自动控制系统的基本组成及表示形式ppt
合集下载
自动控制系统概述.ppt
第四节 过渡过程和品质指标
二、控制系统的过渡过程
系统由一个平衡状态过渡到另一个平衡状态的过程。
举例
给定值 控制器 执行器
-
测量、变送
干扰
当干扰作用于对象,系
被控变量 统输出y发生变化,在
对象
系统负反馈作用下,经
过一段时间,系统重新
恢复平衡。
控制系统方块图
第四节 过渡过程和品质指标
系统在过渡过程中,被控变量是随时间变化的。被控 变量随时间的变化规律首先取决于作用于系统的干扰 形式。
液位人工操作图
控制速度和精度不能满足大型 现代化生产的需要
液位自动控制图
第一节 自动控制系统的组成
液位自动控制
常用术语 被控对象:需要实现控制的设备、机械和生产过程 被控变量:对象内要求保持一定数值的物理量,即输出量 控制变量:受执行器控制,用以使被控变量保持一定数值 的物料和能量 干扰:除控制变量以外,作用于对象并引起被控变量变化 的一切因素 给定值:工艺规定被控变量所要保持的数值 偏差:设定值与测量值之差
在生产中,出现的干扰是没有固定形式的,且多半属 于随机性质。在分析和设计控制系统时,为了安全和 方便,常选择一些定型的干扰形式,其中常用的是阶 跃干扰。
第四节 过渡过程和品质指标
常见典型信号 阶跃信号、斜坡信号、脉冲信号、加速度信号和正弦信号等。
阶跃信号
数学表达式为: r(t) A t≥0 0 t<0
阶跃干扰作用
第四节 过渡过程和品质指标
自动控制系统在阶跃干扰作用下过渡过程的四种形式
非周期衰减过程 √
衰减震荡过程
√
对于控制质量要求不 高的场合,如果被控
等幅震荡过程 ?变的量范允围许内在振工荡艺(许主可要
自动控制原理教学ppt
前馈校正
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正
自动控制系统概述ppt课件
号
号
1 就地安 装仪表
2 集中仪 表盘面 安装仪 表
3 就地仪 表盘面 安装仪 表
4
嵌在管道 中
集中仪表 盘后安装 仪表
5 就地仪表 盘后安装 仪表
第二节 自动控制系统的基本组成及表示形式
对于处理两个或两个以上被测变量,具有相同或不同 功能的复式仪表时,可用两个相切的圆或分别用细实线圆 与细虚线圆相切表示(测量点在图纸上距离较远或不在同 一图纸上),如下图所示。
对于一个稳定的系统(所有正常工作的反馈系统都是稳定系统 )要分析其稳定性、准确性和快速性,常以阶跃作用为输入时 的被控变量的过渡过程为例,因为阶跃作用很典型,实际上也 经常遇到,且这类输入变化对系统来讲是比较严重的情况。
第四节 自动控制系统的过渡过程和品质指标
信号常见形式 斜坡信号、脉冲信号、加速度信号和正弦信号、阶跃信号等。
执行器
液位自动控制系统方框图
每个方框表示组成系统的一个环节,两个方框之间用带箭 头的线段表示信号联系;进入方框的信号为环节输入,离 开方框的为环节输出。
第二节 自动控制系统的基本组成及表示形式
注意!
方框图中的每一个方框都代表一个具体的装置。 方框与方框之间的连接线,只是代表方框之间的信号联 系,与工艺流程图上的物料线有区别。 “环节”的输入会引起输出的变化,而输出不会反过来直 接引起输入的变化。环节的这一特性称为“单向性” 。 自动控制系统是一个闭环系统
第二节 自动控制系统的基本组成及表示形式
用同一种形式的方框图可以代表不同的控制系统
蒸汽加热器温度控制系统
给定值x
偏差e
控制器输出p
控制器
干扰作用f
操纵变量q 执行器
对 象 被控变量y
自动控制系统ppt课件
(二) 逆变器输出电压与脉宽的关系 单极式SPWM 脉冲幅值1/2Us.在半个周波内有 N个脉冲,个脉冲不等宽 但中心间距一样, 等三角波的周期
令 第 个矩形脉冲宽度为 其中心点相位角
因为从原点始只有半个三角波
因为输出电压波形 负半波左右对称,是一个奇 次周期函数
把N个矩形脉冲代表的 代入上式,须先求的每个 脉冲的起始和终止相位角
五.研究自动控制系统的方法
定性分析 建立数学模型
定性分析 建立数学模型
定量分析
定性分析
对系统校正 工程实践
对系统校正
称心?
N
Y 工程实践
六.本课程与其它课程的关系
先修课程 电机学、自控原理、电子技术
后续课程 计算机控制系统
六.本课程与其它课程的关系
主要内容 直流电机自动控制系统 交流电机自动控制系统
§7-1变频调速的基本控制方 式
电机调速时希望磁通量Φm为额定值不变 三相异步机每相电势 Eg=4.44f1N1KN1Φm f1------定子频率 KN1---基波绕组系数 N1-----定子每相绕组串联匝数 Φm ----每极气隙磁通量(Wb)
一.基频以下调速
f1从额定f1n向下调。 要求: Eg /f1 =常数。
二.自动控制系统的分类
③过程控制系统 特点:对生产过程自动提供一定的外界条件,
例如:温度、压力、流量、粘度、浓度等参 量保持恒定或按一定的程序变化。对其中的 每一局部,可以是随动系统,也可以是恒值 系统。 例子:化工厂控制系统。
二.自动控制系统的分类
2.按数学模型分类 数学模型 描述系统内部各物理量之间关系的数学表达式。 静态模型 变量各阶导数为零的条件下。
二:直接变频装置(AC-AC)
自动控制系统的基本认识 PPT
• 电冰箱、空调、电饭煲:控制温度
智能建筑:
通信 电梯 供水 通风 空调 安防 抄表 …
工业机器人:
其他机器人:
排爆
步行
灵巧手
吹笛
拉提琴
足球比赛
自动控制的应用领域
• 军事工业 • 航空航天 • 制造业 • 机器人 • 流程工业
钢铁、石化、 造纸、制药等
• 电子工业 • 家用电器
• 交通系统,楼宇系统,经济系统,社会系统 …
自控系统的特点: <1>从信号传送看:c(t)经测量后回到输入端,构成
闭环,具有反馈形式,且为负反馈。 <2>从控制作用的产生看:由偏差产生的控制作用使
系统沿减小或消除偏差的方向运动—偏差控制。
自动控制系统的常用术语
二、常用术语及符号 1)输入量(指令)v(t)——来自反馈系统之外的对系统所施
加的控制作用。 2)参考输入r(t)——输入元件的输出,它是系统的实际输入
二、闭环控制系统:
第一章 自动控制概论
• 定义:闭环控制——被控量与给定值比较后用 其偏差对系统进行控制。亦称反馈控制。
• 特点:不论什么原因使被控量偏离期望值而出 现偏差时,必定会产生一个相应的控制作用去 减小或消除这个偏差,使被控量与期望值趋于 一致。需要控制的是c(t)、而测量的是c(t)对r(t) 的偏差。只要c(t)出现偏差,系统就自行纠正。
<3>测量(反馈)元件:其职能是检测被控制量的物理量。 如测速机、热电偶、自整角机、电位器、旋转 变压器、浮子等。
基本组成(续)
第一章 自动控制概论
<4>放大元件:其职能是将比较元件给出的偏差 信号进行放大,用来推动执行元件去控制受 控对象。如:晶体管、集成电路、晶闸管等 组成的电压、功率放大器。
智能建筑:
通信 电梯 供水 通风 空调 安防 抄表 …
工业机器人:
其他机器人:
排爆
步行
灵巧手
吹笛
拉提琴
足球比赛
自动控制的应用领域
• 军事工业 • 航空航天 • 制造业 • 机器人 • 流程工业
钢铁、石化、 造纸、制药等
• 电子工业 • 家用电器
• 交通系统,楼宇系统,经济系统,社会系统 …
自控系统的特点: <1>从信号传送看:c(t)经测量后回到输入端,构成
闭环,具有反馈形式,且为负反馈。 <2>从控制作用的产生看:由偏差产生的控制作用使
系统沿减小或消除偏差的方向运动—偏差控制。
自动控制系统的常用术语
二、常用术语及符号 1)输入量(指令)v(t)——来自反馈系统之外的对系统所施
加的控制作用。 2)参考输入r(t)——输入元件的输出,它是系统的实际输入
二、闭环控制系统:
第一章 自动控制概论
• 定义:闭环控制——被控量与给定值比较后用 其偏差对系统进行控制。亦称反馈控制。
• 特点:不论什么原因使被控量偏离期望值而出 现偏差时,必定会产生一个相应的控制作用去 减小或消除这个偏差,使被控量与期望值趋于 一致。需要控制的是c(t)、而测量的是c(t)对r(t) 的偏差。只要c(t)出现偏差,系统就自行纠正。
<3>测量(反馈)元件:其职能是检测被控制量的物理量。 如测速机、热电偶、自整角机、电位器、旋转 变压器、浮子等。
基本组成(续)
第一章 自动控制概论
<4>放大元件:其职能是将比较元件给出的偏差 信号进行放大,用来推动执行元件去控制受 控对象。如:晶体管、集成电路、晶闸管等 组成的电压、功率放大器。
《自动控制系统》课件
判定方法
通过分析系统的误差信号和稳态误差,可以判定系统的稳态性能 。
05
自动控制系统设计
系统建模
总结词
系统建模是自动控制系统设计的关键步 骤,它通过建立系统的数学模型来描述 系统的输入、输出和状态之间的关系。
VS
详细描述
系统建模是利用数学模型来描述一个实际 系统的动态行为。通过建立系统的数学模 型,可以分析系统的性能、预测系统的行 为,以及优化系统的设计。常见的系统建 模方法包括传递函数、状态空间和差分方 程等。
自动控制系统类型
开环控制系统
01
开环控制系统是指系统中没有反馈回路的控制系统 。
02
开环控制系统的输出只受输入的控制,系统的抗干 扰性和可靠性较低。
03
常见的开环控制系统有温度控制系统、液位控制系 统等。
闭环控制系统
闭环控制系统是指系统中具有反馈回路的控制系统。
闭环控制系统的输出会反馈到输入端,通过比较实际输出和期望输出的偏差来调整输入,从而减小或消 除偏差。
分类
根据系统对输入信号的响应,动态性能可以分为快速 性、稳定性和准确性。
判定方法
通过分析系统的阶跃响应和脉冲响应,可以判定系统 的动态性能。
稳态性能分析
定义
稳态性能是指系统在输入信号作用下,系统输出的最终状态,包 括误差、稳态误差等。
分类
根据系统对输入信号的响应,稳态性能可以分为无差系统、有差 系统和积分系统。
实例
环境监测与控制系统可以对城市污水处理厂的污水进行实时监测和控制,根据水质数据 自动调整污水处理设备的运行参数,提高污水处理效果和排放标准。
THANKS
感谢观看
被控对象的特性对控制系统的设计有 很大影响,需要充分了解被控对象的 数学模型和动态特性。
通过分析系统的误差信号和稳态误差,可以判定系统的稳态性能 。
05
自动控制系统设计
系统建模
总结词
系统建模是自动控制系统设计的关键步 骤,它通过建立系统的数学模型来描述 系统的输入、输出和状态之间的关系。
VS
详细描述
系统建模是利用数学模型来描述一个实际 系统的动态行为。通过建立系统的数学模 型,可以分析系统的性能、预测系统的行 为,以及优化系统的设计。常见的系统建 模方法包括传递函数、状态空间和差分方 程等。
自动控制系统类型
开环控制系统
01
开环控制系统是指系统中没有反馈回路的控制系统 。
02
开环控制系统的输出只受输入的控制,系统的抗干 扰性和可靠性较低。
03
常见的开环控制系统有温度控制系统、液位控制系 统等。
闭环控制系统
闭环控制系统是指系统中具有反馈回路的控制系统。
闭环控制系统的输出会反馈到输入端,通过比较实际输出和期望输出的偏差来调整输入,从而减小或消 除偏差。
分类
根据系统对输入信号的响应,动态性能可以分为快速 性、稳定性和准确性。
判定方法
通过分析系统的阶跃响应和脉冲响应,可以判定系统 的动态性能。
稳态性能分析
定义
稳态性能是指系统在输入信号作用下,系统输出的最终状态,包 括误差、稳态误差等。
分类
根据系统对输入信号的响应,稳态性能可以分为无差系统、有差 系统和积分系统。
实例
环境监测与控制系统可以对城市污水处理厂的污水进行实时监测和控制,根据水质数据 自动调整污水处理设备的运行参数,提高污水处理效果和排放标准。
THANKS
感谢观看
被控对象的特性对控制系统的设计有 很大影响,需要充分了解被控对象的 数学模型和动态特性。
自动控制原理与系统PPT课件
4. 控制器(放大元件):比较环节输出的 信
号,经控制器成为合适的信号,输出给执行元件。
5.执行元件:驱动被控对象的环节。
6.控制对象(被调对象):要求实现自动控制 的
机器设备或生产过程。
7.反馈环节:将输出量引出,再回送到控制 第17页/共30页
*元件排列从左至右,给定元件在最左端, 控 制对象在最右端。从左至右的通道称为顺馈通道, 或前向通道。将输出信号引回输入端的通道称为 反馈通道,或反馈回路。 (二).系统中的各个量:
3.自动控制系统:自动控制系统是指由控制 装置与被控对象结合起来的,能够对被控对 象的
一些物理量进行自动控制的一个有机整体。
二、自动控制的应用:
锅炉设备的压力和温度自动保持恒定
数控机床按照预定的程序自动地切削工件
导弹发射与制导系统,自动地使导弹攻击 敌
方目标
无人驾驶飞机按照预定航迹自动升降和飞 行
§ 1-1 引言
一、基本概念: 1.控制:是使某些物理量按指定的规律变化
(包 括保持恒定),以保证生产的安全性, 经济性及 产品质量等要求的技术手段。
2.自动控制:就是在没有人直接参与的情况 下,利用控制装置,对生产过程、工艺参数、 目标要求等进行自动的调节与控制,使之达到 预期的状态或性能要求。
第1页/共30页
起来的,能够对被控对象的一些物理量进行自动 控
制的一个有机整体。
(一).硬件部分: 1.给定元件:调节给定信号,以调节输出量 的大
小。
2.检测元件:检测第1输6页出/共3量0页 的大小,并反馈到
3.比较环节:反馈信号与给定信号在此迭加,
信号的极性以“+”或“-”表示。极性相同为 正反馈,
极性相反为负反馈。
号,经控制器成为合适的信号,输出给执行元件。
5.执行元件:驱动被控对象的环节。
6.控制对象(被调对象):要求实现自动控制 的
机器设备或生产过程。
7.反馈环节:将输出量引出,再回送到控制 第17页/共30页
*元件排列从左至右,给定元件在最左端, 控 制对象在最右端。从左至右的通道称为顺馈通道, 或前向通道。将输出信号引回输入端的通道称为 反馈通道,或反馈回路。 (二).系统中的各个量:
3.自动控制系统:自动控制系统是指由控制 装置与被控对象结合起来的,能够对被控对 象的
一些物理量进行自动控制的一个有机整体。
二、自动控制的应用:
锅炉设备的压力和温度自动保持恒定
数控机床按照预定的程序自动地切削工件
导弹发射与制导系统,自动地使导弹攻击 敌
方目标
无人驾驶飞机按照预定航迹自动升降和飞 行
§ 1-1 引言
一、基本概念: 1.控制:是使某些物理量按指定的规律变化
(包 括保持恒定),以保证生产的安全性, 经济性及 产品质量等要求的技术手段。
2.自动控制:就是在没有人直接参与的情况 下,利用控制装置,对生产过程、工艺参数、 目标要求等进行自动的调节与控制,使之达到 预期的状态或性能要求。
第1页/共30页
起来的,能够对被控对象的一些物理量进行自动 控
制的一个有机整体。
(一).硬件部分: 1.给定元件:调节给定信号,以调节输出量 的大
小。
2.检测元件:检测第1输6页出/共3量0页 的大小,并反馈到
3.比较环节:反馈信号与给定信号在此迭加,
信号的极性以“+”或“-”表示。极性相同为 正反馈,
极性相反为负反馈。
自动控制系统概述(ppt64页).pptx
DCS(集散控制系统)
先进控制和优化控制:CIPS、FCS,20世纪80年代 以后
• 自动化仪表的发展 模拟仪表 数字仪表 智能仪表
➢当前自动控制系统发展的一些主要特点 •生产装置实施先进控制成为发展主流 •过程优化受到普遍关注 •传统的DCS在走向国际统一标准的开放式系统 •综合自动化系统(CIPS)是发展方向
➢控制理论的发展 经典控制理论:20世纪40年代~20世纪50年代 Nyquist(1932)频域分析技术 Bode(1945)图 根轨迹分析方法(1948)
特点:主要从输出与输入量的关系方面分析与研究 问题。
适用范围:线性定常的单输入、单输出控制系统。
以传递函数为基础,在频率域对单输入单输出控 制系统进行分析与设计 PID控制规律是古典控制理论最辉煌的成果之一
1.2.2闭环控制与开环控制
闭环控制:
蒸汽
在反馈控制系统中, 被控变量的值被送回 输入端,与设定值进 行比较,根据偏差进 汽包 行控制,控制被控变 量,这样,整个系统 省煤器 构成了一个闭环。
LT
LC
给水
锅炉汽包自动控制系统示意图
➢闭环控制的特点(优
蒸汽
点):
按偏差进行控制,使偏差 减小或消除,达到被控变 量与设定值一致的目的。 汽包
适用范围: 高维线性系统
智能控制理论:不需要建立被控对象的数学模型
➢控制系统结构及仪表的发展 •控制系统结构的发展
基地式:20世纪50年代,适用于单回路(就地式液 位控制器及自力式温度控制器)
单元组合式(按功能划分,然后组合): 有DDZ, QDZ,20世纪60年代,仪表之间用标准统一信号联 系计算机:DDC,20世纪70年代
(3)根据命令操作给水阀, 使液位回到设定值。
先进控制和优化控制:CIPS、FCS,20世纪80年代 以后
• 自动化仪表的发展 模拟仪表 数字仪表 智能仪表
➢当前自动控制系统发展的一些主要特点 •生产装置实施先进控制成为发展主流 •过程优化受到普遍关注 •传统的DCS在走向国际统一标准的开放式系统 •综合自动化系统(CIPS)是发展方向
➢控制理论的发展 经典控制理论:20世纪40年代~20世纪50年代 Nyquist(1932)频域分析技术 Bode(1945)图 根轨迹分析方法(1948)
特点:主要从输出与输入量的关系方面分析与研究 问题。
适用范围:线性定常的单输入、单输出控制系统。
以传递函数为基础,在频率域对单输入单输出控 制系统进行分析与设计 PID控制规律是古典控制理论最辉煌的成果之一
1.2.2闭环控制与开环控制
闭环控制:
蒸汽
在反馈控制系统中, 被控变量的值被送回 输入端,与设定值进 行比较,根据偏差进 汽包 行控制,控制被控变 量,这样,整个系统 省煤器 构成了一个闭环。
LT
LC
给水
锅炉汽包自动控制系统示意图
➢闭环控制的特点(优
蒸汽
点):
按偏差进行控制,使偏差 减小或消除,达到被控变 量与设定值一致的目的。 汽包
适用范围: 高维线性系统
智能控制理论:不需要建立被控对象的数学模型
➢控制系统结构及仪表的发展 •控制系统结构的发展
基地式:20世纪50年代,适用于单回路(就地式液 位控制器及自力式温度控制器)
单元组合式(按功能划分,然后组合): 有DDZ, QDZ,20世纪60年代,仪表之间用标准统一信号联 系计算机:DDC,20世纪70年代
(3)根据命令操作给水阀, 使液位回到设定值。
自动控制系统的基本组成及方块图
y
100%
y
2.余差C(静态偏差) :新的稳态值与给定值之差。
反映了控制系统的控制精确度,希望余差越小越好。
3.衰减比和衰减率 :
衰减比:表示过渡过程的衰减程度。 过渡过程同方向前后相邻两峰值的比。
n B B
n<1,过渡过程是发散振荡;
n=1,过渡过程是等幅振荡;
n>1,过渡过程是衰减振荡。
测量变送器:直接测量被控变量,并转换成标准统一信 号的仪表(TT表示)。
第四节 过程控制系统的质量指标
一、系统的静态、动态和扰动作用 自动控制系统在运行中有两种状态:
1. 静态(稳态):干扰及给定值保持不变,被控参数 不随时间变化,整个系统处于相对的平衡状态, 系统的各个组成环节都暂不动作,输出信号处 于相对静止状态。 各变量(或信号)的变化率为零。
控 制 器: 根据测量值与给定值所的偏差按一定的数学 运算规律输出操纵值(TC表示)。
控制作用u:控制信号。
执 行 器: 通常指调节阀,也可以是变频调速机构等。
控制参数q: 受执行器控制的工艺变量。
被控参数y:要求实施控制的参数,一般是工艺操作的物 理量。
控制过程: 被控制的机器或设备(换热器)。 干 扰 f:引起被控变量发生变化的各种因素。
LC—液位控制器 FC—流量控制器 TC—温度控制器 PC—压力控制器
AT—成分变送器 AC—成分控制器
如图所示为一反应器温度控制系统流程图,A、 B两种物料进入反应器进行反应,通过改变进入夹套 的冷却水流量来控制反应器内的温度不变。试画出 该温度控制系统的方框图,并指出该系统的被控过 程、被控参数、控制参数及可能影响被控参数的干 扰是什么?
一般取 n=4:1--10:1
自动控制系统概述ppt课件
求: z f (x)
拉普拉斯变换
拉氏变换的实质:将实变量t的函数f(t),变换成复变量s(s=α+jβ)的函数F(s)。
F (s) f (t)estdt L[ f (t)] 0
其中: f (t) 为原函数, F(s) 为拉氏变换式(或象函数)
记为:
拉氏 变换 F(s) L[ f (t)]
第一节 自动控制系统的组成
进
料
口
调
节
器
变
送
器
执 行 器
进
料
口
调
节
器
变
送
器
进 料 口
变 送 器
控 制 站
执
执
行
行
器
器
控制系统的 4 个基本环节:
被控对象、检测仪表(测量变送环节)、控制器、执行器
几个常用术语 :
(1)被控对象 需要实现控制的设备、机械或生产过程称为被控对象,简称对象。 (2)被控变量 对象内要求保持一定数值(或按某一规律变化)的物理量称为被控
y (t ) B
e()
Sp
B
C
稳定误差范围: 2% 或者 5%的新稳态值
0
t1
t2
t3
t
超调量σ: B/C *100%
衰 减 比n: n B / B
余差 e(∞): e()
过渡时间tp: 振荡周期:
t p t3 t2 t1
自动控制系统希望的结果: •最大偏差(超调量)? •答:越小越好 •衰减比?
的测量值而非实际值,因此,在控制系统中通常把设定值与测量值之差定义为偏 差。
第二节 自动控制系统的方块图:
一、信号和变量:
+
拉普拉斯变换
拉氏变换的实质:将实变量t的函数f(t),变换成复变量s(s=α+jβ)的函数F(s)。
F (s) f (t)estdt L[ f (t)] 0
其中: f (t) 为原函数, F(s) 为拉氏变换式(或象函数)
记为:
拉氏 变换 F(s) L[ f (t)]
第一节 自动控制系统的组成
进
料
口
调
节
器
变
送
器
执 行 器
进
料
口
调
节
器
变
送
器
进 料 口
变 送 器
控 制 站
执
执
行
行
器
器
控制系统的 4 个基本环节:
被控对象、检测仪表(测量变送环节)、控制器、执行器
几个常用术语 :
(1)被控对象 需要实现控制的设备、机械或生产过程称为被控对象,简称对象。 (2)被控变量 对象内要求保持一定数值(或按某一规律变化)的物理量称为被控
y (t ) B
e()
Sp
B
C
稳定误差范围: 2% 或者 5%的新稳态值
0
t1
t2
t3
t
超调量σ: B/C *100%
衰 减 比n: n B / B
余差 e(∞): e()
过渡时间tp: 振荡周期:
t p t3 t2 t1
自动控制系统希望的结果: •最大偏差(超调量)? •答:越小越好 •衰减比?
的测量值而非实际值,因此,在控制系统中通常把设定值与测量值之差定义为偏 差。
第二节 自动控制系统的方块图:
一、信号和变量:
+
自动控制基础知识.详解ppt课件
双位控制在给排水工程中采用普遍,如:水池、水箱的液 位控制,实验室恒温箱的温度控制等。
双位控制的特点:控制器只有最大和最小两个输出值,执 行器只有“开”和“关”两个极限位置。被控对象中物料 量或能量总是处于不平衡状态,被控变量总是剧烈振荡, 得不到比较平衡的控制过程。
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(2)主要特点: 从信号传送来看,输出量经测量后回送到输入端,回送的
信号使信号回路闭合,构成闭环,即为负反馈。 从控制作用的产生看,由偏差产生的控制作用使系统沿减
少或消除偏差的方向运动。——偏差控制
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
二、比例控制
定义:使被控量的偏差量与调节阀的开关量对应起来,如 图1.15所示的系统,当液面高于给定值Lo后,阀门不是全 关,而是关小,液面越高,阀关得越小;反之.液面低于 给定值Lo,阀也不是全开,而是开大,液面越低,阀开得 越大。例如,液面低于给定值Lo的10%时,则调节信号也 能使阀门开大10%。这样当对象负荷变化时,调节作用就 会与之相适应。这种控制器的输出与被控量的偏差值成比 例的调节方式称为比例控制,又称P控制。
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
被控量——输出量 给定量——输入量
给定输入:决定系统输出量的变化 规律或要求值
扰动输入:系统不希望的外作用
双位控制的特点:控制器只有最大和最小两个输出值,执 行器只有“开”和“关”两个极限位置。被控对象中物料 量或能量总是处于不平衡状态,被控变量总是剧烈振荡, 得不到比较平衡的控制过程。
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(2)主要特点: 从信号传送来看,输出量经测量后回送到输入端,回送的
信号使信号回路闭合,构成闭环,即为负反馈。 从控制作用的产生看,由偏差产生的控制作用使系统沿减
少或消除偏差的方向运动。——偏差控制
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
二、比例控制
定义:使被控量的偏差量与调节阀的开关量对应起来,如 图1.15所示的系统,当液面高于给定值Lo后,阀门不是全 关,而是关小,液面越高,阀关得越小;反之.液面低于 给定值Lo,阀也不是全开,而是开大,液面越低,阀开得 越大。例如,液面低于给定值Lo的10%时,则调节信号也 能使阀门开大10%。这样当对象负荷变化时,调节作用就 会与之相适应。这种控制器的输出与被控量的偏差值成比 例的调节方式称为比例控制,又称P控制。
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
被控量——输出量 给定量——输入量
给定输入:决定系统输出量的变化 规律或要求值
扰动输入:系统不希望的外作用
自动控制原理课件ppt
03
非线性控制系统
非线性控制系统的特点
非线性特性
01
非线性控制系统的输出与输入之间存在非线性关系,
如放大器、继电器等。
复杂的动力学行为
02 非线性控制系统具有复杂的动力学行为,如混沌、分
叉、稳定和不稳定等。
参数变化范围广
03
非线性控制系统的参数变化范围很广,如电阻、电容
、电感等。
非线性控制系统的数学模型
线性控制系统的性能指标与评价
性能指标
衡量一个控制系统性能的好坏,需要使用一些性能指标,如响应时间、超调量、稳态误差等。
性能分析
通过分析系统的性能指标,可以评价一个控制系统的优劣。例如,响应时间短、超调量小、稳态误差小的系统性能较 好。
系统优化
根据性能分析的结果,可以对控制系统进行优化设计,提高控制系统的性能指标。例如,可以通过调整 控制器的参数,减小超调量;或者通过改变系统的结构,减小稳态误差。
。
采样控制系统的数学模型
描述函数法
描述函数法是一种分析采样控制系统的常用方法,通过将连续时间 函数离散化,用差分方程来描述系统的动态特性。
z变换法
z变换法是一种将离散时间信号变换为复平面上的函数的方法,可 用于分析采样控制系统的稳定性和性能。
状态空间法
状态空间法是一种基于系统状态变量的方法,可以用于分析复杂的采 样控制系统。
航空航天领域中的应用
总结词
高精度、高可靠性、高安全性
详细描述
自动控制原理在航空航天领域中的应用至关重要。例如 ,在飞机系统中,通过使用自动控制原理,可以实现飞 机的自动驾驶和自动着陆等功能,从而提高飞行的精度 和安全性。在火箭和卫星中,通过使用自动控制原理, 可以实现推进系统的精确控制和姿态调整等功能,从而 保证火箭和卫星能够准确地进行轨道变换和定点着陆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Qo
现代化生产的要求!
-
被控对象
Qo
自动化装置
自动控制系统基本组成
Qi
自 动 控 制 系
-
统
自动化装置 被控对象
Qo
测量元件与变送器 自动控制器 执行器
2. 自动控制系统的表示形式--方框图
Qi
方框:表示系统中的一个组成部分,
也称为环节
信号线:带箭头的线段,表示环节间
相互作用关系和信号的流向
Qo
被控变量(y) 工艺所关心的变量!!!
对象内要求保持恒定数值(或按某一规律变化)的变量
给定值(x)
工艺规定被控变量所要保持的数值
h
Qo
液位控制系统 工艺要求: 水槽的液位保持在恒定值:h = 30 cm
操纵变量(q) q必与y有关且可调
具体实现控制作用的变量,即受执行器控制, 用以使被控变量保持一定数值的变量
正反馈系统
“-” 号,即z取负值(不可省略)
反馈的结果使系统的输出信号趋于稳定在 原来的水平上或使输出信号与给定值的偏 差趋于减小
f
x
e 控制器 p 执行器 q
对象
y
z
测量元件、变送器
负反馈系统
自动控制系统是具有被控变量负反馈的闭环系统! -
例题 用同一种形式的方块图可以代表不同的控制系统
温度控制器
X=30 xcm
e 控制器
进料流量的改变f p 执行器 Qqo 贮对象槽
y液
干扰(f)
z
位
除控制变量(操纵变量)以外,作用于对象并
测量元件、变送器
h
引起被控变量变- 化的一切外来因素
给定值
x
偏差
e
控制器
控制信号
p
执行器 操纵变量
q
z-
测量值
测量元件、变送器
f 干扰作用
对象 被控变量
y
(2)方框图中的每一个方块都代表一个具体的装置
Qi
(4)自动控制系统是一个闭环系统 对象 -
执行器 Qo
给定值
x
偏差
e
控制器
控制信号
p
执行器 操纵变量
q
z-
测量值
测量元件、变送器
f 干扰作用
对象 被控变量
y
(2)方框图中的每一个方块都代表一个具体的装置
(3)方框与方框之间的连接线及箭头,只是代表方框之 间的信号联系及方向,并不代表方框之间的物料流向。
比较点:表示对信号进行加减运算
给定值
x
偏差
e z
控制器
控制信号
p
执行器
操纵变量
q
测量值
测量元件、变送器
-
f 干扰作用
对象 被控变量
y
(1)几个基本概念
Qi
被控对象(简称对象)
需要控制其工艺参数的生产设备、机器或生产过程
被控变量(y) 工艺所关心的变量!!!
对象内要求保持恒定数值(或按某一规律变化)的变量
给定值(x)
工艺规定被控变量所要保持的数值
h
Qo
液位控制系统 工艺要求: 水槽的液位保持在恒定值:h = 30 cm
操纵变量(q) q必与y有关且可调
具体实现控制作用的变量,即受执行器控制, 用以使被控变量保持一定数值的变量
X=30 xcm
e 控制器
f
p 执行器 Qqo 贮对象槽
y液
干扰(f)
z
位
测量元件、变送器
化工仪表及自动化
第二节 自动控制系统的基本组成和表示形式
主讲人: 化学与化工学院
-
知识回顾
现代生活离不开化工 化工生产来不了自动化 化工自动化的主要内容
自动检测系统
自动信号和连锁保护系统
自动操作及自动开停车系统
自动控制系统
-
1. 自动控制系统的基本组成
人工操作
Qi
Qi
自动控制系统
h
人工控制的速度、精度 和持续性满足不了大型
(4)自动控制系统是一个闭环系统
-
(5)正反馈与负反馈
反馈:系统的输出信号直接或经过一些环节重新返回到控制
系统的输入端,并与设定值比的过程
正反馈: e = x + z “+” 号,即z取正值(可省略)
反馈结果使系统的输出信号增加
f
x
e 控制器 p 执行器 q
对象
y
+ z
测量元件、变送器
负反馈: e = x - z
(3)方框与方框之间的连接线及箭头,只是代表方框之 间的信号联系及方向,并不代表方框之间的物料流向。
(4)自动控制系统是一个闭环系统
-
给定值
x
偏差
e
控制器
控制信号
p
执行器 操纵变量
q
z-
测量值
测量元件、变送器
f 干扰作用
对象 被控变量
y
(2)方框图中的每一个方块都代表一个具体的装置
(3)方框与方框之间的连接线及箭头,只是代表方框之 间的信号联系及方向,并不代表方框之间的物料流向。
???请指出图示控制系统的 被控对象,被控变量,操纵变量和 干扰,并画出控制系统的方框图
பைடு நூலகம்
蒸汽加热器温度控制系统
给定值
x
偏差
e z-
控制器
控制信号
p
执行器
操纵变量
q
测量值
-
测量元件、变送器
f 干扰作用
对象 被控变量
y
小结
1. 自动控制系统由几部分组成? 2. 自动控制系统的表示形式?
思考题 除了方框图,自动控制系统还可以如何表示?
具体实现控制作用的变量,即受执行器控制, 用以使被控变量保持一定数值的变量
X=30 xcm
e
干扰(f)
z
h
V2
QQoo
液位控制系统 工艺要求: 贮槽的液位保持在恒定值:h = 30 cm
f
控制器
p 执行器 Qqo 贮对象槽
y液
位
测量元件、变送器
h
-
(1)几个基本概念
Qi
被控对象(简称对象)
需要控制其工艺参数的生产设备、机器或生产过程
-
h
-
(1)几个基本概念
能否选择V1为执行器,用Qi作为操纵变量??
被控对象(简称对象)
需要控制其工艺参数的生产设备、机器或生产过程
被控变量(y) 工艺所关心的变量!!!
Qi
Qi
V1
对象内要求保持恒定数值(或按某一规律变化)的变量
给定值(x)
工艺规定被控变量所要保持的数值
操纵变量(q) q必与y有关且可调