线性代数 第二章

合集下载

线性代数第二章方阵的行列式

线性代数第二章方阵的行列式
习题2.2(B) 第1(1)(3)题
2 n阶行列式的性质
本节教学内容
行列式按一行(列)展开定理
Laplace定理
3 展开定理与行列式的计算
3 展开定理与行列式的计算
行列式按一行(列)展开定理 三阶行列式的一个计算公式 Mij称为aij的余子式 Aij称为aij的代数余子式
3 展开定理与行列式的计算
线性代数 第二章
本章教学内容
1 n阶行列式的定义
2 方阵行列式的性质
3 展开定理与行列式的计算
第二章 方阵的行列式
1 n阶行列式的定义
1.排列与逆序数 定义 由1,2,…,n按任何一种次序排成的有序数 组i1 i2… in称为一个n级排列,简称排列. 例 3级排列:123,132,213,231,312,321,共6个 性质 不同的n级排列共n!个. 排列123,从小到大排,全顺; 排列132,3>2,但3排在2之前,即32是一个逆序 定义 在一个排列i1 i2… in中,若it> is中,但it排在 is之前,则称it与is组成一个逆序.i1 i2… in中所有逆 序的总数称为此排列的逆序数, 记为(i1 i2… in).
2 n阶行列式的性质
例 =0 2r1+r2
2 n阶行列式的性质
性质2.5 即
2 n阶行列式的性质
或 证 由性质2.1及推论2.3得到.
2 n阶行列式的性质
例1
2 n阶行列式的性质
例2
2 n阶行列式的性质
例3 计算行列式 解
2 n阶行列式的性质
2.方阵行列式的性质 定理2.1 设A,B为n阶方阵,为常数,m为正整 数,则 ⑴ A=nA ; ⑵ AB=AB ; ⑶ Am=Am . 注① 一般的A+B≠A+B ; ② 虽然AB≠BA,但AB=BA ; ⑶由⑵推得,下证⑴ ⑵

线性代数第二章

线性代数第二章
其中,
s
cij ai1b1 j ai2b2 j aisbsj aikbkj (i 1,2 , ,m ;j 1,2 , ,n) .
k 1
注:(1)只有当左边矩阵的列数等于右边矩阵的行数时,两个矩阵才能相乘,否则 AB
没有意义.
(2)矩阵 C 中元素 cij 等于左矩阵 A 的第 i 行与右矩阵 B 的第 j 列对应元素乘积之和.
(3)矩阵加减法与矩阵数乘统称为矩阵的线性运算.
2.2.2 数与矩阵相乘
矩阵数乘的性质
(1)分配律: k( A B) kA kB,(k l)A kA lA ; (2)结合律: (kl) A k(lA) ; (3)1A A,0A O .
2.2.2 数与矩阵相乘
例题
3 1 2
7 5 4
a11 a12
a21
a22
am1 am2
a1n a11 a12
a2n

a21
a22
amn
am1
am 2
a1n
a2n

amn
称为 m 行 n 列矩阵,简称 m n 矩阵.通常用大写字母 A,B ,C , 表示矩阵, aij 表示
矩阵中第 i 行、第 j 列的元素,一个 m n 矩阵可以简记为 A=Am×n=(aij) m×n
a11
只有一列的矩阵
A
a21
称为列矩阵或列向量。
am1
注:列矩阵也可记为 A a11 ,a12 , ,a1n 。
2.1.2 几种特殊形式的矩阵
3.零矩阵
所有元素全为零的矩阵称为零矩阵, m n 零矩阵记为 Omn 或简记为 O . 4.方阵
对于矩阵 Amn ,当 m n 时,称为 n 阶方阵,记作 Ann 或 An ,即

线性代数-第2章

线性代数-第2章

第2章对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。

矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。

任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。

通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。

考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。

总而言之,初等变换不会改变矩阵的秩。

因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。

矩阵的秩,同时又可定义为不为零的子式的最高阶数。

满秩矩阵的行列式不等于零。

非满秩矩阵的行列式必为零。

既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。

另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r<n,有无穷多解。

齐次线性方程组的解的结构问题,可以用基础解系来表示。

当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。

通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。

非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。

在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。

矩阵的加法和数乘,与向量的运算类同。

矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。

即可以把一个矩阵看作是一种线性变换在数学上的表述。

矩阵的乘法,反映的是线性变换的叠加。

如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。

线性代数课件第2章矩阵

线性代数课件第2章矩阵

于乘法中的数1. 课件
20
定义5 方阵 A 的 n 次幂定义为 n 个方阵 A 连
乘,即
6 47n个48
An A AL A
其中 n 为正整数,规定 A0 E ,其运算规律:
(1)AkAl Akl ;
(2)(Ak)l Akl (k,l为正整数) .
因为矩阵乘法不满足交换律,所以两个 n 阶方
数,记 A ( a ij ) , A 称为 A的共轭矩阵.
其运算规律(设 A,B为复矩阵,为复数,且
运算都是可行的):
(1) ABAB; (2) AA ;
(3) ABAB.
课件
27
2.3 逆矩阵
课件
28
2.3.1 逆矩阵的定义及性质
定义9 设 A 为 n 阶方阵,若存在 n 阶方阵 B ,
课件
23
所以
0 17
( A B )T
1
4
1
3
3 1 0
解法2 (AB)TBTAT
1 4 2 2 1 0 17 7 2 0 0 314 13
1 3 11 2 3 10
课件
24
定义7 设 A为 n阶方阵,若满足 AT A ,则
称 A为对称矩阵,即 ai jaji(i,j1 ,2,,n)
a21
b21
M
a12 b12 L a22 b22 L
M
am1
bm1
am2 bm2
L
a1n b1n
a2n
b2n
M
amn
bmn
= (aij + bij ) 课件
10
例1 设
A
3 1
0 4
75,

线性代数第二章矩阵及其运算2-3PPT课件

线性代数第二章矩阵及其运算2-3PPT课件
例如,设实数k=2,矩阵A=[1 2; 3 4],则kA=[2 4; 6 8]。
CHAPTER 02
矩阵的乘法
矩阵乘法的定义
01
矩阵乘法是将两个矩阵对应位置的元素相乘,得到一个新的矩 阵。
02
矩阵乘法的结果是一个矩阵,其行数等于左矩阵的行数,列数
等于右矩阵的列数。
矩阵乘法的操作顺序是先进行行操作,再进行列操作。
CHAPTER 05
矩阵的秩
秩的定义
秩的定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
秩的Байду номын сангаас质
矩阵的秩是唯一的,且其值满足 特定的性质,如对于任何矩阵A, r(A)≤min(m,n),其中m和n分别 为矩阵A的行数和列数。
秩的计算方法
可以通过多种方法计算矩阵的秩, 如高斯消元法、行变换法、初等 行变换法等。
线性代数第二章矩阵及 其运算2-3ppt课件
CONTENTS 目录
• 矩阵的加法与数乘 • 矩阵的乘法 • 逆矩阵与伴随矩阵 • 矩阵的行列式 • 矩阵的秩 • 矩阵的应用
CHAPTER 01
矩阵的加法与数乘
矩阵的加法
矩阵加法定义
两个矩阵A和B的和记作A+B,定义 为满足以下条件的矩阵C,即C的元 素Cij=Aij+Bij(i,j=1,2,…,n)。
03
矩阵乘法的性质
1 2
结合律
$(AB)C=A(BC)$,即矩阵乘法满足结合律。
分配律
$A(B+C)=AB+AC$,即矩阵乘法满足分配律。
3
单位元
存在一个单位矩阵,使得任意矩阵与单位矩阵相 乘都等于原矩阵。

线性代数第2章矩阵PPT课件

线性代数第2章矩阵PPT课件
线性代数第2章矩阵ppt 课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。

《线性代数》课件-第二章 矩阵及其运算

《线性代数》课件-第二章 矩阵及其运算

a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:

线性代数课件第二章第四节n阶矩阵乘积的行列式

线性代数课件第二章第四节n阶矩阵乘积的行列式
02
计算行列式$|begin{matrix} 4 & -1 & 2 1 & 3 & 1 0 & -2 & 4 end{matrix}|$的值。
03
计算行列式$|begin{matrix} 3 & -2 & 1 1 & 0 & 1 -1 & 3 & 2 end{matrix}|$的值。
解答
步骤一
按照行列式的展开法则,将第一行第二列的 元素$-5$与第二行第一列的元素$1$相乘, 并加上第二行第二列的元素$3$与第三行第 一列的元素$-1$相乘,得到$-5 times 1 + (-5) times (-1) = -5 + 5 = 0$。
分块法
将高阶行列式分块处理,利用分块后 的子块性质简化计算。
递推法
利用递推关系式,将高阶行列式转化 为低阶行列式计算,从而简化计算。
03
n阶矩阵乘积的行列式的 应用
在线性方程组中的应用
求解系数矩阵的行列式
在求解线性方程组时,可以通过计算系数矩阵的行列式来判断方程组是否有解,以及解的情况。如果 系数矩阵的行列式不为零,则方程组有唯一解;如果行列式为零,则方程组可能有无穷多解或无解。
,得到$-1 times (-1) + (-3) times (-2) = 1 + 6 = 7$。
步骤二:将第三行第二列的 元素$-6$与第一行第一列的
元素$-3$相乘,得到$-6 times -3 = 18$。
04
步骤三
感谢您的观看
THANKS
解答
步骤六
将第二行第三列的元素$-1$与第三行第一列的元素$2$相乘,得到$-1 times (-2) = 2$。

《线性代数》课件-第2章方阵的行列式

《线性代数》课件-第2章方阵的行列式
教学重点:方阵行列式的性质及展开定理,计算典型 的行列式的各种方法.
教学难点:n阶行列式的计算,拉普拉斯定理的应用.
教学时间:6学时.
§1 n 阶行列式的定义
设n阶方阵A=(aij),称
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
为方阵A 的行列式,记为| A |或det A .
1.1 n 阶行列式的引出
于是D中可能不为0的均布项可以记为
a a a b b . 1p1 1p2
mpm 1q1
nqn
这里,pi=ri,qi=rm+i-m,设l为排列p1p2 …pm(m+q1) …(m+qn)的 逆序数。以t,s分别表示排列p1p2 …pm及q1q2 …qn的逆序数,
应有l= t+s,于是
D
(1)l a1p1 a2 p2 a b b mpm 1q1 2q2 bnqn
b2
a2n , j 1, 2, , n.
an1
bn
ann
提出三个问题
(1)D=?(怎么算)?
(2)当D≠0时,方程组是否有唯一解?
(3)若D≠0时,方程组有唯一解,解的形式 是否是
xj
Dj D
,
j 1,2,
, n.
1.2 全排列及其逆序数
1、全排列 用1,2,3三个数字可以排6个不重复三位数即:
第二章 方阵的行列式
行列式是一种常用的数学工具,也是代数学中必不可 少的基本概念,在数学和其他应用科学以及工程技术中有 着广泛的应用。本章主要介绍行列式的概念、性质和计 算方法。
教学目的:通过本章的教学使学生了解行列式的概念, 掌握行列式的性质,会计算各种类型的行列式.

线性代数第二章行列式展开

线性代数第二章行列式展开

0
3 4 0 0 0 2
2 14 1 1 1 28
3 4 1 1
1 1
1 1 1
四、伴随矩阵 1、定义 行列式 A 的各个元素的代数余子式 Aij 所 构成矩阵的转置.
A21 An1 A22 An 2 A2 n Ann 称为矩阵 A的伴随矩阵. 2、运算规律
同理 a1i A1 j a2i A2 j ani Anj 0, (i j ).
命题得证
关于代数余子式的重要性质
D ,当 i j , aki Akj D ij 0 ,当 i j; k 1
n
D ,当 i j , aik Ajk D ij 0 ,当 i j; k 1
A (假定所有运算合法, B 是矩阵, R )
A11 A A 12 A1n
(1) A
A
T T

(2) AB B A

AA a11 证明 a AA 21 a n1
性质

A A A E. a12 a1n A11 a22 a2 n A12 an 2 ann A1n
解:原式

0 0 0 1
9 10 2 4
9
1
2
9
1
2
10 11 1 109 0 23 按第 列展开 1 2 5 3 43 0 7

109 23 monde)行列式
1 x1 2 Dn x1
n x1 1
1 x2 2 x2

1 xn 2 xn
n n x2 1 xn 1

线性代数-第二章-向量和向量空间

线性代数-第二章-向量和向量空间

n维单 位坐标 向量组
所以,称 是 1, 2 , 3 ,4 的线性组合, 或 可以由 1, 2 , 3 ,4线性表示。
命题2 设向量可由向量组(I) :1,2,,m
线性表出,而(I)中每个向量都可以由向量组
(II) : 1, 2,, s线性表出, 那么也可由向量组
(II)线性表出 给出证明
二 线性相关
当 r( A) r n 时,求得基础解系是1 ,2 , ,nr , 则 x k11 k22 knr nr 是AX 0 的解,
称为通解。
4. 解的结构
AX 0 的通解是 x k11 k22 knr nr
例3 : 求下列齐次方程组的通解。
(1)
x1 2 x1
2 x2 4 x2
分量全为复数的向量称为复向量.
以后我们用小写希腊字母 , , 来代表向量。
例如:
(1,2,3,, n)
(1 2i,2 3i,,n (n 1)i)
第2个分量 第1个分量
第n个分量
n维实向量 n维复向量
向量通常写成一行: a1,a2 , ,an 称为行向量。
有时也写成一列:
a1
xr1 1 0
,nr
是令
xr2

0
,
1
,
xn
0
0
0
,
0
所得。
1
Ax 0 的通解是 x k11 k22 knr nr
注:
(1) 证明过程提供了一种求解空间基(基础 解系)的方法。
(2) 基(基础解系)不是唯一的。
(3) 当 r( A) n 时,解空间是{0}.
(2) s t
则向量组 1,2 , , s 必线性相关。

线性代数第二章,矩阵及其运算

线性代数第二章,矩阵及其运算

a1n b1
a2n
b2
L L
amn bm
§2 矩阵的运算
一、加法
设 A (ai j )mn , B (bi j )mn 都是m n 矩阵,则加法定义为
a11 b11
A
B
a21
b21
L
a12 b12 L a22 b22 L
LL
am1 bm1 am2 bm2 L
显然,
AB B A
a22
L
L L L
am1 am2 L
a1n
a11 a21 L
a2n
,记
AT
a12
a22
L
L
L L L
amn
a1n an2 L
则称
AT
A

的转置矩阵。
am1
am 2
L
amn
显然,
① ( AT )T A ,② ( A B)T AT BT ,③( A)T AT ,④( AB)T BT AT
2. 即使 Amn , Bnm ,则Amn Bnm 是m 阶方阵,而Bnm Amn 是n 阶方阵;
3. 如 果 A , B
都 是n






2
A
1
4
2

B
2
3
4
6
,则
16
AB
8
32 16
,而BA
0 0
0
0

AB BA
综上所述,一般
(即矩阵乘法不满足交换率)。
但是下列性质显然成立:
三、乘法
乘法运算比较复杂,首先看一个例子
设变量t1, t2 到变量 x1, x2 , x3 的线性变换为

线性代数第二章

线性代数第二章

例3
1 11 2 0 4 1 设 A 11 4 56 2 1 5
例4
1 1 2 参 数 ____ 时, 矩 阵 2 1 5 的 秩 最 小 1 10 6 1
例3
1 11 2 2 0 4 1 1 设 A , 求 rA 11 4 56 5 2 1 5 6
1 1 1 例4 令A 1 1 0 1 1 1 1 1 0 1 1 1 2 0 2 1 1 解:A 0 0 0 3 0 2 1 4 1 1 1 2 0 2 1 1 0 0 0 3 0 0 0 0
说 明
(5)n阶矩阵A为满秩矩阵 A可逆 |A 0 | (6)n阶矩阵A为降秩矩阵 rA n |A 0 |
2.矩阵秩的求法 定理 矩阵经初等变换后秩不变 推论1 注: 推论2 若A ≌ B , 则 rA= rB 若rA= rB , A 与B不一定等价
若A 、B是同阶矩阵, 则A ≌ B当且仅当rA= rB
1 A 4 2 2 5 0 3 6 1 4 0 8 1 三阶子式: 4 2 2 5 0 4 0 8
说 明

定义
若在m×n矩阵A中 有一个r阶子式不为0, 而所有r +1阶子式全为0, 则称数r为A的秩. 记为rank(A)=r 或 rA = r
rA=m, 则称A为行满秩矩阵;
五. 矩 阵 的 秩

1. 概念

2.矩阵秩的求法
1. 概念
定义 设A=(aij)m×n , 任取k行k列,1≤k ≤min{m, n}, 位于 这些行列交点处的k2 个元素, 按其在A中原相对 位置构成的k阶行列式称为A的k阶行列式 (1) aij即为A的1阶子式 (2)n阶矩阵A, 其行列式|A|是A的唯一的n阶子式

线性代数第二章矩阵及其运算

线性代数第二章矩阵及其运算

线性代数第二章矩阵及其运算$1.矩阵定义1 由m*n个数a_{ij}(i=1,2,3...,n)排成的m行n列的数表称为m行n列矩阵,简称mn矩阵。

为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示,记作这mn个数称为矩阵A的元素,简称为元,数位于矩阵A的第i行第j列,称为矩阵A的(i,j)元。

以数. 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵,本书中的矩阵除特别说明者外,都指实矩阵。

行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

n阶矩阵A也记作An。

只有一行的矩阵 . 只有一列的矩阵称为列矩阵,又称列向量。

两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵。

如果那么就称矩阵A与矩阵B相等,记作 A=B 元素都为零的矩阵称为零矩阵,记作O。

注意不同型的零矩阵是不同的。

矩阵的应用非常广泛,下面仅举几例。

例1工厂三个商店发送四种产品的数量可列成矩阵其中这四种产品的单价及单件重量也可列成矩阵其中。

例2一般的,若干个点之间的单向通道都可以用这样的矩阵表示。

例3n个变量x_1,x_2,...,x_n与m个变量y_1,y_2,...,y_m之间的关系式表示一个从变量给定了线性变换(2),它的系数所构成的矩阵(称为系数矩阵)也就确定。

反之,如果给出一个矩阵作为线性变换的系数矩阵,则线性变换也就确定。

在这个意义上,线性变换和矩阵之间存在着一一对应的关系。

例如线性变换叫做恒等变换,它对应的一个n阶方阵叫做n阶单位矩阵,简称单位阵。

这个方阵的特点是:从左上角到右下角的直线(叫做(主)对角线上的元素都是1,其他元素都是0.即单位阵E的(i,j)元为)又如线性变换对应n阶方阵这个方阵的特点是:不在对角线上的元素都是0.这种方阵为对角矩阵,简称对角阵。

对角阵也记作$2.矩阵的运算一、矩阵的加法定义2 设有两个m*n矩阵A=(a_{ij})和B={b_{ij}},那么矩阵A和B的和记作A+B,规定为应该注意,只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。

线性代数知识点总结第二章

线性代数知识点总结第二章

线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a 称为m 行n 列矩阵;简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元;说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵; 扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A ; 记作:A n; 行列矩阵:只有一行列的矩阵;也称行列向量; 同型矩阵:两矩阵的行数相等,列数也相等; 相等矩阵:AB 同型,且对应元素相等;记作:A =B 零矩阵:元素都是零的矩阵不同型的零矩阵不同 对角阵:不在主对角线上的元素都是零;单位阵:主对角线上元素都是1,其它元素都是0,记作:E n 不引起混淆时,也可表示为E 课本P29—P31注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同;第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算;课本P33 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-;课本P33数与矩阵相乘,A A A λλλ数与矩阵的乘积记作或规定为111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律设A B 、为m n ⨯矩阵,,λμ为数()()()1A A λμλμ=; ()()2A A A λμλμ+=+;()()3A B A B λλλ+=+;课本P33矩阵相加与数乘矩阵统称为矩阵的线性运算;矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,那么规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫ ⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1;A 与B 能相乘的条件是:A 的列数=B 的行数;2;矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵;3;对于n 阶方阵A 和B,若AB=BA,则称A 与B 是可交换的;矩阵乘法的运算规律()()()1AB C A BC =;()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯== ()5若A 是n 阶方阵,则称 A k 为A 的k 次幂,即kk A A AA =个,并且m k m k A A A +=,()km mk A A =(),m k 为正整数;规定:A 0=E注意 矩阵不满足交换律,即AB BA ≠,()kk k AB A B ≠但也有例外课本P36纯量阵 矩阵0E 0λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为纯量阵,作用是将图形放大λ倍;且有()(E)E A A A λλλ==,A 为n 阶方阵时,有()(E )n n n n n E A A A λλλ==,表明纯量阵与任何同阶方阵都是可交换的;课本P36 转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T ,如122458A ⎛⎫= ⎪⎝⎭,142528T A ⎛⎫⎪= ⎪ ⎪⎝⎭; 转置矩阵的运算性质()()1TT AA =;()()2TT T A B A B +=+;()()3TT A A λλ=;()()4TT T AB B A =;课本P39方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A 或注意矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n 阶行列式则是这些数按一定的运算法则所确定的一个数; 运算性质()1T A A =;()2nA A λλ=;(3)AB A B B A BA ===课本P40对称阵 设A 为n 阶方阵,如果满足A =A T ,即(),1,2,,ij jia a i j n ==那么A 称为对称阵;说明对称阵的元素以主对角线为对称轴对应相等,如果TA A =-则称矩阵A 为反对称的;即反对称矩阵A =a ij 中的元素满足a ij =-a ji ,i ,j =1,2,…n 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵; 性质 AA A A A E **==易忘知识点课本P总结1只有当两个矩阵是同型矩阵时,才能进行加法运算;2只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律;3矩阵的数乘运算与行列式的数乘运算不同;第三节 逆矩阵定义对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得AB =BA =E 则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵;1A A -的逆矩阵记作,1A B -=即;说明1 A ,B 互为逆阵, A = B -12 只对方阵定义逆阵;3.若A 是可逆矩阵,则A 的逆矩阵是唯一的;定理1 矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=重要证明见课本P奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A 称为非奇异矩阵;即0A A A ⇔⇔≠可逆为非奇异矩阵;推论若(A=E)AB E =或B ,则1B A -=证明见课本P求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。

线性代数第二章 n维向量

线性代数第二章 n维向量

第二章 n维列向量
§2.2 向量组的秩和线性相关性
例4. 设有两个向量组 I: α1=[1, 1], α2=[1, −1], α3=[2, 1], II: β1= [1, 0], β2= [1, 2]. 1 β + 1β , α = 3 β − 1β , 则 α 1= 2 1 2 2 2 2 1 2 2 3 β + 1β , α3= 2 1 2 2 即I可以由II线性表示. 可以由II线性表示 线性表示. 1 α + 1 α +0α , β = 3 α − 1 α +0α , β1= 2 1 2 2 2 2 1 2 2 3 3 II可以由 线性表示. 可以由I 即II可以由I线性表示. 故向量组I II等价 等价. 故向量组I与II等价.
β2 = α2 + 2α3, β3 = α3 + 2α1.
证明: 证明: β1, β2, β3线性无关. 线性无关.
第二章 n维列向量
§2.2 向量组的秩和线性相关性
二. 向量组之间的关系 1. 给定两个向量组 A: α1, α2, …, αr B: β1, β2, …, βs 若B组中的每个向量都能由A组中的向 组中的每个向量都能由A 量线性表示, 则称向量组B 量线性表示, 则称向量组B能由向量组 A线性表示. 线性表示. 2 , 3 1 , 0 能由 例如: 例如: 线性表示, 线性表示, 0 0 0 1 1 , 0 2 , 3 不能由 但 线性表示. 线性表示. 0 1 0 0
第二章 n维列向量
§2.1 n维向量及其运算
例1. n维基本单位向量组
ε1 =
1 0 … … 0
, ε2 =
0 1 … … 0
, …, εn =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果A (a ij )与B (b ij )是同型矩阵, 并且它 们的对应元素相等, 即 a ij b ij ( i 1,2, , m; j 1,2, , n). 那么就称矩阵A与矩阵B相等, 记作A B .
4 零矩阵 单位矩阵
元素都是零的矩阵称为零矩阵, 记作O .
主对角线上的元素都是1, 其余元素都是零的 n阶方阵, 叫做n阶单位阵, 简记作E .

二、基本内容
1 矩阵的定义
由m n个数 a ij ( i 1,2, m; j 1,2, n)排成m 行n列的数表 a 11 a 12 a 1n a 21 a 22 a 2 n A a m 1 a m 2 a mn 叫做m 行n列矩阵, 简称m n矩阵.
14 初等矩阵
由单位矩阵 E 经过一次初等变换得到的矩阵称 为初等矩阵. 三种初等变换对应着三种初等矩阵.
初等变换和初等矩阵的关系
kri Amn Em i (k ) Amn (左边乘) ri kr j Amn Em i , j (k ) Amn ci c j Amn En (i , j ) Amn kci A Amn En i (k ) mn 右边乘 c j kci Amn A E i , j ( k ) m n n
5 矩阵相加
设A (a ij ) m n , B (b ij ) m n 为两个同型矩阵 , 矩阵加法定义为 A B (a ij b ij ) m n , A B称为 A与B的和. 交换律 A B B A 结合律 ( A B ) C A ( B C )
r i k (c i k )
r i k r j (c i k c j )
13 矩阵的等价
如果矩阵A经有限次初等变换变成 矩阵B , 就 称矩阵A与B等价, 记作A ~ B .
反身性
对称性
A ~ A;
若A ~ B, 则B ~ A; 若A ~ B, B ~ C , 则A ~ C .
传递性
伴随矩阵具有重要性质 : A A A A A E .
A A
*
n1
10 逆矩阵
定义 设A为n阶方阵, 如果存在矩阵 B , 使
AB BA E 则称矩阵A是可逆的(或非奇异的、非退化的 、满 秩的), 且矩阵B称为A的逆矩阵.
若A有逆矩阵, 则A的逆矩阵是唯一的, A的逆 矩阵记作 A 1 .

3.理解逆矩阵的概念,掌握逆矩阵的性质以 及矩阵可逆的充分必要条件,理解伴随矩 阵的概念,会用伴随矩阵求逆矩阵。 4.了解矩阵的初等变换和初等矩阵及矩阵等 价的概念,理解矩阵秩的概念,会用初等 变换求逆矩阵和一般矩阵的秩。 5.了解分块矩阵的概念,掌握分块矩阵的运 算法则,特别要掌握分块矩阵的理论应用。
一般地
( AB) Ak B k .
方阵的行列式
由n阶方阵A的元素所构成的行列式 , 叫做方 阵A的行列式, 记作 A 或 det A.
运算规律
设为数, A, B为n阶方阵, 则
A n A ;
AB A B .
9 一些特殊的矩阵
转置矩阵
把矩阵A的行换成同序数的列得 到一个新矩 阵, 叫做A的转置矩阵, 记作 AT .
对应的元素上去, 记作 r i k r j (c i k c j ).
三种初等变换都是可逆的,且其逆变换是 同一类型的初等变换.



换 逆


r i r j (c i c j )
r i r j (c i c j )
1 1 r i (c i ) k k r i ( k ) r j (c i ( k ) c j )
( A B ) A B .
7 矩阵相乘
设A (a ij )m s , B (b ij ) s n , 规定A与B的乘积 是一个m n矩阵C (c ij )m n , 其中 c ij a i 1 b1 j a i 2 b 2 j a is b sj a ik b kj
k 1 s
( i 1,2, , m; j 1,2, n), 记作 C AB.
运算规律
( AB )C A( BC );
( AB ) (A) B A(B ), (其中为数);
A( B C ) AB AC , ( B C ) A BA CA;
16 矩阵的标准形
对行阶梯形矩阵再进行初等列变换,可得到 矩阵的标准形,其特点是:左上角是一个单位矩 阵,其余元素都为0. 例如
1 0 0 0
c 3 c4 4 c4 c1 c2 1 1 0 3 0 0 1 3 c5 4c1 3c2 3c3 0 0 0 0
设A 是一个 m n 矩阵,对 A施行一次初等行变换,相当 于在矩阵 A的左边乘以相应的 m 阶初等矩阵;对 A 施 行一次初等列变换,相当于在矩阵 A 的右边乘以相应 的 n 阶初等矩阵,即
Amn Em (i , j ) Amn
ri rj
15 行阶梯形矩阵
经过初等行变换,可把矩阵化为行阶梯形矩 阵,其特点是:可画出一条阶梯线,线的下方全 为0;每个台阶只有一行,台阶数即是非零行的 行数,阶梯线的竖线(每段竖线的长度为一行) 后面的第一个元素为非零元,也就是非零行的第 一个非零元. 1 1 2 1 4 例如 0 1 1 1 0 0 0 0 1 3 0 0 0 0 0
对(1)式,当m n时, A称为n阶方阵.
a1 a2 只有一列的矩阵 A 叫做列矩阵; am 只有一行的矩阵 A (a 1 a 2 a n )叫做 行矩阵.
3 同型矩阵和相等矩阵
两个矩阵的行数相等、列数也相等时,就称 它们是同型矩阵.
E m Amn Amn Amn E n .
8 方阵的运算
n阶方阵的幂
设A是n阶方阵, 定义
2 1 1 k 1 k 1 A , , , A A A A A A A, 1
其中k是正整数.
A A A
k l
kl
, ( A ) Akl ,
k
k l
其中k , l为正整数.
一、矩阵的运算
例1 判断下列命题是否正确:
2
1 AB 0且A 0, 那 么B 0. 2 A A, 那 么A 0或 A E. 3 A B A 2 AB B
2 2 2
4
5 A E A 1 6 A 0 A 0
( A ) A; ( A B ) AT B T ; (A) AT ;
T T
T T
( AB ) B T AT .
T
对称矩阵
设A为n阶方阵,如果 AT A, 则称A为对称矩阵.
反对称矩阵
设A为n阶方阵,如果 AT A, 则称A为反对称 矩阵. 对角矩阵 设A为n阶方阵,如果除了主对角线以外 , 其余元 素全为零 , 则称A为对角矩阵.
相关 0. A 若矩阵A可逆, 则 A 1 . A 1 1 1 1 1 ( A ) A; (A) A ( 0);
(A ) (A ) .
1
T
T 1
若同阶方阵A与B都可逆, 那么AB也可逆, 且 ( AB ) B 1 A 1 .
2
AB 0 A 0或 B 0
a b 例 2 设A , 试将f ( ) E A 写成的 c d 多项式, 并验证f ( A) 0. a b 解 f ( ) E A c d
2 (a d ) ad bc,
若A为n阶可逆矩阵, 则
(1) ( 2) ( 3) ( 4)
A的最高阶非零子式为 A ; R( A) n; A的标准形为单位矩阵 E ; A ~ E.
典 型
例 题
一、矩阵的运算
二、逆矩阵的运算及证明 三、有关矩阵A*的运算及证明 四、矩阵的分块运算
五、矩阵的秩的求法及证明
六、用初等变换法解题
1
11 分块矩阵
矩阵的分块,主要目的在于简化运算及便于 论证. 分块矩阵的运算规则与普通矩阵的运算规则 相类似.
12 初等变换的定义
换法变换
对调矩阵的两行(列), 记作 r i r j (c i c j );
倍法变换
以数k 0乘某一行(列)中的所有元素, 记作 r i k (c i k ); 消法变换 把某一行(列)所有元素的k倍加到另一行(列)
0 1 0
1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
任何一个m n矩阵, 总可以经过初等变换(行变 换和列变换 ), 化为标准形 Er O F O O mn 此标准形由m , n, r三个数完全确定, 其中r就是行阶 梯形矩阵中非零行的行 数.
第二章


湖北经济学院
一、考试要求
1.理解矩阵的概念,了解三角形矩阵、对角 矩阵、数量矩阵、单位矩阵的定义及性质,了解对 称矩阵、反对称矩阵及正交矩阵等 特殊矩阵的定义及性质。 2.掌握矩阵的线性运算,掌握矩阵的乘法及其运算 规律,掌握矩阵转置的性质,了解 方阵的幂,掌握方阵的行列式的性质及方阵 乘积行列式的性质。
2 f ( A ) A (a d ) A (ad bc) E 由此得 a 2 bc ab bd a b ac cd bc 2 (a d ) c d d 1 0 0 0 , (ad bc) 0 1 0 0 即f ( A) 0.
相关文档
最新文档