environmental and economic benefits comparedCompressed natural gas vehicles:20MPa compressed natural gas in the car to compressed natural gas cylinders in use by the supply of internal combustion engine after the pressure reducer.To CNG fuel for vehicles compared with gasoline has the following advantages: l, reduce pollution and improve the atmospheric environment: natural gas is a clean energy, with a high calorific value, high efficiency, pollution, etc., the comparison is totally burned, not carbon deposition, CO, NOx and particulate emissions than gasoline, significantly reduced exhaust pollution. Motor vehicle exhaust is the major source of urban air pollution, one of which is carbon monoxide harmful ingredients (C0), hydrocarbons (HC), nitric oxide (N0) and nitrogen dioxide (NO2) and so on. According to the data, the use of gas as a motor fuel and gasoline as fuel can reduce emissions compared to 90% CO, 90% S02, 72% HC, 39% NOx, 24% CO2, non-dust emissions, to improve the urban environment has a significant role in .A typical diesel engine and gasoline engine emissions and gas machine is shown in table l.2, CNG vehicle for a higher securityCompared with gasoline, compressed natural gas is a relatively safe fuel. (1) natural gas explosion limit is 5% higher than gasoline (lower explosion limit for the l%) high, methane ignition for 645 ℃, ignition than gasoline high 218 ℃, compared to not ignite. Low density of methane, the relative density of about 0.55, resulting in leakage of gas will soon be distributed in the air, in the case of the natural environment it is difficult to form a hot combustion conditions, once the compressed natural gas from the tank or pipe leaks, leak immediately surrounding the formation of low-temperature zone, so that the difficulties of natural gas combustion. Therefore is a fairly safe CNG motor fuel. Natural gas and fuel properties of gasoline is shown in table 2(2) Department of natural gas vehicle cylinder pressure vessel(20MPa), its materials and manufacture and testing in order that all States have strict control, in China there are "compressed natural gas cylinder vehicle standards)) (GBl7258-1998).Cylinders fitted with explosion-proof facilities, pressure reducer, valves and other equipment, strict standards high, and gas supply system is safe and reliable and will not tip over due to vehicle collision or cause fire or explosion, and the petrol tank of motor vehicles department of non-pressure vessels, fire easily after the explosion.3, will help ease the contradiction between energy supply and demand tension. China's economy is in a stage of rapid development, the number of vehicles to 1 million / year above the rate of increase of a substantial increase in gasoline demand of resources, our need to import large quantities of crude oil per year, refined oil and LPG. Optimize the use of gas carsMotor fuel supply structure has changed only motor fuel gasoline, diesel patterns, not only eased the problem of shortage of petrol and transport services to meet the needs of the development.4, extend engine life. The spread of natural gas to the gas entering the engine, the engine easily and uniformly mixed air, burning the comparison is totally clean; can improve the thermal cycle efficiency, speed up the burning speed, full use of combustion heat; CNG octane number at the same time high performance uprising, when agents do not need to add the uprising will not dilute the lubricating oil, making the parts inside the engine cylinder greatly reduce wear and tear, so that the engine oil life and increase the use of the period. All of these vehicles will reduce maintenance and operating costs, thereby enhancing the economy of the use of vehicles. 5, have a higher economic efficiency. At present, domestic gasolineprices continued to rise, the price system and the world has been the use of CNG vehicle will be able to save nearly 40% of fuel costs, as shown in table 3. Third, CNG cars and filling stations to explore the development of countermeasures In order to speed up the use of natural gas as a clean fuel vehicle development, makes the following recommendations:1, the Government has introduced policies to encourage and support: the development of all countries in the world experience shows that government support is a necessary condition for accelerated development, the impact of its economic policy is an important factor in their development should be guaranteed in law, in the gas automobile production, modification, parts and components production, station construction, vehicle purchase and use of gas, maintenance and other aspects of pricing, taxation, investment, subsidies and other aspects of the preferential policies supporting. Gas prices affect gas vehicle development is an important factor, only the gas prices and gasoline prices when the difference is large enough to form, gas car before the development of an economic foundation and driving force. 2, strengthen leadership, the implementation of unified management.The development of CNG vehicles to the construction of high-quality, convenient filling stations, the need for planning, public security, fire safety, labor, technical support supervisor and other departments.3, in the municipal plan, filling stations and gas stations should be considered co-ordination, rational distribution and coordinated development. To make full use of existing land resources and in ensuring the environmental safety of oil and gas under the premise of building one station.4, followed by motor cars and CNG filling stations in the simultaneous development of the principles, only in the stations into a network under the conditions, CNGvehicle can really develop. At the same time scale of only CNG car to a certain number, the normal operation of filling stations in order to achieve profitability. 5, the strict legal system: the development of stringent vehicle emissions regulations, and make sure that standards are not road vehicles are determined not to be on the qualifications of CNG vehicle Modify-Factroy critical examination, certification. First of all, the city should the city bus, taxi, as the focus of the development of CNG vehicle, bus stop some of the phenomenon of black smoke pollution of the environment.6, step up publicity. At present, natural gas car is still at the initial stage, the public nature of its environmental protection, safety, economy, reliability, do not fully understand, so, it is necessary to carry out a wide range of social advocacy, efforts to increase awareness of the dangers of automobile exhaust, to make people aware of CNG is a clean, safe and economical fuel, so that the development of natural gas vehicles have been recognized by all sectors of society and support.Compressed natural gas vehicles because of its remarkable economic and social benefits the development of the natural gas market will become a new field of applications. More and more importance in the environmental protection situation, along with natural gas resources in the area of the development and application of the widening, which will reduce the environmental pressure is to ease the oil shortage and achieve sustainable development of a reliable guarantee.汽车新能源现状与发展的探究随着世界能源危机的持续,以及战争和能源-----石油的消耗及汽车饱有量的增加,能源在一天一天下降,终有一天它会消失的无影无踪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文资料翻译Fossil energy and nuclear energy are considered nonrenewable energy types. Nonrenewable energy is obtained from sources at a rate that exceeds the rate at which the sources are replenished. For example, if the biogenic origin of fossil fuels is correct, we could consider fossil fuels renewable over a period of millions of years, but the existing store of fossil fuels is being consumed over a period of centuries. Because we are consuming fossil fuels at a rate that exceeds the rate of replenishment, we consider fossil fuels nonrenewable. Similar comments apply to nuclear fuels such as uranium, as we observe in later chapters. Solar energy is considered a renewable energy for the following reasons.1 Renewable energy is energy obtained from sources at a rate that is less than or equal to the rate at which the source is replenished. In the case of solar energy, we can use only the amount of energy provided by the sun. Because the remaining lifetime of the sun is measured in millions of years, many people consider solar energy an inexhaustible supply of energy. In fact, solar energy from the sun is finite, but should be available for use by many generations of people. Solar energy is therefore considered renewable. Energy sources that are associated with solar energy, such as wind and biomass, are also considered renewable. Solar radiation may be converted to other forms of energy by several conversion processes. Thermal conversion relies on the absorption of solar energy to heat a cool surface. Biological conversion of solar energy relies on photosynthesis. Photovoltaic conversion generates electrical power by the generation of an electrical current as a result of a quantum mechanical process. Wind power and ocean energy conversion rely on atmospheric pressure gradients and oceanic temperature gradients to generate electrical power. In this chapter we focus on thermal conversion.We first discuss the source of available solar energy, and then consider solar energy technology in two of its three forms: passive solar, and active solar. The third form of solar energy, solar electric, is discussed in the next chapter. We end this chapter with a discussion of solar power plants.Fossil fuels in the petroleum and natural gas is the world's major one-time energy World Energy Council, according to statistics, has proven oil and gas recoverable reserves, according to the output of countries in 1992 terms, respectively, only the exploitation of 44 years and 60 years; although they may be recoverable reserves there will be new discoveries, but also the growth needs of the community, especially taking into account the economic development of Third World countries, the exploitation of oil and gas fuel for a long time. In fossil fuels, although the most abundant coal reserves, but the serious pollution caused by coal-fired so that it can not become large the major source of energy worldwide. On the other hand, nuclear fusion reactions can provide clean energy, in the ocean contains about 42 trillion tons of the major nuclear fusion of deuterium-reactive substances; fusion reactor but it is very difficult to study, it is estimated that the next century to the late nuclear polysubstation be possible to achieve widespread commercialization. Therefore, in the 21st century, the prospects for energy, you may have to face the depletion of oil and gas resources, the commercialization of fusion power failure during the period of temporary shortage of such people. During this period in order to ensure sufficient human clean energy supply, use of solar energy for power generation is an inevitable choice.Solar energy is the most important renewable sources of energy, the planet with all kinds of energy are closely related. In fact, the sun in Earth's evolution, biological reproduction and human development, plays a very important role, but also provides a human inexhaustible source of energy. Solar interior ongoing response to the release of a high-temperature nuclear fusion power of about 3. 8 ×1026 watts of huge radiation, of which only arrived in regard to the atmospheric level二十亿分之一; through the atmosphere, about 30% reflected, 23% be absorbed, only half (approximately 8 ×1016 watts) of energy reaching the earth's surface. Even so, as long as they can make use of the very few, will be able to meet all the needs of humanity today. However, due to its low energy density, but also by the day and night, seasons, climate, location and other factors, on the ground by the use of solar energy to power a lot of constraints. In order to avoid these shortcomings, natural to consider the use of solar power in space of the feasibility of the possibility.Power generation in 2010 is expected to the practical use of spaceSpace Solar Power is the first way of Engineers first proposed by P. Glaser. The basic idea is in the earth's outer space or the moon to establish a base of solar power satellites, and then through the microwave energy transmitted to the scene to the receiving device, and then beam microwave energy into electrical energy for human use. Advantage of this program is to make full use of solar energy outside the atmosphere, the elimination of solar energy in the ground, changes in the density of small and large shortcomings, without a huge energy storage device, not only to reduce the square, but also save a lot of equipment investment. It can be expected, with the photoelectric conversion materials and delivery areas such as technology, space solar power generation costs will be greatly reduced.The idea is proposed, subject to national attention. 1977 -1980 in the United States Department of Energy and NASA organizations to the concept of space solar power study, believe that its implementation does not exist insurmountable technical difficulties. At that time, a design known as the "reference system" of power generation systems; from 60 to solar panels, each block 10 kilometers long, five kilometers wide, generating 5,000,000 kilowatts, with a total capacity of 300 million kilowatts. With such a power generation satellites, the United States will be able to replace all of the ground station. As the system is too large, about 3,000 of the money to invest 100 billion U.S. dollars, at that time under the conditions of the Cold War can hardly be supported. With the energy of all the outstanding progress in space technology in 1995, NASA set up a study group to re-examine this issue, a more comprehensive analysis of space solar power generation technical and economicfeasibility of the program also are very different: adopted a progressive self-development model, that is, the first 100-150 to launch a 100 million U.S. dollars investment for 250,000 kilowatts of power satellites, the sale of electricity in order to recover their investment and profit, and then expand the scale of power generation satellites. The research group estimates that after 2010, space power will be practical. At present, a number of other countries and international organizations, space solar power generation is also carried out work.SolarSolar (Solar) generally refers to the sun's radiation energy. Carried out in the solar interior from "H" together into a "helium" the nuclear reaction, kept a huge release of energy, and continue to the space radiation energy, which is solar energy. This solar nuclear fusion reaction inside the can to maintain the hundreds of millions of百亿年first time. Solar radiation to space launch 3.8x10 ^ 23kW power of the radiation, of which 20 billionth of the Earth's atmosphere to reach. Solar energy reaching the Earth's atmosphere, 30% of the atmosphere reflectance, 23% of atmospheric absorption, and the rest to reach the Earth's surface,Its power of 80 trillion kW, that is to say a second exposure to the sun's energy on Earth is equivalent to five million tons of coal combustion heat release. The average per square meter in the atmosphere outside the area of energy per minute to receive about 1367w. A broad sense of the solar energy on earth many sources, such as wind energy, chemical energy, potential energy of water and so on. The narrow sense is limited to solar radiation of solar light thermal, photovoltaic and photochemical conversion of the directly.At this stage, the world's solar energy is still the focus of the study of solar energy power plant, but the diversification of the use of the condenser, and the introduction of flat-plate collector and a low boiling point working fluid, the device gradually expanded up to maximum output power 73.64kW, Objective To compare the clear and practical, cost remains high. The construction of a typical device are as follows: 1901, California built a solar-powered pumping devices, the use of truncated cone condenser power: 7.36kW; 1902 ~ 1908 years, built in the United States five sets of double-cycle solar-powered engines, the use of flat-panel collector and a low boiling point working fluid; in 1913,Human use of solar energy has a long history. China more than 2000 years ago, back in the Warring States period, one will find that the use of four steel mirror to focus sunlight ignition; use of solar energy to dry agricultural products. The development of modern, solar energy has become increasingly widespread use, it includes the use of solar energy solar thermal, solar photovoltaic and solar energy use, such as the photochemical use. The use of solar photochemical reaction, a passive use (photo-thermal conversion) and the photoelectric conversion in two ways.A new solar power and renewable sources of energy use.Silicon photovoltaic cells mainly in the absorption of solar light energy emitted by silicon photocell is mainly extracted from the sand by the development of Bell Labs. Solar energy is the internal or the surface of the sun sunspot continuous process ofnuclear fusion reactions produce energy. Earth's orbit on the average solar radiation intensity for the 1367w / ㎡. Circumference of the Earth's equator to 40000km, and thus calculated the Earth's energy can be obtained 173000TW. At sea level standard for peak intensity 1kw/m2, a point on the Earth's surface 24h of the annual average radiation intensity 0.20kw / ㎡, which is equivalent to have 102000TW energy Human dependence on these energy to survive, including all other forms of renewable energy (except for geothermal energy resources), although the total amount of solar energy resources is the human equivalent of the energy used by ten thousand times, but low energy density of solar energy, and it vary from place to place, from time to time change, the development and utilization of solar energy which is facing a major problem. These features will make solar energy in the integrated energy system of the role of subject to certain restrictions.The use of solar cells, through the photoelectric conversion to solar energy conversion is included in electricity, the use of solar water heaters, the use of solar heat hot water and use water for power generation, using solar energy for desalination. Now, the use of solar energy is not very popular, the use of solar power costs are high there, the problem of low conversion efficiency, but for satellite solar cells to provide energy has been applied.Although the Earth's atmosphere solar radiation to the total energy only 22 billionths of a radiation energy, it has been as high as 173,000 TW, that is to say a second exposure to the sun's energy on Earth is equivalent to five million tons of coal. Earth wind energy, hydropower, ocean thermal energy, wave energy and tidal energy as well as some comes from the sun; even in the face of the earth's fossil fuels (such as coal, oil, natural gas, etc.) that is fundamentally Since ancient times the storage of solar energy down, so by including a broad range of solar energy is very large,The narrow sense is limited to solar radiation of solar light thermal, photovoltaic and photochemical conversion of the directly.Solar energy is the first time, but also renewable energy. It is rich in resources, can use free of charge, and without transportation, without any pollution to the environment. For mankind to create a new life, so that social and human energy into a era of reducing pollution.Solar cells have to respond to a light and convert solar energy to power the device. Photovoltaic effect can produce many kinds of materials, such as: single crystal silicon, polycrystalline silicon, amorphous silicon, gallium arsenide, copper indium selenium. They are basically the same principle of power generation is now crystal as an example to describe the process of light generation. P-type crystalline silicon available after phosphorus-doped N-type silicon, the formation of P-N junction. When the surface of solar light, the silicon material to be part of photon absorption; photon energy transfer to the silicon atom, electronic transitions have taken place, as a free-electron concentration in the PN junction formed on both sides of the potential difference, when the external circuit connected when the effects of the voltage, there will be a current flowing through the external circuit have a certain amount of output power. The substance of this process are: photon energy into electrical energy conversion process."Si" is our planet's abundance of storage materials. Since the 19th century, scientists discovered the properties of crystalline silicon semiconductor, it almost changed everything, even human thought, end of the 20th century. Our lives can be seen everywhere, "silicon" figure and role of crystalline silicon solar cells is the formation of the past 15 years the fastest growing industry. Production process can be divided into five steps: a, purification process b, the process of pulling rod c, slicing the process of d, the process of system battery e, the course package.Solar photovoltaicIs a component of photovoltaic panels in the sun exposure will generate direct current power generation devices, from virtually all semiconductor materials (eg silicon) are made of thin photovoltaic cells composed of solid. Because there is no part of activity, and would thus be a long time operation would not lead to any loss. Simple photovoltaic cells for watches and computers to provide energy, and more complex PV systems to provide lighting for the housing and power supply. Photovoltaic panels can be made into components of different shapes, and components can be connected to generate more power. In recent years, the surface of the roof and building will be the use of photovoltaic panels components,Even be used as windows, skylights or sheltered part of devices, which are often called photovoltaic facilities with PV systems in buildings.Solar thermalModern technology solar thermal polymerization sunlight and use its energy produced hot water, steam and electricity. In addition to the use of appropriate technology to collect solar energy, the building can also make use of the sun's light and heat energy is added in the design of appropriate equipment, such as large windows or use of the south can absorb and slowly release the sun heat the building materials .According to records, human use of solar energy has more than 3,000 years of history. To solar energy as an energy and power use, only 300 years of history. The real solar as "the near future to add much-needed energy," "the basis of the future energy mix" is the latest thing. Since the 20th century, 70s, solar technology has made rapid advances, solar energy use with each passing day. Solar energy utilization in modern history from the French engineers in 1615 in the Solomon and Germany Cox invented the world's first solar-powered engines run. The invention is a use of solar energy heating the air to the expansion and pumping machines acting.In 1615 ~ 1900, between the developed world and more than one solar power plant and a number of other solar energy devices. Almost all of these power plants collect the sun means the use of condenser, engine power is not, the working fluid is water vapor, which is very expensive, not practical value, the majority of individual studies for manufacturing solar enthusiasts. 100 years of the 20th century, the history of the development of solar energy technology in general can be divided into seven stages.化石能源和核能被认为是不可再生的能源类型。

相关文档
最新文档