110KV变电站主变压器继电保护设计-《电力系统继电保护课程设计》报告论文
【精编完整版】110KV线路继电保护设计毕业论文
电力系统继电保护课程设计课设名称:110KV线路继电保护设计目录一、设计原始资料 ............................................... 1 二、分析课题设计内容 (2)三、短路电流及残压计算......................................... 6 四、保护的配合及整定计算 ..................................... 13 五、继电保护设备选择 .......................................... 17 六、相间短路保护 .............................................. 21 七、结论 ........................................................ 24 八、主要参考文献 . (25)1设计原始资料1.1具体题目系统示意图如图所示,发电机以发电机—变压器组方式接入系统,最大开机方式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台也可能1台运行。
参数为:,,ΩX X X X .G .G .G .G 842413231====,,ΩX X X X .G .G .G .G 522211211====,,,,,线路阻抗,,、。
G1G2G4G3 1234T1T2T5T6T3T4试对1、2、3、4进行零序保护的设计。
1.2 完成内容(1) 请画出所有元件全运行时三序等值网络图,并标注参数;(2) 所有元件全运行时,计算B母线发生单相接地短路和两相接地短路时的零序电流分布;(3) 分别求出保护1、4零序II段的最大、最小分支系数;(4) 分别求出保护1、4零序I、II段的定值,并校验灵敏度;(5) 保护1、4零序I、II段是否需要安装方向元件;(6) 保护1处装有单相重合闸,所有元件全运行时发生系统振荡,整定保护1不灵敏I段定值;(7)其相间短路的保护也采用电流保护,试完成:(1)分别求出保护1、4 的段Ⅰ、Ⅱ定值,并校验灵敏度;(2)保护1、4 的Ⅰ、Ⅱ段是否安装方向元件;(3)分别画出相间短路的电流保护的功率方向判别元件与零序功率方向判别元件的交流接线;2分析课题设计内容2.1设计规程正常运行的而电力系统是三相对称的,其零序、负序电流和电压理论上为零;多数的短路故障是三相不对称的,其零序、负序电流和电压会很大;利用故障的不对称性可以找到正常和故障间的差别,并且这种差别是零与很大值的比较,差异更为明显。
课程设计报告书---电力变压器继电保护设计
课程设计报告书---电力变压器继电保护设计目录评分表.................................................................................... 错误!未定义书签。
1 课程设计任务书 (2)1.1 目的任务 (2)1.2 设计内容 (2)1.3 时间、地点安排 (4)1.4 设计要求 (4)2 前言 (5)3 绪论 (5)3.1 对继电保护的要求 (6)4 系统运行方式的选择 (6)5 保护初步方案 (7)5.1 保护原理的介绍 (8)5.2 运行方式确定 (9)6 电力系统继电保护的基本概念 (10)7 短路计算 (10)7.1 短路计算的目的 (10)7.2 短路计算步骤 (10)7.3 计算 (11)8 变压器整定 (13)8.1 纵差保护整定计算 (13)8.2 110kV侧复合电压启动过电流保护整定计算 (14)8.3 零序电流保护 (15)9 线路整定计算 (15)9.1 线路L1.L2的三段式距离整定计算 (15)9.2 L3、L4的整定计算 (16)10 继电器选型 (17)10.1 变压器保护设备选择 (17)10.2 线路保护设备选择 (17)10.3 母线保护设备选择 (17)10.4 设备选择的结果 (17)11 课程设计总结 (18)12 参考文献。
(18)1课程设计任务书1.1目的任务电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。
通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术资料的能力。
本次课程设计主要以中型企业变电所主变压器及相邻线路为对象,主要完成继电保护概述、主变压器及线路继电保护方案确定、短路电流计算、继电保护装置整定计算、绘保护配置图等设计和计算任务。
110kV电网线路保护继电保护课程设计
引言电力系统继电保护是电力系统安全运行的重要保证,尤其是近年来,继电保护产品类型众多,原理不断有所突破,特别是微机保护的采用,实现了继电保护行业的革命,随之而来的网络技术又为继电保护技术的发展提供了新的手段。
继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。
对电力系统继电保护的基本性能要求是有选择性、速动性、灵敏性、可靠性。
本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。
其中短路电流的计算和距离保护的整定计算及校验是本设计的重点。
通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。
1.继电保护整定计算的基本任务和要求1.1继电保护整定计算概述继电保护装置属于二次系统,它是电力系统中的一个重要组成部分,它对电力系统安全稳定运行起着极为重要的作用,没有继电保护的电力系统是不能运行的。
继电保护要达到及时切除故障,保证电力系统安全稳定运行的目的,需要进行多方面的工作,包括设计、制造、安装、整定计算、调试、运行维护等,继电保护整定计算是其中极其重要的一项工作。
电力生产运行和电力工程设计工作都离不开整定计算,不同部门整定计算的目的是不同的。
电力运行部门整定计算的目的是对电力系统中已经配置安装好的各种继电保护按照具体电力系统参数和运行要求,通过计算分析给出所需要的各项整定值,使全系统中的各种继电保护有机协调地布置、正确地发挥作用。
电力工程设计部门整定计算的目的是按照所设计的电力系统进行分析计算、选择和论证继电保护装置的配置和选型的正确性,并最后确定其技术规范。
同时,根据短路计算结果选择一次设备的规范。
电力变压器继电保护设计(设计) 学位论文
电力变压器继电保护设计(设计) 学位论文无需修改。
正文电力变压器是电力系统中十分重要的供电元件。
为了保证供电的可靠性和系统正常运行,必须根据其容量的大小、电压的高低和重要程度设置相应的继电保护装置。
本设计结合电力变压器运行中的故障,分析了电力变压器纵联差动保护、瓦斯保护及过电流保护等继电保护装置的配置原则和设计方案。
电力变压器的纵联差动保护是一种常见的继电保护装置。
其基本原理是将变压器的高压侧和低压侧的电流进行比较,当两侧电流差值超过设定值时,继电器动作,切断变压器的电源,从而保护变压器。
在配置纵联差动保护时,应根据变压器的容量和结构特点确定保护区域和保护范围,同时还要考虑保护装置的灵敏度和可靠性。
瓦斯保护是针对油浸式变压器的一种继电保护装置。
其原理是通过检测变压器油中的瓦斯浓度,当瓦斯浓度超过设定值时,继电器动作,切断变压器的电源,从而避免变压器发生火灾或爆炸。
在配置瓦斯保护时,应根据变压器的容量和使用环境确定瓦斯浓度的警戒值和动作值,以保证保护装置的准确性和可靠性。
过电流保护是一种常见的继电保护装置,可以用于保护电力变压器和电力系统中其他设备。
其原理是通过检测电流的大小和时间,当电流超过设定值和时间时,继电器动作,切断电源,从而保护设备。
在配置过电流保护时,应根据设备的额定电流和使用环境确定保护装置的额定电流和动作时间,以保证保护装置的准确性和可靠性。
综上所述,电力变压器的继电保护装置是保障电力系统正常运行的重要组成部分,应根据变压器的特点和使用环境选择合适的保护装置,并合理配置,以保证电力系统的安全稳定运行。
1.概述本文将介绍电力变压器的基本概念、故障和不正常运行状态以及保护配置。
同时,本文还将详细介绍___电力变压器继电保护的设计。
1.1 变压器的基本概念变压器是电力系统中常见的一种电气设备,用于改变交流电的电压等级。
变压器的基本原理是利用电磁感应的原理,通过电磁感应作用将电压从一个电路传递到另一个电路中。
110KV变电站继电保护毕业设计论文简介
110kV中堡变电所继电保护设计电气工程及其自动化 *** 指导教师:***教授***讲师摘要电力系统在运行过程常常会发生一些故障(三相短路、两相短路、单相接地等)和异常现象(过负荷、过电压、低电压等),这些故障和异常现象会产生较大的短路电流对电气设备造成损坏,或者造成一定范围的停电,此时就须要断路器能迅速、有选择性地发出跳闸命令将故障切除或发出报警,从而减少故障造成的停电范围和电气设备(如母线,变压器)的损坏程度,做到电网对继电保护提出的可靠性、选择性、灵敏性、速动性的要求,保证电力系统的稳定运行。
本文主要对110kV变电站进行继电保护设计。
首先对原始资料进行分析确定主接线方案,然后进行短路计算,再通过短路电流选择电气设备,最后确定母线、主变、线路的继电保护方案,并进行整定计算。
关键词:电气主接线,继电保护,整定计算,无功补偿AbstractPower systems often occur some failures (three-phase short-circuit, two-phase short-circuit, single-phase ground) and anomalies during operation (overload, over-voltage, low voltage, etc.), these failures and anomalies will have a greater short-circuit current damage to electrical equipment, or cause a range of power, this time on the circuit breaker must be able to quickly issue a trip command selective removal of the fault or alarm, thus reducing the scope and power failures caused by electrical equipment (such as bus , transformers) of the extent of damage, so the reliability of the grid for protection made, selectivity, sensitivity, speed and mobility requirements to ensure the stable operation of the power system. This paper focuses on 110kV substation relay protection design. First, the raw data were analyzed to determine the main wiring scheme, and then short-circuit calculations, then select electrical equipment through the short-circuit current to finalize the bus, the main transformer, circuit protection solutions, and setting calculation.KEY WORDS:Main electrical wiring;Protection;Setting Calculation;Reactive power compensation一、前言随着电力系统的不断发展,考虑到电力系统的正常运行对国民经济的重要作用,对继电保护提出了更高的要求,而电子技术、计算机技术与通信技术的不断发展同样对继电保护技术的发展提供了技术基础。
110KV变电站主变压器继电保护的设计__-正文
近年来电气一次设备制造有了较大发展,大量高性能、新型设备不断出现,设备趋于无油化,采用SF6气体绝缘的设备价格不断下降,伴随着国产GIS向高电压、大容量、三相共箱体方面发展,性能不断完善,应用面不断扩大,许多城网建设工程、用户工程都考虑采用GIS配电装置。变电站设计的电气设备档次不断提高,配电装置也从传统的形式走向无油化、真空开关、SF6开关和机、电组合一体化的小型设备发展。
l、变电站接线方案趋于简单
随着制造厂生产的电气设备质量的提高以及电网可靠性的增加,变电站接线简化趋于可能。例如,断路器是变电站的主要电气设备,其制造技术近年来有了较大发展,可靠性大为提高,检修时间少。近期国内新建的许多变电站220 k V及110kV电压等级的接线采用双母线而不带旁路母线。采用GIS的情况下,优先采用单母线分段接线。终端变电站中,尽量采用线路变压器组接线等。
我国电力工业自动化水平正在逐年提高,大部分电厂实现了集中控制和采用计算机控制,电网也实现了分级集中调度。我国电力工业将跨入世界先进水平行列。
1.2变电站技术的发展
我国电力建设经过多年的发展,系统容量越来越大,短路电流不断增大,对电气设备、系统内大量信息的实时性等要求越来越高;而随着科学技术的高速发展,制造、材料行业,尤其是计算机及网络技术的迅速发展,电力系统的变电技术也有了新的飞跃,我国变电站设计出现了一些新的趋势。
1.4 变电站设计的基本要求
变电站和其他工程设计一样,包括设计、施工、运行三步。设计是第一步,且工作责任大,因此,必须严格遵守以下要求:
必须严格遵守国家标准,认真执行国家的技术经济政策,并应做到保障人身和设备的安全,供电可靠,电能质量合格
积极采用新技术,提高自动化水平,尽量结合具体情况做定型设计,做到工程技术先进、经济合理、安全使用,确保设计质量。
毕业设计(论文)-10kv变电所继电保护设计及分析[管理资料]
继电保护毕业设计课题:110kV变电所继电保护设计及分析导师:姓名:班级:日期:2011年3月10日前言电力生产过程有别于其他工业生产过程的一个重要特点,就是它的生产、输送、变换、分配、消费的几个环节是在同一个时间内同步瞬间完成。
电力生产过程要求供需严格动态平衡,一旦失去平衡生产过程就要受到破坏,甚至造成系统瓦解,无法维持正常生产。
随着经济的快速发展,负荷大幅度增加,使得电网规模不断扩大,高电压、大机组、长距离输电、电网互联的趋势,使电网结构越来越复杂,加强电力资源的优化配置,最大限度满足电力需求,保证电网的安全稳定成为人们探讨的问题之一。
虽然系统中有可能遭受短路电流破坏的一次设备都进行了短路动、热稳定度的校验,但这只能保证它们在短时间内能承受住短路电流的破坏。
时间一长,就会无一例外地遭受破坏。
而在供电系统中,要想完全杜绝电路事故是不可能的。
继电保护是一种电力系统的反事故自动装置,它能在系统发生故障或不正常运行时,迅速,准确地切除故障元件或发出信号以便及时处理。
可见继电保护是任何电力系统必不可少的组成部分,对保证系统安全运行、保证电能质量、防止故障的扩大和事故的发生,都有极其重要的作用。
因此设置一定数量的保护装置是完全必要的,以便在短路事故发生后一次设备尚未破坏的数秒内,切除短路电流,使故障点脱离电源,从而保护短路回路内的一次设备,同时迅速恢复系统其他正常部分的工作。
随着变电站继电保护技术进一步优化,大大提高了整个电网运行的安全性和稳定性,大大降低运行检修人员的劳动强度,继电保护技术将引起电力行业有关部门的重视,成为变电站设计核心技术之一。
目录第一章电气主接线 (1)第二章电气设备简介 (2)第三章继电保护基本知识 (4)第四章主变压器继电保护 (7)第五章110kV线路继电保护保护 (11)第六章结束语 (13)第六章参考文献 (14)110KV变电站继电保护设计及分析第一章电气主接线电气主接线是变电所电气设计的重要部分,也是构成电力系统的重要环节。
110KV电力系统继电保护和自动装置设计毕业论文
目录第一部分设计任务与调研 (3)第二部分设计说明 (4)第三部分设计成果 (13)第四部分结束语 (14)第五部分致谢 (15)第六部分参考文献 (16)第一部分设计任务与调研本设计为110kV系统继电保护及自动装置的设计与配置。
该电网有110kV、35kV、10kV三个电压等级。
其中,110kV侧为电源侧,其它两侧均为负荷侧。
110kV 为双母分段接线,两段分别与甲变电站和丁电厂连接,甲变电站由于110kV出线多,为检修方便而设置了旁路母线和专用旁路开关。
甲变电站有2回电缆供乙变电站两台三绕组变压器供35kV和10kV负荷,还有2回线路和丁电厂联络。
丁电厂将另2回110kV出线供丙变电站两台三绕组变压器供35kV负荷。
本设计以线路的保护为主,为防止线路的相间故障,由于电压等级为110kV,故采用距离保护,对6条线路分别进行距离I、II、III段的整定与灵敏度的校验。
此外,为防止中性点直接接地系统中发生接地短路,产生很大的零序电流分量,线路还应采用零序电流保护。
连接甲变电站和丁电厂的双回线路除了距离保护和零序电流保护外,还应配置横联差动保护作为主保护的补充。
其中包括相间横联差动电流保护及零序横联差动电流保护。
为了更好地保证电网安全、经济运行,电力系统运行越来越依赖于自动控制技术,本设计还可以简单地配置自动重合闸、备用电源自动投入和低频减载等自动装置。
第二部分 设计说明本设计为110kV 系统继电保护及自动装置的设计与配置。
在继电保护部分,本论文主要讨论了线路的保护,其采用了距离保护和零序电流保护。
对于双回输电线路,还进行了横联差动保护的整定。
此外,对变压器的保护做了简单的配置与整定,以瓦斯保护、纵差动保护作为变压器的主保护,过电流保护和过负荷保护作为其后备保护。
最后,为了更好地保证系统安全、经济地运行,本设计还配置了自动重合闸、备用电源自动投入和自动低频减载等自动装置。
2.1 概 述在电力系统的实际计算中,对于直接电气联系的网络,在制订标么值的等值电路时,各元件的参数必须按统一的基准值进行归算。
变压器继电保护课程设计
《电力系统继电保护课程设计》报告论文设计任务柏溪110KV变电站主变压器继电保护设计设计班级电力11301班设计成员第一组指导教师王瑞宜宾职业技术学院电控系电力专业摘要伴随我国的经济快速发展,国内各个行业对于电力的需求量急剧增大。
面对日益增大的供电需求,对我国的电力变压器运行检修技术的安全稳定提出了更高要求。
因此,人们在生活中越来越离不开电能,就使得电力变压器的安全和稳定运行十分重要。
所以,110KV电力变压器运行中的电力工作就显得尤为重要。
因此对110KV电力变压器安全与检修技术进行分析,以保证110KV电力变压器的稳定运行。
本文就针对变电站主变压器SFSZ10-31500KVA/110KV的原理分析和变压器的各种继电保护的方法、原理图和每个保护所需的设备表进行分析。
关键词:变压器;SFSZ10-31500KVA/110KV;继电保护;原理图;设备表摘要前言 (1)第1章绪论 (2)1.1 变压器的介绍 (2)1.2 变压器的故障及保护介绍 (2)1.2.1 变压器设备故障介绍 (2)1.2.2 变压器的保护介绍 (3)1.3 变压器保护的发展历程及现状 (4)第2章变压器的纵差动保护 (5)2.1 纵差动保护定义 (5)2.2 纵差动保护特性 (5)2.3 纵差动保护及其保护原理 (5)2.4 变压器纵差动保护设备表 (7)第3章变压器瓦斯保护 (8)3.1瓦斯保护的定义 (8)3.2瓦斯保护的分类及保护原理 (8)3.3瓦斯保护的保护范围 (9)3.4 瓦斯保护的接线方式 (10)3.5 瓦斯保护的设备表 (11)第4章变压器的零序电流保护 (12)4.1 零序电流保护的定义 (12)4.2 零序电流保护原理分析: (12)4.3 零序电流整定公式 (12)4.3.1公式 (12)4.3.2公式分析 (12)4.4 零序电流保护的原理图 (13)4.5 零序电流保护的设备表 (13)第5章变压器复合电压启动过电流保护 (14)5.1复合电压过电流保护定义 (14)5.2复合电压过电流保护原理分析 (14)5.3复合电压过电流保护原理图 (14)5.4 复合电压过电流保护原理图分析 (14)5.5复合电压过电流保护设备表 (15)第6章变压器过负荷保护 (16)6.1 过负荷保护定义 (16)6.2 过负荷保护分析 (16)6.3 过负荷保护装设原则 (16)6.4 过负荷保护的原理图 (17)第7章保护的总结和展望 (18)7.1保护的总结 (18)7.2继电保护的发展前景 (18)前言改革开放以来,中国的市场经济发展迅速,随着经济的发展,对电力的需求越来越大,电力供应逐渐紧张,在很多地区均出现了供电危机,使其必须采取限电、停电等措施,来缓解电力供应的紧张。
110kv继电保护毕业设计5篇
110kv继电保护毕业设计5篇第一篇:110kv继电保护毕业设计摘要这次课程设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。
特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。
重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。
关键词:毕业设计;110kv环网;保护;整定计算前言电力系统的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。
但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。
继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。
许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。
因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。
我们这次的设计题目是:110KV双电源环网距离保护整定计算。
网络中各线路采用方向或不带方向的距离保护,变压器经均为Y,d11形式。
最大运行方式为A厂为350MW,B厂为225MW,最小运行方式为A厂停一台机,B厂停一台机。
网络的正常运行方式为A厂最大运行方式,B厂停一台机,且为闭环运行。
110KV断路器均为DW3-110型,固有动作时间为0.05~0.08。
线路AB、BC、AD、CD 的最大负荷电流分别为160A,140A,140A,120A。
负荷的自起动系数Kzq=1.5。
各变电所出线上后备保护动作时限如图中所示,后备保护的Δt=0.4。
线路电抗为0.4Ω/KM。
110Kv电压互感器的变比为110000V/100V。
结束语毕业设计是培养学生综合运用所学知识,发现、提出、分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。
随着科学技术发展的日新日异。
110KV线路继电保护系统设计 毕业论文设计
110KV线路继电保护系统设计前言电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。
因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化的发展。
随着计算机硬件的迅速发展,微机保护硬件也在不断发展。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护。
继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。
对电力系统继电保护的基本性能要求是有选择性,速动性,灵敏性,可靠性。
这次毕业设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。
特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。
重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。
[摘要] 本设计以110KV线路继电保护为例,简述了零序电流保护和距离保护的具体整定方法和有关注意细节,对输电网络做了较详细的分析同时对于不同运行方式环网各个断路器的情况进行了述说,较为合理的选择了不同线路,不同场合下的断路器、电流互感器、电压互感器的型号。
[关键词] 继电保护、最大运行方式、距离保护、110KV线路继电保护AbstractThe design of 110 kv lines in the relay protection as an example, this paper expounds the zero sequence current protection and distance protection of specific setting method and relevant attention to detail, For transmission network to do a more detailed analysis and for different operation modes ring net each circuit breakers of the recount, comparatively reasonable selection of different lines, Comparatively reasonable selection of different lines, different occasions of the breaker, current transformer, voltage transformer models.[Keywords]Relay protection, maximum operation mode, distance protection, 110 kv circuit relay protection目录第一章绪论 (1)1.1电力系统继电保护概述 (1)1.2继电保护技术的发展史 (2)第二章运行方式的选择 (5)2.1运行方式的选择原则 (5)发电机、变压器运行方式选择的原则 (5)变压器中性点接地选择原则 (5)线路运行方式选择原则 (5)2.2本次设计的具体运行方式的选择 (5)第三章故障点的选择和正、负、零序网络的制定 (6)第四章电网各个元件参数计算及负荷电流计算 (8)4.1基准值选择 (8)4.2输电线路等值电抗计算 (8)4.3变压器等值电抗计算 (9)4.4发电机等值电抗计算 (9)4.5最大负荷电流计算 (9)第五章零序短路电流的计算 (10)5.1最大负荷阻抗 (10)5.2 d1点短路的零序电流 (10)5.3 d2点短路的零序电流 (10)5.4 d3点短路的零序电流 (10)5.5 d4点短路的零序电流 (10)第六章继电保护距离保护的整定计算和校验 (11)6.1断路器501距离保护的整定计算和校验 (11)距离保护Ⅰ段的整定计算 (11)距离保护Ⅱ段的整定计算和校验 (11)距离保护Ⅲ段的整定计算和校验 (11)6.2断路器503距离保护的整定计算和校验 (12)距离保护Ⅰ段的整定计算 (12)6.3断路器504距离保护的整定计算和校验 (12)Ⅰ段整定计算 (12)Ⅱ段整定计算 (13)距离保护Ⅲ段的整定计算和校验 (13)6.4断路器506距离保护的整定计算和校验 (14)距离保护Ⅰ段的整定计算 (14)第七章继电保护零序电流保护的整定计算和校验 (15)7.1断路器506零序电流保护的整定计算和校验 (15)零序电流保护I段的整定计算 (15)零序电流保护Ⅲ段的整定计算 (15)7.2断路器503零序电流保护的整定计算和校验 (15)零序电流保护Ⅰ段的整定计算 (15)零序电流保护Ⅲ段的整定计算 (15)7.3断路器504零序电流保护的整定计算和校验 (16)零序电流保护Ⅰ段的整定计算 (16)零序电流保护Ⅱ段的整定计算 (16)零序电流保护Ⅲ段的整定计算 (16)7.4断路器501零序电流保护的整定计算和校验 (17)零序电流保护Ⅰ段的整定计算 (17)零序电流保护Ⅱ段的整定计算 (17)零序电流保护Ⅲ段的整定计算 (17)第八章保护的综合评价 (19)8.1距离保护的综合评价 (19)8.2对零序电流保护的评价 (19)结束语 (20)参考文献 (21)附录 (22)第一章绪论1.1电力系统继电保护概述随着社会和经济的快速发展,我国的电网结构和规模己经从过去的区域性、小容量、低电压等级发展到了现在的大容量、远距离、超高压和全国性联网的大规模系统。
110KV变电站继电保护设计
TAIYUAN UNIVERSITY OF SCIENCE &TECHNOLOGY 毕业设计(论文)110KV变电站的继电保护设计学生姓名 ____ ________学号 ______班级 ___ _所属院(系)_______指导教师 ____ ________2011年 6 月 15 日太原科技大学毕业设计(论文)任务书学院(直属系): 华科学院时间: 2011年3月8 日目录摘要..................................................................... III Abstract................................................................... IV 绪论.................................................................. - 1 - 第1章继电保护基础..................................................... - 3 -1.1 概述............................................................ - 3 -1。
2 继电保护的基本原理和任务....................................... - 3 - 1。
3 继电保护装置的基本结构......................................... - 3 - 1。
4 继电保护的基本要求............................................. - 4 -1.5 互感器基础...................................................... - 4 - 第2章参数设定及阻抗计算............................................... - 7 - 2。
电力系统继电保护课程设计报告110KV
前言《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。
在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。
电能是现代社会中最重要、也是最方便的能源。
而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。
在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。
电力系统继电保护就是为达到这个目的而设置的。
本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。
其中短路电流的计算和电气设备的选择是本设计的重点。
通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。
1 所做设计要求1.1 电网接线图××××cosφ=0.85X〃=0.129X〃=0.132cosφ=0.85cosφ=0.8cosφ=0.8cosφ=0.8图示110kV 单电源环形网络:(将AB 线路长度改为45km,CD 长度改为20km ) (1)所有变压器和母线装有纵联差动保护,变压器均为Yn ,d11接线;(2)发电厂的最大发电容量为(2×25+50)MW,最小发电容量为2×25MW; (3)网络的正常运行方式为发电厂发电容量最大且闭环运行; (4)允许的最大故障切除时间为0.85s ;(5)线路AC 、BC 、AB 、CD 的最大负荷电流分别为250、150、230和140A,负荷自起动系数5.1 ss K ;(6)时间阶梯△t =0.5s ;(7)线路正序电抗每公里为0.4Ω;1.2 任务1、k I 计算结果,计算结果用表格列出。
课程设计(论文)-110kV电网线路继电保护设计模板
1 前言电力系统在运行中,可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是各种形式的短路,它严重的危及设备的安全和系统的可靠运行。
此外,电力系统还会出现各种不正常的运行状态,最常见的如过负荷等。
在电力系统中,除了采取各项积极措施,尽可能地消除或减少发生故障的可能性以外,一旦发生故障,如果能够做到迅速地、有选择性地切除故障设备,就可以防止事故的扩大,迅速恢复非故障部分的正常运行,使故障设备免于继续遭受破坏。
然而,要在极短的时间内发现故障和切除故障设备,只有借助于特别设置的继电保护装置才能实现。
电力系统继电保护的基本作用是:在全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或报警等措施,以求最大限度地维持系统的稳定,保持供电的连续性,保障人身的安全,防止或减轻设备的损坏。
继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,启动逻辑控制环节,发出相应的跳闸脉冲或信号。
对电力系统继电保护的基本性能要求是有选择性、速动性、灵敏性、可靠性。
这次课程设计以最常见的110kV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。
特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。
重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。
2 设计资料分析与参数计算2.1 参数分析与计算本设计所用发电机参数如下:表2.1 发电机各项参数本设计所用变压器参数如下:表2.2 变压器各项参数基准值选取:100B S MVA =, 115B av V V kV ==0.524B I kA === ,126.71B Z ===Ω 线路正、负、零序等值阻抗:1(1)1(2)0.44016L L X X ==⨯=Ω,1(1)1(1)1(2)160.126126.71L L L B X X X Z *=*=== 2(1)2(2)0.46024L L X X ==⨯=Ω,2(1)2(1)2(2)240.189126.71L L L BX X X Z *=*=== 3(1)3(2)0.45020L L X X ==⨯=Ω,3(1)3(1)3(2)200.158126.71L L L BX X X Z *=*=== 4(1)4(2)0.45020L L X X ==⨯=Ω,4(1)4(1)4(2)200.158126.71L L L BX X X Z *=*=== 5(1)5(2)0.43012L L X X ==⨯=Ω,5(1)5(1)5(2)120.095126.71L L L B X X X Z *=*=== 1(0)1(1)330.1260.378L L X X *=*=⨯=2(0)2(1)330.1890.567L L X X *=*=⨯=3(0)3(1)330.1580.474L L X X *=*=⨯=4(0)4(1)330.1580.474L L X X *=*=⨯=5(0)5(1)330.0950.285L L X X *=*=⨯=变压器等值阻抗:22123%10.511523.1410010060k N T T T N U U X X X S ===⨯=⨯=Ω 224%10.511569.43110010020k N T N U U X S =⨯=⨯=Ω 123%10.51000.175********k B T T T N U S X X X S *=*=*=⨯=⨯= 410.51000.52510020T X *=⨯= 发电机等值阻抗:221231150.1292950/0.85B G G G d G V X X X x S ''===⨯=⨯=Ω 1231000.1290.219350/0.85B G G G d G S X X X x S ''*=*=*=⨯=⨯= 表2.3 电力系统设备参数表2.2 系统运行方式和变压器中性点接地方式的确定2.2.1 发电机、变压器运行变化限度的选择原则 (1)发电厂有两台机组时,一般应考虑全停方式,即一台机组在检修中另一台机组又出现故障;当有三台以上机组时,则应选择其中两台容量较大机组同时停用的方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电力系统继电保护课程设计》报告论文设计任务柏溪110KV变电站主变压器继电保护设计设计班级电力11301班设计成员第一组指导教师王瑞宜宾职业技术学院电控系电力专业摘要伴随我国的经济快速发展,国内各个行业对于电力的需求量急剧增大。
面对日益增大的供电需求,对我国的电力变压器运行检修技术的安全稳定提出了更高要求。
因此,人们在生活中越来越离不开电能,就使得电力变压器的安全和稳定运行十分重要。
所以,110KV电力变压器运行中的电力工作就显得尤为重要。
因此对110KV电力变压器安全与检修技术进行分析,以保证110KV电力变压器的稳定运行。
本文就针对变电站主变压器SFSZ10-31500KVA/110KV的原理分析和变压器的各种继电保护的方法、原理图和每个保护所需的设备表进行分析。
关键词:变压器;SFSZ10-31500KVA/110KV;继电保护;原理图;设备表摘要前言 (1)第1章绪论 (2)1.1 变压器的介绍 (2)1.2 变压器的故障及保护介绍 (2)1.2.1 变压器设备故障介绍 (2)1.2.2 变压器的保护介绍 (3)1.3 变压器保护的发展历程及现状 (4)第2章变压器的纵差动保护 (5)2.1 纵差动保护定义 (5)2.2 纵差动保护特性 (5)2.3 纵差动保护及其保护原理 (5)2.4 变压器纵差动保护设备表 (7)第3章变压器瓦斯保护 (8)瓦斯保护的定义 (8)瓦斯保护的分类及保护原理 (8)瓦斯保护的保护范围 (9)3.4 瓦斯保护的接线方式 (10)3.5 瓦斯保护的设备表 (11)第4章变压器的零序电流保护 (12)4.1 零序电流保护的定义 (12)4.2 零序电流保护原理分析: (12)4.3 零序电流整定公式 (12)公式 (12)公式分析 (12)4.4 零序电流保护的原理图 (13)4.5 零序电流保护的设备表 (13)第5章变压器复合电压启动过电流保护 (14)复合电压过电流保护定义 (14)复合电压过电流保护原理分析 (14)复合电压过电流保护原理图 (14)5.4 复合电压过电流保护原理图分析 (14)复合电压过电流保护设备表 (15)第6章变压器过负荷保护 (16)6.1 过负荷保护定义 (16)6.2 过负荷保护分析 (16)6.3 过负荷保护装设原则 (16)6.4 过负荷保护的原理图 (17)第7章保护的总结和展望 (18)保护的总结 (18)继电保护的发展前景 (18)前言改革开放以来,中国的市场经济发展迅速,随着经济的发展,对电力的需求越来越大,电力供应逐渐紧张,在很多地区均出现了供电危机,使其必须采取限电、停电等措施,来缓解电力供应的紧张。
在如此形式下,加强对电力系统的维护非常重要,而继电保护正是主要的保护手段之一。
继电保护对电力系统的维护有很大的意义。
一是继电保护可以保证电力系统的正常运转。
因为当电力系统中的电气设备发生短路故障时,能自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行。
二是继电保护在排除故障的同时,也对社会生活秩序的正常化,经济生产的正常化贡献很大,不仅确保社会生活和经济的正常运转,还从一定程度上保证了社会的稳定,人们生命财产的安全。
当电力系统中的电气设备出现不正常运行状态时,并根据运行维护的条件(例如有无经常值班人员),动作于发出信号、减负荷或跳闸。
此时一般不要求保护迅速动作,而是根据当时电力系统和元件的危害度规定一定的延时,以免误动作。
第1章绪论1.1 变压器的介绍电力变压器是电力系统中十分重要的元件,它的故障将对供电可靠性和系统的正常运行带来严重的影响口为了防止电力变压器发生各类故障和不正常运行对电力系统安全运行造成不应有的损失,根据有关技术规程的规定,应针对电力变压器的故障和不正常运行状态设置相应的继电保护。
变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(磁芯)。
在电器设备和无线电路中,常用作升降电压、匹配阻抗,安全隔离等。
主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。
按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器等。
在本文中详细的介绍了SFSZ10-31500KVA/110KV变压器,它是一个三相三绕组油浸风冷有载调压电力变压器。
1.2 变压器的故障及保护介绍1.2.1 变压器设备故障介绍变压器的故障可分为内部故障和外部故障两种。
内部故障是指变压器油箱里面发生的故障主要是绕组的相间短路、一单相匝间短路、单相接地短路等。
发生内部故障是很危险的,因为短路电流产生的高温电弧不仅会损坏绕组的绝缘,烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生的大量气体,有可能引起变压器油箱爆炸。
因此,在变压器内部故障时,必须迅速地将变压器切除。
变压器最常见的外部故障,是油箱外部的绝缘套管及引出线上的故障,可能导致引出线的相间短路或一相碰接变压器外壳的单相接地短路。
实践证明,变压器引出线上的相间短路,单相接地短路和绕组的匝间短路是比较常见的故障形式。
三个单相变压器组成的变压器组,发生内部相间短路是不可能的,在三相变压器中发生内部相间短路的可能性也很小。
变压器的不正常工作状态主要是:由于外部短路和过负荷引起的过电流、油面过度降低和变压器中性点电压升高。
1.2.2 变压器的保护介绍1、反应变压器油箱内部故障和油面降低的瓦斯保护容量为800千伏安及以上的油浸式变压器,均应装设瓦斯保护。
当油箱内部故障产生轻微瓦斯或油面下降时,保护装置应瞬时动作于信号;当产生大量瓦斯时,保护装置通常应动作于跳闸,断开变压器各电源侧的断路器。
对于高压侧未装设断路器的线路一变压器组,未采取使瓦斯保护能切除变压器内部故障的技术措施时,瓦斯保护可仅动作于信号。
对于容量为400千伏安及以上的车间油浸式变压器,也应装设瓦斯保护。
2、反应变压器绕组和引出线的相间短路、中性点直接接地侧绕组和引出线的接地短路以及绕组匝间短路的纵联差动保护或电流速断保护纵联差动保护装置通常装设在单独运行的容量为10000千伏安及以上的变压器上。
或装设在并列运行的容量为6300千伏安及以上的变压器上,有选择性地切除故障变压器。
容量为6300千伏安及以上的厂用工作变压器亦应装设纵联差动保护。
对厂用备用变压器,为了简化保护,可装设电流速断保护来代替纵联差动保护。
容量为2000-10000千伏安的变压器,如果电流速断保护装置的灵敏度不符合要求(Klm<2),并且过电流保护的动作时限大于0.5秒时,纵联差动保护亦可用于容量小于10000千伏安单独运行的变压器上。
3、反应外部相间短路的过电流保护、复合电压起动的过电流保护、负序电流保护。
以上保护又可作为变压器主保护的后备过电流保护,一般用于降压变压器。
对于升压变压器和过电流保护灵敏度不符合要求(Klm<1.25)的降压变压器,一般采用复合电压起动的过电流保护。
对于大容量升压变压器和系统联络变压器,采用负序电流和单相式低电压起动的过电流保护。
4、反应中性点直接接地电网中,外部接地短路的零序电流保护在中性点直接接地电网中,如果变压器中性点可能接地运行,对于两侧或三侧电源的升压变压器或降压变压器上应装设零序电流保护,可作为变压器主保护的后备保护,并作为相邻元件的后备保护。
6、反应对称过负荷的保护对于400千伏安及以上的变压器,当数台并列运行或单独运行并作为其它负荷的备用电源时,应装设过负荷保护。
1.3 变压器保护的发展历程及现状伴随着我国电子工业的发展,变压器行业也有长足的进步,近20年来科学技术的突飞猛进,电子技术在各个领域的广泛应用,为变压器行业的发展带来了无限生机。
我国变压器产业20年取得了飞速发展:第一,变压器产品从"传统"走向"新型"。
20年前,变压器产品以大、重、厚的传统产品居多,随着微电子技术的发展及有源器件的技术进步,电子整机产品的体积大大减小,重量也大为减轻,对传统配套产品的需求下降了50%左右,逐渐用新型配套产品(片式化、微型化)替代。
市场的需求推动了包括变压器在内的电子元器件、部件向轻、薄、小方向发展,变压器的生产工艺正在进行一场巨大的变革。
20年来变压器也正向高频化、低损耗、重量轻、体积小的方向发展。
第二,变压器行业工艺装备日臻完善。
20年来,变压器的生产工艺精益求精,从落后的手工操作到今天的全自动机械化。
变压器的生产手段在吸取国外先进经验的基础上,结合我国的实际生产情况得到不断改进和提高。
如近年来微型变压器和线圈的生产,引进了国外的先进设备和生产线,基本上摆脱了手工操作的状态,生产效率高,产品质量的稳定性及一致性较好。
第三,变压器行业经济增长速度加快。
变压器是一种为电子整机配套,为电子线路服务的元件。
据不完全统计,2007年生产变压器的工厂近3000家,年销售收入250亿元,产品品种达几百种,可为各类整机配套,已跃居世界上变压器生产大国之一。
变压器60%的产量用于满足国际市场的需要,通过实施"以质取胜"的战略,变压器出口已逐步形成气候。
随着电子产品应用的不断丰富,变压器行业的前景将更加美好。
第2章变压器的纵差动保护2.1 纵差动保护定义所谓输电线的纵联保护,就是用某种通信通道将输电线两端的保护装置纵向联结起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路范围外,从而决定是否切断被保护线路。
因此,理论上这种纵联保护具有绝对的选择性。
差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。
变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。
2.2 纵差动保护特性由于纵联差动保护只在保护区内短路时才动作,不存在与系统中相邻元件保护的选择性配合问题,因而可以快速切除整个保护区内任何一点的短路,这是它的可贵优点。
但是,为了构成纵联差动保护装置,必须在被保护元件各端装设电流互感器,并将它们的二次线圈用辅助导线连接起来,接差动继电器。
由于受辅助导线条件的限制,纵向连接的差动保护仅限于用在短线路上,对于发电机、变压器及母线等,则可广泛采用纵联差动保护实现主保护。
2.3 纵差动保护及其保护原理所谓变压器的纵联差动保护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的保护。
纵联差动保护装置,一般用来保护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。