电磁感应课件.ppt
合集下载
大学物理电磁感应-PPT课件精选全文完整版
的磁场在其周围空间激发一种电场提供的。这
种电场叫感生电场(涡旋电场)
感生电场 E i
感生电场力 qEi
感生电场为非静 电性场强,故:
e E i dld dm t
Maxwell:磁场变化时,不仅在导体回路中 ,而且在其周围空间任一点激发电场,感生 电场沿任何闭合回路的线积分都满足下述关 系:
E id l d d m t d ds B td S d B t d S
线
形
状
电力线为闭合曲线
E感
dB 0 dt
电 场 的
为保守场作功与路径无关
Edl 0
为e非i 保守E 场感作d功l与路径dd有mt关
性
静电场为有源场
质
EdS
e0
q
感生电场为无源场
E感dS0
➢感生电动势的计算
方法一,由 eLE感dl
需先算E感
方法二, 由 e d
di
(有时需设计一个闭合回路)
2.感生电场的计算
Ei
dl
dm dt
L
当 E具i 有某种对称
性才有可能计算出来
例:空间均匀的磁场被限制在圆柱体内,磁感
强度方向平行柱轴,如长直螺线管内部的场。
磁场随时间变化,且设dB/dt=C >0,求圆柱
内外的感生电场。
则感生电场具有柱对称分布
Bt
此 E i 特点:同心圆环上各点大小相同,方向
磁通量 的变化
感应电流的 磁场方向
感应电流 的方向
电动势 的方向
➢ 楞次定律的另一种表述:
“感应电流的效果总是反抗引起感应电流的原因”
“原因”即磁通变化的原因,“效果”即感应电流的 场
电磁感应定律PPT课件
21 B1 I1
12
互感电动势
N 221 M21I1
N112 M12 I2
21
M 21
dI1 dt
12
M 12
dI 2 dt
N1 N2
互感系数 M12 M 21 M
21 M
dI1 dt
12
M
dI 2 dt
.
21
例 11-11 在磁导率为 的均匀无限大的磁介质中,一
无限长直导线与一宽、长分别为b 和 l 的矩形线圈共
.
26
3 麦克斯韦方程组的积分形式
(Maxwell equations)
麦
电场
LE
dl
S
B t
dS
变化磁场可以 激发涡旋电场
克 斯
S D dS qi i
电场是有源场
韦 方 程
H dl
L
(
s
jc
D ) t
ds
传导电流和 变化电场可 以激发磁场
组 磁场
B dS 0 S
I2
互感线圈周围没有铁磁质时其互感系数是常数,仅
取决于线圈的结构、相对位置和磁介质。
2
M
dI1 dt
1
M
dI2 dt
M、L的单位:H
.
30
五、磁场的能量
自感磁能:
Wm
1 LI 2
2
磁场能量密度:
wm
B2
2
1 H 2
2
1 BH 2
磁场的能量:
Wm V wmdV
.
31
六、麦克斯韦的电磁场理论
(D)电子受到洛伦兹力而减速。
a
[A ]
F洛
a
12
互感电动势
N 221 M21I1
N112 M12 I2
21
M 21
dI1 dt
12
M 12
dI 2 dt
N1 N2
互感系数 M12 M 21 M
21 M
dI1 dt
12
M
dI 2 dt
.
21
例 11-11 在磁导率为 的均匀无限大的磁介质中,一
无限长直导线与一宽、长分别为b 和 l 的矩形线圈共
.
26
3 麦克斯韦方程组的积分形式
(Maxwell equations)
麦
电场
LE
dl
S
B t
dS
变化磁场可以 激发涡旋电场
克 斯
S D dS qi i
电场是有源场
韦 方 程
H dl
L
(
s
jc
D ) t
ds
传导电流和 变化电场可 以激发磁场
组 磁场
B dS 0 S
I2
互感线圈周围没有铁磁质时其互感系数是常数,仅
取决于线圈的结构、相对位置和磁介质。
2
M
dI1 dt
1
M
dI2 dt
M、L的单位:H
.
30
五、磁场的能量
自感磁能:
Wm
1 LI 2
2
磁场能量密度:
wm
B2
2
1 H 2
2
1 BH 2
磁场的能量:
Wm V wmdV
.
31
六、麦克斯韦的电磁场理论
(D)电子受到洛伦兹力而减速。
a
[A ]
F洛
a
电磁感应现象及应用ppt课件
线圈远离时,穿过线圈的磁场变弱,磁通量减少,故有 感应电流。
当二者均不动,而导线中电流I逐渐增大或减少时,穿 过线圈平面的磁场增大或减小,磁通量增大或减小, 故有感应电流。
牛刀小试
5、把一个铜环放在匀强磁场中,使环的平面跟磁场方向垂直, 如图所示。如果使环沿着磁场的方向移动,则铜环中是否有感应 电流?为什么?如果磁场是不均匀的,如图所示,则铜环中是否 产生感应电流?为什么?
无
无
有
牛刀小试
2、如图,磁场中有一个闭合的弹簧线圈。先把线圈撑开(图甲), 然后放手,让线圈收缩(图乙)。线圈收缩时,其中是否有感应电流? 为什么?
有。收缩时,面积减小,磁通量减小,所以产生感应 电流
牛刀小试
3、如图所示,垂直于纸面的匀强磁场局限在虚线框内,闭合线 圈由位置1穿过虚线框运动到位置2,线圈在运动过程中什么时 候有感应电流,什么时候没有感应电流?为什么?
实验三:模拟法拉第实验
开关和变阻器状态
线圈B中是否有电流
开关闭合瞬间
有
开关断开瞬间
有
开关闭合,滑动变阻器不动
无
开关闭合,迅速移动划片
有
感应电流的产生与哪个量有关? 变化的电流
探究感应电流产生的条件
切割磁感线
面积S变化
变化的磁场B
磁通量
变化的电流I
变化的磁场B
探究感应电流产生的条件
当穿过闭合导体回路的磁通量发 生变化时,闭合导体回路中就产 生感应电流。
不能;穿过铜环的磁通量不变
能;穿过铜环的磁通量发生变化
牛刀小试
6、某实验装置如图所示,在铁芯P上绕有两个线圈A和B,如果线圈 A中电流i与时间t的关系有甲、乙、丙、丁四种情况,则在这段时 间内,能在线圈B中产生感应电流的是( BCD )
当二者均不动,而导线中电流I逐渐增大或减少时,穿 过线圈平面的磁场增大或减小,磁通量增大或减小, 故有感应电流。
牛刀小试
5、把一个铜环放在匀强磁场中,使环的平面跟磁场方向垂直, 如图所示。如果使环沿着磁场的方向移动,则铜环中是否有感应 电流?为什么?如果磁场是不均匀的,如图所示,则铜环中是否 产生感应电流?为什么?
无
无
有
牛刀小试
2、如图,磁场中有一个闭合的弹簧线圈。先把线圈撑开(图甲), 然后放手,让线圈收缩(图乙)。线圈收缩时,其中是否有感应电流? 为什么?
有。收缩时,面积减小,磁通量减小,所以产生感应 电流
牛刀小试
3、如图所示,垂直于纸面的匀强磁场局限在虚线框内,闭合线 圈由位置1穿过虚线框运动到位置2,线圈在运动过程中什么时 候有感应电流,什么时候没有感应电流?为什么?
实验三:模拟法拉第实验
开关和变阻器状态
线圈B中是否有电流
开关闭合瞬间
有
开关断开瞬间
有
开关闭合,滑动变阻器不动
无
开关闭合,迅速移动划片
有
感应电流的产生与哪个量有关? 变化的电流
探究感应电流产生的条件
切割磁感线
面积S变化
变化的磁场B
磁通量
变化的电流I
变化的磁场B
探究感应电流产生的条件
当穿过闭合导体回路的磁通量发 生变化时,闭合导体回路中就产 生感应电流。
不能;穿过铜环的磁通量不变
能;穿过铜环的磁通量发生变化
牛刀小试
6、某实验装置如图所示,在铁芯P上绕有两个线圈A和B,如果线圈 A中电流i与时间t的关系有甲、乙、丙、丁四种情况,则在这段时 间内,能在线圈B中产生感应电流的是( BCD )
法拉第电磁感应定律ppt课件全
E n 算出的是平均感应电动势 t
当磁通量均匀变化时,某一时刻的瞬时感应电动 势等于全段时间内导体的平均感应电动势。
8
巩固练习:
1.穿过一个单匝线圈的磁通量始终为每 秒钟均匀地增加2 Wb,则:
A.线圈中的感应电动势每秒钟增加2 V
√B.线圈中的感应电动势每秒钟减少2 V
C.线圈中的感应电动势始终是2 V D.线圈中不产生感应电动势
由I
E R
r
知:大,总电指阻针一偏定转时角,越E大越。大,I越
问题3:该实验中,将条形磁铁从同一高度插入线圈
中,快插入和慢插入有什么相同和不同?
从条件上看 相同 Φ都发生了变化 不同 Φ变化的快慢不同
从结果上看 都产生了I 产生的I大小不等6
2.磁通量变化越快,感应电动势越大。
二、法拉第电磁感应定律
Φ
t3 t4
O
t1 t2
t
图1
图2
18
例2.如图 (a)图所示,一个500匝的线圈的两 端跟R=99 Ω的电阻相连接,置于竖直向下的 匀强磁场中,线圈的横截面积为20 cm2,电阻 为1 Ω,磁场的磁感应强度随时间变化的图象 如(b)图,求磁场变化过程中通过电阻R的电流 为多大?
19
【解析】 由题图(b)知:线圈中磁感应强度 B 均匀 增加,其变化率ΔΔBt =(504-1s0)T=10 T/s. 由法拉第电磁感应定律得线圈中产生的感应电动 势为 E=nΔΔΦt =nΔΔBt S=500×10×20×10-4 V=10 V. 由闭合电路欧姆定律得感应电流大小为 I=R+E r=991+0 1A=0.1 A.
巩固练习
2.一个矩形线圈,在匀强磁场中绕一个固定轴做匀 速转动,穿过某线路的磁通量Φ随时间t变化的关系 如图1,当线圈处于如图2所示位置时,它的:
电磁感应课件
由N 匝导线构成旳线圈时:
i
d dt
(1
2
N )
d dt
(
N i 1
i
)
d
dt
N
全磁通: i i 1
磁通链数: N
i
N
d
dt
伏特 1V 1Wb s1
设闭合线圈回路旳电阻为R
感应电流:
Ii
i
R
1 R
d
dt
感应电量: q
t2 t1
I i dt
1 R
2 d
1
1 R
(1
2 )
结论:在 t1 到 t2 时间内感应电量仅与线圈回路 中全磁通旳变化量成正比,而与全磁通变化旳快
dB dt
导体
电磁灶
电磁感应炉
§8.3 自感和互感
8-3-1 自感
当经过回路中电流 发生变化时,引起穿过 本身回路旳磁通量发生 变化,从而在回路本身 产生感生电动势旳现象 称为“自感现象”。所 产生旳电动势称为“自 感电动势” 。
B I ,又Ψ B
LI
L称为自感系数简称自感。 单位:“亨利”(H)
dV 2 rldr
Wm
V wmdV
R2 o I 2 2 lrdr R1 8 2r 2
o I 2l R2 dr o I 2l ln R2
4 r R1
4 R1
法二:
先计算自感系数
L ol ln R2 2 R1
Wm
1 2
LI 2
oI 2l 4
ln
R2 R1
§8.5 位移电流
8-5-1 位移电流
1H 1Wb A 1
1H 103 mH 106 μH
电磁感应现象及应用ppt课件
2.产生感应电流的条件
2.电磁感应现象产生的电流叫做 感应电流
二、探究感应电流的产生条件
1.实验观察 探究1:导体棒在磁场中运动是否产生电流
实验操作
导体棒静止 导体棒平行磁感
线运动 导体棒切割磁感
线运动
实验现象(有无电流 )
_无___ _无___
_有___
结论: 当闭合回路中部分导体切割磁感线时,电路中会产生感应电流。
产生感应电流的条件
• 分析下列各种情况,线圈有无感应电流产生? • 1 ) 向右平动(ad边还没有进入磁场)
有感应电流
• 2 ) 向上平动(ab边还没有离开磁场)
• 无3 感) 以应bc电边流为轴转动(ad边还没有转入磁场)
• 无4 感) 以应ab电边流为轴转动(转角不超过90°)
• 5 ) B=kt(k>0),且线框在图中位置不动
家用微波炉
家用微波炉把220V家用电,通过变压器增大电压,高压使 磁控管产生高频微波,高频微波再通过滤导管传送给搅拌器, 搅拌器使高频微波均匀分布在炉腔内。食物内的水分被高频微 波振动,产生热量,进而使食物加热。
日常变压器
变压器分为单相变 压器和三相变压器,右 图为单相变压器,主要 应用电磁感应原理,使 N1N2两线圈内的磁通量 发生改变,从而使线圈 内的电流发生改变。
安培未能足够重视这一转瞬即逝的实验现象,痛失 了一项重大的科学发现,原因何在?
这是因为他把分子电流假说看得极为重要,他完 全被自己的理论禁锢起来了。
解放思想,实事求是
法拉第发现的电磁感应使人们对电 和磁内在联系的认识更加完善,宣告 了电磁学作为一门统一学科的诞生, 为电磁学的发展作出了重大贡献。
1.利用磁场产生电流的现象叫电磁感 应现象
2.电磁感应现象产生的电流叫做 感应电流
二、探究感应电流的产生条件
1.实验观察 探究1:导体棒在磁场中运动是否产生电流
实验操作
导体棒静止 导体棒平行磁感
线运动 导体棒切割磁感
线运动
实验现象(有无电流 )
_无___ _无___
_有___
结论: 当闭合回路中部分导体切割磁感线时,电路中会产生感应电流。
产生感应电流的条件
• 分析下列各种情况,线圈有无感应电流产生? • 1 ) 向右平动(ad边还没有进入磁场)
有感应电流
• 2 ) 向上平动(ab边还没有离开磁场)
• 无3 感) 以应bc电边流为轴转动(ad边还没有转入磁场)
• 无4 感) 以应ab电边流为轴转动(转角不超过90°)
• 5 ) B=kt(k>0),且线框在图中位置不动
家用微波炉
家用微波炉把220V家用电,通过变压器增大电压,高压使 磁控管产生高频微波,高频微波再通过滤导管传送给搅拌器, 搅拌器使高频微波均匀分布在炉腔内。食物内的水分被高频微 波振动,产生热量,进而使食物加热。
日常变压器
变压器分为单相变 压器和三相变压器,右 图为单相变压器,主要 应用电磁感应原理,使 N1N2两线圈内的磁通量 发生改变,从而使线圈 内的电流发生改变。
安培未能足够重视这一转瞬即逝的实验现象,痛失 了一项重大的科学发现,原因何在?
这是因为他把分子电流假说看得极为重要,他完 全被自己的理论禁锢起来了。
解放思想,实事求是
法拉第发现的电磁感应使人们对电 和磁内在联系的认识更加完善,宣告 了电磁学作为一门统一学科的诞生, 为电磁学的发展作出了重大贡献。
1.利用磁场产生电流的现象叫电磁感 应现象
《电磁感应现象》课件
4. 分析结果
根据记录的数据,分析电磁感应 现象中产生的电动势大小和方向 与磁场变化的关系,验证法拉第 电磁感应定律。
5. 清理实验现场
实验结束后,关闭电源,拆解电 路,整理实验器材。
05
电磁感应现象的意义与影响
对现代电力工业的影响
发电
发电机利用电磁感应原理将机械 能转化为电能,为现代电力工业
提供源源不断的能源。
智能电网
智能电网的建设需要大量应用电磁感应技术,实 现高效、安全、可靠的电力传输和分配。
3
交通领域
未来交通工具如电动汽车、高速磁悬浮列车等将 大量应用电磁感应技术,提高运行效率和安全性 。
学生自我评估与反馈
学生应自我评估对本课程内容的掌握程度,是否理解了电磁感应现象的基本概念和法拉第电磁感应定律的原理 。
用于测量感应电流的大小 和方向。
导线
连接电源、线圈、电流计 和磁铁。
实验步骤与观察
2. 启动实验
打开电源,逐渐增加磁场强度或 改变磁场方向,观察灵敏电流计 的读数变化。
1. 连接电路
将电源、线圈、电流计和磁铁按 照电路图正确连接,确保线路接 触良好。
3. 记录数据
在实验过程中,记录不同磁场强 度和方向下,感应电流的大小和 方向变化。
输电
高压输电线路利用电磁感应原理 将电能高效地传输到各个角落,
满足人们的电力需求。
配电
配电系统利用电磁感应原理实现 电能的分配和管理,保障电力供
应的稳定性和可靠性。
对现代电子工业的影响
电子设备
各种电子设备如电视、电脑、手机等 都离不开电磁感应的应用,如变压器 、电感器等。
通信技术
无线通信和光纤通信技术利用电磁感 应原理实现信息的传输和处理,极大 地促进了现代电子工业的发展。
电磁感应优秀课件
自感系数
电磁感应
对于一个任意的回路
L
d dt
d dI
dI dt
L
L
dI dt
L dΨ Ψ dI I
自感(系数)的物理意义:
① L dΨ Ψ dI I
在数值上等于回路中通过单位电流时, 通过自身回路所包围面积的磁通链数。
电磁感应
②
L
d
dt
d( LI ) L dI I dL
解: r R E涡 • dl L
B
•
dS
t
S
分布。 E
L E涡dl
S
B dS t
dB
R L E
d
t
E r
0
B E
E涡
2r
dB dt
r 2
E涡
r 2
dB dt
方向:逆时针
电磁感应
r R
L E涡 •
dl
S'
B t
•
dS
在圆柱体外,由于
l H • dl NI
H 2r NI
H NI 2r
I
R2 R1
B NI
2r
d
B
•
dS
NI
hdr
2r
h
r dr
电磁感应
d
B
•
dS
NI
hdr
2r
d
NIh 2
R2
R1
dr r
NIh ln( R2 )
2
R1
N N 2Ih ln( R2 )
2
R1
L
N 2h
ln(
R2
)
I 2
R1
电磁感应
电磁感应PPT课件(初中科学)
认识一个新朋 友
(2)闭合开关.此时,灵敏电流计指针向 __________(左或右)偏转.
(3)改变电流流入灵敏电流计的方向,重复实 验,灵敏电流计指针偏转方向与本来 _________ (相同或相反).
检验电路中是否有微
灵敏电流计的作用: 弱的电流
根据指针偏转方向判断 电流的方向.
假如我是法拉第……
没有,但导体两端有感应电压。 所以切割磁感线的导体相当于?
探究:影响感应电流方向的因素
1、提出问题: 感应电流的方向和哪些因素有关?
2、建立猜想和假设: 可能与磁场方向有关 可能与切割磁感线的方向有关
3、设计实验方案:
探究:影响感应电流方向的因素
表1:
磁极位置
N上S下
闭合电路的一部分导 体在磁场中
用什么表示?
用G表示
b.灵敏电流计的0刻度在表盘中的什么位置? 在表盘的中间位置. 指针能否只能向右偏转? 猜想:指针向左或右是由什么决定的? c.灵敏电流计的量程
认识一个新朋 友
活动二. 目的:电流方向与灵敏电流计指针偏转 方向的关系.
步骤:(1)根据电路图连接电路
注意:连接时开关处于什么状态?
说明
1、什么是电磁感应:
闭合电路的一部分导体放到磁场里做切 割
磁感线运动时,导体中就会产生电流.
这种现象叫电磁感应现象
产生的电流就是感应电流
利用这一 现象可以制成 发电机,
实现了机械能转化为电能
2、产生感应电流的条件
a、导体是闭合电路的一部分
b、导体在磁场中做切割磁感线运动
电路不闭合,导 线不会有感应电流!
奥斯特实验: 通电导线周围存在磁场
电流
磁场
电磁感应现象及其应用课件(共27张PPT)高一物理鲁科版(2019)必修三
实验现象 (有无电流)
有 无 有 有 无 有
分析论证
线圈中的磁场变化时,线圈中 有电流产生;线圈中的磁场不 变时,线圈中无电流产生
实验三 磁场和导体无相对运动是否产生电流(如图所示)
实验操作
开关闭合瞬间 开关断开瞬间 开关保持闭合,滑动变 阻器滑片不动 开关保持闭合,迅速移 动滑动变阻器的滑片
实现现象(线圈B中 有无电流)
4.磁通量的正、负 (1)磁通量是标量,但有正、负。当磁感线从某一面穿入时,磁通量为正 值,则磁感线从此面穿出时磁通量为负值。 (2)若磁感线沿相反方向穿过同一平面,且正向磁通量为Φ,反向磁通量 为Φ′,则穿过该平面的磁通量Φ总=Φ-Φ′。磁通量等于穿过该平面 的磁感线的净条数(磁通量的代数和)。 5.磁通量的变化量 ΔΦ=|Φ2-Φ1|。
答案 磁通量无变化。线圈中无感应电流。穿过线圈的磁感线分布情况 如图,穿过左右两侧磁感线的条数相同,方向相反,故穿过线圈的磁通 量始终为零,故磁通量始终不变,线圈中始终无感应电流。
练习
3.(多选)(2023·福建福州市高二期末)如图所 示有三种实验装置,选项中能使装置产生 感应电流的是 A.图甲中,使导体棒AB沿着磁感线方向运
磁感线运动 导体棒做切割
磁感线运动
无 闭合回路包围的磁场的面积变 化时,电路中有电流产生;包
无 围的磁场的面积不变时,电路 中无电流产生
有
实验二 探究磁铁在通电螺线管中运动是否产生电流(如图所示)
实验操作
N极插入线圈 N极停在线圈中 N极从线圈中抽出
S极插入线圈 S极停在线圈中 S极从线圈中抽出
√B.开关S接通后,电路中电流稳定时
C.开关S接通后,滑动变阻器滑片滑动的瞬间 D.开关S断开的瞬间
电磁感应现象及应用ppt课件
课堂小结
1. 划时代的发现 法拉第——电磁感应——感应电流
2. 产生感应电流的条件 当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感 应电流。
3. 电磁感应现象的应用 发电机、变压器、电磁炉
3. 法拉第最初发现“电磁感应现象”的实验情景简化如图所示,在正确操 作的情况下,得到符合实验事实的选项是( ) A.闭合开关的瞬间,电流计指针无偏转 B.闭合开关稳定后,电流计指针有偏转 C.通电状态下,断开与电源相连线圈的瞬间,电流计指针有偏转 D.将绕线的铁环换成木环后,闭合或断开开关瞬间,电流计指针无偏 转
例:关于感应电流,下列说法中正确的是( ) A.只要穿过线圈的磁通量发生变化,线圈中就一定有感应电流 B.只要闭合导线做切割磁感线运动,导线中就一定有感应电流 C.若闭合电路的一部分导体不做切割磁感线运动,闭合电路中 一定没有感应电流 D.当穿过闭合电路的磁通量发生变化时,闭合电路中一定有感 应电流
2.产生感应电流的条件 (3)感应电流产生的条件:
当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就 产生感应电流。 思考:能引起磁通量发生变化的原因有哪些? a.由于磁场变化而引起闭合回路的磁通量的变化。 b.磁场不变,由于闭合回路的面积S变化而引起磁通量的变化。 c.闭合回路的磁场和面积S同时变化而引起磁通量的变化。 d.闭合回路与磁场间的夹角变化而引起磁通量的变化。
(2)实验分析:
条形磁体运动
电路中是否产生感应
电流表指针是否摆动
电流
N/S极插入线圈
是
是
N/S极停在线圈中
否
否
N/S极从线圈中拔出
是
是
条形磁体插入线圈时,线圈中的磁场由弱变强,条形磁体从线圈中 拔出时,线圈中的磁场由强变弱,即通过线圈的磁场强弱发生变化 时,会产生感应电流。2.产生感应流的条件(2)实验分析:
电磁感应课件
负.
如下图所示,在同一水平面内有三个闭合线
圈 a 、b 、 c,当 a 线圈中有电流通过时,它们
的磁通量 分别为 φa、 φb 、与φc ,下列说法正确
的是: (
B)
A. φa < φb < φc
B. φa > φb > φc C. φa < φc < φb
I a bc
D. φa > φc > φb
( BD )
A. 若磁场方向垂直纸面向外并增加时,
杆ab将向右移动。
B. 若磁场方向垂直纸面向外并减少时,
杆ab将向右移动。
C. 若磁场方向垂直纸面向里并增加时, 杆ab将向右移动。
a
D.若磁场方向垂直纸面向里并减少时,
杆ab将向右移动。
点拨:Φ=BS,杆ab将向右移动 ,
b
S增大, Φ增大,只有B减小,才能阻碍Φ增大
量增加,I 的方向为顺时针,
v
当dc边进入直导线右侧,直到线框 在正中间位置B时,向外的磁通量
b
c
A BC
减少到0, I 的方向为逆时针,
接着运动到C,向里的磁通量增加,I 的方向为逆时针,
当ab边离开直导线后,向里的磁通量减少,I 的方向为顺时针。
所以,感应电流的方向先是顺时针,接着为逆时针, 然后又为顺时针。
况如图示,
v dc
自右向左移动时,感应电流 M
N
的磁场向外,
所以感应电流为逆时针方向。
例2.如图所示,一水平放置的圆形通电线圈I固定,
有另一个较小的线圈II从正上方下落,在下落过程中
线圈II的平面保持与线圈I的平面平行且两圆心同在一
竖直线上,则线圈II从正上方下落到穿过线圈I直至在
下方运动的过程中,从上往下看线圈II:( C )
大学物理电磁感应(PPT课件)
路中都会建立起感应电动势,且此感应电动势正比于 磁通量对时间变化率的负值。
i
k
dΦ dt
在国际单位制中:k = 1
法拉第电磁感应定律
式中负号表示感应电动势方向与磁通量变化的关系。
注: 若回路是 N 匝密绕线圈
-N d - d(N) - d
dt
dt
dt
NΦ
磁通链数
二、电磁感应规律 2. 楞次定律 闭合回路中感应电流的磁场总是要反抗引起
L A O B
εi
d
dt
1 BL2 dθ 1 BL2ω
2
dt 2
<
0
动生电动势方向:A O O端电势高
例17.5 在空间均匀的磁场B Bz中,长为L的导
线ab绕z轴以 匀速旋转,导线ab与z轴夹角为
求:导线ab中的电动势。
解:建坐标,在坐标l 处取dl
B
该段导线运动速度垂直纸面向内
dΦ
1 R (Φ1
Φ2 )
q只与磁通量的改变量有关,与磁通量改变快慢无关。
例17.1 设有长方形回路放置在稳恒磁场中,ab边可以 左右滑动,如图磁场方向与回路平面垂直,设导体以
速度 v 向右运动,求回路上感应电动势的大小及方向。
解:取顺时针为回路绕向, ×c × × × b × ×
ε 设ab = l,da = x,则通过回路 × ×L × × ×v ×
b
结 1、动生电动势只存在于运动的导体上,不运动的 论 导体没有动生电动势。
2、电动势的产生并不要求导体必须构成回路, 构成回路仅是形成电流的必要条件。
3、要产生动生电动势,导体必须切割磁感线。
导线AB在单位时间内 扫过的面积为:
ABBA vl
i
k
dΦ dt
在国际单位制中:k = 1
法拉第电磁感应定律
式中负号表示感应电动势方向与磁通量变化的关系。
注: 若回路是 N 匝密绕线圈
-N d - d(N) - d
dt
dt
dt
NΦ
磁通链数
二、电磁感应规律 2. 楞次定律 闭合回路中感应电流的磁场总是要反抗引起
L A O B
εi
d
dt
1 BL2 dθ 1 BL2ω
2
dt 2
<
0
动生电动势方向:A O O端电势高
例17.5 在空间均匀的磁场B Bz中,长为L的导
线ab绕z轴以 匀速旋转,导线ab与z轴夹角为
求:导线ab中的电动势。
解:建坐标,在坐标l 处取dl
B
该段导线运动速度垂直纸面向内
dΦ
1 R (Φ1
Φ2 )
q只与磁通量的改变量有关,与磁通量改变快慢无关。
例17.1 设有长方形回路放置在稳恒磁场中,ab边可以 左右滑动,如图磁场方向与回路平面垂直,设导体以
速度 v 向右运动,求回路上感应电动势的大小及方向。
解:取顺时针为回路绕向, ×c × × × b × ×
ε 设ab = l,da = x,则通过回路 × ×L × × ×v ×
b
结 1、动生电动势只存在于运动的导体上,不运动的 论 导体没有动生电动势。
2、电动势的产生并不要求导体必须构成回路, 构成回路仅是形成电流的必要条件。
3、要产生动生电动势,导体必须切割磁感线。
导线AB在单位时间内 扫过的面积为:
ABBA vl
电磁感应现象带动画演示ppt课件
①
②
③
④
a
b
d
c
A
B
发电机的工作原理
一 发电机的工作原理:
电磁感应现象
结论:
二 发电机的结构:
定子(不转动部分)和转子(转动的部分)两大部分构成
三 能量转化:
将其他形式的机械能转化为电能
大型发电机一般采用磁极旋转的方式来发电。
大型发电机安装转子
交流电:周期性改变大小和方向的电流 直流电:方向不变的电流 交流电的周期:交流电完成一次周 期性变化需要的时间 交流电的频率:在一秒内交流电完 成周期性变化的次数 我国交流电周期是0.02秒,频率为50赫兹。其意义是发电机线圈转一周用 0.02 秒,即1秒内线圈转50圈。
太空悬绳发电
1992年和1996年,意大利研制的绳系卫星,两次由美国航天飞机携带,在太空进行试验。第一次由于绳索缠绕,只释放到250米,仅仅为原计划20公里的1/78,不过倒是产生了40伏特的电压及1.5毫安的电流;第二次释放到19.3千米,还产生了3000伏特电压,但是飞行不久以后就出现绳索断裂,绳系卫星也丢失在茫茫太空之中。
2.电流中感应电流的方向与导体切割磁感线的_____________和________________有关。
闭合
切割磁感线
电磁感应
感应电流
运动方向
磁场的方向
电磁感应应用
大家知道地球是一个大磁场。当航天飞机携带着绳系卫星在空中飞行时,由导电材料制成的绳系卫星的系绳,在绕地球运动时切割地球磁力线,运动过程中,悬绳、航天飞机、卫星和大气层中的电离层形成回路。它就成为一台发电机,可以向绳系卫星和牵引它的航天器供电
如果把电源“+”极与导线连接,可观察到的现象是_______________,断开电路则可观察到_________________。
②
③
④
a
b
d
c
A
B
发电机的工作原理
一 发电机的工作原理:
电磁感应现象
结论:
二 发电机的结构:
定子(不转动部分)和转子(转动的部分)两大部分构成
三 能量转化:
将其他形式的机械能转化为电能
大型发电机一般采用磁极旋转的方式来发电。
大型发电机安装转子
交流电:周期性改变大小和方向的电流 直流电:方向不变的电流 交流电的周期:交流电完成一次周 期性变化需要的时间 交流电的频率:在一秒内交流电完 成周期性变化的次数 我国交流电周期是0.02秒,频率为50赫兹。其意义是发电机线圈转一周用 0.02 秒,即1秒内线圈转50圈。
太空悬绳发电
1992年和1996年,意大利研制的绳系卫星,两次由美国航天飞机携带,在太空进行试验。第一次由于绳索缠绕,只释放到250米,仅仅为原计划20公里的1/78,不过倒是产生了40伏特的电压及1.5毫安的电流;第二次释放到19.3千米,还产生了3000伏特电压,但是飞行不久以后就出现绳索断裂,绳系卫星也丢失在茫茫太空之中。
2.电流中感应电流的方向与导体切割磁感线的_____________和________________有关。
闭合
切割磁感线
电磁感应
感应电流
运动方向
磁场的方向
电磁感应应用
大家知道地球是一个大磁场。当航天飞机携带着绳系卫星在空中飞行时,由导电材料制成的绳系卫星的系绳,在绕地球运动时切割地球磁力线,运动过程中,悬绳、航天飞机、卫星和大气层中的电离层形成回路。它就成为一台发电机,可以向绳系卫星和牵引它的航天器供电
如果把电源“+”极与导线连接,可观察到的现象是_______________,断开电路则可观察到_________________。
电磁感应课件ppt
右手定则在直流电中的应用
用于判断电流方向与磁场方向的关系。
右手定则在交流电中的应用
用于判断电流方向与磁场方向的关系,但需注意交流电的矢量性。
楞次定律与右手定则的实例
楞次定律的实例
当一个条形磁铁插入线圈时,线 圈中会产生抵抗磁通变化的感应 电流,从而阻碍磁铁的插入。
右手定则的实例
当直流电通过一个线圈时,用右 手握住线圈,拇指指向电流方向 ,四指指向即为磁场方向。
法拉第电磁感应定律
说明电磁感应现象,磁场可由 电场感应产生,而电场也可由
磁场感应产生。
麦克斯韦方程组的实例
静电场的电势分布
通过电势分布来描述静电场的性质和规律 。
恒定电流的磁场
描述恒定电流产生的磁场分布和性质,如 磁感线的形状和方向。
电磁感应现象
如发电机的工作原理,磁场感应电场,电 场感应磁场等。
• 安培环路定律:$ • abla \times \overset{\longrightarrow}{E} = -\frac{\partial \overset{\longrightarrow}{B}}{\partial t}$ • 法拉第电磁感应定律:$ • abla \times \overset{\longrightarrow}{B} = \mu_{0}\overset{\longrightarrow}{J} + \frac{\partial
VS
详细描述
将一根导线置于磁场中,并通以交变电流 ,根据右手定则,用右手握住导线,让大 拇指指向电流方向,四指的弯曲方向就是 磁场方向。在实验中,可以通过观察电流 表指针的偏转方向来验证右手定则。
谢谢您的聆听
THANKS
楞次定律的表述
感应电流的方向总是要使感应电动势反抗 引起感应电流的原磁场的磁通变化。
用于判断电流方向与磁场方向的关系。
右手定则在交流电中的应用
用于判断电流方向与磁场方向的关系,但需注意交流电的矢量性。
楞次定律与右手定则的实例
楞次定律的实例
当一个条形磁铁插入线圈时,线 圈中会产生抵抗磁通变化的感应 电流,从而阻碍磁铁的插入。
右手定则的实例
当直流电通过一个线圈时,用右 手握住线圈,拇指指向电流方向 ,四指指向即为磁场方向。
法拉第电磁感应定律
说明电磁感应现象,磁场可由 电场感应产生,而电场也可由
磁场感应产生。
麦克斯韦方程组的实例
静电场的电势分布
通过电势分布来描述静电场的性质和规律 。
恒定电流的磁场
描述恒定电流产生的磁场分布和性质,如 磁感线的形状和方向。
电磁感应现象
如发电机的工作原理,磁场感应电场,电 场感应磁场等。
• 安培环路定律:$ • abla \times \overset{\longrightarrow}{E} = -\frac{\partial \overset{\longrightarrow}{B}}{\partial t}$ • 法拉第电磁感应定律:$ • abla \times \overset{\longrightarrow}{B} = \mu_{0}\overset{\longrightarrow}{J} + \frac{\partial
VS
详细描述
将一根导线置于磁场中,并通以交变电流 ,根据右手定则,用右手握住导线,让大 拇指指向电流方向,四指的弯曲方向就是 磁场方向。在实验中,可以通过观察电流 表指针的偏转方向来验证右手定则。
谢谢您的聆听
THANKS
楞次定律的表述
感应电流的方向总是要使感应电动势反抗 引起感应电流的原磁场的磁通变化。
《电磁感应现象及应用》PPT优质课件
电磁感应现象及应用
01 电磁感应的探索历程 02 探究感应电流的产生条件
1、磁感应强度的定义及理解. 公式:
2.磁感应强度的大小及方向的判定. 3.对磁通量的理解与计算. 公式:Φ=BS
电磁感应的探索历程
1.“电生磁”的发现
1820年,丹麦物理学家奥斯特发现了电流的磁 效应. 2.“磁生电”的发现
到 B2,则线圈内的磁通量的变化量 ΔΦ 为( )
A.n(B2-B1)S
B.n(B2+B1)S
C.(B2-B1)S
D.(B2+B1)S
D [末状态的磁通量 Φ2=B2S,初状态的磁通量 Φ1=-B1S,则 线圈内的磁通量的变化量 ΔΦ=(B2+B1)S,故 D 正确,A、B、C 错 误。]
感应电流的产生
【例 2】 线圈在长直导线电流的磁场中做如图所示的运动: A.向右平动,B.向下平动,C.绕轴转动(ad 边向里),D.从纸面向纸外 做平动,E.向上平动(E 线圈有个缺口),判断线圈中有没有感应电流?
A
B
C
D
E
思路点拨:根据导线周围的磁感线分布以及产生感应电流的条 件即可判断各图中感应电流的有无。
【例 1】 如图所示,一水平放置的矩形闭合线圈 abcd 在细长 磁铁 N 极附近下落,保持 bc 边在纸外,ad 边在纸内,由图中的位置 Ⅰ经过位置Ⅱ到位置Ⅲ,且位置Ⅰ和Ⅲ都很靠近位置Ⅱ,在这个过 程中,线圈中的磁通量( )
A.是增加的 C.先增加,后减少
B.是减少的 D.先减少,后增加
思路点拨:解此题的关键是正确把握条形磁铁的磁场分布情况, 并结合磁通量的概念分析。
D [要知道线圈在下落过程中磁通量的变化情况,就必须知道 条形磁铁在磁极附近磁感线的分布情况,条形磁铁在 N 极附近的分 布情况如图所示,由图可知线圈中磁通量是先减少,后增加。D 选 项正确。]
01 电磁感应的探索历程 02 探究感应电流的产生条件
1、磁感应强度的定义及理解. 公式:
2.磁感应强度的大小及方向的判定. 3.对磁通量的理解与计算. 公式:Φ=BS
电磁感应的探索历程
1.“电生磁”的发现
1820年,丹麦物理学家奥斯特发现了电流的磁 效应. 2.“磁生电”的发现
到 B2,则线圈内的磁通量的变化量 ΔΦ 为( )
A.n(B2-B1)S
B.n(B2+B1)S
C.(B2-B1)S
D.(B2+B1)S
D [末状态的磁通量 Φ2=B2S,初状态的磁通量 Φ1=-B1S,则 线圈内的磁通量的变化量 ΔΦ=(B2+B1)S,故 D 正确,A、B、C 错 误。]
感应电流的产生
【例 2】 线圈在长直导线电流的磁场中做如图所示的运动: A.向右平动,B.向下平动,C.绕轴转动(ad 边向里),D.从纸面向纸外 做平动,E.向上平动(E 线圈有个缺口),判断线圈中有没有感应电流?
A
B
C
D
E
思路点拨:根据导线周围的磁感线分布以及产生感应电流的条 件即可判断各图中感应电流的有无。
【例 1】 如图所示,一水平放置的矩形闭合线圈 abcd 在细长 磁铁 N 极附近下落,保持 bc 边在纸外,ad 边在纸内,由图中的位置 Ⅰ经过位置Ⅱ到位置Ⅲ,且位置Ⅰ和Ⅲ都很靠近位置Ⅱ,在这个过 程中,线圈中的磁通量( )
A.是增加的 C.先增加,后减少
B.是减少的 D.先减少,后增加
思路点拨:解此题的关键是正确把握条形磁铁的磁场分布情况, 并结合磁通量的概念分析。
D [要知道线圈在下落过程中磁通量的变化情况,就必须知道 条形磁铁在磁极附近磁感线的分布情况,条形磁铁在 N 极附近的分 布情况如图所示,由图可知线圈中磁通量是先减少,后增加。D 选 项正确。]
电磁感应(PPT课件(初中科学)24)
电磁感应
不夜城,灯火通明,风景诱人。 你有没有想过这电是如何得到的呢?
这应追溯到奥斯特实验
奥斯特实验
电流
磁场
?
英国科学家法拉第,经过十
年坚持不懈的努力,终于在 1831年成功地利用磁场获得 电流
如何让磁场能产生电流
实验器材 蹄形磁铁 —— 提供磁场
导 线 —— 电流的载体 开 关 —— 控制电路通断
但导体两端有电压!
感应电压
影响感应电流方向的因素
1、提出问题: 感应电流的方向和哪些因素有关?
2、建立猜想和假设: 可能与磁场方向有关 可能与导体的运动方向有关
3、设计实验方案:
影响感应电流方向的因素
4、设计实验记录表:
磁极位置 N上S下
闭合电路的一 部分导体在磁 场中
向右切割磁 感线
向左切割磁 感线
如下图所示,要想此闭合电路中能产生 感应电流,导体棒AB应该( )
A.竖直向下运动 B.水平向右运动 C.水平向外运动
要改变导体在磁场中产生感应电流的方 向,下面哪种做法是正确的( )
A.改变磁场强弱
B.同时改变磁场方向和切割磁感线的方 向
C.改变切割磁感线的速度
D.只改变磁场方向或切割磁感线方向
电流表指针偏转 方向
影响感应电流方向的因素
4、设计实验记录表:
闭合电路的一 部分导体在磁
磁极位置
场中
向右切割磁感 N上S下 线 N下S上
灵敏电流计指 针偏转方向
(1)感应电流方向与 导体的运动方向有关
(2)感应电流方向与 磁场方向有关
二、影响感应电流方向的因素
1、导体中的感应电流方向与磁场方向有关, 与导体的运动方向有关 2、当导体的运动方向不变时,改变磁场方 向,感应电流方向与本来相反;当磁场方向 不变时,改变导体运动方向,感应电流方向 与本来相反
不夜城,灯火通明,风景诱人。 你有没有想过这电是如何得到的呢?
这应追溯到奥斯特实验
奥斯特实验
电流
磁场
?
英国科学家法拉第,经过十
年坚持不懈的努力,终于在 1831年成功地利用磁场获得 电流
如何让磁场能产生电流
实验器材 蹄形磁铁 —— 提供磁场
导 线 —— 电流的载体 开 关 —— 控制电路通断
但导体两端有电压!
感应电压
影响感应电流方向的因素
1、提出问题: 感应电流的方向和哪些因素有关?
2、建立猜想和假设: 可能与磁场方向有关 可能与导体的运动方向有关
3、设计实验方案:
影响感应电流方向的因素
4、设计实验记录表:
磁极位置 N上S下
闭合电路的一 部分导体在磁 场中
向右切割磁 感线
向左切割磁 感线
如下图所示,要想此闭合电路中能产生 感应电流,导体棒AB应该( )
A.竖直向下运动 B.水平向右运动 C.水平向外运动
要改变导体在磁场中产生感应电流的方 向,下面哪种做法是正确的( )
A.改变磁场强弱
B.同时改变磁场方向和切割磁感线的方 向
C.改变切割磁感线的速度
D.只改变磁场方向或切割磁感线方向
电流表指针偏转 方向
影响感应电流方向的因素
4、设计实验记录表:
闭合电路的一 部分导体在磁
磁极位置
场中
向右切割磁感 N上S下 线 N下S上
灵敏电流计指 针偏转方向
(1)感应电流方向与 导体的运动方向有关
(2)感应电流方向与 磁场方向有关
二、影响感应电流方向的因素
1、导体中的感应电流方向与磁场方向有关, 与导体的运动方向有关 2、当导体的运动方向不变时,改变磁场方 向,感应电流方向与本来相反;当磁场方向 不变时,改变导体运动方向,感应电流方向 与本来相反
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 在0.1 s 时间内,穿过线圈平面的磁通变化量
2 1 BS 0 0.01 0.001Wb 1105 Wb
伸开右手,使拇指与四指垂直,并都跟手掌在一个平面内, 让磁感线穿入手心,拇指指向导体运动方向,四指所指即为感应 电流的方向。
1.楞次定律
当磁铁插入线圈时,原磁通在增加,线圈所产生的感应电流 的磁场方向总是与原磁场方向相反,即感应电流的磁场总是阻碍 原磁通的增加;
当磁铁拔出线圈时,原磁通在减少,线圈所产生的感应电流 的磁场方向总是与原磁场方向相同,即感应电流的磁场总是阻碍 原磁通的减少。
动方向与磁感线方向之间夹角的正弦 sin 成正比。
用右手定则可判断 ab 上感应电流的方向。 若电路闭合,且电阻为 R,则电路中的电流
I E R
三、说明
1.利用公式 E B l v 计算感应电动势时,若 v 为平均速度,
则计算结果为平均感应电动势;若 v 为瞬时速度,则计算结果为
瞬时感应电动势。
因此,得出结论: 当将磁铁插入或拔出线圈时,线圈中感应电流所产生的磁场 总是阻碍原磁通的变化。这就是楞次定律的内容。 根据楞次定律判断出感应电流磁场方向,然后根据安培定则 即可判断出线圈中的感应电流方向。
2.判断步骤
原 原
磁 磁
场B1方向 通变化(增
加
或
减
少)愣
次
定
律
感 应 电 流 磁 场B2方 (与B1相 同 或 相 反)
E BS Blvt Blv
t t t
即 E Blv
图 6-1 导线切割磁感线产生的感应电动势
因此,导线中产生的感应电动势
E B l v2 B l v sin
上式表明,在磁场中,运动导线产生的感应电动势的大 小与磁感应强度 B、导线长度 l、导线运动速度 v 以及导线运
一、感应电动势
1.感应电动势
电磁感应现象中,闭合回路中产生了感应电流,说明回路 中有电动势存在。在电磁感应现象中产生的电动势称为感应电 动势。产生感应电动势的那部分导体,就相当于电源,如在磁 场中切割磁感线的导体和磁通发生变化的线圈等。
2.感应电动势的方向
在电源内部,电流从电源负极流向电源正极,电动势的方向 也是由负极指向正极,因此感应电动势的方向与感应电流的方向 一致,仍可用右手定则和楞次定律来判断。
向
安
培
定
则
感应电流方向
3.楞次定律符合能量守恒定律
由于线圈中所产生的感应电流磁场总是阻碍原磁通的变化, 即阻碍磁铁与线圈的相对运动,因此,要想保持它们的相对运 动,必须有外力来克服阻力做功,并通过做功将其他形式的能 转化为电能,即线圈中的电流不是凭空产生的。
电磁感应定律
一、感应电动势
二、电磁感应定律 三、说明
大量的实验表明:
化率单匝/线t圈成中正产比生,的即感应电动势的大E小 ,t与穿过线圈的磁通变
对于N 匝线圈,有
E N N2 N1
t
t
式中N 表示线圈匝数与磁通的乘积,称为磁链,用 表示。
即
= N
于是
E
t
上式适用于
的情况。
如图 6-2 所示v,设l v速度Bv 和磁场 B 之间有一夹角 。将速
电磁感应定律
教学重点
1.理解感应电动势的概念,掌握电磁感应定律及有关的计算。
教学难点
1.用楞次定律判断感应电流和感应电动势方向。 2.自感现象及有关计算。
6.2 感应电流的方向
一、右手定则 二、楞次定律 三、右手定则与楞次定律的一致性
一、右手定则
当闭合回路中一部分导体作切割磁感线运动时,所产生的感应 电流方向可用右手定则来判断。
度
v
分解为两个互相垂直的分量
v
、
1
v
,
2
v
1
=
v
cos
与B平
行,不切割磁感线; v 2 = v sin 与 B 垂直,切割磁感线。
图 6-2 B 与 v 不垂直时的感应电动势
如图 6-1 所示,abcd 是一个矩形线圈,它处于磁感应强度为 B 的匀强磁场中,线圈平面和磁场垂直,ab 边可以在线圈平面 上自由滑动。设 ab 长为 l,匀速滑动的速度为 v,在 t 时间内, 由位置 ab 滑动到 ab ,利用电磁感应定律,ab 中产生的感应电 动势大小
解: (1)线圈中的感应电动势
E Blv 0.1 0.4 5V 0.2V
(2)线圈中的感应电流
I E 0.2 A 0.4A R 0.5
由右手定则可判断出感应电流方向为 abcd 。
F BIl 0.1 0.4 0.4N 0.016 N
(3)由于 ab 中产生了感应电流,电流在磁场中将受到安培力 的作用。用左手定则可判断出 ab 所受安培力方向向左,与速度 方向相反,因此,若要保证 ab 以速度 v 匀速向右运动,必须施 加外一力个方与向安向培右力。大小相等方向相反的外力。所以,外力大小
(4) 外力做功的功率
P Fv 0.0165W 0.08 W
(5) 感应电流的功率 P' EI 0.2 0.4W 0.08 W
可以看到,P = P,这正是能量守恒定律所要求的。
【例6-2】在一个 B = 0.01 T 的匀强磁场里,放一个面积为 0.001 m2 的线圈,线圈匝数为 500 匝。在 0.1 s 内,把线圈平面 从与磁感线平行的位置转过 90°,变成与磁感线垂直,求这 个过程中感应电动势的平均值。
注意:对电源来说,电流流出的一端为电源的正极。
3.感应电动势与电路是否闭合无关
感应电动势是电源本身的特性,即只要穿过电路的磁通发 生变化,电路中就有感应电动势产生,与电路是否闭合无关。
若电路是闭合的,则电路中有感应电流,若电路是断开的, 则电路中就没有感应电流,只有感应电动势。
二、电磁感应果为 t 时间内感应电动势
的平均值。
t
【例6-7】在图 6-7中,设匀强磁场的磁感应强度 B 为 0.1 T,切割磁感线的导线长度l 为 40 cm,向右运动的速 度 v 为 5 m/s,整个线框的电阻 R为 0.5 ,求:
(1)感应电动势的大小; (2)感应电流的大小和方向; (3)使导线向右匀速运动所需的外力; (4)外力做功的功率; (5)感应电流的功率。