3 极坐标系的概念(教师版)

合集下载

极坐标系的概念与应用

极坐标系的概念与应用

极坐标系的概念与应用极坐标系是一种描述平面上点的坐标系统,与直角坐标系相对应。

它以极轴和极角来确定点的位置,极轴通常为原点到点的距离,而极角则是从极轴正方向旋转到线段的方向所经过的角度。

极坐标系在各个科学领域中都有广泛的应用,包括物理学、工程学、数学等等。

本文将介绍极坐标系的概念以及它在不同领域中的应用。

一、极坐标系的概念极坐标系是一种二维坐标系统,用极径和极角来描述平面上的点。

在极坐标系中,平面上的点可以表示为(r, θ),其中r是点到原点的距离,θ是从极轴正方向旋转到线段的方向所经过的角度。

极径r是一个非负实数,极角θ通常用弧度制表示。

极坐标系与直角坐标系之间的转换关系由以下公式给出:x = r * cos(θ)y = r * sin(θ)其中(x, y)是直角坐标系中的点,r是点的极径,θ是点的极角。

这些公式使得我们可以在直角坐标系和极坐标系之间进行坐标的转换,方便我们在不同坐标系中进行计算和分析。

二、极坐标系的应用1. 物理学中的应用:极坐标系在物理学中有广泛的应用,特别是在描述圆形、旋转质点和极化等问题中。

例如在力学中,我们可以用极坐标系来描述质点在圆周运动中的运动规律,方便地计算质点的速度和加速度。

此外,极坐标系还在电磁学中用于描述电场和磁场的变化规律。

2. 工程学中的应用:工程学中的许多问题,如天线的辐射方向、波传播和声纳导航等,都可以使用极坐标系来进行分析和设计。

通过将问题转化为极坐标系,我们可以更好地理解和解决实际工程中的各种应用场景。

3. 数学中的应用:极坐标系在数学中也有重要的应用,特别是在微积分和复数理论中。

在微积分中,利用极坐标系可以简化一些复杂的曲线积分和面积计算。

在复数理论中,极坐标系可以用来表示复数的幅度和幅角,方便进行复数运算和解析几何的推导。

结论极坐标系是一种二维坐标系统,以极径和极角来确定平面上的点的位置。

它在物理学、工程学、数学等多个领域中都有广泛的应用。

2022年高考数学(理)一轮复习教师用书:第十二章 坐标系与参数方程 Word版含答案

2022年高考数学(理)一轮复习教师用书:第十二章 坐标系与参数方程 Word版含答案

第1课时 坐标系1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎨⎧x =ρcos θy =ρsin θ,或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).这就是极坐标与直角坐标的互化公式.3.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝ ⎛⎭⎪⎫-π2≤θ<π2 圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin_θ (0≤θ<π) 过极点,倾斜角为α的直线θ=α(ρ∈R ) 或θ=π+α(ρ∈R )过点(a,0),与极轴垂直的直线ρcos θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2 过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)考点一 极坐标与直角坐标的互化[例1] (1)把点M 的极坐标⎝ ⎛⎭⎪⎫-5,π6化成直角坐标;(2)把点M 的直角坐标(-3,-1)化成极坐标. 解:(1)∵x =-5cos π6=-52 3,y =-5sin π6=-52,∴点M 的直角坐标是⎝ ⎛⎭⎪⎫-52 3,-52.(2)ρ=(-3)2+(-1)2=3+1=2,tan θ=-1-3=33. ∵点M 在第三象限,ρ>0,∴最小正角θ=7π6. 因此,点M 的极坐标是⎝ ⎛⎭⎪⎫2,7π6[方法引航] (1)在由点的直角坐标化为极坐标时,肯定要留意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在曲线的方程进行互化时,肯定要留意变量的范围.要留意转化的等价性.1.点P 的直角坐标为(1,-3),则点P 的极坐标为( ) A.⎝ ⎛⎭⎪⎫2,π3 B.⎝ ⎛⎭⎪⎫2,43π C.⎝ ⎛⎭⎪⎫2,-π3 D.⎝ ⎛⎭⎪⎫2,-43π 解析:选C.由于点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3. 2.若点P 的极坐标为⎝ ⎛⎭⎪⎫2,π3,则P 到x 轴的距离为________.解析:y =ρsin θ=2×sin π3= 3. 3考点二 直角坐标方程与极坐标方程的互化及应用[例2] 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程.解:(1)∵ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,∴ρcos θ·cos π3+ρsin θ·sin π3=1.∴12x +32y =1.即曲线C 的直角坐标方程为x +3y -2=0.令y =0,则x =2;令x =0,则y =233. ∴M (2,0),N ⎝⎛⎭⎪⎫0,233. ∴M 的极坐标为(2,0),N 的极坐标为⎝ ⎛⎭⎪⎫233,π2.(2)∵M ,N 连线的中点P 的直角坐标为⎝ ⎛⎭⎪⎫1,33,∴P 的极角为θ=π6.∴直线OP 的极坐标方程为θ=π6(ρ∈R ).[例3] 在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1. (1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.解:(1)设O 为极点,OD 为圆C 的直径,A (ρ,θ)为圆C 上的一个动点,则∠AOD =π4-θ或∠AOD =θ-π4,OA =OD cos ⎝ ⎛⎭⎪⎫π4-θ或OA =OD cos ⎝ ⎛⎭⎪⎫θ-π4,所以圆C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫θ-π4.(2)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,得22ρ(sin θ+cos θ)=1,∴直线l 的直角坐标方程为x +y -2=0,又圆心C 的直角坐标为⎝ ⎛⎭⎪⎫22,22满足直线l 的方程,∴直线l 过圆C 的圆心,故直线被圆所截得的弦长为直径2.[方法引航] 直角坐标方程与极坐标方程的互化,关键要把握好互化公式,争辩极坐标系下图形的性质,可转化为我们生疏的直角坐标系的情境.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解:(1)由于x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.[高考真题体验]1.(2022·高考全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎨⎧x =t cos αy =t sin α,(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153.2.(2021·高考课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t ,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos ty =5+5sin t ,消去参数t ,化为一般方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x-10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,代入x 2+y 2-8x -10y +16=0得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的一般方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1y =1,或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.3.(2021·高考陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ. (1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P ⎝ ⎛⎭⎪⎫3+12t ,32t ,又C (0,3),则|PC |=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32= t 2+12,故当t =0时,|PC |取得最小值, 此时,P 点的直角坐标为(3,0).课时规范训练1.已知圆O 1和圆O 2的极坐标方程为ρ=2,ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4,由于ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.2.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)求曲线C 的方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1, 故曲线C 的方程为x 2+y 24=1.(2)由⎩⎨⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.3.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,求实数a 的值.解:由ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y -2)2=4, 由直线ρsin θ=a ,得直线的直角坐标方程为y =a .设圆的圆心为O ′,y =a 与x 2+(y -2)2=4的两交点A ,B 与O 构成等边三角形,如图所示.由对称性知∠O ′OB =30°,OD =a . 在Rt △DOB 中,易求DB =33a , ∴B 点的坐标为⎝ ⎛⎭⎪⎫33a ,a .又∵B 在x 2+y 2-4y =0上, ∴⎝ ⎛⎭⎪⎫33a 2+a 2-4a =0, 解得a =3(a =0舍).4.从极点O 作直线与另始终线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12. (1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,求|RP |的最小值.解:(1)设动点P 的极坐标为(ρ,θ),M 的极坐标为(ρ0,θ),则ρρ0=12. ∵ρ0cos θ=4,∴ρ=3cos θ,即为所求的轨迹方程. (2)将ρ=3cos θ化为直角坐标方程, 得x 2+y 2=3x ,即⎝ ⎛⎭⎪⎫x -322+y 2=⎝ ⎛⎭⎪⎫322,知P 的轨迹是以⎝ ⎛⎭⎪⎫32,0为圆心,半径为32的圆.直线l 的直角坐标方程是x =4. 结合图形(图略)易得|RP |的最小值为1.第2课时 参数方程1.参数方程和一般方程的互化(1)曲线的参数方程和一般方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到一般方程.(2)假如知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入一般方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t )y =g (t ),就是曲线的参数方程.2.常见曲线的参数方程和一般方程点的轨迹 一般方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧ x =x 0+t cos αy =y 0+t sin α,(t 为参数) 圆x 2+y 2=r 2 ⎩⎨⎧ x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数) 双曲线 x 2a -y 2b 2=1,(a >0,b >0)⎩⎨⎧x =a sec φy =b tan φ,(φ为参数) 抛物线 y 2=2px (p >0)⎩⎨⎧x =2pt 2,y =2pt(t 为参数)考点一 参数方程与一般方程的互化及应用命题点1.求参数方程2.消参数化为一般方程[例1] (1)如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:(1)圆的半径为12,记圆心为C ⎝ ⎛⎭⎪⎫12,0,连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ, y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).(2)求直线⎩⎨⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos αy =3sin α,(α为参数)的交点个数.解:将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α,消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.[方法引航] 1.由一般方程求参数方程,要依据参数的意义建立关系.2.由参数方程得到一般方程的思路是消参,消去参数的方法要视状况而定,一般有三种状况:(1)利用解方程的技巧求出参数的表达式,然后代入消去参数,或直接利用加减消元法消参; (2)利用三角恒等式消去参数,一般是将参数方程中的两个方程分别变形,使得一个方程一边只含有sin θ,另一个方程一边只含有cos θ,两个方程分别平方后两式左右相加消去参数; (3)依据参数方程本身的结构特征,选用一些机敏的方法从整体上消去参数.,将参数方程化为一般方程时,要留意防止变量x 和y 取值范围的扩大或缩小,必需依据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.1.若将本例(1)改为:圆上的任一点P 与圆心的连线的旋转角为参数θ,求圆的参数方程.解:圆心为⎝ ⎛⎭⎪⎫12,0,r =12.设P (x ,y ),则x =12+12cos θ, y =12sin θ(0≤θ≤2π) ∴圆的参数方程为 ⎩⎪⎨⎪⎧x =12+12cos θ,y =12sin θ.2.若将本例(2)的曲线变为⎩⎨⎧x =3cos αy =4sin α,其余不变,求交点个数.解:⎩⎪⎨⎪⎧x =3cos αy =4sin α,即⎩⎪⎨⎪⎧x3=cos α,y 4=sin α.∴x 29+y 216=1.而直线x +y -1=0,过点(1,0),点在椭圆x 29+y 216=1内,故直线与曲线有两个交点. 考点二 极坐标方程与参数方程的综合应用命题点1.直线与圆的方程应用2.直线与椭圆的方程应用[例2] (1)(2022·高考全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t ,(t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. ①说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;②直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:①消去参数t 得到C 1的一般方程为x 2+(y -1)2=a 2.所以C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的一般方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. ②曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.(2)(2022·高考全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.①写出C 1的一般方程和C 2的直角坐标方程;②设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:①C 1的一般方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.②由题意,可设点P 的直角坐标为(3cos α,sin α).由于C 2是直线,所以|PQ |的最小值即为P到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2sin ⎝ ⎛⎭⎪⎫α+π3-2.当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12.[方法引航] 对于曲线方程为极坐标方程或参数方程时,一般都化为平面直角坐标系中的一般方程f (x ,y )=0再应用.假如直接应用,要明确极坐标(ρ,θ)及参数的意义.1.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5.(2)将l 的参数方程代入圆C 的直角坐标方程.得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎪⎨⎪⎧t 1+t 2=32,t 1·t 2= 4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.2.(2021·甘肃三校联考)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1+t cos α,y =2+t sin α(t 为参数),在极坐标系 (与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=6sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(1,2),求|P A |+|PB |的最小值. 解:(1)由ρ=6sin θ得ρ2=6ρsin θ,化为直角坐标方程为x 2+y 2=6y ,即x 2+(y -3)2=9. 所以圆C 的直角坐标方程为x 2+(y -3)2=9.(2)将l 的参数方程代入圆C 的直角坐标方程,得t 2+2(cos α-sin α)t -7=0. 由已知得Δ=(2cos α-2sin α)2+4×7>0,所以可设t 1,t 2是上述方程的两根,则⎩⎪⎨⎪⎧t 1+t 2=-2(cos α-sin α),t 1·t 2=-7.由题意得直线l 过点(1,2),结合t 的几何意义得 |P A |+|PB |=|t 1|+|t 2|=|t 1-t 2| =(t 1+t 2)2-4t 1t 2=4(cos α-sin α)2+28 =32-4sin 2α≥32-4=27.所以|P A |+|PB |的最小值为27.[高考真题体验]1.(2021·高考课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α,(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.2.(2022·高考课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,依据(1)中你得到的参数方程,确定D 点的坐标.解:(1)C 的直角坐标方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.由于C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同.tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.3.(2022·高考课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的一般方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值. 解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的一般方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255.4.(2021·高考课标全国卷Ⅱ)已知动点P ,Q 都在曲线C :⎩⎨⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α). 故M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2αy =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.课时规范训练1.在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α,(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时, |AB |取得最大值,最大值为4.2.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.解:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4.注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1. 所以⎩⎪⎨⎪⎧b 2=1,-ab2+1=2,解得⎩⎪⎨⎪⎧a =-1,b =2.3.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试推断直线l 与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a = 2.所以直线l 的方程可化为ρcos θ+ρsinθ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 由于圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.4.在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎨⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B . (1)若α=π3,求线段AB 的中点M 的坐标;(2)若|P A |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. 解:(1)将曲线C 的参数方程化为一般方程为x 24+y 2=1. 当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎪⎨⎪⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的一般方程x 24+y 2=1,得13t 2+56t +48=0, 设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝ ⎛⎭⎪⎫1213,-313.(2)将⎩⎪⎨⎪⎧x =2+t cos α,y =3+t sin α代入曲线C 的一般方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 由于|P A |·|PB |=|t 1t 2|=12cos 2α+4sin 2α, |OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516. 由于Δ=32cos α(23sin α-cos α)>0,故tan α=54.所以直线l 的斜率为54.。

(完整word版)《极坐标系》教学设计

(完整word版)《极坐标系》教学设计

(完整word版)《极坐标系》教学设计极坐标系是一种描述平面上点坐标的系统,它以距离和角度作为坐标表示。

在数学和物理学中,极坐标系被广泛应用于描述旋转对称的问题或者平面上点的位置。

本文将从极坐标系的基本概念、转换公式以及应用领域等方面进行介绍。

一、基本概念1. 极坐标系的定义极坐标系是一种平面坐标系,它由极轴、极点和极角组成。

极轴是从极点出发的直线,极角是从极轴开始逆时针旋转的角度。

而极点是坐标系的原点,通常表示为O。

极坐标系中,每个点的位置由极径和极角来确定。

2. 极径和极角极径是从极点到点P的距离,用r表示。

极角是从极轴到OP的角度,用θ表示。

在数学上,极径通常用非负数表示,而极角可以是任意实数。

3. 笛卡尔坐标系与极坐标系的转换极坐标系与笛卡尔坐标系是两种常用的坐标系。

它们之间可以通过一组转换公式相互转换。

在极坐标系中,点P的笛卡尔坐标表示为(x, y),而点P在极坐标系中的坐标表示为(r, θ)。

转换公式如下:x = r * cos(θ)y = r * cos(θ)这两个公式可以实现从笛卡尔坐标系到极坐标系的转换,也可以实现从极坐标系到笛卡尔坐标系的转换。

二、转换公式的推导1. 从笛卡尔坐标系到极坐标系的转换假设点P在笛卡尔坐标系中的坐标为(x, y),点P在极坐标系中的坐标为(r, θ)。

由于极径r是点P到极点O的距离,可以根据勾股定理得到r的表达式:r = sqrt(x^2 + y^2)又因为点P与x轴的夹角就是点P在极坐标系中的极角θ,可以应用反正切函数得到θ的表达式:θ = arctan(y / x)2. 从极坐标系到笛卡尔坐标系的转换假设点P在笛卡尔坐标系中的坐标为(x, y),点P在极坐标系中的坐标为(r, θ)。

可以根据三角函数的定义得到x和y的表达式:x = r * cos(θ)y = r * sin(θ)这两个转换公式可以方便地实现极坐标系和笛卡尔坐标系之间的转换。

三、应用领域极坐标系在数学和物理学中被广泛应用于描述旋转对称的问题或者平面上点的位置。

极坐标系定义

极坐标系定义

极坐标系定义全文共四篇示例,供读者参考第一篇示例:极坐标系是一种描述平面上点位置的坐标系统。

在直角坐标系中,我们可以通过横纵坐标来确定一个点的位置,而在极坐标系中,我们则是通过点到原点的距离和点与横轴的夹角来确定点的位置。

极坐标系的核心概念有两个,分别是极径和极角。

极径是指点到原点的直线距离,通常用字母r表示,而极角则是点与横轴的夹角,通常用希腊字母θ表示。

通过极径和极角,我们可以唯一确定平面上的一个点的位置。

极坐标系在数学和物理学中有着广泛的应用,特别是在描述圆形和旋转问题时非常方便。

以极坐标系描述圆形时,所有的点到原点的距离都是相等的,而夹角则可以描述点在圆周上的位置。

这种描述方法在研究弧度、角速度等问题时非常有用。

极坐标系的转换和变换也是比较简单的。

我们可以通过一些基本的三角函数关系来将极坐标系和直角坐标系相互转换。

对于一个点P(r, θ),我们可以通过以下公式将其转换为直角坐标系中的坐标(x, y):x = r * cos(θ)y = r * sin(θ)通过这种相互转换的方式,我们可以在不同的坐标系中进行计算和描述,方便求解复杂的问题。

极坐标系是一种很有用的坐标系,特别适合描述圆形和旋转问题。

在数学、物理和工程领域中,极坐标系的应用非常广泛,能够帮助我们更好地理解和解决问题。

希望通过这篇文章的介绍,读者们能更加深入地了解极坐标系的定义和应用。

第二篇示例:极坐标系是一种描述平面上点的坐标系统,它使用一个点与原点的距离和这个点与x轴正方向的夹角来确定点的位置。

在极坐标系中,每个点可以表示为一个有序对(r,θ),其中r代表点到原点的距离,θ代表点到x轴正方向的夹角。

极坐标系常用于描述圆形和极坐标方程,它提供了一种简单和直观的方式来描述平面上的点。

在极坐标系中,点的位置可以通过一个极坐标曲线来表示,这种曲线通常具有对称性,比如圆形、椭圆形等。

在极坐标系中,点的位置是由两个参数确定的,即极径r和极角θ。

极坐标系的基本概念

极坐标系的基本概念

极坐标系的基本概念极坐标系是一种描述平面上点位置的坐标系,它以点到原点的距离和点与正半轴的夹角来表示点的位置。

相比于直角坐标系,极坐标系更适用于描述圆形或球形的几何问题。

本文将介绍极坐标系的基本概念及其在数学和物理中的应用。

一、极坐标系的定义极坐标系用两个数表示点的位置,分别是极径和极角。

极径表示点到原点的距离,用正实数表示;极角表示点与正半轴的夹角,以弧度为单位。

在极坐标系中,原点表示极径为0的点,也是极角为任意值的点。

在直角坐标系中,一个点的位置由X坐标和Y坐标确定,即(x,y)。

而在极坐标系中,一个点的位置由极径r和极角θ确定,即(r,θ)。

二、极坐标系与直角坐标系的转换公式在极坐标系和直角坐标系之间,可以通过一些公式进行坐标的转换。

1. 从直角坐标系到极坐标系的转换:极径r可以通过以下公式计算:r = √(x² + y²)极角θ可以通过以下公式计算:θ = arctan(y/x),其中arctan为反正切函数。

2. 从极坐标系到直角坐标系的转换:X坐标可以通过以下公式计算:x = r * cos(θ),其中cos为余弦函数。

Y坐标可以通过以下公式计算:y = r * sin(θ),其中sin为正弦函数。

三、极坐标系的应用极坐标系在数学和物理中有着广泛的应用。

1. 极坐标方程一些图形在直角坐标系中难以描述,而在极坐标系中可以用较简单的方程表示。

例如,圆的方程在极坐标系中可以表示为 r = a,其中a为圆的半径。

其他曲线如椭圆、双曲线等也可以用极坐标方程表示。

2. 极坐标系中的积分在计算一些特殊曲线的弧长、曲面积分和体积等问题时,极坐标系更加方便。

利用极坐标系进行积分计算可以简化问题并提高计算效率。

3. 物理中的应用极坐标系在力学、电磁学、流体力学等领域都有广泛应用。

例如,在描述质点的运动轨迹时,如果运动轨迹呈现出旋转或对称性,极坐标系更适用于描述和分析。

结语极坐标系作为一种描述平面上点位置的坐标系,具有简洁、直观的特点,被广泛应用于数学和物理学科中。

极坐标系的基本概念与性质

极坐标系的基本概念与性质

极坐标系的基本概念与性质极坐标系是一种非常常见的坐标系,其在物理、数学、工程等领域都有着广泛的应用。

在极坐标系中,每一个点可以由其距离原点的距离 r 和与 x 轴的夹角θ 来唯一确定。

本文将介绍极坐标系的基本概念与性质,帮助读者更好地理解它的应用。

一、坐标系定义极坐标系由一个原点 O 和一个极轴(通常选择 x 轴)共同确定。

从原点 O 出发,以极轴上的一个点作为起点,沿极轴反时针旋转一个角度,到达一个点 P,P 的位置可以用极坐标表示成(r,θ)。

其中,r 表示点 P 到原点 O 的距离,θ表示 OP 与极轴正方向的夹角。

二、坐标变换极坐标系和直角坐标系之间可以进行坐标变换。

在直角坐标系中,一个点的位置可以用其在 x、y、z 三个轴上的坐标来表示。

假设有一个点 (x,y),它在极坐标系中的位置如下:x = r cosθy = r sinθ反过来,如果我们知道一个点在极坐标系中的坐标(r,θ),它在直角坐标系中的坐标可以表示为:x = r cosθy = r sinθ由此可见,在极坐标系和直角坐标系之间进行坐标变换只需要进行简单的数学运算即可。

三、极坐标系的特征极坐标系不同于其他坐标系的一个显著特点是它的弧长不等于直线距离。

例如,在极坐标系中,一个圆的方程可以写作 r = a,其中 a 表示圆的半径。

实际上,这个圆的长度并不等于2πa,而是2aπ。

这是因为在极坐标系中,弧长是沿着曲线走的路程,而距离则是两点之间的直线距离。

因此,在极坐标系中,弧长会因为曲率发生变化,这是需要注意的。

极坐标系也具有周期性。

由于极角θ 只有在 360 度之后才会开始重复,因此在极坐标系中,一个点 P 的位置(r,θ) 可以和(r,θ+2πk) 相等,其中 k 是任意整数。

根据这个特征,我们可以把极坐标系中的点想象成在一个环上运动的点,每一个完整的圈都对应着2π 的角度。

四、曲线方程在极坐标系中,我们可以用方程来描述各种曲线。

极坐标系的概念与应用

极坐标系的概念与应用

极坐标系的概念与应用极坐标系是一种坐标系统,它与我们通常使用的直角坐标系不同。

它以极径和极角来描述平面上的点的位置。

极径表示点到原点的距离,极角表示点与参考线之间的角度。

一、极坐标系的定义和转换公式极坐标系可以用于描述平面上的点的位置,其中原点为极点,极径和极角分别确定了点的位置。

极坐标系的转换公式如下:1. 直角坐标转换为极坐标:极径r = √(x² + y²)极角θ = arctan(y/x)2. 极坐标转换为直角坐标:x = r * cos(θ)y = r * sin(θ)二、极坐标系的特点和优势极坐标系具有以下特点和优势:1. 简洁直观:以极径和极角两个数值来描述点的位置,具有图形直观和空间形式简洁的特点。

2. 方便计算:在某些情况下,极坐标系的计算更加方便,特别是当图形具有对称性或具有某种规律时,使用极坐标系可以简化计算过程。

3. 描述曲线方程:对于一些特定的曲线方程,使用极坐标系可以更加简单和直观地描述其形状和特征,例如圆、椭圆、螺旋线等。

三、极坐标系的应用领域1. 物理学中的力学问题:在力学中,我们经常遇到圆周运动、轨道运动等问题,这些问题可以利用极坐标系来进行描述和计算。

2. 工程与建筑设计:在工程和建筑设计中,一些具有旋转或对称性的结构,如桥梁、塔吊等,利用极坐标系可以更直观地描述其形状和特征,方便设计和计算。

3. 天文学中的星体运动:天文学中常常涉及到行星、卫星等星体的运动问题,利用极坐标系可以更加方便地描述和计算其轨道和运动轨迹。

4. 机器人运动路径规划:在机器人运动路径规划中,需要考虑到机器人的位置和朝向,利用极坐标系可以更方便地描述机器人的位置和运动方向,从而进行路径规划和控制。

总结:极坐标系是一种与直角坐标系不同的坐标系统,通过极径和极角来描述平面上的点的位置。

它具有简洁直观、方便计算以及描述特定曲线方程的优势,被广泛应用于物理学、工程与建筑设计、天文学以及机器人运动路径规划等领域。

极坐标系的概念教案 (1)

极坐标系的概念教案 (1)

执教人:高朝孟执教班级:高二年级(18,26,27)班执教时间:2016年06月18日一、教学目标:1、知识与技能:(1)理解极坐标的概念,弄清极坐标系的结构(?建立极坐标系的四要素);(2)理解广义极坐标系下点的极坐标(ρ,θ)与点之间的多对一的对应关系;(3)已知一点的极坐标会在极坐标系中描点,以及已知点能写出它的极坐标。

2、过程与方法:能在极坐标系中用极坐标刻画点的位置,体会在极坐标系中刻画点的位置.3、情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、学情分析学生在学习了数轴、平面直角坐标系、空间直角坐标系的初步知识的基础上,积累了一定类比、归纳推理等数学思维方法,对极坐标思想有一定的了解。

三、教学重点难点:教学重点:理解极坐标的意义。

教学难点:能够在极坐标系中用极坐标确定点位置。

三、教学过程:一、问题情境,导入新课:情境1:钓鱼岛问题:中国海警如何确定日本渔船?3:利用数学建模,从问题情境中发现数学问题:分析利用方向、距离确定位置,引出另一种更简单的坐标思想—极坐标的思想。

二、讲解新课:1、合作探究,概念形成。

(1)学生阅读教材P8-P10页;(2)学生表述极坐标的建立,教师结合学生表述,展示PPT对极坐标的概念作深入分析。

极坐标系的建立:在平面上取一个定点O,自点O引一条射线OX,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。

(其中O称为极点,射线OX称为极轴。

)强调:极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。

极坐标系就是用长度和角度来确定平面内点的位置。

2、极坐标系内一点的极坐标的表示对于平面上任意一点M,用ρ表示线段OM的长度,用θ表示从OX到OM的角度,ρ叫做点M的,θ叫做点M的,有序数对(,)ρθ就叫做M的 . 强调:一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数.特别地,当点M在极点时,它的极坐标为(0,θ),θ可以取任意实数.3、典型例题例1 写出下图中各点的一个极坐标A()B()C()D()E()F()G()【反思感悟】 (1)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能把顺序搞错了.变式训练.在极坐标系里描出下列各点4、思考:通过例子,对比平面直角坐标系,平面上的点与极坐标有何关系?(1).平面上一点的极坐标是否惟一?若不惟一,那有多少种表示方法?(2).坐标不惟一是由谁引起的?不同的极坐标是否可以写出统一表达式? 强调:点与极坐标的关系:一般地,极坐标(ρ,θ)与____________________表示同一个点.特别地,极点O 的坐标为(0,θ)(θ∈R).和点的直角坐标的唯一性不同,平面内一个点的极坐标有无数种表示.(3)想一想:我们是否能限制一些条件使得平面上的点与极坐标一一对应呢?一对应了!)面内的点就和极坐标一,那么除了极点外,平<>(如果限定:πθρ20,0≤(1)探究: 极坐标是否对应惟一的一点答:规律总结:建立极坐标系后,给定(ρ,θ),就可以在平面内唯一确定一点M ; 巩固练习1、已知极坐标),(345πM ,下列所给出的不能表示点M 的极坐标的是( )四、课堂小结,反思感悟。

高中数学人教A版选修4-4课件:1.2极坐标系

高中数学人教A版选修4-4课件:1.2极坐标系

-10-
二 极坐标系
探究一
探究二
探究三
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
-11-
二 极坐标系
探究一
探究二
探究三
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
-4-
二 极坐标系
12
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
-5-
二 极坐标系
12
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
-12-
二 极坐标系
探究一
探究二
探究三
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
-13-
二 极坐标系
探究一
探究二
探究三
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
D 当堂检测 ANGTANG JIANCE
12345
-19-
二 极坐标系
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU

人教版选修——极坐标系的概念-PPT

人教版选修——极坐标系的概念-PPT

问题情境
情境1:军舰巡逻在海面上,发现前方有一群水雷, 如何确定它们的位置以便将它们引爆? 情境2:请问到江山怎么走?
问题1:为了简便地表示上述问题中点的位置, 应创建怎样的坐标系呢? 问题2:如何刻画这些点的位置?
精品文档
情境2:请问到江山怎么走? 请分析这句话,他告诉了问路人什么?
从这向西走1000米!
那么除极点外,平面内的点和极坐标就可以一一对应了.
精品文档
数学运用
例2、在极坐标系中,
(1)已知两点P(5、),Q(1,),求线段PQ的长度。
4
4
(2)已知两点P(5、5),Q(1,),求线段PQ的长度。
4
,4
(3)说明满足条件 ,0的点M(,)所组成的图形
3
若( 3)中的R,则 M表示什么样的图形
极坐标系的概念精品文档与角α终边相同的角:β=α+2kπ,k∈Z
平面直角坐标系中的点P与坐标(a ,b)是 _一__一__对应的.
平面直角坐标系是最简单最常
y
b
P(.a,b)
用的一种坐标系,但不是唯一 的一种坐标系. 有时用别的坐标
O
a x
系比较方便.
还有什么坐标系呢?
我们先看下面的问 题.
精品文档
思考:这些极角有何关系?
这些极角的始边相同,终边也相同。也就是说它们 是终边相同的角。
精品文档
4、极坐标系下点与它的极坐标的对应情况
P
M
[1]给定( , ),就可以在极坐标平
(ρ,θ)
面内确定唯一的一点M
O
X
[2]给定平面上一点M,但却有无数个极坐标与之对应。
原因在于:极角有无数个。

极坐标系的概念 课件

极坐标系的概念 课件
极坐标系的概念
1.极坐标系的概念
图 1-2-1 如图 1-2-1 所示,在平面内取一个定点 O,叫作极点, 从 O 点引一条射线 Ox,叫作极轴,选定一个单位长度和角 的正方向(通常取逆时针方向).这样就确定了一个平面极坐 标系 ,简称 极坐标系 .
2.极坐标的概念 对于平面内任意一点 M,用 ρ 表示 线段OM的长 ,θ 表 示以Ox为始边、OM为终边的角度 ,ρ 叫作点 M 的极径,θ 叫作点 M 的 极角,有序实数对 (ρ,θ) 叫作点 M 的极坐标, 记作 M(ρ,θ) . 特别地:当点 M 在极点时,它的极径 ρ= 0 ,极角 θ 可以取 任意值 .
在极坐标系中,由点的位置求极坐标时,随着极角的范 围的不同,点的极坐标的表示也会不同,只有在 ρ>0,θ∈ [0,2π)的限定条件下,点的极坐标才是唯一的.
【思路探究】 欲写出点的极坐标,首先应确定 ρ 和 θ 的值.
【自主解答】 如图所示,关于极轴的对称点为 B(2, 53π). 关于直线 l 的对称点为 C(2,23π). 关于极点 O 的对称点为 D(2,43π). 四个点 A,B,C,D 都在以极点为圆心,2 为半径的圆 上.
1.点的极坐标不是唯一的,但若限制 ρ>0,0≤θ<2π,则 除极点外,点的极坐标是唯一确定的.
【自主解答】 以点 O 为极点,OA 所在的射线为极轴 Ox(单位长度为 1 m),建立极坐标系,如图所示.
由|OB|=600 m,∠AOB=30°,∠OAB=90°,得 |AB|=300 m,|OA|=300 3 m, 同样求得|OD|=2|OF|=300 2m, 所以各点的极坐标分别为 O(0,0),A(300 3,0),B(600,6π),C(300,π2), D(300 2,34π),E(300,π),F(150 2,34π).

(完整版)三维直角坐标系知识点总结

(完整版)三维直角坐标系知识点总结

完整版)三维直角坐标系知识点总结三维直角坐标系知识点总结
三维直角坐标系是空间中常用的坐标系统,用于描述物体或点在三维空间中的位置。

以下是三维直角坐标系的一些关键知识点总结:
坐标系表示方法
三维直角坐标系使用三个坐标轴来表示空间中的位置。

通常使用X、Y、Z三个轴,分别表示横向、纵向和垂直方向。

坐标点表示方法
在三维直角坐标系中,每个点都可以用一个有序的三个数字来表示。

这三个数字分别代表该点在X、Y、Z轴上的投影。

坐标轴方向
在三维直角坐标系中,通常规定X轴正方向为向右,Y轴正方
向为向上,Z轴正方向为向外垂直于XY平面。

坐标轴的负方向与
正方向相反。

坐标系中的平面
在三维直角坐标系中,平面可以由轴表示。

XY平面是指Z轴
为零的平面,XZ平面是指Y轴为零的平面,YZ平面是指X轴为
零的平面。

坐标系中的直线
在三维直角坐标系中,直线可以由轴表示。

X轴是与YZ平面
垂直且通过原点的直线,Y轴是与XZ平面垂直且通过原点的直线,Z轴是与XY平面垂直且通过原点的直线。

距离和斜率计算
在三维直角坐标系中,可以使用勾股定理计算点之间的距离。

斜率可以在XY平面或XZ平面中计算。

坐标系转换
可以通过旋转和平移操作将一个三维直角坐标系转换为另一个坐标系。

这在实际应用中常常用到。

这些是三维直角坐标系的一些基本知识点,理解和掌握这些知识可以帮助你更好地在空间中描述和定位物体或点的位置。

人教版八年级下册数学平面极坐标系

人教版八年级下册数学平面极坐标系

人教版八年级下册数学平面极坐标系1. 极坐标系的定义极坐标系用于描述平面上的点,它基于两个参数:极径和极角。

- 极径(r)是点到原点的距离,可以是正数或零。

- 极角(θ)是点到正半轴的角度,可以是0到360度之间的任意角度。

2. 极坐标系与直角坐标系的转换极坐标系和直角坐标系是可以相互转换的。

- 直角坐标系转换为极坐标系:- 极径(r)可以通过点到原点的欧几里德距离(√(x^2+y^2))计算得出。

- 极角(θ)可以通过点到正半轴的角度(tan^(-1)(y/x))计算得出。

- 极坐标系转换为直角坐标系:- x坐标可以通过极径(r)和极角(θ)的关系计算得出:x = r * cos(θ)。

- y坐标可以通过极径(r)和极角(θ)的关系计算得出:y = r * sin(θ)。

3. 极坐标系的特点与应用极坐标系具有以下特点和应用:- 特点:- 极坐标系能够简洁地描述以原点为中心的环形区域。

- 极坐标系可以更方便地描述出现对称性的图形。

- 极坐标系的方程可以表达一些特殊的曲线,如圆、椭圆、双曲线等。

- 应用:- 极坐标系常用于物理学、天文学等领域中描述环形运动、天体运动等问题。

- 极坐标系在工程中也常用于描述圆形构件、旋转机械等。

4. 总结人教版八年级下册数学平面极坐标系是一种常用于描述平面上点的坐标系统。

它由极径和极角两个参数组成。

极坐标系和直角坐标系可以相互转换,且具有各自的特点和应用。

掌握极坐标系的概念和转换方法,可以帮助我们更好地理解和应用数学知识。

以上就是关于人教版八年级下册数学平面极坐标系的简要介绍。

参考文献:- 张俊峰. (2016). 数学(九年级上册). 人民教育出版社.。

极坐标系的概念课件

极坐标系的概念课件
极坐 标系
点的表示方法 点与对应坐标
(x,y),其中x 表示点的水平 位置,y表示点 的垂直高度
点与有序实数对, 即(x,y)是一一对 应的
(ρ,θ),其中ρ 表示该点到原 点的距离,θ表 示从x轴正半轴 开始逆时针旋 转的角度
一个有序实数对 (ρ,θ)对应着一个 点,而一个点却可 与无数多个(ρ,θ) 对应
(2)对称的点: (ρ,θ)关于极轴的对称点为(ρ,2π-θ),关于极点的对称点为(ρ,π+θ),关于过极点且垂直于极轴
的直线的对称点为(ρ,π-θ). (3)共线的点: 如果极坐标为(ρ,θ),其中θ为常数,ρ>0,则表示与极轴成θ角的射线.
6.极坐标系与平面直角坐标系有什么区别和联系?
直角 坐标 系
作 OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为 D、E、F. 则 D、E、F 分别是△ABC 的各边的中点,依题意,得 D1,23π,E1,43π,F(1,0). (2)△ABC 绕中心 O(0,0)逆时针旋转π6后所得对应三角形为 △A′B′C′,依题意,得 A′2,π2,B′2,76π,C′2,116π.
对舰 B 而言,A、C 两舰位置如图所 示.为方便起见,取 A、B 所在直线为 x 轴,AB 的中点 O 为原点建立直角坐标系, 则 A、B、C 三舰的坐标分别为(3,0)、(-3,0)、 (-5,2 3).
由于 B、C 同时发现动物信号,记动物所处位置为 P,则|PB| =|PC|.
于是 P 在 BC 的中垂线 l 上,易求得其方程为 3x-3y+7 3 =0.
设点 B3,π4,D3,74π关于极点的对称点分别为 E(ρ1,θ1), F(ρ2,θ2),
且 ρ1=ρ2=3. 当 θ∈[0,2π)时,θ1=54π,θ2=34π, ∴E3,54π,F3,34π为所求.

极坐标与参数方程带答案(教师版)

极坐标与参数方程带答案(教师版)

选修4-4 坐标系与参数方程第一节 坐 标 系1.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标的概念 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,从O 点引一条射线Ox ,叫做极轴,选定一个单位长度和角及其正方向(通常取逆时针方向),这样就确定了一个平面极坐标系,简称为极坐标系。

(2)极坐标:对于平面内任意一点M ,用ρ表示线段OM 的长,θ表示以Ox 为始边、OM 为终边的角度,ρ叫做点M 的极径,θ叫做点M 的极角,有序实数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ)。

当点M 在极点时,它的极径ρ=0,极角θ可以取任意值。

(3)点与极坐标的关系:平面内一点的极坐标可以有无数对,当k ∈Z 时,(ρ,θ),(ρ,θ+2k π),(-ρ,θ+(2k +1)π)表示同一个点,而用平面直角坐标表示点时,每一个点的坐标是唯一的。

如果规定ρ>0,0≤θ<2π,或者-π<θ≤π,那么,除极点外,平面内的点和极坐标就一一对应了。

3.极坐标和直角坐标的互化(1)互化背景:把平面直角坐标系的原点作为极点,x 轴的正半轴作为极轴,建立极坐标系,并在两种坐标系中取相同的单位长度,如图所示。

(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ>0,θ∈[0,2π)),于是极坐标与直角坐标的互化公式如表:⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ4.常见曲线的极坐标方程1.明辨两个坐标伸缩变换关系式⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),点(x ,y )在原曲线上,点(x ′,y ′)在变换后的曲线上,因此点(x ,y )的坐标满足原来的曲线方程,点(x ′,y ′)的坐标满足变换后的曲线方程。

高二数学必修三极坐标系知识点

高二数学必修三极坐标系知识点

⾼⼆数学必修三极坐标系知识点 极坐标系是⾼⼆数学必修三中的⼀⼤教学难点,有哪些知识点需要我们学习的呢?下⾯是店铺给⼤家带来的⾼⼆数学必修三极坐标系知识点,希望对你有帮助。

⾼⼆数学必修三极坐标系知识点 极坐标系的定义: 在平⾯上取定⼀点O,称为极点。

从O出发引⼀条射线Ox,称为极轴。

再取定⼀个长度单位,通常规定⾓度取逆时针⽅向为正。

这样就建⽴了⼀个极坐标系。

这样,平⾯上任⼀点P的位置就可以⽤线段OP的长度ρ以及从Ox到OP的⾓度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极⾓。

点的极坐标: 设M点是平⾯内任意⼀点,⽤ρ表⽰线段OM的长度,θ表⽰射线Ox到OM的⾓度,那么ρ叫做M点的极径,θ叫做M点的极⾓,有序数对(ρ,θ)叫做M点的极坐标,如图, 极坐标系的四要素: 极点,极轴,长度单位,⾓度单位和它的正⽅向.极坐标系的四要素,缺⼀不可. 极坐标系的特别注意: ①关于θ和ρ的正负:极⾓θ的始边是极轴,取逆时针⽅向为正,顺时针⽅向为负,θ的值⼀般以弧度为单位。

极坐标和直⾓坐标的互化: (1)互化的前提条件 ①极坐标系中的极点与直⾓坐标系中的原点重合; ②极轴与x轴的正半轴重合; ③两种坐标系中取相同的长度单位. (2)互化公式 特别提醒:①直⾓坐标化为极坐标⽤第⼆组公式.通常取 所在的象限取最⼩正⾓; ②当 ③直⾓坐标⽅程及极坐标⽅程互化时,要切实注意互化前后⽅程的等价性. ④若极点与坐标原点不是同⼀个点.如图,设M点在以O为原点的直⾓坐标系中的坐标为(x,y),在以 为原点也是极点的时候的直⾓坐标为(x′,y′),极坐标为(ρ,θ),则有 第⼀组公式⽤于极坐标化直⾓坐标;第⼆组公式⽤于直⾓坐标化极坐标. ⾼⼆数学必修三平⾯直⾓坐标系知识点 数轴(直线坐标系): 在直线上取定⼀点O,取定⼀个⽅向,再取⼀个长度单位,点O,长度单位和选定的⽅向三者就构成了直线上的坐标系,简称数轴.如图, 平⾯直⾓坐标系: 在平⾯上取两条互相垂直并选定了⽅向的直线,⼀条称为x轴,⼀条称为y轴,交点O为原点。

极坐标系的概念和应用

极坐标系的概念和应用

极坐标系的概念和应用极坐标系是一种描述平面上点位置的坐标系,它由极径和极角两个参数组成。

在极坐标系中,每一个点都可以表示为(r,θ)的形式,其中r 代表该点到原点的距离,θ代表该点与参考线的夹角。

极坐标系能够简洁地描述圆形、对称图形以及其他一些具有旋转特性的图形,因此在数学、物理、工程等领域都有广泛的应用。

一、极坐标系的定义极坐标系是一种二维坐标系统,它与直角坐标系密切相关。

在直角坐标系中,每一个点都可以表示为(x,y)的形式,其中x为该点与x轴的水平距离,y为该点与y轴的垂直距离。

而在极坐标系中,每一个点都可以表示为(r,θ)的形式,其中r为该点到原点的距离,θ为该点与参考线的夹角。

二、极坐标系与直角坐标系的转换极坐标系与直角坐标系之间存在着一种转换关系,通过这种关系可以实现坐标系的相互转换。

具体而言,对于给定的极坐标(r,θ),可以通过以下公式将其转换为直角坐标(x,y):x = r * cos(θ)y = r * sin(θ)同样地,对于给定的直角坐标(x,y),可以通过以下公式将其转换为极坐标(r,θ):r = sqrt(x^2 + y^2)θ = arctan(y/x)这种转换关系使得在不同的应用场景中能够灵活地使用极坐标系和直角坐标系。

三、极坐标系的应用1. 圆的极坐标方程在极坐标系中,圆可以用简洁的形式进行表示。

对于圆心在原点,半径为a的圆,其极坐标方程为:r = a通过这个方程,我们可以方便地描述和计算圆的性质。

2. 极坐标下的曲线方程在极坐标系中,某些曲线的方程可以用极坐标表示。

例如,对于给定的极坐标方程r = f(θ),其中f(θ)是一个与θ有关的函数,我们可以通过描绘不同θ值对应的r值来绘制出相应的曲线。

3. 极坐标系在物理学中的应用极坐标系在物理学中有着重要的应用。

例如,极坐标系可以用来描述某些旋转对称的物理问题,比如自转的刚体、天体运动等。

通过使用极坐标系,可以更加简洁地描述物体在旋转过程中的运动规律。

极坐标系的基本概念和定义

极坐标系的基本概念和定义

极坐标系的基本概念和定义在我们日常的生活中,有很多时候我们需要描述一个物体在平面上的位置和方向,通常我们使用直角坐标系来实现这个目的。

直角坐标系是笛卡尔坐标系的一种形式,它可以描述平面内的所有点。

但有时候使用直角坐标系有一些不方便之处,比如在描述圆形、螺旋线等等曲线的时候显得比较困难。

这个时候,极坐标系就能够发挥其作用了。

极坐标系是一种用极径和极角来描述一个点在平面上位置的方式。

在极坐标系中,每个点可以由两个坐标表示,一个是极径,另一个则是极角。

极径指的是从原点到该点的距离,也就是极坐标的长度,而极角则定义了极坐标的方向。

在极坐标系中,原点可以被视为一个引导点,所有的点都可以被描述为相对于该点在一个特定距离和角度处。

因此,极坐标系更适合于处理那些基于极向径的旋转问题。

可以说,极坐标系是初等变换和几何问题的一个非常有用的补充。

极坐标系的定义和符号极坐标系定义了一组状态,它们是极径r和极角θ。

极径r代表从原点到点(x, y)的距离,而极角θ则代表从极向右的角度。

在极坐标系中,θ的单位通常是以“弧度”表示。

1个弧度定义为受到圆心的一条弧所围的角度对应于圆的半径。

因此,当θ为2π时,它与0的极角相等。

极径r的单位通常是长度单位,如厘米、英尺或米。

在极坐标系中,极径通常总是是非负数。

当极坐标表示负坐标时,极角会被视为方向的相反。

比如如果一个点的r为-4,那么它在直线上与该点相距4个单位,从该点的方向为相反方向。

在极坐标系中,通常有两种描述一个点的方式:直角坐标系和极坐标系。

直角坐标系描述的是一个点在二维直角坐标系中的位置;而极坐标系描述的是一个点到原点的距离和其与极轴的夹角。

极坐标系的转换即便极坐标系能够简化某些问题的处理,但在某些问题中,我们需要将极坐标系和直角坐标系相互转换。

这时,我们就需要用到以下公式:x = r*cos(θ)y = r*sin(θ)r = √(x^2+y^2)θ= atan(y/x)这些公式非常重要,因为它们能够让我们在不同的坐标系之间互相转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 极坐标系的概念
主备: 审核:
学习目标:
1.理解极坐标的概念,弄清极坐标系的结构;
2.理解广义极坐标系下点的极坐标(,)ρθ与点之间的多对一的对应关系;
3.已知一点的极坐标会在极坐标系中描点,以及已知点能写出它的极坐标. 学习重点:极坐标系的理解与应用
学习难点:极坐标系的概念;加强与直角坐标系的联系理解极坐标系的概念,通过实例的应用与分析突破难点. 学习过程: 一、课前准备
阅读教材57P P -的内容,体会极坐标系的建立过程.并回顾以下问题: 1. 在直角坐标系中,要确定一个点的位置,只需要确定这个点的横坐标和纵坐标就可以了;反过来,知道了一个点的坐标,就可以在直角坐标系中找到这个点,并且这个点是唯一的.就是说直角坐标系中,点与坐标之间是一一对应的关系. 2.除了直角坐标系能够确定点的位置,还有其他方法吗?比如说,禅城相对于荷城来说,在什么位置?某同学说:禅城在荷城的东偏北40
,距离荷城41公里的地方,这种方法是不是直角坐标系的表示方法?
3.在《解三角形》中,我们经常遇到这样的问题:某船在海岛西偏南30
方向,距离海岛60海里处,或两船在灯塔东南方向10海里处相遇.这样的定位方法使用了两个什么量? 二、新课导学: (一)新知:
(1)思考:右图是某校园的平面示意图, 假设某同学在教学楼处,请回答下列问题:
①你会怎样描述图书馆、体育馆、 办公楼、实验楼的相对位置?这些描述的对 应位置是否惟一确定? ②他向东偏北60°方向走120m 后到 达什么位置?该位置惟一确定吗? ③如果有人打听体育馆和办公楼的位
置,他应如何描述? 探究结果: ①方位描述与直角坐标描述,位置都是惟一确定的. ②到达图书馆,该位置惟一确定.
③正东方向60m 处与西北方向50m 处. (2)极坐标系的概念
①极坐标系的建立: 在平面上取一个定点O ,自点O 引一条射线Ox ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系. (其中O 称为极点,射线Ox 称为极轴.)
②极坐标系内一点的极坐标的规定:
对于平面上任意一点M ,用ρ表示线段OM 的长度,用
办公楼
E
实验楼D C 图书馆
B 体育馆
A 教学楼
60m 50m 120m 60°
45°
θ表示从Ox 到OM 的角度,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(,)ρθ就
叫做M 的极坐标.
特别强调:由极径的意义可知0ρ≥;当极角θ的取值范围是[0,2)π时,平面上的点(除去极点)就与极坐标(,)ρθ建立一一对应的关系.我们约定,极点的极坐标是极径0ρ=,极角为任意角.
③负极径的规定:
在极坐标系中,极径ρ允许取负值,极角θ也可以取任意的正角或负角,当0ρ<时,点
(,)M ρθ位于极角终边的反向延长线上,且||||OM ρ=.(,)M ρθ也可以表示为
))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈.
(二)典型例题:
【例1】 写出下图中各点的极坐标: A ( 4,0 ) B (2 ,
4
π)
C ( 3 ,2
π ) D ( 1 ,
56π )
E ( 3.5,π)
F ( 6 ,
43
π )
G ( 5 ,
53
π )
并回答下面的问题:
① 平面上一点的极坐标是否唯一? 答:不是.
② 若不唯一,那有多少种表示方法? 答:有无数种表示方法.
③ 坐标不唯一是由谁引起的? 答:角的多值性引起的.
④不同的极坐标是否可以写出统一表达式?
答:可以;(,2)k ρθπ+与(,)ρθ表示同一个点(k Z ∈). 动动手:在极坐标系里描出下列各点:
(3,0)A ,(6,2)B π,(3,)2C π,4(5,)3
D π,
5(3,)6E π,(4,)F π,5(6,)3
G π.
【例2】 在极坐标系中,
(1)已知两点5(5,)4P π,(1,)4
Q π,求线段PQ 的长度; (2)已知M 的极坐标为(,)ρθ且3
πθ=,R ρ∈,说明满足上述条件的点M 的位置. 【解析】(1)作出图形,知,P 、Q 与极点O 三点共线,且P 、Q 在点O 两侧,所以线段PQ 的长度为||516PQ =+=.
(2)点M 在一条直线上.
动动手:若ABC ∆的的三个顶点为5(5,)2
A π,
5(8,)6B π,7(3,)6
C π,判断三角形的形状.
【解析】如图,120AOC ∠=
,||5AO =, ||3CO =,在AOC ∆中,由余弦定理得:
2||259253cos12049AC =+-⨯⨯⋅= ,
所以||7AC =,同理在BOC ∆和AOB ∆中,分别求出||||7AB BC ==, 所以ABC ∆是正三角形.
三、总结提升:
1.极坐标系中,点与坐标之间不是一一对应的关系,只有在0ρ>,02θπ≤<的条件
下,点(极点除外)和坐标之间才能建立一一对应关系.
2.一般地,极坐标(,)ρθ与(,2)()k k Z ρθπ+∈表示同一个点;极坐标系中,一个点的坐标可以有无数种表示.
3.在学习极坐标的有关内容时,要结合图形,利用解三角形等知识解决问题. 四、反馈练习: 1.在极坐标系中,与点(8,
)6π关于极点对称的点的一个坐标是 ( B )
A.(8,)6
π- B.5(8,)6
π- C.5(8,)6
π D.2(8,)3
π
2.两点(2,
)3
M π,4(5,)3
N π之间的距离是 ( C )
A.3
B.4
C.7
D.8
3.P 与(,)Q ρθ关于极轴对称,则P 的坐标是 ( A )
A.(,)ρθ-
B.(,)ρπθ-
C.(,)ρπθ+
D. (,2)ρπθ+ 4.如图,写出极坐标系中的边长为a 正方形OABC 的三个顶点的坐标. A :(,0)a ;B
:,)4π;C :(,)2
a π
.
Q
θ
M
x
O
O C
B A
x
5.在极坐标系中,如果等边ABC ∆的两个顶点是(2,)4
A π,5(2,
)4
B π,求第三个顶点
C 的
坐标.
【解析】如图,||4AB =,60ABC ∠=

连CO ,则||23CO =34
xOC π∠=.
所以点C 的坐标为3(2,
)4π,或7(2,)4
π.
五、学后反思:
C。

相关文档
最新文档