2.1古典概型的特征和概率计算公式

合集下载

古典概型的特征与概率计算公式

古典概型的特征与概率计算公式

古典概型的特征与概率计算公式古典概型是概率论中最基本的概型之一,它的特点是每个事件的可能性相等。

在古典概型中,我们可以通过计算样本空间和事件空间的大小来计算事件发生的概率。

1.等可能性:在古典概型中,每个事件的发生概率都是相等的。

2.有限性:古典概型中的样本空间是有限的,即所有可能的结果有限个。

3.独立性:古典概型中的事件之间是相互独立的,即一个事件的发生不会影响其他事件的发生概率。

根据这些特征,我们可以通过以下公式计算古典概型中事件的概率:1.概率的定义:事件A的概率P(A)定义为事件A发生的可能性与样本空间Ω中所有可能结果发生的总可能性的比值。

即:P(A)=N(A)/N(Ω),其中N(A)表示事件A的结果数目,N(Ω)表示样本空间Ω中所有可能结果的数目。

2.互斥事件:如果两个事件A和B是互斥的(即A和B不可能同时发生),则它们的概率之和为各自概率的和。

即:P(A∪B)=P(A)+P(B)。

3.相互独立事件:如果两个事件A和B是相互独立的(即A的发生不会影响B的发生概率),则它们的概率乘积等于各自概率的乘积。

即:P(A∩B)=P(A)*P(B)。

4.补事件:事件A的对立事件为A的补事件,记作A'。

补事件是指样本空间中不属于事件A的结果。

事件A的发生与A'的不发生是互斥的。

因此,P(A')=1-P(A)。

5.复合事件:如果事件A和B是两个独立事件,则同时发生的概率为两个事件的概率乘积。

即:P(A∩B)=P(A)*P(B)。

通过以上公式,我们可以计算古典概型中事件的概率。

需要注意的是,在应用这些公式时,必须满足古典概型的特征,即事件是等可能发生的、样本空间是有限的,并且各事件之间是相互独立的。

古典概型的特征和概率计算公式

古典概型的特征和概率计算公式

合作探究——培养创新思维品质探究1.基本事件:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。

特点(2)的理解:在试验一中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在试验二中,随机事件“出现偶数点”可以由基本事件“2点”、“4点”和“6点”共同组成。

话题2:什么是古典概型?它具有什么特点?对于古典概型,应怎样计算事件的概率?总结:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。

(等可能性)我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

古典概型计算任何事件的概率计算公式为:小组共性问题:展示提高——形成创新思维能力自我挑战一1.从字母中任意取出两个不同字母的试验中,有哪些基本事件?2.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?3.单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。

如果考生掌握了考差的内容,他可以选择唯一正确的答案。

假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?4.同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?自我挑战二思考:(1)在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?(2)假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定知识的可能性大?规律方法总结:创新思维能力培养反思体验过程自我评价——激励创新思维意识1.你完成本节学习设计方案的情况为()A. 很好B. 较好C. 一般D. 较差2.你今天所学的重要数学知识是:3.你本节课感悟最深的数学思想(数学方法)是:反思体验——固化创新思维元素课后问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别。

2.1古典概型的特征和概率计算公式

2.1古典概型的特征和概率计算公式

....
........ ........ .....

第一个条件.
2、如图,射击运动员向一靶心进行射击,这一试验的结 果只有有限个:命中10环、命中9环……命中1环和命中0 环.你认为这是古典概型吗?为什么? 〖解〗不是古典概型,因为试验的所有可
能结果只有11个,而命中10环、命中9 环……命中1环和不中环的出现不是等可能
(2)计算选取的两个质量盘的总质量分别是下列质量的概率. (ⅰ)20 kg;(ⅱ)30 kg;(ⅲ)不超过10 kg;(ⅳ)超过10kg.
解:表2
总质量 第二个质量
第一个质量
2.5
5
10
20
2.5
5
7.5
12.5 22.5
5
7.5
10
15
25
10
12.5
15
20
30
20
22.5
25
30
40
(3)如果一个人不能拉动超过22 kg的质量,那么他不能拉开拉力器的概
的,即不满足古典概型的第二个条件.
思考二:
掷一粒均匀的骰子,骰子落地时向上的点数为2的概率是多少?
点数为4的概率呢?点数为6的概率呢?骰子落地时向上的点数为偶数
的概率是多少?
பைடு நூலகம்
分析:用事件A表示“向上的点数为偶数”,则事件A由“点数为2”、
“点数为4”、“点数为6”三个可能结果组成,又出现“点数为2”
的概率为
1 6
1
,出现“点数为4”的概率为 6 ,出现“点数为6”的概
率为 1 , 且A的发生,指三种情形之一的出现,因此 P( A) 3 1 .
6
62
即骰子落地时向上的点数为偶数的概率是 1 .

数学教案:古典概型的特征和概率计算公式

数学教案:古典概型的特征和概率计算公式

§2古典概型2.1 古典概型的特征和概率计算公式错误!教学分析本节课是高中数学(必修3)第三章“概率”的第二节“古典概型”的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.三维目标1.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性地理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.2.鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,掌握古典概型的概率计算公式;注意公式:P(A)=错误!的使用条件——古典概型,体现了化归的重要思想.掌握列举法,学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣,形成学习数学知识的积极态度.重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.课时安排1课时错误!导入新课思路1.(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标有号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?为此我们学习古典概型,教师板书课题.思路2。

3.2.1古典概型的特征和概率计算公式课件ppt

3.2.1古典概型的特征和概率计算公式课件ppt

课前探究学习
课堂讲练互动

画出树形图如图所示.
则基本事件的总数为n=27个. (1)记事件A=“三次颜色各不相同”,则m=6,
课前探究学习
课堂讲练互动
m 6 2 所以 P(A)= n = = . 27 9 (2)记事件 B=“三次颜色不全相同”, m=27-3=24, 24 8 所以 P(B)= = . 27 9 (3)记事件 C=“三次取出的球无红色或无黄色,”则 15 5 m=15,所以 P(C)= = . 27 9 方法点评 利用树形图(表格)寻找基本事件的个数形象而
课前探究学习 课堂讲练互动
古典概型的概率计算公式 3. 如果试验的所有可能结果(基本事件)数为 n, 随机事件 A 包含 的基本事件数为 m,那么事件 A 的概率规定为:
事件A包含的可能结果数 m P(A)= = 试验的所有可能结果数 n ——————————————————. 想一想:古典概型概率的计算公式与频率计算公式有什么
C.向一个圆面内随机地投一个点,该点落在圆内任意一
点都是等可能的 D.射击运动员向一靶心进行射击,试验结果为命中10 环,命中9环,…,命中0环 [思路探索]用古典概型的两个特征去判断即可.
课前探究学习
课堂讲练互动
解析 选项 分析 结果
A
B C
发芽与不发芽的概率不同
1 摸到白球与黑球的概率都是 2
不是
是 不是
基本事件有无限个
D
命中10环,9环,„,0环的概率不等 不是
答案 B 规律方法 (1)本题关键是通过分析得出公式中的m、n,即 某事件所含基本事件数和基本事件的总数,然后代入公式 求解; (2)含有“至多”、“至少”等类型的问题,从正面突破比较 困.

古典概型和特征和概率计算公式

古典概型和特征和概率计算公式

古典概型和特征和概率计算公式古典概型是概率论中最简单的概率模型之一,也称为等可能概型。

在古典概型中,试验的所有可能的结果具有相同的概率,因此可以使用特征和概率计算公式来计算特定事件的概率。

一、古典概型的特征:在古典概型中,试验的样本空间S是有限的,即S={a1, a2, ..., an},其中n为有限个数。

每个样本点ai(a1 ≤ i ≤ n)的发生概率都是相等的,即P(ai) = 1/n。

二、概率计算公式:1.对于一个事件A,A是样本空间S的子集,事件A的概率可以用以下公式计算:P(A)=n(A)/n(S),其中n(A)表示事件A中发生的样本点数,n(S)表示样本空间中的总样本点数。

2.对于互斥事件A和B(即A和B不可能同时发生),它们的并事件(A∪B)的概率可以用以下公式计算:P(A∪B)=P(A)+P(B)。

3.对于独立事件A和B(即A的发生不受B的发生影响,反之亦然),它们的交事件(A∩B)的概率可以用以下公式计算:P(A∩B)=P(A)×P(B)。

4.对于事件A的对立事件(即A不发生),对立事件的概率可以用以下公式计算:P(A')=1-P(A),其中A'表示事件A的对立事件。

5.对于事件A的补事件(即A不发生的事件),补事件的概率可以用以下公式计算:P(A')=1-P(A)。

6.对于事件A的条件概率,即在事件B发生的条件下事件A发生的概率,可以用以下公式计算:P(A,B)=P(A∩B)/P(B),其中P(A,B)表示在已知事件B发生的条件下事件A发生的概率。

三、应用举例:假设有一个装有5个红球和3个蓝球的箱子。

现从箱子中任意取出一个球,求以下事件的概率:1.事件A:取出的球是红球。

P(A)=n(A)/n(S)=5/(5+3)=5/82.事件B:取出的球是蓝球。

P(B)=n(B)/n(S)=3/(5+3)=3/83.事件C:先后取出两个红球。

P(C)=P(A∩A)=P(A)×P(A)=(5/8)×(4/7)=20/56=5/144.事件D:取出的球不是红球。

古典概型的特征和概率计算公式完美正规版

古典概型的特征和概率计算公式完美正规版

古典概型的特征和概率计算公式完美正规版古典概型是概率论中最简单的一种概率模型,它采用了等可能性的假设,即每一个样本点出现的概率都是相等的。

这个模型的特征及其概率计算公式如下:1.样本空间:古典概型中的样本空间是一个有限个数的集合,用Ω表示。

例如,掷骰子的样本空间为Ω={1,2,3,4,5,6},抛硬币的样本空间为Ω={正面,反面}。

2.事件:在古典概型中,事件是样本空间的子集,用A表示。

例如,在掷骰子的样本空间中,事件A可以表示为"出现奇数点数",事件B可以表示为"出现偶数点数"。

3.等可能性假设:古典概型中的一个重要假设是每一个样本点出现的概率都是相等的。

例如,在掷骰子的样本空间中,每一个点数出现的概率都是1/64.概率计算公式:根据等可能性假设,我们可以使用计数的方法来计算事件的概率。

事件A的概率表示为P(A),计算公式为:P(A)=N(A)/N(Ω)其中,N(A)表示事件A中样本点的个数,N(Ω)表示样本空间中样本点的个数。

例如,对于掷骰子的样本空间Ω={1,2,3,4,5,6},事件A表示出现奇数点数,其样本点为{1,3,5},样本点个数为N(A)=3;样本空间Ω中的样本点个数为N(Ω)=6、因此,事件A的概率为:P(A)=N(A)/N(Ω)=3/6=1/2这个公式可以扩展到多个事件的情况下。

例如,对于掷骰子的样本空间Ω={1,2,3,4,5,6},事件A表示出现奇数点数,事件B表示出现偶数点数,这两个事件是互斥事件,即事件A和事件B不能同时发生。

因此,事件A和事件B的概率可以通过以下计算公式得到:P(A)=N(A)/N(Ω)=3/6=1/2P(B)=N(B)/N(Ω)=3/6=1/2请注意,在古典概型中,当事件A和事件B互斥时,它们的概率相加等于1,即P(A)+P(B)=1总结起来,古典概型的特征是样本空间有限、等可能性假设成立;概率计算公式是P(A)=N(A)/N(Ω)。

古典概型的特征和概率计算公式

古典概型的特征和概率计算公式

古典概型的特征和概率计算公式古典概型是概率论中最简单的概型之一,它是基于等可能性假设的。

古典概型的特征和概率计算公式如下所示。

1.特征:-等可能性假设:古典概型假设所有可能的结果具有相同的发生概率。

-有限个数的可能结果:古典概型假设实验的所有可能结果可数且是有限的。

-互斥性:古典概型假设每个实验结果都是唯一的,任意两个不同结果之间是互斥的,即同一次试验只能出现一种结果。

2.概率计算公式:在古典概型下,我们可以使用以下公式来计算事件的概率。

-样本空间:古典概型中,样本空间的大小等于实验的所有可能结果数的总和。

假设样本空间为S,大小为n,即S={A1,A2,A3,...,An}。

- 事件的概率: 假设事件A是样本空间S的子集,包含m个可能结果,即A = {Ai1, Ai2, Ai3, ..., Aim}。

则事件A的概率P(A)等于事件A中所有可能结果的概率之和。

P(A) = P(Ai1) + P(Ai2) + P(Ai3) + ... + P(Aim) = m/n。

3.举例说明:为了更好地理解古典概型的特征和概率计算公式,我们来举一个简单的例子。

假设有一个标准的六面骰子,每个面上的数字是等可能的。

(1)样本空间:这个例子中,样本空间S包含了所有可能的结果,即S={1,2,3,4,5,6}。

(2)事件A:假设我们关注的事件是掷出的数字是奇数。

事件A是样本空间S的子集,A={1,3,5}。

(3)概率计算:根据公式,我们可以计算事件A的概率:P(A)=P(1)+P(3)+P(5)=1/6+1/6+1/6=3/6=1/2从这个例子中,我们可以看到事件A的概率是1/2,即掷出的数字是奇数的可能性为1/2总结起来,古典概型是概率论中最基本的概型之一、它的特征包括等可能性假设、有限个数的可能结果和互斥性。

在古典概型下,我们可以使用简单的公式来计算事件的概率,即事件中所有可能结果的概率之和。

这个概率计算公式是P(A)=m/n,其中m是事件A包含的可能结果数,n是样本空间S的大小。

古典概型的特征和概率计算公式完美正规版

古典概型的特征和概率计算公式完美正规版

古典概型的特征和概率计算公式完美正规版古典概型是概率论中最简单的模型之一,适用于试验结果相互独立且每个结果发生的概率相等的情况。

在古典概型中,试验的结果可以通过一个有限的样本空间来描述,样本空间中的每个样本点都是一个可能的结果。

下面将介绍古典概型的特征以及概率计算公式的完美正规版。

一、古典概型的特征1.试验结果相互独立:古典概型中的试验结果之间是相互独立的,即一个结果的发生不会影响其他结果的发生。

2.每个结果发生的概率相等:古典概型中每个结果发生的概率是相等的,即每个结果发生的可能性相同。

在古典概型中,我们通常希望计算一些事件的概率,即该事件发生的可能性。

为了计算概率,我们需要以下两个关键步骤:确定样本空间和确定事件。

1.确定样本空间:样本空间是指试验的所有可能结果的集合。

对于古典概型来说,样本空间可以通过列举出所有可能结果来确定。

样本空间的个数通常表示为n。

2.确定事件:事件是样本空间中的一个子集,表示我们感兴趣的试验结果。

可以通过列举出所有可能的事件来确定。

根据古典概型的特征,事件A发生的概率可以通过以下公式计算:P(A)=事件A包含的样本点数/样本空间的样本点数这个计算公式适用于古典概型中任何一个事件的概率计算。

下面通过一个例子来解释该公式的使用。

例子:假设有一个卡片盒,里面有5张红色卡片和3张蓝色卡片。

现在从卡片盒中随机抽取一张卡片,求该卡片是红色的概率。

解答:样本空间为{红,红,红,红,红,蓝,蓝,蓝},样本空间的样本点数为8事件A表示抽取一张红色卡片,包含的样本点数为5根据概率计算公式,可得:P(A)=5/8因此,该卡片是红色的概率为5/8总结:古典概型是概率论中最简单的模型之一,适用于试验结果相互独立且每个结果发生的概率相等的情况。

古典概型的特征是试验结果相互独立,并且每个结果发生的概率相等。

在古典概型中,可以使用概率计算公式P(A)=事件A包含的样本点数/样本空间的样本点数来计算事件发生的概率。

高中数学 3.2.1 古典概型的特征和概率计算公式配套课件 北师大版必修3

高中数学 3.2.1 古典概型的特征和概率计算公式配套课件 北师大版必修3

【思路探究】 要判断试验是否为古典概型,只需看该 试验中所有可能的结果是否为有限个;每个结果出现的可能 性是否相同.
【自主解答】 (1)在数轴的 0~3 之间任取一点,此点可 以在 0~3 之间的任一位置,且在每个位置的可能性是相同 的,具备等可能性.但试验结果有无限多个,不满足古典概 型的特征“有限性”,因此不属于古典概型.
(2)因为此试验的所有基本事件共 6 个:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),且每个事件的出现是等可能的,因此属 于古典概型,两数之一是 2 的概率为 p=36=12.
1.列出随机试验的所有基本事件,进而求解相应事件概 率.
2.判断是否为古典概型关键是看试验是否同时具备古典 概型的两个特征.
下列概率模型中,是古典概型的个数为( )
(1)从区间[1,10]内任取一个数,求取到 1 的概率;
(2)从[1,10]中任意取一个整数,求取到 1 的概率;
(3)在一个正方形 ABCD 内画一点 P,求 P 刚好与点 A 重
合的概率;
(4)向上抛掷一枚不均匀的硬币,求出现反面朝上的概率.
A.1
B.2
(2)“取出的两球上的数字之和是 6”包含的基本事件有 (1,5),(3,3),(5,1)三个.
1.本题中的基本事件是“有放回地取两次球”,每个事 件也称一个试验结果,表达每种结果时,可依据有无顺序选 用符号“{ }”或“( )”.本题中由于是有放回摸出 2 只球,有先后顺序,故宜用“( )”表示每个基本事件,如 (a,b)和(b,a)是两个结果.
3.情感、态度与价值观 树立从具体到抽象、从特殊到一般的辩证唯物主义观点, 培养学生用随机的观点来理性的理解世界,使得学生在体会 概率意义的同时,感受与他人合作的重要性以及初步形成实 事求是地科学态度和锲而不舍的求学精神.鼓励学生通过观 察类比提高发现问题、分析问题、解决问题的能力,增强学 生数学思维情趣,形成学习数学知识的积极态度.

2.1古典概型的特征和概率计算公式

2.1古典概型的特征和概率计算公式
它们都是随机事件,我们把这类随机事件称为基本事件.
基本事件: 在一次试验中可能出现的每一个基本结果称为基本事件。
基本事件有什么特点:
1点
2点
3点
4点 5点
6点
问题(:1)在一次试验中,会同时出现 “1点” 与 “2点” 吗?
不会
任何两个基本事件是不可能同时发生的
(2)事件“出现偶数点”包含哪几个基本事件?
这下可把他们难住了。问这时应如何分这100个金币才能使 两赌徒都心服口服?
创设情境:
因为没有赌完,所以各自拿回自己的50金币,但梅累 不同意,他认为自己已经多赢一局,应多拿。
因为梅累多赢一局,所以全归梅累,但对方肯定不服,对方说 再赌下去也许他会连扳两局呢!
按赢的比例分配,按比例最合乎人们的心理习惯,所以 梅累拿三分之二,对方拿三分之一。
2
(2,1) (2,2)(2,3) (2,4)(2,5) (2,6)
3
(3,1)(3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4)(4,5) (4,6)
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
判断下列试验是不是古典概型
探究4: 向一个圆面内随机地投射一个点,如果该点落在圆内
任意一点都是等可能的,你认为这是古典概型吗?为 什么?
有限性
等可能性
探究5: 某同学随机地向一靶心进行射击,这一试验的结果有:
“命中10环”、“命中9环”、“命中8环”、“命中
7环”、“命中6环”、“命中5环”和“不中环”。

古典概型的概率计算例题和知识点总结

古典概型的概率计算例题和知识点总结

古典概型的概率计算例题和知识点总结在概率论中,古典概型是一个基础且重要的概念。

理解古典概型的概率计算方法对于解决许多概率问题至关重要。

下面我们将通过一些具体的例题来深入探讨古典概型的概率计算,并对相关知识点进行总结。

一、古典概型的定义和特点古典概型是指试验中所有可能的结果是有限的,并且每个结果出现的可能性相等的概率模型。

其特点主要有以下几点:1、有限性:试验的可能结果只有有限个。

2、等可能性:每个可能结果出现的概率相等。

二、古典概型的概率计算公式如果一个试验有\(n\)个等可能的结果,事件\(A\)包含其中的\(m\)个结果,那么事件\(A\)发生的概率\(P(A) =\frac{m}{n}\)三、例题解析例 1:一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

解:总共有\(5 + 3 = 8\)个球,取出红球的结果有 5 种,所以取出红球的概率\(P(取出红球) =\frac{5}{8}\)例 2:从 1、2、3、4、5 这五个数字中任意抽取一个数字,求抽到奇数的概率。

解:总共有 5 个数字,其中奇数有 1、3、5 共 3 个,所以抽到奇数的概率\(P(抽到奇数) =\frac{3}{5}\)例 3:同时掷两个骰子,求点数之和为 7 的概率。

解:掷两个骰子,总的结果数为\(6×6 = 36\)种。

点数之和为 7 的情况有\((1,6)\)、\((2,5)\)、\((3,4)\)、\((4,3)\)、\((5,2)\)、\((6,1)\),共 6 种。

所以点数之和为 7 的概率\(P(点数之和为 7) =\frac{6}{36} =\frac{1}{6}\)例 4:有 10 件产品,其中 3 件次品,7 件正品。

从中不放回地抽取2 件,求两件都是正品的概率。

解:第一次抽取正品的概率为\(\frac{7}{10}\),第二次在剩下的 9 件产品中抽取正品的概率为\(\frac{6}{9}\)。

古典概型

古典概型

2009------2010学年高一数学必修3导学案使用时间2010. 4. 编制人:阮雪剑张春鑫审核人:领导签字:班级:小组:姓名:组内评价:教师评价:三、2.1古典概型的特征和概率计算公式【重点】古典概型的特征及概率计算公式【难点】准确确定基本事件的个数n及随机事件包含的基本事件个数m一、学习目标:1、理解古典概型的特征及概率计算公式2、会用列举法计算一些随机事件所包含的基本事件数及事件发生的概率二、问题导学:(阅读课本134—137页回答下列问题)1.理论上,我们可以______________________得到某个事件发生的______,进而来估计其发生的__________,但是这种方法不具有实际操作性,并且对于某一类特殊的随机试验,我们可以用更简单快捷的方法计算其发生的概率,这就是古典概率模型古典概型:我们把具有下列两个特征的随机试验的数学模型称为古典概型:(1)试验的所有可能结果只有,每次试验只出现其中的一个结果;(2)在一次试验中,每一个试验结果出现的可能性。

根据古典概型的两个特征,回答课本135页的思考交流:(1)_______________________________________________________________(2)______________________________________________________________________2、基本事件的概念基本事件是指在一次试验中所有可能发生的基本结果中的一个,它是试验中不能再分的最简单的随机事件,它具有以下特点:(1)在一次试验中,任何两个基本事件不可能同时发生;(2)任何事件(不可能事件除外)都可以表示成基本事件的和。

3、古典概型的概率公式古典概型中某一事件A是由几个基本事件组成,如果试验的所有可能结果数(基本事件总数)为n,随机事件A包含的基本事件数为m,则事件A的概率规定为:P(A)=注意:(1)根据公式计算概率时,关键是求出n,m的值。

第1部分 第三章 § 2 2.1 古典概型的特征和概率计算公式

第1部分 第三章 § 2  2.1  古典概型的特征和概率计算公式
(1,4,6),(1,5,6),(2,4,5),(2,4,6),(2,5,6),(3,5,6所选3人都是男生的情况有 (1,2,3),(1,2,4),(1,3,4),(2,3,4)共4种方法, 4 1 故所选3人都是男生的概率为 = . 20 5 (2)所选3人中恰好有1名女生的情况共有12种: (1,2,5),(1,2,6),(2,3,5),(2,3,6),(3,4,5),(3,4,6),(1,3,5), (1,3,6),(1,4,5),(1,4,6),(2,4,5),(2,4,6) 12 3 故所选3人恰有1名女生的概率为 = . 20 5
返回
解:(1)1,2,3,4,5,6. (2)①事件 A 为 2,4,6;②事件 B 为 4,5,6;③事件 C 为 1,2;④ 事件 D 为 2,3,5. 3 1 3 1 2 1 (3)是古典概型,其中 P(A)= = ;P(B)= = ;P(C)= = ; 6 2 6 2 6 3 3 1 P(D)= = . 6 2
下列概率模型是古典概型吗?为什么?
(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率;
(2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;
(3)从1,2,3,…,100这100个整数中任意取出一个整数, 求取到偶数的概率. [思路点拨] 根据直观印象判断两个试验的基本事件数
是否有限,每个基本事件是否等可能发生即可.
返回
1.学好古典概型应抓住以下三点:
(1)对于每次随机试验来说,只可能出现有限个不同的 试验结果; (2)对于这有限个不同的结果,它们出现的可能性是相 等的; (3)求事件的概率可以通过大量重复试验,而只要通过 一次试验中出现的结果进行分析计算即可.
返回
2.求古典概型概率的计算步骤: (1)求出基本事件的总个数n (2)求出事件A包含的基本事件的个数m; (3)求出事件A的概率P(A)= 事件A所包含的基本事件数 m =n. 试验的基本事件总数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.2.1 古典概型学案
学习目标:(1)理解古典概型及其概率计算公式;
(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

学习重点:理解古典概型的概念及利用古典概型求解随机事件的概率.
学习难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含 的基本事件的个数和试验中基本事件的总数.
学习过程:
一.复习旧知
1.什么是随机事件?
2.什么是互斥事件?
当事件A 、B 互斥时:___________)(=B A P Y ;
3.概率是怎样定义的?
一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可 以将事件A 发生的频率()n f A 作为事件A 发生的概率的近似值,___)()(=≈A f A P n
二.预习课本P125-128,并回答以下问题:
1.试验一:掷一枚质地均匀的硬币一次,观察可能出现几种结果?
试验二:掷一颗均匀的骰子一次,观察可能出现几种结果?
我们把试验中可能出现的每一个随机事件称为__________.
2.问题:(1)在一次试验中,会同时出现 “1点” 与 “2点” 这两个基本事件吗?
(2)事件“出现偶数点”包含哪几个基本事件?事件“出现的点数不大于4”呢? 从以上两个问题归纳出基本事件的特点:
(1)任何两个基本事件都是_________;
(2)任何事件(除不可能事件)都可以表示成_________________.
3. 从a ,b,c,d 中任意取出两个不同字母的实验中,有几个基本事件?分别是什么?
三.新课探究
1.古典概型
问题:试验一、二中每个基本事件出现的可能性是多大?
观察对比,发现上述两个试验的共同特点:
(1)试验中所有可能出现的基本事件只有___________;
(2)每个基本事件出现的可能性___________________.
我们将具有这两个特点的概率模型称为_______________.
例:判断下列是否为古典概型?为什么?
(1)同时抛掷两枚质地均匀的硬币;
(2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:
命中10环、命中9环……命中5环和不中环。

【归纳总结】
2.古典概型的概率
在上面的掷骰子的试验中,事件A “出现偶数点”发生的概率是多少?
归纳总结:对于古典概型,事件A发生的概率P(A)=_______________________.
古典概型的解题步骤:
四.精讲精练
例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。

如果考生掌握了考察的内容,他可以选择唯一正确的答案。

假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
思考:(1)假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定知识的可能性大?
(2)不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,不定项选择题更难猜对,这是为什么?
例3:同时掷两个骰子,计算向上的点数之和是5的概率是多少?
四.自测自评
1.若书架上放有中文书五本,英文书三本,数学书两本,则抽出一本英.文.书.的概率为()
A.1
5
B.
3
10
C.
2
5
D.
1
2
2.有100张卡片(从1号到10号),从中任取一张,取到的卡号是7.的倍数
...的概率为()
A.7
50
B.
7
100
C.
7
48
D.
15
100
3.从含有两件正品A,B和一件次品C的3件产品中每次任取一件,每次取出后放回,连续取两次,求取出的两件产品中恰有一件次品
......的概率?
五.课堂小结
今天你学到了什么?
六.课后作业
必做题:课本134页A组第4题;选做题课本134页B组第1题。

相关文档
最新文档