平面基本性质及推论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1平面基本性质与推论
一、教学目标确立依据
(一)课程标准要求及解读
1、课程标准要求
借助长方体模型,解空间点线面的基础上,抽象出空间点线面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
基本性质1 :如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.
基本性质2:经过不在同一直线上的三点,有且只有一个平面
基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公
共直线。
2、课程标准解读
平面的基本性质1给出了判断直线在平面内的方法,引出了直线在平面内的定义。
平面的基本性质2及平面的基本性质的三个推论,说明了怎样的条件可以确定一个平面,从而我们知道什么条件下可以画出确定的平面,什么条件下两个平面互相重合,这些都是研究空间图形时首先需要明确的。
平面的基本性质3主要说明了两个相交平面的特征,对我们确定或画出两个平面的交线有重要的指导作用。
平面的基本性质的推论用以确定平面的依据。
(二)教材分析
本节课在必修二中是第一张第二节内容,是整个立体几何的基础和工具。
是立体几何的起始课,平面的概念和平面的性质是立体几何全部理论的基础。平面是把三维空间图形转化为二维平面图形的主要媒介,在立体几何平面化的过程中具有重要的桥梁作用。通过对平面基本性质的学习,有助于学生更好的学习立体几何的其他知识本节的重点是平面的基本性质及三种语言的转换。难点是平面的基本性质的理解与应用。课前要充分观察理解教室里的点、线、面,来理解点、线、面及位置关系。
知识结构图「
基本性质1 推论1
平面的基本性质< 基本性质2 J推论2
J基本性质3 推论3
(三)学情分析通过第一章空间几何体的学习,学生对于点线面之间的位置关系有初步认识,本节要求学生能够用集合语言表示点线面之间的位置关系,引导学生对空间中点线
面的位置关系可各种可能性进行分类和研究。对于证明学生可能感觉难度较大。
二、教学目标
1、在直观认识和理解空间点线面的基础上,能抽象出空间点线面位置关系的定义。
2、图形语言符号语言表示点线面之间的位置关系,
3、通过第一节课学习,在掌握平面的三个基本性质的基础上,进一步掌握平面基本性质的三个推论;
三、评价设计
目标1评价:能说出线不在面内的情况,并用图形表示。能说出两个平面的位置关
系。
目标2 评价:学生对基本性质及推论能说出条件及结论是什么,并会用图形语言及符号语言表示。
目标3 评价:经过小组讨论会证明平面基本性质的三个推论;
四、教学方法学生从直观认识平面到理性的理解平面,有一个抽象的过程。通过这个过程可培养学生的抽象能力。要让学生认识平面的三条基本性质的直观背景。学完这三条基本性质,学生营养成用性质理解平面的习惯,学会用直线和皮面的基本性质进行推理。
五、教学过程温故知新,导入新课。
1. 平面有哪些性质呢?2、一条直线和平面有哪几种关系呢?两个平面呢?
教学重点、难点的学习与完成过程
师:立体几何中有一些公理,构成一个公理体系.人们经过长期的观察和实践,把平面的三条基本性质归纳成三条公理.请同学们思考下列问题(用幻灯显示).
问题1:直线I上有一个点P在平面a内,直线I是否全部落在平面a内?
问题2:直线I上有两个点P、Q在平面a内,直线I是否全部落在平面a 内?
(用竹针穿过纸板演示问题1,用直尺紧贴着玻璃黑板演示问题2,学生思考回答后教师归纳.)
【设计意图】:形象直观,学生易于接受。
这就是基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内..这里的条件是什么?结论是什么?
生:条件是直线(a)上有两点(A B)在平面(a)内,结论是:直线(a)在平面(a)内.
师:把条件表示为A€ a, B€b且A€ a , B€a,把结论表示.
设计意图】:学生学会符号语言这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面,如泥瓦工用直的木条刮平地面上的水泥浆.
在这里,我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?
生:不是,因为平面是无限延展的.
师:对,根据基本性质1,直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.
现在我们根据平面的无限延展性来观察一个现象:两个纸板交叉
师:两个平面会不会只有一个公共点?
生甲:只有一个公共点.
生乙:因为平面是无限延展的,应当有很多公共点.
师:生乙答得对,正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?(教师随手一压,一块纸板随即插入另一块纸板上事先做好的缝隙里).可见,这无数个公共点在一条直线上.这说明,如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线。
【设计意图】:形象直观,学生易于接受。
此时,就说两平面相交,交线就是公共点的集合这就是基本性质3 其条件和结论分别是什么?
生:条件是两平面(a、B )有一公共点(A),结论
是:它们有且只有一条过这个点的直线.
师:条件表示为A€ a , A€ B,结论表示为:a A a, A€ a,图形表示
基本性质3 判定两平面相交的依据,提供了确定相交平面的交线的方法.
下面请同学们思考下列问题(用幻灯显示):
问题1:经过空间一个已知点A可能有几个平面?
问题2:经过空间两个已知点A、B可能有几个平面?
问题3:经过空间三个已知点A、B、C可能有几个平面?